US3908338A - Coin wrapping apparatus - Google Patents

Coin wrapping apparatus Download PDF

Info

Publication number
US3908338A
US3908338A US433492A US43349274A US3908338A US 3908338 A US3908338 A US 3908338A US 433492 A US433492 A US 433492A US 43349274 A US43349274 A US 43349274A US 3908338 A US3908338 A US 3908338A
Authority
US
United States
Prior art keywords
wrapping
coins
coin
rolls
wrapped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US433492A
Other languages
English (en)
Inventor
Masatoshi Ushio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glory Ltd
Original Assignee
Glory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glory Ltd filed Critical Glory Ltd
Application granted granted Critical
Publication of US3908338A publication Critical patent/US3908338A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D9/00Counting coins; Handling of coins not provided for in the other groups of this subclass
    • G07D9/06Devices for stacking or otherwise arranging coins on a support, e.g. apertured plate for use in counting coins
    • G07D9/065Devices for wrapping coins

Definitions

  • ABSTRACT A coin wrapping apparatus wherein a predetermined [30] Foreign Application Priority Data number of coins of the same denomination are Jan. 17 1973 Japan 48-8026 Stacked, Wrapped with a lhiece of P p and the ends I of the thus wrapped paper are fold crimped is further 521 US. Cl. 53/212 improved y Providing means for driving the coin 51 1m. (:1. B65B 11/04 pp rolls to rotate, means for varying the [58] Field of Search 53/210, 211; 212 one!
  • FIG. 1 A first figure.
  • This invention relates generally to coin wrapping machines, and more particularly to a coin wrapping apparatus included in the machine, wherein a stack of coins of the same denomination is clamped between a plurality of wrapping rolls and thereby rotated, a piece of wrapping paper then being wound around the stack of coins thus rotated, and the lateral edges of the wrapping paper projecting beyond the ends of the stack are.
  • the rotational speed of the stack of coins becomes low, which together with a comparatively greater length of the wrapping paper, causes a mismatching in the operation of thefold crimping needles, thus giving rise to unsatisfactory fold crimping.
  • the rotational speed of the stack of coins becomes excessively high, which together with a comparatively shorter length of the wrapping paper, causes the fold crimping needles to contact the wrapping paper for an excessively long period, thus resulting in wear or weakening of the wrapping paper.
  • a great difference is caused between the wrapping periods for the stacks of coins of different diameters.
  • a primary object of the present invention is to provide a .coin wrapping apparatus wherein the rotational speed of the wrapping rolls is controllably variable in accordance with the diameter of the stack of coins.
  • Another object of the invention is to provide a coin wrapping apparatus wherein the wrapping paper is cut to a suitable length in accordance with the diameter of the stack of coins thereby to assure good wrapping and crimping of the coins.
  • an improved coin wrapping apparatus of the type wherein a stack of coins of the same denomination and of a predetermined number is rotated in contact with a plurality of wrapping rolls, and wrapped by a piece of wrapping paper wound 'therearound so that the lateral edges of the wrapping paper are fold crimped against the upperand lowermost coins, in which apparatus there is further provided the improvement comprising means for driving the wrapping rolls in rotation, means for varying the rotational speed of the wrapping rolls, and means for selecting the rotational speed of the wrapping rolls in accordance with the kind of the coins, whereby the rotational speed of the wrapping rolls is controlled in accordance with the kind of coins.
  • FIG. 1 is a perspective view of a coin wrapping machine wherein an example of a coin wrapping apparatus according to the present invention is incorporated;
  • FIG. 2 is a perspective view of an important part of the coin wrapping apparatus for classifying, stacking, and wrapping coins
  • FIG. 3 is an exploded perspective view showing the essential parts of the coin wrapping mechanism wherein the rotational speed of coin wrapping rolls is made variable;
  • FIG. 4 is a relatively enlarged plan view showing one part of the mechanism shown in FIG. 3;
  • FIGS. 5 and 6 are diagrams schematically showing various positions of the coin wrapping rolls relative to the stack of coins
  • FIG. 7 is a diagram schematically showing the trans mission of the driving power to the coin wrapping rolls and to paper feeding rolls;
  • FIG. 8 is a circuit diagram showing a circuit for supplying power to a driving motor and a circuit for controlling the speed of the driving motor;
  • FIG. 9 is a perspective view of a paper cutting mechanism for operating cooperatively with the coin wrapping mechanism.
  • the coin wrapping machine generally designated by reference numeral 1
  • the coin wrapping machine comprises essentially a coin supplying device 2, a coin stacking device 3 for stacking coins supplied from the coin supplying device 2, a wrapping device 4 for wrapping a piece of wrapping paper around the stack of a predetermined number of coins and finishing the wrapping operation, a coin stack transferring mechanism 5 for introducing each coin stack into the coin wrapping device 4, a
