WO2019184928A1 - 用于地下中子能电站的防核素迁移屏障体及其施工方法 - Google Patents
用于地下中子能电站的防核素迁移屏障体及其施工方法 Download PDFInfo
- Publication number
- WO2019184928A1 WO2019184928A1 PCT/CN2019/079794 CN2019079794W WO2019184928A1 WO 2019184928 A1 WO2019184928 A1 WO 2019184928A1 CN 2019079794 W CN2019079794 W CN 2019079794W WO 2019184928 A1 WO2019184928 A1 WO 2019184928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- clay
- underground
- bottom wall
- surrounding rock
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D29/00—Independent underground or underwater structures; Retaining walls
- E02D29/045—Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D31/00—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
Definitions
- the invention relates to the field of underground energy structure and geological storage technology, in particular to an anti-nuclear migration barrier body for an underground neutron energy power station and a construction method thereof.
- Barrier systems that prevent the migration of radioactive elements are commonly used in deep geological storage or underground nuclear engineering of nuclear waste.
- the barrier systems used in the geological disposal of nuclear waste are mainly divided into artificial barriers and natural barriers.
- artificial barriers include glass solidified bodies, waste outer packaging containers and backfill materials, while natural barriers are surrounding soil, rocks or related sediments. Things.
- the multi-barrier system can safely and steadily contain waste, effectively isolate the relationship between nuclear waste and the external environment, especially to prevent radioactive elements from contacting groundwater, effectively prevent groundwater from approaching and entering the waste repository, and can block radionuclide by adsorption. Biosphere migration.
- the object of the present invention is to provide an anti-nuclear migration barrier body for an underground neutron energy power station and a construction method thereof, which can effectively prevent the diffusion and migration of nuclide during the whole life of an underground neutron power station, and can realize Exchange energy with the outside world.
- the invention provides an anti-nuclear migration barrier for an underground neutron power station, which comprises:
- An artificial barrier structure disposed at a lower portion of the underground chamber, the artificial barrier structure having a bottom wall, a peripheral side wall and a top wall, wherein the bottom wall, the peripheral side wall and the top wall form a receiving cavity
- the bottom wall, the peripheral side wall and the top wall each have a lead powder concrete layer, a clay layer and a reinforced concrete layer arranged in order from the inside to the outside;
- the surrounding rock layer located outside the grouting layer, the surrounding rock layer having a surrounding rock thickness.
- the invention also provides a construction method for an anti-nuclear migration barrier body for an underground neutron energy power station, which comprises the following steps:
- Step S1 excavating underground rock to form a surrounding rock chamber, wherein the outer side of the surrounding rock chamber is a surrounding rock layer;
- Step S2 grouting along the inner surface of the surrounding rock layer to form a grouting layer
- Step S3 sequentially constructing the bottom wall, the peripheral side wall and the top wall of the artificial barrier structure inward along the grouting layer;
- the bottom wall, the peripheral side wall and the top wall each have a lead powder concrete layer, a clay layer and a reinforced concrete layer arranged in order from the inside to the outside.
- the anti-nuclear migration barrier body for the underground neutron energy power station of the present invention and the construction method thereof have the advantages and advantages that the anti-nuclear migration barrier body for the underground neutron energy power station has a multi-level barrier structure and is specialized
- the lead-pulverized concrete layer for the operation safety of the underground neutron power station is set up, which effectively shields the possible neutron and ⁇ -ray escaping. It has high safety and practicability, and can realize the underground neutron power station and the human living environment. Effective isolation ensures the safety of underground neutron power stations and human habitats.
- Figure 1 is a front elevational view showing the structure of an anti-nuclear migration barrier for an underground neutron power station of the present invention.
- FIG. 2 is a top plan view of a nuclides migration barrier for an underground neutron power plant of the present invention.
- FIG 3 is a schematic structural view of an embodiment of a clay layer for a nuclides migration barrier of an underground neutron power station of the present invention.
- FIG. 4 is a schematic structural view of another embodiment of a clay layer for a nuclides migration barrier of an underground neutron power station of the present invention.
- Figure 5 is a schematic view showing the structure of an embodiment of a bottom wall of a clay layer for a nuclides migration barrier of an underground neutron power station of the present invention.
- Figure 6 is a schematic view showing the structure of another embodiment of the bottom wall of the clay layer for the nuclides migration barrier of the underground neutron power station of the present invention.
- the present invention provides an anti-nuclear migration barrier for an underground neutron power station, comprising:
- the grout layer 18 is disposed outside the artificial barrier structure 1; that is, the grout layer 18 is closed on the outside of the artificial barrier structure 1.
- a surrounding rock formation 3 is located outside of the grouting layer 18, which has a surrounding rock thickness.
- the energy generating system of the underground neutron power station is placed in the accommodating cavity 14 of the artificial barrier structure 1.
- the artificial barrier structure 1 may be a cylindrical shape, a rectangular parallelepiped shape or a polygonal prism shape.
- the artificial barrier structure 1 can also be designed in other structural shapes, and is not limited herein.
- the bottom wall 11, the peripheral side wall 12, and the top wall 13 of the artificial barrier structure 1 each have a lead powder concrete layer 15, a clay layer 16, and a reinforced concrete layer 17 which are disposed in order from the inside to the outside.
