US3902930A - Method of manufacturing iron-silicon-aluminum alloy particularly suitable for magnetic head core - Google Patents
Method of manufacturing iron-silicon-aluminum alloy particularly suitable for magnetic head core Download PDFInfo
- Publication number
- US3902930A US3902930A US339829A US33982973A US3902930A US 3902930 A US3902930 A US 3902930A US 339829 A US339829 A US 339829A US 33982973 A US33982973 A US 33982973A US 3902930 A US3902930 A US 3902930A
- Authority
- US
- United States
- Prior art keywords
- alloy
- silicon
- layer
- plate
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 17
- -1 iron-silicon-aluminum Chemical compound 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title abstract description 24
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 158
- 239000000956 alloy Substances 0.000 claims abstract description 158
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 117
- 239000010703 silicon Substances 0.000 claims abstract description 112
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 110
- 238000000034 method Methods 0.000 claims abstract description 55
- 238000000151 deposition Methods 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 26
- 238000009792 diffusion process Methods 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 230000035699 permeability Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 9
- 238000010849 ion bombardment Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 5
- 230000001747 exhibiting effect Effects 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 229910000077 silane Inorganic materials 0.000 claims description 4
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 230000001464 adherent effect Effects 0.000 claims description 2
- 239000012300 argon atmosphere Substances 0.000 claims description 2
- 229910000702 sendust Inorganic materials 0.000 abstract description 41
- 239000011162 core material Substances 0.000 abstract description 13
- 238000005475 siliconizing Methods 0.000 abstract description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 229910052786 argon Inorganic materials 0.000 description 9
- 229910018084 Al-Fe Inorganic materials 0.000 description 8
- 229910018192 Al—Fe Inorganic materials 0.000 description 8
- 229910002796 Si–Al Inorganic materials 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000005049 silicon tetrachloride Substances 0.000 description 5
- 229910017082 Fe-Si Inorganic materials 0.000 description 4
- 229910017133 Fe—Si Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 235000015847 Hesperis matronalis Nutrition 0.000 description 1
- 240000004533 Hesperis matronalis Species 0.000 description 1
- 241000282596 Hylobatidae Species 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/11—Magnetic recording head
- Y10T428/115—Magnetic layer composition
Definitions
- ABSTRACT A silicon layer is first formed on the surface of an iron-aluminum (Fe-Al) alloy and is then diffused into the Fe-Al alloy by subjecting the silicon layer thus formed on the alloy to a substantial amount of heat, so that an iron-silicon-aluminum alloy or the so-called sendust alloy can be produced.
- the Fe-Al alloy may be ion-bombarded before the silicon layer is deposited thereon, so as to prevent the silicon layer from peeling off during the silicon-layer-depositing process.
- an Fe-Al alloy is siliconized through the chemically siliconizing process and then the silicon contained in the siliconized alloy is diffused to obtain the resultant sendust alloy.
- sendust alloys having a greater range of thickness, from thin to thick can be produced without any complicated process, and moreover, the layer of silicon will never come off during the manufacturing process.
- the sendust alloy thus produced is quite suitable for use as the core material of magnetic heads requiring highly desirable performance.
- the present invention relates to an iron-silicon aluminum alloy or the so-called sendust alloy, especially suitable for use as magnetic head cores. More particularly, the present invention concerns a method of making a sendust alloy by diffusing silicon in an Fe-Al alloy and also concerns a magnetic head core made of such an Fe-Si-Al alloy.
- Sendust alloy is of a high hardness and a high magnetic permeability. Accordingly, it is suitable for use as the material of, for example, magnetic recording (or reproducing) heads for video tape recorders or for audio tape recorders.
- magnetic recording (or reproducing) heads for video tape recorders or for audio tape recorders.
- the magnetic heads of the recorder are required to have a high ability of performance.
- These magnetic heads require that their core is made of a magnetic material having a high magnetic permeability with little loss of permeability during use. The majority of this loss occurring in the magnetic material is represented by the eddy current loss.
- One of them is to obtain thin plates from a pre-cast alloy block by cutting it with a grinder or by electrolytic cutting or discharge cutting. Another one of them is to manufacture thin plates by subjecting powder of material to sintering at high temperature or to discharge-sintering or to rolling. Still another one of them is to obtain thin plates by vapor plating method from the vapor of a compound of iron, aluminum, silicon or the like.
- each of these known methods requires a fairly long time till the product is obtained.
