US3915694A - Process for desulphurization of molten pig iron - Google Patents
Process for desulphurization of molten pig iron Download PDFInfo
- Publication number
- US3915694A US3915694A US389508A US38950873A US3915694A US 3915694 A US3915694 A US 3915694A US 389508 A US389508 A US 389508A US 38950873 A US38950873 A US 38950873A US 3915694 A US3915694 A US 3915694A
- Authority
- US
- United States
- Prior art keywords
- impeller
- pig iron
- molten pig
- guide plate
- bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D27/00—Stirring devices for molten material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
Definitions
- the present invention has been worked out through a series of researches directed to overcoming the above-stated drawbacks of the prior art desulphurization processes.
- a ladle containing molten pig iron poured thereinto is settled in place in a desulphurizing apparatus (FIG.
- a predetermined quantity of a desulphurizing agent is added into the ladle, streams mostly flowing horizontally in one direction are created in the molten iron bath by rotating the impeller placed in the bath, one or more guide plates having a width equal to one-fourth to two-thirds of the radius of the ladle are immersed into the upper part of the bath to a depth of one-fourth to three-fourths of the distance between the surface of the static bath and the upper surface of the impeller in the bath, thereby to create downward streams in the bath into which the desulphurizing agent is drawn.
- the possibility of wear and breakage of the impeller is lessened, the cost of power and equipment required for desulphurization is reduced and the amount of molten iron to be treated in a vessel can be made equal to the nominal capacity of the vessel.
- FIG. 1 is a schematic view showing through a water model how the bath is agitated when no guide plate is employed;
- FIG. 2 is a schematic view showing same when a guide plate is employed
- FIGS. 3 and 4 are schematic views showing how the desulphurizing agent is drawn into molten pig iron
- FIGS. 5 and 6 show different forms of apparatuses for carrying out the desulphurization process according to this invention.
- FIG. 7 is a comparative graph showing desulphurization rates in the presence of a guide plate and in the absence of same.
- the present invention presents a desulphurization process based on addition of a desulphurizing agent to molten pig iron contained in a ladle characterized in that streams mostly flowing horizontally in one direction are created in the molten pig iron bath by an impeller placed in the bath, downward streams are created in the bath by immersing one or more guide plates in the upper part of said bath and the desulphurizing agent is thereby drawn into said downward stream.
- the abovecited stream mostly flowing horizontally in one direction means a circulating current of molten pig iron caused to flow in one direction along the inner periphery of the ladle as a result of the continuous and oneway rotation of the impeller.
- the movements of the molten iron in the ladle include also other streams conditioned by the rotation speed of the impeller and the depth of immersion thereof such as those advancing straight toward the wall of the ladle from the central portion and those rising upward along the wall of the ladle and then moving toward the center of the ladle, the latter phenomenon being generally seen near the surface of the bath.
- what matters most in the present invention is the above-stated horizontally flowing current.
- the impeller placed in the bath is required only to cause the molten iron to flow mainly in a definite direction. Also, the contact and reaction between the molten iron and the desulphurizing agent are rapidly effected because the desulphurizing agent is drawn into the violent downward streams created in the molten iron by the insertion of the guide plate thereinto. Therefore, shallower immersion and lower rotation speed of the impeller than in the case of the prior art process (e) can produce satisfactory results.
- the size, depth of immersion and relative position of the guide plate constituting a characteristic feature of the present invention are as follows:
- Width of the guide plate between one-fourth and two-thirds of the radius of the ladle Depth of immersion of same between one-fourth and three-fourths of the distance between the surface of static bath and the upper surface of the impeller Relative position of same a portion of the guide plate should preferably be located directly above the locus described by the ends of the impeller
- the size, shape, depth of immersion, etc. of the impeller need not be particularly defined, sine it is required only to cause the molten iron to flow in a defi nite direction as mentioned earlier.
- the chief objects of the present invention are to reduce the possibilities of the impeller being worn and broken, to lessen the cost of power equipment for desulphurization and to make it possible to treat in-' creased amount of molten iron in a given vessel, the essential conditions required of the prior art process (e) are alien to the present invention.