- a lead-pulverized concrete layer 15 may be disposed around the top wall 13, and the middle portion of the top wall 13 may be The lead powder concrete layer 15 is provided, and no limitation is imposed here.
- the top wall 13 is connected to the bottom wall 21 of the underground chamber 2.
- the artificial barrier structure 1 is embedded in the surrounding rock layer 3, and a grouting layer 18 is disposed between the artificial barrier structure 1 and the surrounding rock layer 3.
- a grouting layer 18 is disposed between the artificial barrier structure 1 and the surrounding rock layer 3.
- the outer layer of the reinforced concrete layer 17 of the bottom wall 11 of the artificial barrier structure 1 and the outer side of the reinforced concrete layer 17 of the peripheral side wall 12 are provided with the grouting layer 18.
- composition and structure of the lead powder concrete layer 15, the clay layer 16, the reinforced concrete layer 17, and the grouting layer 18 are specifically described below:
- the lead powder concrete layer 15 is made of lead powder of C40 or above, and the proportion of lead powder is determined according to the power of the energy generating system, but generally the amount of lead powder incorporated should not exceed 20% of the gelling material. Avoid its effects on concrete strength and workability.
- the lead-pulverized concrete layer 15 has a thickness of 50 cm to 100 cm, and the thickness of the lead-pulverized concrete layer 15 is not limited thereto, and the thickness thereof should be appropriately increased as the design power of the underground neutron power station increases. .
- the lead powder in the lead powder concrete layer 15 has good ⁇ shielding property and good heat conductivity.
- the lead powder concrete layer 15 is mainly used for supporting the energy generation system of the underground neutron power station, and effectively transmits the waste heat of the energy generation system, and can also effectively prevent the infiltration of groundwater and effectively shield the remaining rays and radioactive elements.
- the lead-pulverized concrete layer 15 may also be replaced by other radiation-proof concrete layers, such as radiation-proof concrete incorporated into heavy sand, and the like, and is not limited herein.
- the clay layer 16 is disposed outside the lead-pulverized concrete layer 15, and the selected clay should have good thermal conductivity, good ion adsorption, and certain self-sealing properties.
- the clay selected for the clay layer 16 is Bentonite, etc.
- the good thermal conductivity of the clay layer 16 can effectively ensure the elimination of waste heat from the energy generation system. Its good ion adsorption can effectively hinder the outward migration of radioactive ions, and its expansion and self-sealing can prevent the inflow of groundwater, thus ensuring The energy production system operates safely and isolates the connection with the outside world.
- the clay layer 16 has a thickness of 30 cm to 40 cm, and the thickness thereof should be appropriately increased as the design power of the underground neutron power station increases.
- the clay layer 16 includes a clay block inner layer 161 and a clay powder outer layer 162, the clay block inner layer 161 being formed by splicing a plurality of clay blocks, the clay The powder outer layer 162 is interposed between the inner layer 161 of the clay block and the reinforced concrete layer 17.
- the plurality of clay blocks of the inner layer 161 of the clay block of the peripheral side wall 12 may be curved blocks, as shown in FIG.
- the plurality of clay blocks of the inner layer 161 of the clay block of the bottom wall 11 includes a plurality of curved blocks 161a, a plurality of curved blocks 161b, and a plurality of arc-like blocks.
- the 161c and the square block 161d, that is, the bottom wall 11 may be a ring body formed by splicing a plurality of curved blocks 161a arranged in order from the outside to the inside, and a ring formed by splicing a plurality of curved blocks 161b.
- the plurality of clay blocks of the clay block inner layer 161 of the bottom wall 11 include a plurality of arcuate blocks 161a, a plurality of arcuate blocks 161b, a plurality of arcuate blocks 161c, and two trapezoidal blocks 161d, that is,
- the bottom wall 11 may be an annular body formed by splicing a plurality of curved blocks 161a arranged in order from the outside to the inside, a ring body formed by splicing a plurality of curved blocks 161b, A ring body formed by splicing a plurality of arc-like blocks 161c and two trapezoidal blocks 161d disposed at a middle portion are formed by splicing; the cross section of the artificial barrier structure 1 may also be other shapes,
- the outer layer 162 of the clay powder of the bottom wall 11 is first applied, and then the inner layer 161 of the clay block of the bottom wall 11 is assembled, and after the inner layer 161 of the clay block of the peripheral side wall 12 is assembled, An annular space is formed between the inner layer 161 of the clay block of the peripheral side wall 12 and the reinforced concrete layer 17, and finally the annular space is backfilled with clay powder to form an outer layer 162 of clay powder.
- the clay layer 16 has good ion adsorption capacity and can be effectively adsorbed in the clay layer 16 to prevent outward migration when the nuclides escape from the energy generating system.
- the clay layer 16 is formed by splicing a plurality of clay blocks.
- the plurality of clay blocks of the clay layer 16 of the peripheral side wall 12 may be curved blocks, as shown in FIG. 5, at the bottom.
- the plurality of clay blocks of the clay layer 16 of the bottom wall 11 comprise a plurality of arcuate blocks 161a, a plurality of arcuate blocks 161b, a plurality of arcuate blocks 161c and square blocks.
- the body 161d that is, the bottom wall 11 may be a ring body formed by splicing a plurality of curved blocks 161a arranged in order from the outside to the inside, and a ring body formed by splicing a plurality of curved blocks 161b.