- such a known method has further drawbacks that the manufacturing process is complicated or that it is difficult to produce thin plates.
- One such known method has a difficulty in producing thick plates, and another known method has a difficulty in processing the material into a required shape.
- a primary object of the present invention to provide a method of easily making a high quality iron-silicon-aluminum or sendust alloy of a desired shape.
- Such iron-silicon-aluminum or sendust alloy intended to produce by the method of this invention is an alloy consisting preferably of 4 to 8% of aluminum, 8 to 12% of silicon and the remainder of iron.
- Another object of the present invention is to provide a method of especially making very thin sendust alloy with easiness.
- Still another object of the present invention is to provide magnetic head cores made of a sendust alloy prepared according to the above-mentioned method of the present invention.
- FIG. 1 is a photograph of actual size showing the state in which a layer of silicon is formed on an Fe-Al alloy which has not been given an ion bombardment treatment.
- FIG. 2 is a'photograph of real size showing the state in which a layer of silicon is formed on an Fe-Al alloy according to the method of the present invention- DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
- An iron-silicon-aluminum or sendust alloy intended to produce by the method of this invention is an alloy consisting preferably of 4 to 8% of aluminum, 8 to l2of silicon and the remainder of iron.
- the methods of forming a layer of silicon on the surface of an Fe-Al alloy there are those methods one of which is to heat silane or dichloro silane or the like in a vacuum vessel to evaporation-deposit silicon on the surface of the alloy. Another method is to deposit silicon on the surface of the alloy by sputtering in a vacuum vessel. Each of these methods may be employed.
- an Fe-Al alloy on which a layer of silicon has been formed is heated in a diffusion furnace to diffuse silicon into this alloy, thereby making a sendust alloy.
- a silicon layer is deposited by heating an Fe-Al alloy plate as stated above, there is the fear that the thus formed layer of silicon comes off the surface of the alloy plate due to the difference in the expansion coefficient between the formed silicon layer and the Fe-Al alloy plate carrying this layer when the latter plate is cooled close to room temperature.
- the fear of this silicon layer to come off can be eliminated by performing the diffusion treatment while maintaining the silicon layer-coated Fe-Al alloy plate at a high temperature, preferably from 900 to 1,300C.
- the aforesaid Fe-Al alloy which is used in the aforesaid process may be formed into a plate having a thickness of 5 to 500 micrometers (pm), which can be easily obtained by rolling and also can be easily punched.
- a sendust alloy of a desired shape such as a plate having a considerable thickness or having a small thickness or a plate of a shape formed by punching.
- a thin plate of Fe-Al alloy is not of an extremely complicated configuration, it is still possible to punch this alloy plate even after silicon has been diffused therein.
- a sendust alloy either by the use of an Fe-Si alloy containing therein silicon to such a degree as will permit rolling of this alloy and by depositing both Al and Si in appropriate amounts onto this alloy, or by the use of an Fe-Si-Al alloy containing therein both Si and Al to such a degree as will permit the rolling of this alloy and by depositing thereon Si and Al in appropriate amounts, and by diffusing Si and Al into the resulting alloy having Al and Si deposited thereon as a layer.
- Si diffuses quicker than does Al, there is a difficulty in the control of the ratio of silicon and aluminum in such layer and the control of the temperature for the diffusion, thus making these methods impractical.
- the method of making a sendust alloy according to the present invention which is designed to form a silicon layer whose diffusion speed is greater than aluminum on the surface of an Fe-Al alloy and to diffuse silicon into this alloy is most advantageous.
- An Fe-Al alloy plate containing 6% of aluminum is rolled to a plate of 0.05 mm in thickness. Then, the surface of this alloy plate is cleaned by electrolytic polishing.
- the resulting alloy base plate is placed in a vacuum vessel in which silicon is heated to cause silicon to evaporate by the use of an electron beam. As a result, a layer of silicon having a thickness of 0.014 mm is deposited on the surface of the thin Fe-A] alloy plate. In the same way, a layer of silicon having a thickness of 0.014 mm is deposited on the other side of said thin alloy plate. Thereafter, the resulting thin plate is placed in a diffusion furnace held at 1,200C to subject it to a diffusion treatment for 60 minutes in a high purity hydrogen currents to prevent oxidation of silicon.
- the sendust alloy plate made according to the method described above shows the following magnetic characteristic at 0.4 A/m:
- the diffusion treatment is carried out at a temperature of l,200C for 60 minutes in a hydrogen gas.