- FIG. 1 schematically shows various forms of water model tests conducted by using only a impeller 1. The tests were conducted by changing the speed of rotation and the depth of immersion of the impeller 1.
- the dotted lines in FIG. 1 indicate the static liquid level. Chips of foamed styrene were used as a desulphurizing agent 2.
- the condition shown in FIG. 1a-1 may be considered as representing the operating conditions of conventional processes. In this case, the desulphurizing agent 2 is circulated in the directions indicated by the arrows, showing the molten pig iron 3 and the desulphurizing agent 2 contacted in a very good condition.
- FIG. 2 schematically shows various forms of water model tests conducted under conditions respectively corresponding to those shown in FIG. 1, utilization of the guide plate which features the present invention being the only difference.
- the guide plate 5 its width should preferably be nearly equal to the diameter of the impeller l and its preferable depth of immersion is such that the lower end thereof does not reach the lower end of the impeller l. Desired effect can be obtained with a single guide plate when the impeller 1 is rotated in one definite direction but a plurality of guide plates may also be used.
- the rotation of the impeller 2 causes the molten iron 3 to be delivered to the outside with a certain spread from the upper and lower delivering ends of the impeller.
- the streams of the molten iron delivered from the upper discharging ends of the impeller 1 (FIG. 3)
- the motion of the molten iron on the surface of the bath is equivalent to the resultant of the two streams.
- the streams shown by the dotted lines are more intense so that the floating objects on the bath surface tend to gather on the wall side of the vessel.
- the hatched portions at the ends of the impeller indicate where the liquid is delivered effectively.
- the area of these effective portions is expanded by the downward streams thereby caused, in contrast to the case where no guide plate is employed. Consequently, the intensity of the liquid flowing from the wall side of the vessel toward the impeller is strengthened.
- the treating vessel according to the present invention includes both a ladle in which a certain quantity of molten pig iron contained therein is treated by the batch system and a continuous desulphurization vessel which continuously receives molten pig iron being supplied at a substantially constant flow rate and continuously discharges same at a constant flow rate.
- FIG. 5
- FIG. 6 illustrates the latter case wherein a plurality of treating vessels are employed for continuous desulphurization.
- FIG. 5 concretely illustrates an apparatus designed to carry out the process of this invention as shown in FIG. 2.
- the ladle 4 filled with molten pig iron 3 is placed on a ladle car 6 and a stirrer is mounted on a supporting stand 8 comprising four posts provided on a frame 7.
- the impeller 1 and an impeller shaft 9 are coupled to a rotating shaft 11 by a flange 10.
- the rotating shaft 1 1 is supported by a journal box 12 and is connected at its farther end with a driving unit 13 consisting of a motor and a reduction gear.
- the driving unit 13 is suspended by a wire 15 let out from a winder 14 disposed on the top of the supporting stand Sand the stirrer including the impeller 1 is vertically moved by the winder 14 through rollers 16 along the supporting stand 8.
- the guide plate 5 and its attaching shaft 17 are connected to a movable shaft 19 via a coupling 18.
- Said movable shaft 19 is provided with a lever 20 so that the guide plate can be turned as desired.
- Disposed below the journal box 12 is a heat insulating plate 21 and the assembly comprising the impeller 1, the guide plate 5 and the heat insulating plate 21 is moved up and down by the vertical motion of the wire 15.
- a ladle cover 22 is placed on the ladle 4 so that a certain degree of airtightness is maintained during the vertical motion of the centrally disposed heat insulating plate 21.
- a desulphurizer charging chute 23 and a gas exhaust pipe 24 are provided in the ladle cover 22 and the ladle cover 22 is suspended and moved vertically by means of wires 25 extending from a winder 26 on the frame 7.
- the desulphurizing agent 2 is stored in a hopper 28 provided with a measuring feeding unit 27 and the desulphurizing agent is fed onto the surface of the molten pig iron bath from the chute 23 through a flexible tube 29.