- the annular body formed by the splicing of the arc-shaped blocks 161c and the square block 161d disposed at the middle are formed by splicing; or, in another possible embodiment of the bottom wall 11, as shown in FIG.
- the plurality of clay blocks of the clay layer 16 include a plurality of arcuate blocks 161a, a plurality of arcuate blocks 161b, a plurality of arcuate blocks 161c and two trapezoidal blocks 161d, that is, the bottom wall 11 can be a torus formed by splicing a plurality of arcuate blocks 161a arranged in order from the outside to the inside, a torus formed by splicing a plurality of arcuate blocks 161b, and a plurality of arcs
- the annular body formed by the splicing of the body 161c and the two trapezoidal blocks 161d disposed in the middle are formed by splicing; the cross section of the artificial barrier structure 1 may also be other shapes, such as a polygon or an irregular polygon, etc., and no limitation is imposed herein. .
- the shape of the plurality of clay blocks of the clay layer 16 is also specifically divided according to the specific shape of the clay layer 16.
- the clay layer 16 inevitably has gaps between the blocks due to the clay block assembly, which are disadvantageous for the entire barrier system. For this reason, a composite structural layer of the clay block inner layer 161 and the clay powder outer layer 162 should preferably be used.
- the reinforced concrete layer 17 is disposed outside the clay layer 16, and mainly serves to stabilize the surrounding rock and waterproof.
- the reinforced concrete layer 17 is composed of high-performance concrete, and is mainly used for ensuring the stability and safety of the underground chamber 2. At the same time, it can effectively avoid the infiltration of groundwater from the outside.
- the reinforced concrete layer 17 has a thickness of 50 cm to 70 cm.
- the reinforced concrete layer 17 can be designed and constructed with reference to the reinforced concrete layer of the general underground chamber. Generally, at the time of design, it should bear all the loads generated by the surrounding rock. Further, in the underground neutron power station, the reinforced concrete layer 17 is made of concrete having a rating of C35 or more.
- the grouting layer 18 is disposed on the outer side of the reinforced concrete layer 17, and its main function is to reduce the permeability coefficient of the surrounding rock layer 3, improve the compactness of the surrounding rock layer 3, and use a slurry with a high viscous mineral content to improve the surrounding rock.
- the ion adsorption capacity of layer 3, another function of the grouting layer 18 is to improve the stability of the surrounding rock when the stability of the surrounding rock mass is insufficient.
- the grouting layer 18 should be grouted in the periphery of the underground chamber 2 by using a slurry to form a closed grouting body for further isolating the transfer of moisture, nuclide and external systems inside the energy generating system.
- the construction of the grout layer 18 may be before or after the construction of the reinforced concrete layer 17.
- the grouting layer 18 should be prioritized. After the grouting pipe is evenly laid around the lower part of the underground diverting chamber 2, grouting is carried out with appropriate grouting pressure, and the injection is effectively controlled. The amount of pulp; in the place where the stability of the surrounding rock layer 3 is poor, the reinforced concrete layer 17 should be preferentially constructed, and then the grouting pipe is placed around the lower part of the underground chamber 2 for grouting reinforcement.
- the grouting layer 18 should form a continuous shielding ring, and the thickness thereof can be 20 cm to 50 cm. After construction, the formation effect of the grouting layer 18 should be monitored by geophysical or geological radar.
- the surrounding rock layer 3 located outside the artificial barrier structure 1 should be selected from surrounding rock having good thermal conductivity and ion adsorption capability, such as soft rock or shale, and the surrounding rock
- the effective thickness of layer 3 should not be less than 70m, in order to adsorb a small amount of radioactive ions that escape, and realize the complete isolation of the underground neutron power station from the human living environment.
- the vertical distance of the artificial barrier structure 1 from the ground is not less than 70 m.
- the anti-nuclear migration barrier body for the underground neutron energy power station of the invention has a multi-level barrier structure, has high safety and strong practicability, and can effectively realize energy exchange between the underground neutron energy power station and the outside, and effectively prevents underground
- the diffusion and migration of nuclide during the whole life of the sub-energy station can effectively isolate the underground neutron power station from the human living environment and ensure the safety of the underground neutron power station and the human living environment.
- the invention also provides a construction method for an anti-nuclear migration barrier body for an underground neutron energy power station, which comprises the following steps:
- Step S1 excavating underground surrounding rock to form a surrounding rock chamber, the outer side of the surrounding rock chamber is a surrounding rock layer 3;
- Step S2 along the inner surface of the surrounding rock layer 3 grouting, forming a grouting layer 18;
- Step S3 sequentially constructing the bottom wall 11, the peripheral side wall 12 and the top wall 13 of the artificial barrier structure 1 inwardly along the grouting layer 18; wherein the bottom wall 11, the peripheral side wall 12 and the The top wall 13 has a lead powder concrete layer 15, a clay layer 16, and a reinforced concrete layer 17 which are disposed in order from the inside to the outside.
- the lead powder concrete layer 15, the clay layer 16, and the reinforced concrete layer 17 are sequentially applied inward along the grouting layer 18.
- the invention should be applied from the outside to the inside during the specific construction, and finally capped.