- the temperature may range from 900 to l,300C and that the time during which such temperature is maintained is varied depending on the temperature selected and the thickness of the Fe-Al alloy as well as the amount of silicon.
- a hydrogen gas used in the above-mentioned example, a helium, argon, or nitrogen gas may be used, or the diffusion treatment may be carried out in a vacuum.
- an improved method of making a sendust alloy such that, during the manufacture of a thin Fe-Si-Al alloy plate by first forming a layer of silicon on the surface of a thin Fe-Al alloy plate and then by diffusing silicon in this alloy by heating the alloy carrying said layer, there occurs no separation of the layer of silicon formed.
- a thin Fe-Si-Al alloy plate by first forming a layer of only silicon on the surface of a thin plate of Fe-Al alloy obtained by rolling an Fe-Al alloy block having a relatively low hardness than a'sendust alloy and then by diffusing silicon into the alloy by heating the silicon layercarrying alloy plate in an atmosphere such as hydrogen, there has been a difficulty encountered during the step of forming the layer of silicon on the surface of the thin Fe-Al alloy base plate by deposition of silicon by an electron beam or like method because of the fact that, in case the thickness of the silicon layer being formed is of a thickness especially in the order of 5-10, pm, the silicon layer comes off in fibrous manner as shown in FIG. 1.
- This method according to another embodiment of the present invention solves these drawbacks and insures that, during the formation of a silicon layer on the surface of an Fe-Al alloy base, this layer of silicon never comes off the base plate. To this end, the surface of the Fe-Al alloy base plate is subjected to an ion bombarding treatment prior to the formation of a silicon layer on this surface.
- a thin Fe-Al alloy plate having a desired thickness of pm or less is prepared by rolling an Fe-Al block.
- This thin alloy plate is placed within a bell jar filled with argon gas held at a pressure of 10 to 10 mmHg.
- the surface of the thin plate is subjected to ion bombardment with argon ions for about minutes by the ion bombarding device provided in said bell jar.
- a layer of silicon is evaporation-deposited on the surface of the plate to a thickness of about 10 ,um.
- the resulting plate carrying this silicon layer is heated to diffuse silicon into the alloy.
- a thin Fe-Si-Al alloy plate is produced.
- FIG. 2 shows such a thin Fe-Al-Si'alloy plate produced according to said'embodiment of the present invention. It is to be noted that this product is made in a manner similar to that for the manufacture of the product shown in FIG. 1 excepting the fact that the former is subjected to ion bombardment. According to this embodiment, the adherency of the silicon layer, as it is being formed, to the surface of the Fe-Alalloy base plate is such that no fibrous peel-off of the silicon layer occurs at all.
- the iron-silicon-aluminum alloy is produced by first siliconizing an Fe-Al alloy base plate through the chemically siliconizing process and then by diffusing the siliconized alloy at a high temperature.
- a block of Al-Fe alloy consisting, for example, of 5.6% of aluminum the remainder of iron and having been shaped previously by a predetermined method is rolled to have a desired thickness, for example, 0.2 mm (a thickness range of 0.1 to 2 mm is preferred).
- This plate of alloy is then punched into the shape of, for example, the core of a magnetic head.
- This shaped thin Al-Fe alloy plate is introduced into, for example, a reaction furnace held at l,200C.
- silicon tetrachloride SiCl at the rate of 100 cc per minute.
- siliconizing of the Fe-Al alloy base plate is conducted for 10 minutes.
- silicon tetrachloride reacts against the Al-Fe alloy plate and silicon infiltrates in the region close to the surface of the Al-Fe alloy plate, forming there a layer of infiltrated silicon or siliconized layer.
- the resulting alloy plate having saidlayer of infiltrated silicon close to the surface of this alloy is placed in a diffusion furnace held at, for example, l,200C and is heated for 30 minutes in hydrogen gas currents of high purity to perform diffusion of silicon in the Al-Fe alloy.
- hydrogen gas a helium, argon, or nitrogen gas may be used, or the diffusion is carried out in a vacuum.
- the component silicon contained in the siliconized layer which has been formed close to the surface of the Al-Fe alloy plate is caused to diffuse uniformly in the alloy.
- a sendust alloy is produced.