- FIG. 6 illustrates an application of the present invention to an iron runner of a blast furnace designed as a continuous molten pig iron desulphurizing apparatus in which numeral 30 denotes a skimmer dam.
- Slag 31 is led to a slag runner from an outlet 32 and the molten pig iron 3 flows through a dam 33.
- Dams 35 and 36 are provided in a runner 34 and a stirrer 37 comprising a plurality of sets of impellers l and guide plates 5 is provided in each of the partitioned vessels.
- the desulphurizing agent is charged onto the surface of the molten iron bath from a hopper 38 by a feeder 39 through a chute 40.
- a skimmer 41 is provided in the rear of the dam 36 and post-reaction residues 42 of the desulphurizing agent are continuously scraped out by a scraper 43.
- the number of said guide plate is not necessarily limited to one but a plurality of guide plates may be employed simultaneously.
- EXAMPLE 1 An impeller 60 cm in diameter and cm in height having five blades was immersed in a 30 t ladle having a diameter of 1.8 m and containing molten pig iron of 2.0 m depth in such a manner that the distance between the molten iron bath surface and the upper surface of the impeller was 35 cm and the impeller was rotated at a speed of 75 rpm. A guide plate having a width of cm was immersed to a depth of 18 cm from the bath surface. As a desulphurizing agent, 3 kg/t of calcium carbide was used. The desulphurization rate obtained after 12 minutes of agitation in the presence of a guide plate was 85-95% in contrast to the desulphurization rate of 35-45% obtained in the absence of a guide plate. in this case, the temperature of the molten pig iron was 1350C flC and the sulphur content of the molten iron was between 0.03 and 0.06%. Sufficient removal of the slag was effected in this example.
- EXAMPLE 2 An impeller 60 cm in diameter and 40 cm in height having five blades was immersed in a 30 t ladle having a diameter of 1.8 m and containing molten pig iron of 2.0 m depth in such a manner that the distance between the bath surface and the upper surface of the impeller was 35 cm and the impeller was rotated at a speed of 75 rpm. A guide plate of 50 cm in width was immersed to a depth of 5 cm from the bath surface. As a desulphurizing agent, 3 kg/t of calcium carbide was used. The desulphurization rate obtained after 12 minutes of agitation in the absence of a guide plate was 25-35%. The desulphurizing agent was found congesting on the inner periphery of the ladle.
- the desulphurizing agent was satisfactorily drawn into the molten iron and the desulphurization rate obtained was 85-95%.
- the temperature of the molten pig iron was 1350C fl0C and the sulphur content of the molten iron was between 0.03 and 0.06%.
- EXAMPLE 3 This is an example of a 2 t/min continuous treatment apparatus.
- the vessel used was 1.65 m in length and 0.75 m in width, and the depth of the molten iron bath was 0.60 m.
- the amount of molten pig iron contained in the vessel was about 4 tons, that is to say, the average retention time of molten iron was 2 minutes.
- Two impellers each having a diameter of 25 cm and a thickness of 15 cm and provided with three blades were immersed in the bath to a depth of cm from the bath surface and rotated at a speed of 80 rpm.
- a guide plate of 20 cm in width was immersed in the bath to a depth of 14 cm from the bath surface in a manner to be located diagonally above each impeller.
- the desulphurization rate obtained was about 40% in the absence of a guide plate and about 70% in the presence of guide plates.
- the temperature of the molten pig iron was l4001450C and the sulphur content of the molten iron before desulphurization was between 0.03 and 0.06%.
- FIG. 7 graphically shows a comparison of desulphurization rates in the presence and absence of a guide plate obtained from other examples.
- the present invention provides an excellent method for desulphurizing molten pig iron in a short time through the steps of causing molten pig iron in a ladle to move horizontally in one direction by a rotating impeller, and creating downward streams in the molten pig iron bath by inserting a guide plate in the upper part of the bath, thereby causing the desulphurizing agent to be drawn into said downward streams and making it possible for the desulphurizing agent to get under the bath surface even when the impeller is rotated at a slow speed.
