US3902040A - Temperature compensating vehicle window heating system - Google Patents
Temperature compensating vehicle window heating system Download PDFInfo
- Publication number
- US3902040A US3902040A US437979A US43797974A US3902040A US 3902040 A US3902040 A US 3902040A US 437979 A US437979 A US 437979A US 43797974 A US43797974 A US 43797974A US 3902040 A US3902040 A US 3902040A
- Authority
- US
- United States
- Prior art keywords
- detecting
- circuit
- dew
- electrodes
- moisture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/84—Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/048—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D22/00—Control of humidity
- G05D22/02—Control of humidity characterised by the use of electric means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/023—Industrial applications
- H05B1/0236—Industrial applications for vehicles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/035—Electrical circuits used in resistive heating apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- a vehicle window heating system for eliminating mois- I I PP NOJ 437,979 ture deposited on the surface of a vehicle window is provided with a moisture detecting circuit having a [30] Foreign Appncation priority Data temperature sensitive element adapted to compensate Feb 7 [97 ⁇ M an 48 l4799 for temperature-dependent variation in impedance Anlagen p tween a pair of dew-drop detecting electrodes.
- This device compensates for such a temperature- References Cited dependent variation in impedance and thus may operate substantially in a temperature independent dew- UNITED STATES PATENTS depositing Condition 2 684,592 7/l954 Hadady 1 1 73/3365 2,707,880 5/1955 Wannamakcr.. 73/3365 3 Claims, 5 Drawmg Flgures 2,733,607 2/1956 Miller 73/3365 IC I I l IO -Ib /SWITCH 6 -
- moisture prevention on a front windshield as well as a back window is important, when backing an automobile or for watching a following vehicle.
- the term moisture preventive as used herein signifies the prevention of dirnness or fogging of glass caused by moisture or dew deposited thereon, as well.
- the back window glass of an automobile is rarely designed to extend in a vertical direction, and is in most cases inclined, and accordingly particular consideration should be paid to insure good visibility for a driver.
- an automatic moisture preventive device in which dewdrop detecting electrodes are attached on the surface of glass for detecting a dew depositing condition by using variation in impedance between a pair of detecting electrodes and a heating device or warm air blowing device mounted on a glass surface may be operated according to the results of detection.
- a moisture preventive device suffers from disadvantages in that, if it is preset so as to operate in a given dew depositing condition which is suited for a warm environment, then it will not operate in a cold environment, even if a considerable degree of moisture or dew is deposited on the surface of glass.
- a moisture preventive device for glass in which there is used a temperature sensitive element which is adapted to vary impedance depending on varying temperature or vary its induced voltage, whereby the aforesaid temperature sensitive element may compensate for temperature-dependent variation in impedance to insure consistent operation of a moisture preventive device substantially in a constant dew depositing condition throughout cold and hot environments.
- the degree, to which the aforesaid compensation is accomplished may be complete, or excessive.
- dew is apt to be deposited on the window glass because of insufficient heating in the car and because of the reduced environmental temperature in the car. Therefore, it is advisable in heating the window glass prior to the deposit of dew, for the temperature sensitive element to make an excessive temperature compensation to prevent the deposit of moisture.
- FIG. 1 is a plot showing a resistance-versustemperature characteristic
- FIG. 2 is a block diagram illustrating the construction of a moisture preventive device for glass, which device embodies the present invention
- FIG. 3 is a circuit diagram representing one example of temperature compensating means according to the present invention.
- FIG. 4 is a plot showing a voltage-versus-current characteristics of diodes at different temperatures.
- FIG. 5 is a circuit diagram showing one example of a detecting circuit and an operating circuit.
- FIG. 1 there is shown variation in resistance R (M9) between a pair of detecting electrodes versus ambient temperature T. As can be seen from this plot, the resistance decreases with the decrease in temperature.
- logarithmic scale is presented as an ordinate and an equally spaced scale is indicated as an abscissa. If dew is deposited on the surface of glass having a pair of detecting electrodes, a lowered resistance R will result.
- a temperature sensitive element which is adapted to vary the resistance or induced voltage depending on varying temperatures, whereby the temperature-dependent variation in resistance R may be compensated for by means of this temperature sensitive element.
- FIG. 2 shows the construction of an automatic moisture preventive device for use with a window glass of an automobile.
- Shown at 10 is a window glass and generally at l is a heating device which consists of electrodes la and 1b which are bonded in the form of a band to the window glass 10 along its opposite edges, and a transparent, electrically conductive film 10 which covers the area between the electrodes la and 1b.
- the electrically conductive film 1c is normally positioned in contact relation to the inner surface of the window glass 10 thereon, but may be interposed between two laminated glasses, acting as a heating means. Alternatively, a plurality of lines or tapes, which are electrically conductive, may be used in place of the aforesaid electrically conductive film 1c.
- the dew drop detecting electrodes 2 and 3 consist of a pair of electrodes which extend in parallel and are spaced a small distance from each other.