  • wrapper feeding device 6 for supplying the wrapper strip toward the coin wrapping device 4, and a control device 7 for regulating the operation of the coin wrapping device 4.
  • the above-mentioned coin supplying device 2 of the machine 1 comprises a hopper 10, a revolving disc 12 which sends out, by centrifugal force, coins dropped into the hopper 10 successively toward a coin selectingand-counting passage 11, a coin conveying belt 13 for conveying the coins sent into the coin selecting-andcounting passage 1 1, a selecting device 14 for selecting coins thus conveyed and excluding coins of smaller diameters, and a coin counting mechanism in which a coin counting sprocket wheel 15 is rotated by the coins thus selected, the number of rotations of the wheel 15 is counted, and the wheel 15 is then locked for stopping a further supply of coins when the passage of a predetermined number of coins is detected.
  • the coin-stacking device 3 comprises a coin alignment cylinder 17 provided at the downstream side of a coin guiding tube 16 at the end of the coin selecting and-counting passage 11, a vibrating device 18 for causing vibration in the coin alignment cylinder 17 to place the coins in a stack with good alignment and a shutter mechanism 19 for opening and shutting the outlet of the alignment cylinder 17.
  • the coin wrapping device 4 comprises a plurality of wrapping rolls 20, 21, 22 movable toward or away from each other, and a pair of fold crimping hooks 23 and 24.
  • a stack of predetermined number of coins is introduced into a space surrounded by the plurality of wrapping rolls, and clamped and rotated by these rolls 20, 21, and 22 so that the stack is wrapped by a piece of wrapping paper introduced thereto as described hereinafter.
  • the coin stack transferring mechanism is provided downwardly spaced apart from the shutter mechanism 19, and comprises a vertically movable guide tube 28 having a coin supporting portion 27, and a coin holding rod 29 passed through the guide tube 28.
  • the portion 27 introduces each stack of coins descending thereon upon opening of the shutter mechanism 19 into the space surrounded by the wrapping rolls 20, 21, and 22,
  • the coin stack transferring mechanism 5 is shifted aside in its entirety under the coin wrapping device 4 when a stack of coins thus wrapped by a piece of wrapping paper is delivered downwardly from the coin wrapping device 4.
  • the wrapper feeding device 6 comprises a mechanism 30 for supporting ribbon-form wrapping paper or the like 25 in a rolled form, a feed roll mechanism 33 having a driving roll 31 and an idler pinch roll 32 for feeding the coin wrapping paper or the like 25 therebetween, and a cutting device 34 to cut the coin wrapping paper 25 to a length sufficient for wrapping each coin stack.
  • a piece of wrapping paper 25 thus cut to appropriate length is guided between the coin stack and the wrapping rolls 20, 21, and 22 in a manner such that the wrapping paper 25 is wrapped around the coin stack.
  • Reference numeral 8 designates a coin receiving chute through which wrapped stacks of coins are discharged.
  • the device 4 shown in FIG. 3 is a practical example intended to shift the coin wrapping rolls 20, 21, and 22 toward and away from the stack of coins in accordance with the diameter of the coins.
  • a knob 35 for setting the kind (or diameter) of coins is connected to a shaft 36 directly or indirectly through a combination of a rotary switch, a motor, a cam and the like, and a gear 37 is fixedly mounted on the shaft 36.
  • the gear 37 meshes with another gear 39 rotatably mounted on a shaft 38.
  • a cam 40 by which moving distances of the three wrapping rolls 20, 21, and 22 are set, is provided coaxially and in a fixed relation with the gear 39, and the configuration of the cam 40 is so shaped that eight steps are provided in the distance from the center to the periphery of the cam 40.
  • arms 41 and 42, and a sector gear 43 are also fixedly mounted.
  • the arm 41 rotatably supports a shaft 44 passing approximately the middle portion thereof, and on the shaft 44, a lever 45 is rotatably supported at approximately the middle portion thereof.
  • the lever 45 has a roll 46 at one end thereof which is urged against the periphery of the cam 40 by a spring 47.
  • a shaft 48 is rotated at a rate of one revolution per one cycle of the coin wrapping operation, and cams 49 and 50 are fixedly mounted on the shaft 48.
  • cams 49 and 50 are fixedly mounted on the shaft 48.
  • a surface 51 defining the positions of the wrapping rolls 20, 21, and 22 providing a minimum distance between each other, and another surface (or a middle distance defining surface) 52 for defining the positions of the same rolls adapted to receive a coin stack, whereas on the other cam 50, a surface 53 defining a maximum distance between the same rolls is provided.
  • the roll 54 provided at an end of the lever 45 is contacts the peripheral surfaces of the cam 49, and a roll 55 provided at the outer end of the arm 41 is so disposed that it contacts only the surface 53 of the cam 50 defining the maximum distance between the rolls 20, 2], and 22.