- the reaction and diffusion furnaces are held at a temperature of 1,200C, but the temperature at which the reaction and diffusion furnaces are held may range from 900 to 1,300C. Also, the volume percent of the silicon tetrachloride contained in the argon gas may be from I to 20 volume'percent.
- this method rolling or desired punching is performed on the Al-Fe alloy plate in the stage before being added with silicon.
- This method is especially effective in the manufacture of a sendust alloy of a small thickness. If such thin pieces of sendust alloy prepared according to this method are used as the magnetic material of the core of magnetic heads for instance, it is possible to construct a core by laminating several very thin pieces of sendust alloy one upon another. Thus, it is possible to obtain a highly capable magnetic head presenting a very low loss of eddy current and yet exhibiting an excellent magnetic characteristic.
- a sendust alloy plate prepared in the manner described above is heated at 1,000C for minutes in a high purity hydrogen, then cooling it to 700C at which temperature the plate is held for 30 minutes. Thereafter, the plate is cooled from 700C to room temperature at the rate of lowering by 300C per hour.
- the resulting alloy plate having received the aforesaid heat treatment which is now used as a magnetic material, shows a magnetic characteristic: at 0.8 A/m, the initial relative magnetic permeability of 8,000 and the maximum relative magnetic permeability of 35,000.
- a sendust alloy having a very good magnetic characteristic is obtained.
- a mixed atmosphere consisting of argon current containing silicon tetrachloride is used. It should be understood, however, that the type of atmosphere is not limited thereto, but a mixed atmosphere consisting of silicon tetrachloride and hydrogen or nitrogen as a carrier, or a mixed atmosphere consisting of silane or dichloro silane and hydrogen or argon or nitrogen as a carrier may be used also.
- step (a) sputtering silicon onto the surface of the Fe-Al alloy under vacuum conditions; and thereafter b. heating the thus-coated alloy of step (a) in a diffusion furnace at a temperature of about 900 to about 1,300C and diffusing the silicon layer uniformly into the underlying Fe-Al alloy, the high temperature employed avoiding separating and improving the adherency of the deposited silicon layer during process, to produce said alloy com- 8 posed of 4 to 8% aluminum, 8 to 12% silicon and balance iron.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Magnetic Heads (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Soft Magnetic Materials (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP47025410A JPS5229247B2 (enrdf_load_stackoverflow) | 1972-03-13 | 1972-03-13 | |
JP47025518A JPS515990B2 (enrdf_load_stackoverflow) | 1972-03-13 | 1972-03-13 | |
JP47025456A JPS4893522A (enrdf_load_stackoverflow) | 1972-03-13 | 1972-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3902930A true US3902930A (en) | 1975-09-02 |
Family
ID=27285005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US339829A Expired - Lifetime US3902930A (en) | 1972-03-13 | 1973-03-09 | Method of manufacturing iron-silicon-aluminum alloy particularly suitable for magnetic head core |
Country Status (3)
Country | Link |
---|---|
US (1) | US3902930A (enrdf_load_stackoverflow) |
GB (1) | GB1376852A (enrdf_load_stackoverflow) |
NL (1) | NL7303477A (enrdf_load_stackoverflow) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4177089A (en) * | 1976-04-27 | 1979-12-04 | The Arnold Engineering Company | Magnetic particles and compacts thereof |
US4244722A (en) * | 1977-12-09 | 1981-01-13 | Noboru Tsuya | Method for manufacturing thin and flexible ribbon of dielectric material having high dielectric constant |