- the fact that satisfactory results are obtained from low-speed rotation of the impeller means an economic advantage that a smallscale equipment for rotation suffices.
- a method of desulphurizing molten pig iron in a vessel comprising the steps of mechanically stirring said molten pig iron with a rotating impeller disposed in said molten pig iron, the rotating impeller having a shaft which is substantially vertically disposed in the vessel, thereby creating a circulating upper layer of molten pig iron and a substantially static lower layer of molten pig iron, the upper layer having streams flowing substantially horizontally therein;
- vessel is a ladle.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP47088364A JPS5219525B2 (enExample) | 1972-09-05 | 1972-09-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3915694A true US3915694A (en) | 1975-10-28 |
Family
ID=13940736
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US389508A Expired - Lifetime US3915694A (en) | 1972-09-05 | 1973-08-20 | Process for desulphurization of molten pig iron |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US3915694A (enExample) |
| JP (1) | JPS5219525B2 (enExample) |
| FR (1) | FR2197986B1 (enExample) |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4018598A (en) * | 1973-11-28 | 1977-04-19 | The Steel Company Of Canada, Limited | Method for liquid mixing |
| US4046559A (en) * | 1976-02-23 | 1977-09-06 | Kennecott Copper Corporation | Pyrometallurgical system for liquid-liquid contacting |
| US4063932A (en) * | 1974-07-17 | 1977-12-20 | Union Carbide Corporation | Method for admixing solids in molten metal |
| US4618427A (en) * | 1984-01-25 | 1986-10-21 | Ardal Og Sundal Verk A.S. | Method of treating and breaking up a liquid with the help of centripetal force |
| US4898367A (en) * | 1988-07-22 | 1990-02-06 | The Stemcor Corporation | Dispersing gas into molten metal |
| US4954167A (en) * | 1988-07-22 | 1990-09-04 | Cooper Paul V | Dispersing gas into molten metal |
| US5143357A (en) * | 1990-11-19 | 1992-09-01 | The Carborundum Company | Melting metal particles and dispersing gas with vaned impeller |
| US5944496A (en) * | 1996-12-03 | 1999-08-31 | Cooper; Paul V. | Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection |
| US5951243A (en) * | 1997-07-03 | 1999-09-14 | Cooper; Paul V. | Rotor bearing system for molten metal pumps |
| US6027685A (en) * | 1997-10-15 | 2000-02-22 | Cooper; Paul V. | Flow-directing device for molten metal pump |
| US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
| US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
| US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
| US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
| US7402276B2 (en) | 2003-07-14 | 2008-07-22 | Cooper Paul V | Pump with rotating inlet |
| US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
| US7507367B2 (en) | 2002-07-12 | 2009-03-24 | Cooper Paul V | Protective coatings for molten metal devices |
| US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
| US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
| US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
| US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
| US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
| US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
| US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
| US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
| US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
| US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
| US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
| US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
| US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
| US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
| US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
| US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
| US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
| US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
| US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
| US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
| US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
| US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
| US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