  • the sector gear 43 meshes with another sector gear 57 fixed to a shaft 56 on which arms 58, 59, and 60 are fixedly mounted.
  • a gear 61 for transmitting a torque from a driving motor (not shown) to the roll 20 among the three wrapping rolls is loosely mounted on the shaft 56.
  • the arms 58 and 59 fixedly mounted on the shaft 56 are interconnected with each other through a tie rod 62 extending between the corresponding intermediate points closer to the free ends of the two arms 58 and 59.
  • the roll 20 having an upper end shaft 63 and a lower end shaft 64 is so held that the upper and lower shafts 63 and 64 are received in the correspondingholes provided at the two points.
  • a gear 65 is fixed to" the lower end of the lower shaft 64, and the'abovementioned rotational power transmitting gear 61 is brought into engagement with the gear 65.
  • the arm 42 fixedly '21 having an upper end shaft 73 and a lower end shaft 74 extends between the two arms and 71 so that the upper and lower end shafts 73 and 74 are rotatably passed through corresponding holes in the arms 70 and 71, and a gear 75 is fixedly mounted on the lower end of the lower end shaft 74.
  • the arms 70 and 71 are also interconnected by a shaft 76 passing through corresponding holes in the arms 70 and 71, and a gear 77 is mounted on the lower end of the shaft 76.
  • the gears 72, 77, and 75 are meshed with each other so that the 1 rotational power from the driving motor is transmitted 'to the wrapping roll 21 as described hereinbefore.
  • the arm 60 fixedly mounted on the hereinbeforementioned shaft 56 is connected at the free end thereof with a'link-lever 78, and the other end of the link-lever 78 is further connected to an end of an arm 80 fixedly mounted on a shaft 79.
  • arms 81 and 82 both having substantially C-shaped configurations are fixedly mounted, and the ends of the arms 81 and 82 other than those fixed to the shaft 79 are provided with holes through which the upper and lower end shafts 83 and 84 extending from the wrapping roll 22 are passed rotatably.
  • the wrapping rolls 20, 21, and 22 are arranged substantially at apexes of an equilateral triangle as shown in FIGS. 5 and 6 and so adapted that they are moved toward the center of the triangle through the operations of the corresponding arms.
  • reference character A designates a stack of coins.
  • the shaft 36 connected to the coin- .diameter setting knob 35 is coupled through bevel I gears (not shown) to a shaft 85 shown in FIG. 9.
  • shaft 85 fixedly supports a bevel gear 86 which meshes with another bevel gear 88 fixedly mounted on a shaft 87.
  • a cam 89 having cam surfaces corre- .Sponding to the difference in diameter of coins A is fixedly mounted, and the free end of an arm 91 fixed to another shaft 90 is urged and brought intocontact with a cam surface of the cam 89 by means of a spring (not shown).
  • the shaft 90 fixedly supports supporting means of the hereinbefore mentioned cutter 34, the leading cutting edge of which is formed into a V-shaped and sawtooth-like configuration.
  • the rotational speed of a driving motor 100 can be controlled as described below with reference to FIG. 8 depending on the diameter of the coin stack A.
  • the power of the motor 100 is transmitted through an endless belt 101 to a gear 102 and a pulley 103 ,both arranged coaxially.
  • the rotational power from the gear 102 is then transmitted through gears 104, 105, and 61, successively, to the gear 65 fixedly mounted on the end shaft 64 extending from the roll among the three wrapping rolls 20, 21, and 22.
  • the power is further transmitted from the gear 104 through gears 106 and 77 to the gear 75 fixedly mounted on the end shaft 74 extending from another roll 21 of the three rolls.
  • the remaining roll 22 is used simply for the guidance of the coin stack and the piece of wrapping paper,
  • capacitor-starting type Surges created by the bidirectional thyristor 111 are reduced by capacitors 112,
  • a fullwave rectifier circuit 120 is connected across the bidirectional thyristor 111 through a resistor 118, thus providing a power source for the controlling por- 'tion 119 of the motor-speed controlling circuit.
  • the controlling portion 119 of the control circuit includes ,as its essential component a unijunction transistor 121 .(hereinafter abbreviated as UJT) which is used for generating a pulse signal.
  • a pulse transformer 126 and the primary coil of a pulse transformer 126 are connected in series. Taps of the variable resistors 123, 124, and 125, are connected respectively through contacts 127, 128, and 129 of a transfer switch 126a interlinked with the coin diameter setting knob 35 (FIG. 3) to a junction point which is thereafter connected through a normally closed contact 130, a normally opened contact 131, a capacitor 132, a resistor 133, and a diode 134 to the emitter of the UJT 121.
  • the normally closed contact 130 is opened by a relay when the wrapping operation of a coin stack is completed, and the normally opened contact 131 is closed by a relay when a predetermined number of coins are counted.
  • the emitter of the unijunction transistor 121 is further connected with a capacitor 135, and between the capacitor 135 and the resistor 122, the fullwave rectifier circuit and a Zener diode 136 are connected in parallel.