- the grouting layer 18 and the reinforced concrete layer 17 are respectively constructed, and then the clay layer 16 and the lead powder concrete layer 15 are applied, and then the energy generating system is placed in the receiving cavity 14 of the artificial barrier structure 1. Then, the energy generating system is debugged, and after completion, the lead powder concrete layer 15, the clay layer 16 and the reinforced concrete layer 17 of the top wall 13 of the artificial barrier structure 1 are constructed to complete the sealing.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Lining And Supports For Tunnels (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
Abstract
一种用于地下中子能电站的防核素迁移屏障体,包括设置在地下硐室(2)下部的人工屏障结构体(1),人工屏障结构体(1)具有底壁(11)、周侧壁(12)及顶壁(13),底壁(11)、周侧壁(12)及顶壁(13)之间形成有容纳腔(14),底壁(11)、周侧壁(12)及顶壁(13)均具有由内至外依次设置的铅粉混凝土层(15)、粘土层(16)和钢筋混凝土层(17),注浆层(18)围设在人工屏障结构体(1)的外侧,围岩层(3)位于注浆层(18)的外侧,围岩层(3)具有围岩厚度。还提供了一种用于地下中子能电站的防核素迁移屏障体的施工方法。
Description
本发明涉及地下能源结构和地质封存技术领域,尤其涉及一种用于地下中子能电站的防核素迁移屏障体及其施工方法。
通常在核废料的深地质储存或地下核工程中会采用防止放射性元素迁移的屏障体系。在核废料的地质处置中使用的屏障体系主要分为人工屏障和自然屏障,其中,人工屏障包括玻璃固化体、废物外包装容器以及回填材料,而天然屏障即周围的土壤、岩石或有关的沉积物。
多重屏障体系能安全、稳妥地包容废物,有效隔离核废料与外界环境的联系,尤其是防止放射性元素接触地下水,有效阻止地下水接近、进入废物处置库,并且能通过吸附作用阻滞放射性核素向生物圈迁移。
发明内容
本发明的目的是提供一种用于地下中子能电站的防核素迁移屏障体及其施工方法,其能有效防止地下中子能电站全寿命过程中核素的扩散和迁移,同时能实现与外界的能量交换。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种用于地下中子能电站的防核素迁移屏障体,其包括:
设置在地下硐室下部的人工屏障结构体,所述人工屏障结构体具有底壁、周侧壁及顶壁,所述底壁、所述周侧壁及所述顶壁之间形成有容纳腔,所述底壁、所述周侧壁及所述顶壁均具有由内至外依次设置的铅粉混凝土层、粘土层和钢筋混凝土层;
注浆层,其围设在所述人工屏障结构体的外侧;
围岩层,其位于所述注浆层的外侧,所述围岩层具有围岩厚度。
本发明还提供一种用于地下中子能电站的防核素迁移屏障体的施工方法,其包括如下步骤:
步骤S1,开挖地下围岩形成围岩腔室,所述围岩腔室的外侧为围岩层;
步骤S2,沿所述围岩层的内表面注浆,形成注浆层;
步骤S3,沿所述注浆层依次向内施工人工屏障结构体的底壁、周侧壁和顶壁;
其中,所述底壁、所述周侧壁及所述顶壁均具有由内至外依次设置的铅粉混凝土层、粘土层和钢筋混凝土层。
本发明的用于地下中子能电站的防核素迁移屏障体及其施工方法的特点及优点是:该用于地下中子能电站的防核素迁移屏障体具有多级屏障结构,并专门设置了针对地下中子能电站运营安全的铅粉混凝土层,有效屏蔽了可能的中子、γ射线逸散,其安全性高、实用性强,可实现地下中子能电站与人类居住环境的有效隔离,保证地下中子能电站和人类居住环境的安全。
图1为本发明的用于地下中子能电站的防核素迁移屏障体的主视结构图。
图2为本发明的用于地下中子能电站的防核素迁移屏障体的俯视结构图。
图3为本发明的用于地下中子能电站的防核素迁移屏障体的粘土层的一实施例的结构示意图。
图4为本发明的用于地下中子能电站的防核素迁移屏障体的粘土层的另一实施例的结构示意图。
图5为本发明的用于地下中子能电站的防核素迁移屏障体的粘土层的底壁的一实施例的结构示意图。
图6为本发明的用于地下中子能电站的防核素迁移屏障体的粘土层的底壁的另一实施例的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施方式一
如图1和图2所示,本发明提供一种用于地下中子能电站的防核素迁移屏障体,包括:
设置在地下硐室2下部的人工屏障结构体1,所述人工屏障结构体1具有底壁11、周侧壁12及顶壁13,所述底壁11、所述周侧壁12及所述顶壁13之间形成有容纳腔14,所述 底壁11、所述周侧壁12及所述顶壁13均具有由内至外依次设置的铅粉混凝土层15、粘土层16和钢筋混凝土层17;
注浆层18,其围设在所述人工屏障结构体1的外侧;也即,该注浆层18在人工屏障结构体1的外侧形成闭合。
围岩层3,其位于所述注浆层18的外侧,所述围岩层3具有围岩厚度。
具体的,地下中子能电站的能量产生系统放置于该人工屏障结构体1的容纳腔14中,在本发明中,该人工屏障结构体1可为圆柱体形、长方体形或多棱柱体形,当然,该人工屏障结构体1还可设计为其他结构形状,在此不做限制。