US4257830A (en) * | 1977-12-30 | 1981-03-24 | Noboru Tsuya | Method of manufacturing a thin ribbon of magnetic material |
US4265682A (en) * | 1978-09-19 | 1981-05-05 | Norboru Tsuya | High silicon steel thin strips and a method for producing the same |
US4548643A (en) * | 1983-12-20 | 1985-10-22 | Trw Inc. | Corrosion resistant gray cast iron graphite flake alloys |
US4714632A (en) * | 1985-12-11 | 1987-12-22 | Air Products And Chemicals, Inc. | Method of producing silicon diffusion coatings on metal articles |
US4822642A (en) * | 1985-12-11 | 1989-04-18 | Air Products And Chemicals, Inc. | Method of producing silicon diffusion coatings on metal articles |
US4869929A (en) * | 1987-11-10 | 1989-09-26 | Air Products And Chemicals, Inc. | Process for preparing sic protective films on metallic or metal impregnated substrates |
US5372843A (en) * | 1991-03-12 | 1994-12-13 | Hitachi, Ltd. | Process for producing a magnetic recording medium using a patterned diffusion barrier |
US5558944A (en) * | 1993-08-10 | 1996-09-24 | Tdk Corporation | Magnetic head and a process for production thereof |
US5571591A (en) * | 1992-05-01 | 1996-11-05 | International Business Machines Corporation | Magnetic film patterning by germanium or silicon diffusion |
CN103658640A (zh) * | 2013-12-27 | 2014-03-26 | 安徽华东光电技术研究所 | 一种用于速调管的铁硅铝吸收膏剂的配置、涂覆及烧结方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2193768A (en) * | 1932-02-06 | 1940-03-12 | Kinzoku Zairyo Kenkyusho | Magnetic alloys |
US2911533A (en) * | 1957-12-24 | 1959-11-03 | Arthur C Damask | Electron irradiation of solids |
US3159511A (en) * | 1956-11-08 | 1964-12-01 | Yawata Iron & Steel Co | Process of producing single-oriented silicon steel |
US3224909A (en) * | 1961-11-29 | 1965-12-21 | Licentia Gmbh | Siliconizing of electrical sheet steel by diffusion |
US3230074A (en) * | 1962-07-16 | 1966-01-18 | Chrysler Corp | Process of making iron-aluminum alloys and components thereof |
US3347718A (en) * | 1964-01-20 | 1967-10-17 | Armco Steel Corp | Method for improving the magnetic properties of ferrous sheets |
US3384517A (en) * | 1964-12-22 | 1968-05-21 | Nat Res Dev | Copper/iron/aluminm alloys |
US3385725A (en) * | 1964-03-23 | 1968-05-28 | Ibm | Nickel-iron-phosphorus alloy coatings formed by electroless deposition |
US3423253A (en) * | 1968-02-23 | 1969-01-21 | Allegheny Ludlum Steel | Method of increasing the silicon content of wrought grain oriented silicon steel |
US3681152A (en) * | 1971-03-25 | 1972-08-01 | Allegheny Ludlum Ind Inc | Method of siliconizing |
US3718502A (en) * | 1969-10-15 | 1973-02-27 | J Gibbons | Enhancement of diffusion of atoms into a heated substrate by bombardment |
US3756867A (en) * | 1969-11-03 | 1973-09-04 | Cie Ateliers Et Forges De La L | Method of producing silicon steels with oriented grains by coiling with aluminum strip |
-
1973
- 1973-03-09 US US339829A patent/US3902930A/en not_active Expired - Lifetime
- 1973-03-12 GB GB1179273A patent/GB1376852A/en not_active Expired
- 1973-03-13 NL NL7303477A patent/NL7303477A/xx unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2193768A (en) * | 1932-02-06 | 1940-03-12 | Kinzoku Zairyo Kenkyusho | Magnetic alloys |
US3159511A (en) * | 1956-11-08 | 1964-12-01 | Yawata Iron & Steel Co | Process of producing single-oriented silicon steel |
US2911533A (en) * | 1957-12-24 | 1959-11-03 | Arthur C Damask | Electron irradiation of solids |
US3224909A (en) * | 1961-11-29 | 1965-12-21 | Licentia Gmbh | Siliconizing of electrical sheet steel by diffusion |
US3230074A (en) * | 1962-07-16 | 1966-01-18 | Chrysler Corp | Process of making iron-aluminum alloys and components thereof |
US3347718A (en) * | 1964-01-20 | 1967-10-17 | Armco Steel Corp | Method for improving the magnetic properties of ferrous sheets |
US3385725A (en) * | 1964-03-23 | 1968-05-28 | Ibm | Nickel-iron-phosphorus alloy coatings formed by electroless deposition |