  • the motor 100 is directly coupled with a tachometergenerator 137, and the output of the latter is connected across the capacitor 132 through a fullwave rectifier 138 and resistors 139 and 140.
  • the rotating speed of the driving motor 100 is set to a value adapted to the coins, and another motor, if it is used between the knob 35 and the shaft 36, is stopped at a position rotating the shaft 36 to the first step of positions of the wrapping rolls.
  • a starting switch When a starting switch is turned to the ON position, a predetermined number of coins of a desired kind are selected and counted in the coin supplying device, and then received in the coin aligning tubular member 17. Upon reception of the predetermined number of coins in the tubular member 17, further supply of coins to the coin counting device is interrupted, and the operation of the machine 1 is shifted into the coin wrapping mode of operation.
  • the rotating speed of the motor 100 is set to a desired value by turning the coin diameter setting knob 35 to a position where one or more of the contacts 127, 128, and 129 of a switch 126a are thereby selectively closed. Since the pulse frequency generated in the control circuit 119 is determinedby a time constant which is varied by the resistance values of the variable resistors 123, 124, and and the capacitance of the capacitor 132, the contact 127 is closed when a highspeed rotation of the wrapping rolls 20, 21, and 22 is preferred for the coins of a greater diameter, and the contact 129 is closed when a low-speed rotation of the rolls is preferred for the coins of. a smaller diameter.
  • the arm 42 and the sector gear 43 fixedly mounted on the shaft 38 are also rotated through a predetermined angle under the action of a constant-torque spring 67.
  • the rotation of the arm 42 causes the shaft 68 to rotate through the link-lever 66 and the arm 69, and the arms 70 and 71 are thereby rotated.
  • the rotation of the arms 71) and 71 causes the wrapping roll 21 to move toward the center of the three rolls by an amount corresponding to one step.
  • the rotation of the arm 60 fixedly mounted on the shaft 56 is transmitted through the link-lever 78 and the arm 80 to cause the shaft 79 to rotate, which in turn rotates the arms 81 and 82, and the wrapping roll 22 is also moved toward the center by one step.
  • the wrapping rolls are displaced by a distance 11,, corresponding to one step of the movement, to the coin introducing positions of the rolls as indicated by two-dot chain lines in FIG. 5.
  • the wrapping rolls are displaced by a distance d also corresponding to one step movement, to the coin introducing positions of the wrapping rolls as indicated by two-dot chain lines in FIG. 6.
  • the difference between the distances d, and d is caused by the difference of setting positions of the cam 40.
  • the vertically movable guide tube 28 of the coin guiding mechanism 5 is elevated along the center of the three wrapping rolls 20, 21, and 22 to a position closely adjacent to the lower end of the coin alining tubular member 17 under the action of a cam supported by the shaft 48, whereby when the shutter plates 26 of the shutter mechanism 19 are opened, a stack of coins of a predetermined member is received on the guide tube 28.
  • the guide tube 28 is then lowered to the wrapping position of the stack of coins at the center of the three wrapping rolls.
  • the cams 49 and 50 are rotated thereby placing the roller 54 of the lever 45 in contact with a surface 51 of the cam 49, which defines a minimum distance between these rolls 20, 21, and 22.
  • the wrapping rolls are moved inwardly for a distance 1 from the abovementioned coin introducing positions to the minimumdistance positions contacting the stack of coins, as indicated by one-dot chain lines in FIG. 5 or 6, regardless of the diameter of the coins.
  • the cam 89 is rotated through the shaft 85, bevel gears 86 and 88, and the shaft 87, in correspondence with the hereinbefore' mentioned coin diameter setting, and the arm 91 contacting the cam 89 rotates the shaft 90 through a predetermined angle.
  • the rotation of the shaft 90 moves the cutter 34 to a position adapted to cut the wrapping paper to a suitable length.
  • the vertically movable guide tube 28 of the coin transferring mechanism 5 is moved downward, leaving the coin stack holding rod 29 in contact with the lowermost coin of the stack to provide a gap and allow the passage of the lower wrapper crimping hook 24.
  • the driving motor is rotated at a predetermined speed.
  • the normally open contact 131 is closed as the stack of coins A is held by the three rolls.
  • the motor speed control circuit 119 is then operated to generate from a pulse transformer a pulse signal which is determined by a time constanct defined by variable resistors 123, 124, and open or closed through the contacts 127, 128, and 129 and by a capacitor 132.
  • the pulse signal delivered from the pulse transformer 126 is applied to the gate of the bidirectional thyristor 111 to render the same thyristor conductive and to operate the driving motor 100 at a predetermined speed.
  • the wrapping roll 20 Upon rotation of the driving motor 100, the wrapping roll 20 is rotated through gears 61 and 65, and the wrapping roll 21 is rotated through gears 72, 77, and 75.