该人工屏障结构体1的底壁11、周侧壁12及顶壁13均具有由内至外依次设置的铅粉混凝土层15、粘土层16和钢筋混凝土层17。其中,在本发明中,为了能使人工屏障结构体1中的能量产生系统与外界的能量或物质进行交换,可在顶壁13的周边设置铅粉混凝土层15,而顶壁13的中部可不设置铅粉混凝土层15,在此不做限制。该顶壁13与地下硐室2的底壁21相连。
进一步的,该人工屏障结构体1埋设在围岩层3中,在人工屏障结构体1与围岩层3之间设有注浆层18。具体是,该人工屏障结构体1的底壁11的钢筋混凝土层17的外侧和周侧壁12的钢筋混凝土层17的外侧均设有该注浆层18。
下面具体说明铅粉混凝土层15、粘土层16、钢筋混凝土层17和注浆层18的组成和结构:
该铅粉混凝土层15由C40或以上标号的混凝土参入铅粉制成,铅粉的参入比例根据能量产生系统的功率确定,但一般地铅粉的参入量不应超过胶凝材料的20%,避免其对混凝土强度和工作性能的影响。在本实施例中,该铅粉混凝土层15的厚度为50cm~100cm,该铅粉混凝土层15的厚度并不限于此,其厚度应随地下中子能电站设计功率的增大而适当增大。该铅粉混凝土层15中的铅粉的γ屏蔽性好,传热导性能好。该铅粉混凝土层15主要用于支撑地下中子能电站的能量产生系统,且有效传递能量产生系统的余热,同时还可以有效防止地下水的渗入,有效屏蔽剩余的射线和放射性元素。在其它的实施例中,该铅粉混凝土层15还可以由其他防辐射混凝土层进行替换,例如参入重劲砂的防辐射混凝土等,在此不做限制。
该粘土层16设置在铅粉混凝土层15的外侧,其选用的粘土应具有良好的热传导性能、良好的离子吸附性、以及一定的膨胀自封闭性等特点,例如该粘土层16选用的粘土为膨润土等。该粘土层16良好的导热性能可以有效保证能量产生系统余热的排除,其良 好的离子吸附性可以有效阻碍放射性离子的向外迁移,其膨胀自封闭性可以阻止地下水的向内流动,从而确保了能量产生系统的运营安全并隔绝与外界的联系。在本实施例中,该粘土层16的厚度为30cm~40cm,其厚度应随地下中子能电站设计功率的增大而适当增大。
在粘土层16的一可行实施方式中,如图3所示,该粘土层16包括粘土块内层161和粘土粉外层162,该粘土块内层161由多个粘土块拼接形成,该粘土粉外层162夹设在粘土块内层161与钢筋混凝土层17之间。在本实施例中,当该人工屏障结构体1的横截面为圆环形时,周侧壁12的粘土块内层161的多个粘土块可为弧形块体,如图5所示,在底壁11的一可行实施例中,该底壁11的粘土块内层161的多个粘土块包括多个弧形块体161a、多个弧形块体161b、多个类弧形块体161c和正方形块体161d,也即该底壁11可为从外至内依次设置的由多个弧形块体161a拼接形成的圆环体、由多个弧形块体161b拼接形成的圆环体、由多个类弧形块体161c拼接形成的圆环体和设置在中部的正方形块体161d拼接形成;或者,在底壁11的另一可行实施例中,如图6所示,该底壁11的粘土块内层161的多个粘土块包括多个弧形块体161a、多个弧形块体161b、多个类弧形块体161c和两个梯形块体161d,也即该底壁11可为从外至内依次设置的由多个弧形块体161a拼接形成的圆环体、由多个弧形块体161b拼接形成的圆环体、由多个类弧形块体161c拼接形成的圆环体和设置在中部的两个梯形块体161d拼接形成;该人工屏障结构体1的横截面也可为其他形状,例如多边形或不规则多边形等,在此不做限制。同时,粘土层16的多个粘土块的形状亦随粘土层16的具体形状进行具体划分。
在该实施例中,在施工时,应先施工底壁11的粘土粉外层162,然后拼装底壁11的粘土块内层161,并结合拼装周侧壁12的粘土块内层161后,在周侧壁12的粘土块内层161与钢筋混凝土层17之间形成环形空间,最后用粘土粉回填该环形空间从而形成粘土粉外层162。当有水分渗入粘土层16后,由于粘土的膨胀自封闭性,可以发生自我膨胀,进而填充粘土块内层161中的两两相邻的粘土块之间的缝隙,并有效降低水分的渗透系数,阻碍地下水的渗入。该粘土层16具有良好的离子吸附能力,在有核素逃逸出能量产生系统时,可以有效地吸附在粘土层16内,防止其向外迁移。
在粘土层16的另一可行实施方式中,如图4所示,该粘土层16由多个粘土块拼接形成。在本实施例中,当该人工屏障结构体1的横截面为圆环形时,周侧壁12的粘土层16的多个粘土块可为弧形块体,如图5所示,在底壁11的一可行实施例中,该底壁11的粘土层16的多个粘土块包括多个弧形块体161a、多个弧形块体161b、多个类弧形块体161c 和正方形块体161d,也即该底壁11可为从外至内依次设置的由多个弧形块体161a拼接形成的圆环体、由多个弧形块体161b拼接形成的圆环体、由多个类弧形块体161c拼接形成的圆环体和设置在中部的正方形块体161d拼接形成;或者,在底壁11的另一可行实施例中,如图6所示,该底壁11的粘土层16的多个粘土块包括多个弧形块体161a、多个弧形块体161b、多个类弧形块体161c和两个梯形块体161d,也即该底壁11可为从外至内依次设置的由多个弧形块体161a拼接形成的圆环体、由多个弧形块体161b拼接形成的圆环体、由多个类弧形块体161c拼接形成的圆环体和设置在中部的两个梯形块体161d拼接形成;该人工屏障结构体1的横截面也可为其他形状,例如多边形或不规则多边形等,在此不做限制。同时,粘土层16的多个粘土块的形状亦随粘土层16的具体形状进行具体划分。
该粘土层16由于粘土块拼装不可避免地存在块体间的缝隙,这些缝隙对整个屏障系统不利,为此,应优先采用粘土块内层161和粘土粉外层162的组合结构层。
该钢筋混凝土层17围设在粘土层16的外侧,其主要起到稳定围岩和防水的作用,该钢筋混凝土层17应由高性能混凝土构成,主要用于确保地下硐室2的稳定和安全,同时可以有效避免外界地下水的渗入。在本实施例中,该钢筋混凝土层17的厚度为50cm~70cm。该钢筋混凝土层17可参照一般地下硐室的钢筋混凝土层进行设计施工,一般地,在设计时,其应承担围岩所产生的所有荷载。另外,在地下中子能电站中,该钢筋混凝土层17采用标号为C35以上的混凝土制成。