| CN109988879A (zh) * | 2019-04-03 | 2019-07-09 | 山东钢铁股份有限公司 | 一种应用于kr铁水脱硫工序的提高脱硫剂卷吸效果的方法 |
| US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
| US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
| US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
| US11358217B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | Method for melting solid metal |
| US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
| US12146508B2 (en) | 2022-05-26 | 2024-11-19 | Molten Metal Equipment Innovations, Llc | Axial pump and riser |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5833289B2 (ja) * | 1978-08-23 | 1983-07-19 | 川崎製鉄株式会社 | 底吹き転炉による工業用純鉄の溶製方法 |
| CA1286506C (en) * | 1987-02-13 | 1991-07-23 | William Kevin Kodatsky | Method of desulfurizing iron |
| JP4665345B2 (ja) * | 2001-06-12 | 2011-04-06 | Jfeスチール株式会社 | 攪拌式脱硫装置 |
| JP2015007267A (ja) * | 2013-06-25 | 2015-01-15 | 株式会社日向製錬所 | フェロニッケルの脱硫方法 |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2129445A (en) * | 1937-07-08 | 1938-09-06 | American Metal Co Ltd | Treating impure lead and/or tin metal |
| US2290961A (en) * | 1939-11-15 | 1942-07-28 | Essex Res Corp | Desulphurizing apparatus |
| US2397737A (en) * | 1942-07-14 | 1946-04-02 | Essex Res Corp | Process of desulphurizing |
| US3052936A (en) * | 1956-10-01 | 1962-09-11 | Babcock & Wilcox Co | Method of continuously casting metals |
| US3258328A (en) * | 1962-08-23 | 1966-06-28 | Fuji Iron & Steel Co Ltd | Method and apparatus for treating steel |
| US3278295A (en) * | 1960-07-07 | 1966-10-11 | Ostberg Jan-Erik | Method of stirring dispersing or homogenizing metal or slag charges having a temperature of at least 800deg. c. |
| US3438820A (en) * | 1965-04-02 | 1969-04-15 | Dominion Foundries & Steel | Silicon steel process |
| US3556775A (en) * | 1967-06-22 | 1971-01-19 | Tatsuo Kuratomi | Continuous oxygen steel making process |
| US3572671A (en) * | 1967-10-03 | 1971-03-30 | Conzinc Riotinto Ltd | Continuous degassing of metals |
| US3664826A (en) * | 1968-03-23 | 1972-05-23 | Rheinstahl Huettenwerke Ag | Process for accelerating metallurgical reactions |
| US3687430A (en) * | 1969-09-06 | 1972-08-29 | Rheinstahl Huettenwerke Ag | Method of and apparatus for desulfurizing pig iron |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2029449C3 (de) * | 1970-06-15 | 1978-11-09 | Demag Ag, 4100 Duisburg | Entschwefelungsrinne für Roheisen |
-
1972
- 1972-09-05 JP JP47088364A patent/JPS5219525B2/ja not_active Expired
-
1973
- 1973-08-20 US US389508A patent/US3915694A/en not_active Expired - Lifetime
- 1973-09-05 FR FR7332031A patent/FR2197986B1/fr not_active Expired
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2129445A (en) * | 1937-07-08 | 1938-09-06 | American Metal Co Ltd | Treating impure lead and/or tin metal |
| US2290961A (en) * | 1939-11-15 | 1942-07-28 | Essex Res Corp | Desulphurizing apparatus |
| US2397737A (en) * | 1942-07-14 | 1946-04-02 | Essex Res Corp | Process of desulphurizing |
| US3052936A (en) * | 1956-10-01 | 1962-09-11 | Babcock & Wilcox Co | Method of continuously casting metals |
| US3278295A (en) * | 1960-07-07 | 1966-10-11 | Ostberg Jan-Erik | Method of stirring dispersing or homogenizing metal or slag charges having a temperature of at least 800deg. c. |
| US3258328A (en) * | 1962-08-23 | 1966-06-28 | Fuji Iron & Steel Co Ltd | Method and apparatus for treating steel |
| US3438820A (en) * | 1965-04-02 | 1969-04-15 | Dominion Foundries & Steel | Silicon steel process |
| US3556775A (en) * | 1967-06-22 | 1971-01-19 | Tatsuo Kuratomi | Continuous oxygen steel making process |
| US3572671A (en) * | 1967-10-03 | 1971-03-30 | Conzinc Riotinto Ltd | Continuous degassing of metals |
| US3664826A (en) * | 1968-03-23 | 1972-05-23 | Rheinstahl Huettenwerke Ag | Process for accelerating metallurgical reactions |
| US3687430A (en) * | 1969-09-06 | 1972-08-29 | Rheinstahl Huettenwerke Ag | Method of and apparatus for desulfurizing pig iron |
Cited By (123)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4018598A (en) * | 1973-11-28 | 1977-04-19 | The Steel Company Of Canada, Limited | Method for liquid mixing |
| US4063932A (en) * | 1974-07-17 | 1977-12-20 | Union Carbide Corporation | Method for admixing solids in molten metal |
| US4046559A (en) * | 1976-02-23 | 1977-09-06 | Kennecott Copper Corporation | Pyrometallurgical system for liquid-liquid contacting |