US3384517A (en) * | 1964-12-22 | 1968-05-21 | Nat Res Dev | Copper/iron/aluminm alloys |
US3423253A (en) * | 1968-02-23 | 1969-01-21 | Allegheny Ludlum Steel | Method of increasing the silicon content of wrought grain oriented silicon steel |
US3718502A (en) * | 1969-10-15 | 1973-02-27 | J Gibbons | Enhancement of diffusion of atoms into a heated substrate by bombardment |
US3756867A (en) * | 1969-11-03 | 1973-09-04 | Cie Ateliers Et Forges De La L | Method of producing silicon steels with oriented grains by coiling with aluminum strip |
US3681152A (en) * | 1971-03-25 | 1972-08-01 | Allegheny Ludlum Ind Inc | Method of siliconizing |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4177089A (en) * | 1976-04-27 | 1979-12-04 | The Arnold Engineering Company | Magnetic particles and compacts thereof |
US4244722A (en) * | 1977-12-09 | 1981-01-13 | Noboru Tsuya | Method for manufacturing thin and flexible ribbon of dielectric material having high dielectric constant |
US4257830A (en) * | 1977-12-30 | 1981-03-24 | Noboru Tsuya | Method of manufacturing a thin ribbon of magnetic material |
US4265682A (en) * | 1978-09-19 | 1981-05-05 | Norboru Tsuya | High silicon steel thin strips and a method for producing the same |
US4548643A (en) * | 1983-12-20 | 1985-10-22 | Trw Inc. | Corrosion resistant gray cast iron graphite flake alloys |
US4822642A (en) * | 1985-12-11 | 1989-04-18 | Air Products And Chemicals, Inc. | Method of producing silicon diffusion coatings on metal articles |
US4714632A (en) * | 1985-12-11 | 1987-12-22 | Air Products And Chemicals, Inc. | Method of producing silicon diffusion coatings on metal articles |
US4869929A (en) * | 1987-11-10 | 1989-09-26 | Air Products And Chemicals, Inc. | Process for preparing sic protective films on metallic or metal impregnated substrates |
US5372843A (en) * | 1991-03-12 | 1994-12-13 | Hitachi, Ltd. | Process for producing a magnetic recording medium using a patterned diffusion barrier |
US5571591A (en) * | 1992-05-01 | 1996-11-05 | International Business Machines Corporation | Magnetic film patterning by germanium or silicon diffusion |
US5558944A (en) * | 1993-08-10 | 1996-09-24 | Tdk Corporation | Magnetic head and a process for production thereof |
CN103658640A (zh) * | 2013-12-27 | 2014-03-26 | 安徽华东光电技术研究所 | 一种用于速调管的铁硅铝吸收膏剂的配置、涂覆及烧结方法 |
CN103658640B (zh) * | 2013-12-27 | 2016-08-17 | 安徽华东光电技术研究所 | 一种用于速调管的铁硅铝吸收膏剂的配置、涂覆及烧结方法 |
Also Published As
Publication number | Publication date |
---|---|
NL7303477A (enrdf_load_stackoverflow) | 1973-09-17 |
DE2312430A1 (de) | 1973-10-04 |
DE2312430B2 (de) | 1975-06-26 |
GB1376852A (en) | 1974-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3902930A (en) | Method of manufacturing iron-silicon-aluminum alloy particularly suitable for magnetic head core | |
GB1583898A (en) | Method of producing magnetic thin film | |
US3656229A (en) | Process for producing magnetic head | |
US3702239A (en) | Magnetic storage medium | |
JPS6122852B2 (enrdf_load_stackoverflow) | ||
US3700500A (en) | Magnetic films having a predetermined coercivity | |
JPH0199203A (ja) | 軟磁性積層膜 | |
US1855562A (en) | Method of insulating bodies | |
US3108912A (en) | Magnetic material | |
US3162554A (en) | Heat treatment of grain oriented steel to obtain a substantially constant magnetic permeability | |
JP2508462B2 (ja) | 軟磁性薄膜 | |
JPS6313256B2 (enrdf_load_stackoverflow) | ||
JPS59125607A (ja) | 高飽和磁化、高透磁率磁性膜 | |
JPS58100412A (ja) | 軟質磁性材料の製法 | |
JPS63205811A (ja) | 磁気ヘツド | |
JPH0758647B2 (ja) | 結晶質軟磁性薄膜 | |
US3271203A (en) | Method for producing oriented silicon-iron | |
JP2802852B2 (ja) | ターゲツト材およびその製造方法 | |
JPH0789525B2 (ja) | 磁気ヘッド用軟磁性薄膜 | |
JP2522284B2 (ja) | 軟磁性薄膜 | |
JPH0789524B2 (ja) | 磁気ヘッド用軟磁性薄膜 | |
JPH01146312A (ja) | 軟磁性薄膜 | |
JPS59112425A (ja) | 磁気記録媒体 | |
JPH0789527B2 (ja) | 結晶質軟磁性薄膜 | |
JPH0261030A (ja) | 磁性材料及び磁気ヘッド |