  • the wrapper feeding roll 31 is also rotated through gears (not shown).
  • the wrapping paper 25 fed through the wrapping paper feeding roll 31 and the pinch roll 32 is pulled forward when the forward end of the wrapping paper is caught in the coin wrapping device and is cut to a desired length by means of the cutter 34.
  • the forward end of the thus cut wrapper strip 25 is passed through the wrapping rolls 20, 21, and 22, and wound around the peripheral surface of the stack of coins.
  • the upper and lower hooks 23 and 24 are brought into their operative positions under the control of a cam (not shown) on the shaft 48, wherein the hooks 23 and 24 catch the upward and downward projecting lateral edges of the thus wound wrapper strip 25, respectively, so that the lateral edges are foled over the upperand lowermost coins and crimped thereon in a rolled or otherwise suitable manner.
  • the crimping hooks 23 and 24 are then shifted apart by means of the cam (not shown), and the stack of coins thus wrapped and crimped is now ready to be discharged.
  • the cams 49 and 50 are further rotated in a manner interlinked to the operation of the coin wrapping machine, so that the roller 54 of the lever 45 is now brought into contact with the surface 52 of the cam 49 for defining the coin introducing positions of the wrapping rolls, and the roller 55 of the arm 41 rolls along the surface 53 of the cam 50 defining the most separated positions of the wrapping rolls.
  • the wrapping rolls 2t), 21, and 22 are shifted to the most separate positions, whereby the now wrapped stack of coins is dropped into the chute 8 when the guide tube 28 and the holding rod 29 of the coin stack transferring mechanism are shifted sidewise as described hereinbefore.
  • the cams 49 and 50 are further rotated until the rol ler 55 of the arm 41 is now completely on the surface 53, at which instant the operation of the driving motor is terminated, and one cycle of the wrapping operation of the coin wrapping machine is completed.
  • any variation in the rotating speed of the driving motor 100 which might be caused by variation in the load torque, can be prevented by the arrangement of the coin wrapping apparatus according to this invention.
  • the output voltage of the tachometer-generator 137 directly coupled to the driving motor 100 is varied, and the thus varied output voltage of the tachometer-generator is applied to the capacitor 132 through the rectifier circuit 138.
  • the required period for charging the capacitor 132 is also varied in such a manner that a pulse signal having a shorter one-cycle period is delivered when the load torque of the driving motor 100 increases, thus preventing the speed of the driving motor from dropping, and reversely a pulse signal having a longer one-cycle period is delivered when the load torque of the driving motor 100 is reduced, thus preventing any rise in the speed of the driving motor 100.
  • the rotating speed of the motor 100 for driving the wrapping rolls 20, 21, and 22 has been regulated by an electric control circuit 1 19, it will be apparent to those skilled in the art that the motor 100 may also be controlled mechanically by means of a mechanical speed-regulating mechanism. Furthermore, the selection of the rotating speed of the wrapping rolls 20., 21, and 22 may also be carried out through any of other suitable rotation speed setting 'devices instead of the above described rotation speed setting knob.
  • the regulation of the rotating speed of the wrapping rolls may be carried out not for each kind according to diameter of coins, but also for three ranges in diameter of coins of, for instance, from mm to mm, from 20 mm to mm, and from 25 mm to 33 mm.
  • all of the wrapping rolls 20, 21, and 22 may be driven, instead of the above described two, or, alternatively, only one of the rolls may be driven by the driving motor and regulated relative to its "rotating speed, and the rest of rolls may be adapted to be dummy rolls. It is also possible for at least one of the wrapping rolls to be held at a predetermined position, and for others to be moved inward or outward.
  • a coin wrapping apparatus having a plurality of wrapping rolls including at least one movable roll,
  • said rotational speed setting means is a control circuit means connected to said power circuit means for controlling driving energy of said power circuit means, said control circuit means being comprised of a plurality of circuit elements respectively adapted to alternatively optimize the driving energy of said power circuit means for coins having different diameters; and
  • said rotational speed selecting means is means connected to said control circuit means for selecting one of said circuit elements in accordance with the diameter of coins to be wrapped, whereby the rotation speed of the stack of coins is always selected to be optimum for correct and secure fold crimping of said lateral edges of the wrapped paper.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Basic Packing Technique (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
US433492A 1973-01-17 1974-01-15 Coin wrapping apparatus Expired - Lifetime US3908338A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP802673A JPS5535308B2 (de) 1973-01-17 1973-01-17