该注浆层18设置在钢筋混凝土层17的外侧,其主要作用是降低围岩层3的渗透系数,提高围岩层3的密实性,并且应采用粘性矿物含量较高的浆液,提高围岩层3的离子吸附能力,注浆层18的另一个作用是在围岩体稳定不足时,提高围岩的稳定程度。该注浆层18应采用浆液在地下硐室2周边进行注浆,形成封闭的注浆体,用于进一步隔绝能量产生系统内部的水分、核素与外界系统的传递。在本实施例中,该注浆层18的施工可在钢筋混凝土层17施工之前或之后。在围岩层3稳定较好的地方,应优先施工注浆层18,可在地下硐室2的下部周围均匀打设注浆管后,采用合适的注浆压力进行注浆,并有效控制注浆量;在围岩层3稳定性较差的地方,应优先施工钢筋混凝土层17,然后再在地下硐室2的下方周围打设注浆管,进行注浆加固。该注浆层18应形成连续的屏蔽圈,其厚度可在20cm~50cm,施工后应采用物探或地质雷达等监测注浆层18的形成效果。
在本发明的一个实施方式中,位于该人工屏障结构体1外侧的围岩层3,应选择具有良好的热传导性能和离子吸附能力的围岩,例如软岩或页岩等,且该围岩层3的有效厚 度不应小于70m,以用来吸附少量逸散出来的放射性离子,实现地下中子能电站对人类居住环境的完全隔离。该人工屏障结构体1距离地面的垂直距离不小于70m。
本发明的用于地下中子能电站的防核素迁移屏障体具有多级屏障结构,安全性高、实用性强,并且能够有效实现地下中子能电站与外界的能量交换,有效防止地下中子能电站全寿命过程中核素的扩散和迁移,可实现地下中子能电站与人类居住环境的有效隔离,保证地下中子能电站和人类居住环境的安全。
实施方式二
本发明还提供一种用于地下中子能电站的防核素迁移屏障体的施工方法,其包括如下步骤:
步骤S1,开挖地下围岩形成围岩腔室,所述围岩腔室的外侧为围岩层3;
步骤S2,沿所述围岩层3的内表面注浆,形成注浆层18;
步骤S3,沿所述注浆层18依次向内施工人工屏障结构体1的底壁11、周侧壁12和顶壁13;其中,所述底壁11、所述周侧壁12及所述顶壁13均具有由内至外依次设置的铅粉混凝土层15、粘土层16和钢筋混凝土层17。
具体的,在所述步骤S3中,沿所述注浆层18依次向内施工所述铅粉混凝土层15、所述粘土层16和所述钢筋混凝土层17。
本发明在具体施工时应从外向内施工,最后封顶。根据围岩层3的稳定性情况,分别施工注浆层18和钢筋混凝土层17,然后施工粘土层16和铅粉混凝土层15,之后将能量产生系统放置在人工屏障结构体1的容纳腔14中,随后,调试能量产生系统,完毕后依此施工人工屏障结构体1的顶壁13的铅粉混凝土层15,粘土层16以及钢筋混凝土层17,完成密封。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的内容可以对本发明实施例进行各种改动或变型而不脱离本发明的精神和范围。
Claims (12)
- 一种用于地下中子能电站的防核素迁移屏障体,其中,包括:设置在地下硐室下部的人工屏障结构体,所述人工屏障结构体具有底壁、周侧壁及顶壁,所述底壁、所述周侧壁及所述顶壁之间形成有容纳腔,所述底壁、所述周侧壁及所述顶壁均具有由内至外依次设置的铅粉混凝土层、粘土层和钢筋混凝土层;注浆层,其围设在所述人工屏障结构体的外侧;围岩层,其位于所述注浆层的外侧,所述围岩层具有围岩厚度。
- 如权利要求1所述的用于地下中子能电站的防核素迁移屏障体,其中,所述顶壁与所述地下硐室的底壁相连,所述底壁的所述钢筋混凝土层的外侧和所述周侧壁的所述钢筋混凝土层的外侧分别设有所述注浆层。
- 如权利要求1所述的用于地下中子能电站的防核素迁移屏障体,其中,所述人工屏障结构体距离地面的垂直距离不小于70m。
- 如权利要求1所述的用于地下中子能电站的防核素迁移屏障体,其中,所述粘土层包括粘土块内层和粘土粉外层,所述粘土块内层由多个粘土块拼接形成,所述粘土粉外层夹设在所述粘土块内层与所述钢筋混凝土层之间。
- 如权利要求1所述的用于地下中子能电站的防核素迁移屏障体,其中,所述粘土层由多个粘土块拼接形成。
- 如权利要求4所述的用于地下中子能电站的防核素迁移屏障体,其中,所述底壁的所述粘土块内层包括多个圆环体以及设置在所述多个圆环体中部的中间块体,所述圆环体由多个弧形块体拼接形成。
- 如权利要求5所述的用于地下中子能电站的防核素迁移屏障体,其中,所述底壁的所述粘土层包括多个圆环体以及设置在所述多个圆环体中部的中间块体,所述圆环体由多个弧形块体拼接形成。
- 如权利要求6或7所述的用于地下中子能电站的防核素迁移屏障体,其中,所述中间块体为正方形块体;或者,所述中间块体由两个梯形块体拼接组成。
- 如权利要求1所述的用于地下中子能电站的防核素迁移屏障体,其中,所述人工屏障结构体为圆柱体形、长方体形或多棱柱体形。
- 如权利要求1所述的用于地下中子能电站的防核素迁移屏障体,其中,所述铅粉混凝土层的厚度为50cm~100cm;所述粘土层的厚度为30cm~40cm;所述钢筋混凝土 层的厚度为50cm~70cm;所述注浆层的厚度为20cm~50cm。
- 一种用于地下中子能电站的防核素迁移屏障体的施工方法,其中,包括如下步骤:步骤S1,开挖地下围岩形成围岩腔室,所述围岩腔室的外侧为围岩层;步骤S2,沿所述围岩层的内表面注浆,形成注浆层;步骤S3,沿所述注浆层依次向内施工人工屏障结构体的底壁、周侧壁和顶壁;其中,所述底壁、所述周侧壁及所述顶壁均具有由内至外依次设置的铅粉混凝土层、粘土层和钢筋混凝土层。
- 如权利要求11所述的用于地下中子能电站的防核素迁移屏障体的施工方法,其中,在所述步骤S3中,沿所述注浆层依次向内施工所述铅粉混凝土层、所述粘土层和所述钢筋混凝土层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810270529.3A CN108343086A (zh) | 2018-03-29 | 2018-03-29 | 用于地下中子能电站的防核素迁移屏障体及其施工方法 |
CN201810270529.3 | 2018-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019184928A1 true WO2019184928A1 (zh) | 2019-10-03 |