| US4618427A (en) * | 1984-01-25 | 1986-10-21 | Ardal Og Sundal Verk A.S. | Method of treating and breaking up a liquid with the help of centripetal force |
| US4898367A (en) * | 1988-07-22 | 1990-02-06 | The Stemcor Corporation | Dispersing gas into molten metal |
| US4954167A (en) * | 1988-07-22 | 1990-09-04 | Cooper Paul V | Dispersing gas into molten metal |
| US5143357A (en) * | 1990-11-19 | 1992-09-01 | The Carborundum Company | Melting metal particles and dispersing gas with vaned impeller |
| US5294245A (en) * | 1990-11-19 | 1994-03-15 | Gilbert Ronald E | Melting metal particles and dispersing gas with vaned impeller |
| US6345964B1 (en) | 1996-12-03 | 2002-02-12 | Paul V. Cooper | Molten metal pump with metal-transfer conduit molten metal pump |
| US5944496A (en) * | 1996-12-03 | 1999-08-31 | Cooper; Paul V. | Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection |
| US5951243A (en) * | 1997-07-03 | 1999-09-14 | Cooper; Paul V. | Rotor bearing system for molten metal pumps |
| US6027685A (en) * | 1997-10-15 | 2000-02-22 | Cooper; Paul V. | Flow-directing device for molten metal pump |
| US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
| US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
| US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
| US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
| US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
| US9034244B2 (en) | 2002-07-12 | 2015-05-19 | Paul V. Cooper | Gas-transfer foot |
| US7507367B2 (en) | 2002-07-12 | 2009-03-24 | Cooper Paul V | Protective coatings for molten metal devices |
| US8409495B2 (en) | 2002-07-12 | 2013-04-02 | Paul V. Cooper | Rotor with inlet perimeters |
| US8529828B2 (en) | 2002-07-12 | 2013-09-10 | Paul V. Cooper | Molten metal pump components |
| US9435343B2 (en) | 2002-07-12 | 2016-09-06 | Molten Meal Equipment Innovations, LLC | Gas-transfer foot |
| US8110141B2 (en) | 2002-07-12 | 2012-02-07 | Cooper Paul V | Pump with rotating inlet |
| US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
| US8440135B2 (en) | 2002-07-12 | 2013-05-14 | Paul V. Cooper | System for releasing gas into molten metal |
| US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
| US8475708B2 (en) | 2003-07-14 | 2013-07-02 | Paul V. Cooper | Support post clamps for molten metal pumps |
| US8501084B2 (en) | 2003-07-14 | 2013-08-06 | Paul V. Cooper | Support posts for molten metal pumps |
| US7402276B2 (en) | 2003-07-14 | 2008-07-22 | Cooper Paul V | Pump with rotating inlet |
| US8075837B2 (en) | 2003-07-14 | 2011-12-13 | Cooper Paul V | Pump with rotating inlet |
| US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
| US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
| US10562097B2 (en) | 2007-06-21 | 2020-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
| US10352620B2 (en) | 2007-06-21 | 2019-07-16 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
| US9855600B2 (en) | 2007-06-21 | 2018-01-02 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
| US11167345B2 (en) | 2007-06-21 | 2021-11-09 | Molten Metal Equipment Innovations, Llc | Transfer system with dual-flow rotor |
| US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
| US11130173B2 (en) | 2007-06-21 | 2021-09-28 | Molten Metal Equipment Innovations, LLC. | Transfer vessel with dividing wall |
| US8753563B2 (en) | 2007-06-21 | 2014-06-17 | Paul V. Cooper | System and method for degassing molten metal |
| US11103920B2 (en) | 2007-06-21 | 2021-08-31 | Molten Metal Equipment Innovations, Llc | Transfer structure with molten metal pump support |
| US9017597B2 (en) | 2007-06-21 | 2015-04-28 | Paul V. Cooper | Transferring molten metal using non-gravity assist launder |
| US11759854B2 (en) | 2007-06-21 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer structure and method |
| US11020798B2 (en) | 2007-06-21 | 2021-06-01 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal |
| US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
| US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
| US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
| US10458708B2 (en) | 2007-06-21 | 2019-10-29 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
| US11185916B2 (en) | 2007-06-21 | 2021-11-30 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel with pump |