Publications (1)

Publication Number Publication Date
US3908338A true US3908338A (en) 1975-09-30

Family

ID=11681814

Family Applications (1)

Application Number Title Priority Date Filing Date
US433492A Expired - Lifetime US3908338A (en) 1973-01-17 1974-01-15 Coin wrapping apparatus

Country Status (5)

Country Link
US (1) US3908338A (de)
JP (1) JPS5535308B2 (de)
DE (1) DE2401988A1 (de)
FR (1) FR2213875B1 (de)
GB (1) GB1454661A (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215647A2 (de) * 1985-09-20 1987-03-25 Cummins-Allison Corporation Mechanismus zum Einwickeln von Münzen
US5573457A (en) * 1995-03-07 1996-11-12 Cummins-Allison Corp. Coin Wrapping system with touch screen device
US5970683A (en) * 1996-12-20 1999-10-26 Laurel Bank Machines Co., Ltd. Coin wrapping machine
US5992286A (en) * 1997-02-14 1999-11-30 Boole; Leon Apparatus for opening coin wrappers
WO2000037317A1 (en) * 1998-12-21 2000-06-29 Scan Coin Industries Ab Coin handling machine that manufactures plastic bags, in which the coins are encased
EP1043701A1 (de) * 1999-04-08 2000-10-11 Laurel Bank Machines Co., Ltd. Münzeneinwickelvorrichtung
CN105957239A (zh) * 2016-06-06 2016-09-21 上海理工大学 硬币包装装置
WO2017015419A1 (en) * 2014-08-01 2017-01-26 Gccm, Llc Coin wrapping machine
EP3325350A4 (de) * 2015-07-22 2019-03-06 Gccm, Llc Münzverpackungsmaschine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832093B2 (ja) * 1978-03-13 1983-07-11 ロ−レルバンクマシン株式会社 硬貨包装機の包装紙送り量設定装置
JPS5514637U (de) * 1978-07-11 1980-01-30