Family
ID=62957414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/079794 WO2019184928A1 (zh) | 2018-03-29 | 2019-03-27 | 用于地下中子能电站的防核素迁移屏障体及其施工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108343086A (zh) |
WO (1) | WO2019184928A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108343086A (zh) * | 2018-03-29 | 2018-07-31 | 何满潮 | 用于地下中子能电站的防核素迁移屏障体及其施工方法 |
CN109187213B (zh) * | 2018-09-21 | 2021-07-02 | 同济大学 | 混凝土-高压实膨润土组合体系性态模拟试验方法及装置 |
CN112648014B (zh) * | 2020-12-17 | 2022-02-01 | 华能浙江平湖海上风电有限责任公司 | 地下储气库衬砌横缝填缝方法及地下储气库 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3930166A (en) * | 1972-11-28 | 1975-12-30 | Robatel Slpi | Package for transporting or enclosing radioactive materials |
CN85105835A (zh) * | 1985-08-01 | 1987-01-28 | 西屋电气公司 | 核废料封装组合罐 |
JP2008076270A (ja) * | 2006-09-22 | 2008-04-03 | Kobe Steel Ltd | 放射性物質の輸送兼貯蔵容器 |
CN102218882A (zh) * | 2011-03-28 | 2011-10-19 | 扬州锦江有色金属有限公司 | 核辐射屏蔽铅衣用面料及其生产方法 |
CN204966066U (zh) * | 2015-06-24 | 2016-01-13 | 深圳中广核工程设计有限公司 | 中等放射性水平技术废物临时贮存屏蔽容器 |
CN106098131A (zh) * | 2016-07-17 | 2016-11-09 | 邢桂生 | 一种核废料包装装置 |
CN206179536U (zh) * | 2016-11-11 | 2017-05-17 | 长江勘测规划设计研究有限责任公司 | 具有气载放射过滤排放功能的低中放废物处置库 |
CN108343449A (zh) * | 2018-03-29 | 2018-07-31 | 何满潮 | 用于地下中子能电站的结构体系 |
CN108343086A (zh) * | 2018-03-29 | 2018-07-31 | 何满潮 | 用于地下中子能电站的防核素迁移屏障体及其施工方法 |
CN108417283A (zh) * | 2018-03-29 | 2018-08-17 | 何满潮 | 地下中子能电站 |
CN208538496U (zh) * | 2018-03-29 | 2019-02-22 | 何满潮 | 用于地下中子能电站的防核素迁移屏障体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4192629A (en) * | 1976-12-13 | 1980-03-11 | Hallenius Tore J | System for the storage of radioactive material in rock |
DE3019781A1 (de) * | 1980-05-23 | 1981-12-03 | Eberhard Dipl.-Ing. 7000 Stuttgart Kuen | Schutzraum zum personenschutz gegen explosionen und strahlungen |
CN100999401A (zh) * | 2006-12-28 | 2007-07-18 | 吕迎智 | 一种减弱质子辐射强度的防护工程混凝土 |
CN103545003A (zh) * | 2013-09-26 | 2014-01-29 | 葛沈香 | 一种防辐射水泥 |
-
2018
- 2018-03-29 CN CN201810270529.3A patent/CN108343086A/zh active Pending
-
2019
- 2019-03-27 WO PCT/CN2019/079794 patent/WO2019184928A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3930166A (en) * | 1972-11-28 | 1975-12-30 | Robatel Slpi | Package for transporting or enclosing radioactive materials |
CN85105835A (zh) * | 1985-08-01 | 1987-01-28 | 西屋电气公司 | 核废料封装组合罐 |
JP2008076270A (ja) * | 2006-09-22 | 2008-04-03 | Kobe Steel Ltd | 放射性物質の輸送兼貯蔵容器 |
CN102218882A (zh) * | 2011-03-28 | 2011-10-19 | 扬州锦江有色金属有限公司 | 核辐射屏蔽铅衣用面料及其生产方法 |
CN204966066U (zh) * | 2015-06-24 | 2016-01-13 | 深圳中广核工程设计有限公司 | 中等放射性水平技术废物临时贮存屏蔽容器 |