| US10345045B2 (en) | 2007-06-21 | 2019-07-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
| US9383140B2 (en) | 2007-06-21 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
| US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
| US10274256B2 (en) | 2007-06-21 | 2019-04-30 | Molten Metal Equipment Innovations, Llc | Vessel transfer systems and devices |
| US10195664B2 (en) | 2007-06-21 | 2019-02-05 | Molten Metal Equipment Innovations, Llc | Multi-stage impeller for molten metal |
| US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
| US10072891B2 (en) | 2007-06-21 | 2018-09-11 | Molten Metal Equipment Innovations, Llc | Transferring molten metal using non-gravity assist launder |
| US9982945B2 (en) | 2007-06-21 | 2018-05-29 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
| US9925587B2 (en) | 2007-06-21 | 2018-03-27 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal from a vessel |
| US9909808B2 (en) | 2007-06-21 | 2018-03-06 | Molten Metal Equipment Innovations, Llc | System and method for degassing molten metal |
| US9566645B2 (en) | 2007-06-21 | 2017-02-14 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
| US9581388B2 (en) | 2007-06-21 | 2017-02-28 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
| US9862026B2 (en) | 2007-06-21 | 2018-01-09 | Molten Metal Equipment Innovations, Llc | Method of forming transfer well |
| US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
| US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
| US9080577B2 (en) | 2009-08-07 | 2015-07-14 | Paul V. Cooper | Shaft and post tensioning device |
| US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
| US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
| US9506129B2 (en) | 2009-08-07 | 2016-11-29 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
| US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
| US9470239B2 (en) | 2009-08-07 | 2016-10-18 | Molten Metal Equipment Innovations, Llc | Threaded tensioning device |
| US9382599B2 (en) | 2009-08-07 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
| US9464636B2 (en) | 2009-08-07 | 2016-10-11 | Molten Metal Equipment Innovations, Llc | Tension device graphite component used in molten metal |
| US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
| US9657578B2 (en) | 2009-08-07 | 2017-05-23 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
| US9377028B2 (en) | 2009-08-07 | 2016-06-28 | Molten Metal Equipment Innovations, Llc | Tensioning device extending beyond component |
| US9422942B2 (en) | 2009-08-07 | 2016-08-23 | Molten Metal Equipment Innovations, Llc | Tension device with internal passage |
| US12163536B2 (en) | 2009-08-07 | 2024-12-10 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
| US9328615B2 (en) | 2009-08-07 | 2016-05-03 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
| US10570745B2 (en) | 2009-08-07 | 2020-02-25 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
| US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
| US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
| US10309725B2 (en) | 2009-09-09 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Immersion heater for molten metal |
| US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
| US9482469B2 (en) | 2010-05-12 | 2016-11-01 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
| US10641279B2 (en) | 2013-03-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened tip |
| US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
| US11391293B2 (en) | 2013-03-13 | 2022-07-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
| US10126058B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Molten metal transferring vessel |
| US9587883B2 (en) | 2013-03-14 | 2017-03-07 | Molten Metal Equipment Innovations, Llc | Ladle with transfer conduit |
| US10302361B2 (en) | 2013-03-14 | 2019-05-28 | Molten Metal Equipment Innovations, Llc | Transfer vessel for molten metal pumping device |
| US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
| US10126059B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Controlled molten metal flow from transfer vessel |
| US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
| US10307821B2 (en) | 2013-03-15 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
| US10322451B2 (en) | 2013-03-15 | 2019-06-18 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