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1095853A (en) * 1913-08-02 1914-05-05 Package Confectionery Company Wrapping-machine.
US2635402A (en) * 1946-06-06 1953-04-21 Brandt Automatic Cashier Co Coin wrapping machine
US3775940A (en) * 1971-06-18 1973-12-04 Glory Kogyo Kk Coin-guiding device in coin wrapper
US3821917A (en) * 1971-06-24 1974-07-02 Glory Kogyo Kk Paper supplying device in coin-wrapping machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1095853A (en) * 1913-08-02 1914-05-05 Package Confectionery Company Wrapping-machine.
US2635402A (en) * 1946-06-06 1953-04-21 Brandt Automatic Cashier Co Coin wrapping machine
US3775940A (en) * 1971-06-18 1973-12-04 Glory Kogyo Kk Coin-guiding device in coin wrapper
US3821917A (en) * 1971-06-24 1974-07-02 Glory Kogyo Kk Paper supplying device in coin-wrapping machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215647A2 (de) * 1985-09-20 1987-03-25 Cummins-Allison Corporation Mechanismus zum Einwickeln von Münzen
US4674260A (en) * 1985-09-20 1987-06-23 Cummins-Allison Corporation Coin wrapping mechanism
EP0215647A3 (en) * 1985-09-20 1989-03-08 Cummins-Allison Corporation Coin wrapping mechanism
US5573457A (en) * 1995-03-07 1996-11-12 Cummins-Allison Corp. Coin Wrapping system with touch screen device
US5970683A (en) * 1996-12-20 1999-10-26 Laurel Bank Machines Co., Ltd. Coin wrapping machine
US5992286A (en) * 1997-02-14 1999-11-30 Boole; Leon Apparatus for opening coin wrappers
WO2000037317A1 (en) * 1998-12-21 2000-06-29 Scan Coin Industries Ab Coin handling machine that manufactures plastic bags, in which the coins are encased
EP1043701A1 (de) * 1999-04-08 2000-10-11 Laurel Bank Machines Co., Ltd. Münzeneinwickelvorrichtung
US6519921B1 (en) 1999-04-08 2003-02-18 Laurel Bank Machines Co., Ltd. Coin wrapping machine
WO2017015419A1 (en) * 2014-08-01 2017-01-26 Gccm, Llc Coin wrapping machine
CN107848640A (zh) * 2014-08-01 2018-03-27 Gccm有限公司 硬币包装机
EP3325350A4 (de) * 2015-07-22 2019-03-06 Gccm, Llc Münzverpackungsmaschine
CN105957239A (zh) * 2016-06-06 2016-09-21 上海理工大学 硬币包装装置
CN105957239B (zh) * 2016-06-06 2019-04-30 上海理工大学 硬币包装装置

Also Published As

Publication number Publication date
DE2401988A1 (de) 1974-07-25
JPS5535308B2 (de) 1980-09-12
FR2213875A1 (de) 1974-08-09
JPS4995783A (de) 1974-09-11
GB1454661A (en) 1976-11-03
FR2213875B1 (de) 1977-09-09

Similar Documents

Publication Publication Date Title
US3908338A (en) Coin wrapping apparatus
JP3563292B2 (ja) 硬貨包装機
US3938303A (en) Coin packaging apparatus
US3905176A (en) Coin wrapping apparatus
US4832655A (en) Coin stacking apparatus
JPH085452B2 (ja) 硬貨包装機
JP3419670B2 (ja) 硬貨包装機
US3886957A (en) Coin packaging apparatus
US3350835A (en) Coin counting and wrapping device
US4729211A (en) Method and apparatus for delivering and winding packing paper
US4369015A (en) Apparatus for stacking note books or the like
JPH0134846B2 (de)
EP0532217A1 (de) Verfahren und Vorrichtung zum Stapeln von Banknoten oder ähnlichem
US3861408A (en) Rotary disk speed control in automatic coin processing apparatus
US3432983A (en) Automatic coin stacking and wrapping machine
US3925966A (en) Coin packaging apparatus
JP2832571B2 (ja) 硬貨包装装置
US4164232A (en) Constant coin flow rate coin processing apparatus
JP2879401B2 (ja) 硬貨処理機
US3878666A (en) Prevention of wrapper slack in coin wrapping apparatus
US5142847A (en) Coin wrapping machine
JPS6130977B2 (de)
JPH06131529A (ja) 硬貨処理機
JPS6220047Y2 (de)
JP2693067B2 (ja) 硬貨包装装置