CN106098131A (zh) * | 2016-07-17 | 2016-11-09 | 邢桂生 | 一种核废料包装装置 |
CN206179536U (zh) * | 2016-11-11 | 2017-05-17 | 长江勘测规划设计研究有限责任公司 | 具有气载放射过滤排放功能的低中放废物处置库 |
CN108343449A (zh) * | 2018-03-29 | 2018-07-31 | 何满潮 | 用于地下中子能电站的结构体系 |
CN108343086A (zh) * | 2018-03-29 | 2018-07-31 | 何满潮 | 用于地下中子能电站的防核素迁移屏障体及其施工方法 |
CN108417283A (zh) * | 2018-03-29 | 2018-08-17 | 何满潮 | 地下中子能电站 |
CN208538496U (zh) * | 2018-03-29 | 2019-02-22 | 何满潮 | 用于地下中子能电站的防核素迁移屏障体 |
Also Published As
Publication number | Publication date |
---|---|
CN108343086A (zh) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019184928A1 (zh) | 用于地下中子能电站的防核素迁移屏障体及其施工方法 | |
CN108343449B (zh) | 用于地下中子能电站的结构体系 | |
JP4150063B1 (ja) | 地下構造体の施工方法及び該方法によって得られる地下構造体並びに地下立地式原子力発電所 | |
Bergström et al. | International perspective on repositories for low level waste | |
CN107052021B (zh) | 一种高放废物地质处置库人工屏障缓冲材料的安置方法 | |
JP5740456B2 (ja) | 放射性廃棄物の地下貯蔵施設およびその構築方法 | |
CN111430058B (zh) | 高放射性核废料深井填埋处置结构以及高放射性核废料深井填埋处置方法 | |
von Berlepsch | Salt repository systems: Design development approach at the example of the Gorleben salt dome | |
CN206179536U (zh) | 具有气载放射过滤排放功能的低中放废物处置库 | |
Pryde et al. | The geography of radioactive contamination in the former USSR | |
US5171483A (en) | Method for retrievable/permanent storage of hazardous waste materials | |
CN110400649A (zh) | 一种低中水平放射性废物岩洞处置的方法及结构 | |
CN208538496U (zh) | 用于地下中子能电站的防核素迁移屏障体 | |
Matteo et al. | Status of Progress Made Toward Preliminary Design Concepts for the Inventory in Select Media for DOE-Managed HLW/SNF | |
Chegbeleh et al. | Concepts of Repository and the Functions of Bentonite in Repository Environments: A State–of–the–art review | |
Larson et al. | Geology and Design of Major Spent Fuel Repositories | |
KR101399295B1 (ko) | 방사성 폐기물 저장용 반지하 구조물 시공방법 | |
CN111128427B (zh) | 一种高水平放射性废物的处置容器、处置单元及处置方法 | |
KR102448007B1 (ko) | 콘크리트 처분고의 방사성폐기물 처분용기 부식 지연을 위한 시공 공법 | |
JP3222696U (ja) | 高レベル放射性廃棄物を詰めた容器の一時保管施設の構造。 | |
Hoskins et al. | Geologic and engineering dimensions of nuclear waste storage | |
Atabek | Sustainability consideration during the design and construction of geological disposal | |
Templeton et al. | Low-level radioactive waste disposal technologies used outside the United States | |
Lee et al. | A foreign cases study of the deep borehole disposal system for high-level radioactive waste | |
von Berlepsch | DBE Technology GmbH, Peine, Germany |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776988 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19776988 Country of ref document: EP Kind code of ref document: A1 |