| US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
| US11286939B2 (en) | 2014-07-02 | 2022-03-29 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
| US11939994B2 (en) | 2014-07-02 | 2024-03-26 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
| US10465688B2 (en) | 2014-07-02 | 2019-11-05 | Molten Metal Equipment Innovations, Llc | Coupling and rotor shaft for molten metal devices |
| US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
| US11933324B2 (en) | 2015-02-02 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
| US11098719B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
| US11519414B2 (en) | 2016-01-13 | 2022-12-06 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
| US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
| US10641270B2 (en) | 2016-01-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
| US11098720B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
| US11976672B2 (en) | 2017-11-17 | 2024-05-07 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
| US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
| US12385501B2 (en) | 2017-11-17 | 2025-08-12 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
| US12031550B2 (en) | 2017-11-17 | 2024-07-09 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
| CN109988879A (zh) * | 2019-04-03 | 2019-07-09 | 山东钢铁股份有限公司 | 一种应用于kr铁水脱硫工序的提高脱硫剂卷吸效果的方法 |
| US11858036B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | System and method to feed mold with molten metal |
| US11931803B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and method |
| US11931802B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal controlled flow launder |
| US11471938B2 (en) | 2019-05-17 | 2022-10-18 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
| US11858037B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
| US11358217B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | Method for melting solid metal |
| US11850657B2 (en) | 2019-05-17 | 2023-12-26 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
| US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
| US12263522B2 (en) | 2019-05-17 | 2025-04-01 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
| US11759853B2 (en) | 2019-05-17 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Melting metal on a raised surface |
| US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
| US12228150B2 (en) | 2021-05-28 | 2025-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
| US12146508B2 (en) | 2022-05-26 | 2024-11-19 | Molten Metal Equipment Innovations, Llc | Axial pump and riser |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS4944927A (enExample) | 1974-04-27 |
| JPS5219525B2 (enExample) | 1977-05-28 |
| FR2197986B1 (enExample) | 1976-10-01 |
| FR2197986A1 (enExample) | 1974-03-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3915694A (en) | Process for desulphurization of molten pig iron | |
| US4018598A (en) | Method for liquid mixing | |
| US6056803A (en) | Injector for gas treatment of molten metals | |
| JPH0765126B2 (ja) | 溶融金属処理装置および処理方法 | |
| JP2002500273A5 (enExample) | ||
| JP2003119509A (ja) | 溶銑予備処理方法及びインペラー装置 | |
| US3393997A (en) | Method for metallurgical treatment of molten metal, particularly iron | |
| US4180396A (en) | Method of alloying and/or inoculating and/or deoxidizing cast iron melts produced in a cupola furnace | |
| JP5418058B2 (ja) | 溶銑の脱硫方法 | |
| US4240618A (en) | Stirrer for metallurgical melts | |
| JPS61246305A (ja) | 溶融金属のスラグ除去方法および装置 | |
| US3212882A (en) | Method and apparatus for oxygen steelmaking | |
| US3961775A (en) | Method and apparatus for liquid mixing | |
| CN1957098A (zh) | 铜的吹炼方法 | |
| US3773498A (en) | Method and device for varying the substance composition in metal melts and in particular for the desulfurizing of pig iron | |
| JPH07113114A (ja) | 溶融金属の攪拌方法 | |
| JP2002241825A (ja) | 溶銑の脱硫方法及び脱硫装置 | |
| US3653879A (en) | Rotary reactor and method for treating melts | |
| JPH08157940A (ja) | 溶融金属中への精錬用粉体吹込み方法 | |
| JP2001220620A (ja) | インペラーによる溶融金属の攪拌方法 | |
| US4053146A (en) | Continuous stream treatment of ductile iron | |
| JPS61166908A (ja) | 溶銑の脱硫方法 | |
| JP2003147423A (ja) | 容器内溶湯の精錬方法および装置 | |
| JP5085094B2 (ja) | 高炉鋳床の連続精錬方法 | |
| US4195823A (en) | Method of and an apparatus for agitating a bath of melted metal for treating the same |