- the element designated 4 is a detecting circuit adapted to detect variation in impedance between the detecting electrodes 2 and 3, and shown at 5 is an operating circuit, at 6 a switch which is adapted to pass or interrupt the flow of an electric current to be supplied to the heating device 1 provided on the window glass, from an electric power source 7.
- the detecting circuit 4 issues an output of a level commensurate with variation in resistance R. If the level of the variation in resistance R exceeds a predetermined value, the operating circuit 5 issues an output to close the switch 6, whereby an electric current is supplied to the heating device on the surface of the window glass from the electric power source, such as a battery, to heat the window glass, thereby eliminating dimness or moisture therefrom.
- the electric power source such as a battery
- the window glass may be maintained free from moistened or dim condition.
- the circuitry may be designed so that the detecting circuit 4 issues an on-output, when the resistance R between detecting electrodes goes below a predetermined value, and that the operating circuit 5 simply amplifies the aforesaid output to close the switch 6.
- the circuits 4, 5 and 6 may be modified to a desired mode, as required.
- the resistance R between the detecting electrodes 2 and 3 varies with the variation in temperature.
- a temperature sensitive element for compensating such a variation, thereby enhancing the sensitivity of a moisture preventive device for glass in a cold environment, in an attempt to cause a window glass heating device to be energized, when substantially the same dew depositing condition results, irrespective of cold and warm environmental conditions.
- temperature sensitive elements among which thermistors and semiconductor diodes are particularly suitable.
- FIG. 3 shows one example of an essential part of the detecting circuit 4 which uses a semiconductor diode as a temperature sensitive element. Shown at T1 and T2 are transistors constituting a differential amplifying circuit and at R1 to R5 are resistors. The detecting electrodes are connected to terminals [1 and t2, and
- resistance R between detecting electrodes and resistors R1 to R3 constitute a bridge circuit B.
- A.C. voltage is impressed by way of a capacitor C across the electric power source terminals t2 and t3 of the bridge circuit from an oscillator, and the bases of transistors T1 and T2 are connected to the detecting terminals 11 and t2 therebetween.
- a semiconductor diode D serving as an temperature sensitive element is connected between the base of the transistor T1 and the detecting terminal t1. Output comes from the terminal t6 connected to the collector of the transistor T2, and DC. voltage is impressed on operating power source terminals t5 and t2 provided for the transistors T1 and T2.
- the operation of the detecting circuit as shown in FIG. 3 is as follows: Suppose that the ambient temperature is maintained at a normal value and that there is no deposited dew on the surface of a window glass, yet in terms of the absence of a diode D, then the bridge circuit B composed of resistors R, R1 to R3 is maintained in equilibrium, and an electric current of a certain amount flows through transistors T1 and T2. When dew is deposited on the surface of glass under such a condition, the resistance R will be lowered, with the result of the decrease in amount of electric current passing through the transistor T1, while the electric current passing through the transistor T2 increases, whereby the voltage drop at the collector resistance R, increases, and then the aforesaid voltage serves as an output voltage for the detecting circuit.
- the operating circuit 5 receives this output voltage and closes the switch 6, when the aforesaid output voltage reaches a predetermined value.
- the window glass is heated and as a result the moisture present on the surface thereof has been eliminated, then the resistance R resumes the initial value and the bridge circuit B is brought to an equilibrium condition to open the switch 6.
- the resistance R is increased to a value higher than the normal value, such that the bridge circuit B is maintained out of equilibrium in a manner that the electric current through the transistor T1 is increased and the electric current through the transistor T2 is decreased.
- the bridge circuit B has to first come into equilibrium and then out of equilibrium in a reversed direction, before the switch 6 is activated, even if the resistance R begins decreasing. This takes a certain period of time until a considerable degree of dew is deposited, whereby the resistance R is reduced.
- a diode D because the characteristic of the voltage Vd impressed to the diode versus electric current Id past the diode, varies depending on ambient temperatureas shown in FIG.
- the resistance of the diode D is increased together with the increase of resistance R in a cold environment, whereby the variation in the input current at the base of transistor T1 may be suppressed to prevent variation in electric current at the collector-emitter of the aforesaid transistor.
- FIG. 5 shows one embodiment of the detecting circuit 4 and operating circuit 5.
- R6 Shown at R6 is a resistor connected in parallel with the baseemitter pass of transistor T1 and diode D.
- R4 Connected in parallel to the output resistor R4 of the differential amplifier is a capacitor C1, while the output from the amplifier is fed by way of resistor R7 to the base of amplifying transistor T3.
- R8 and a capacitor C2 Connected in parallel between the base and emitter of transistor T3 are a resistor R8 and a capacitor C2, while resistors R9 and R10 are connected in series to the collector thereof.
- transistor T5 adapted to control a relay Ry is connected to the junction of the resistors R9 and R10, while a diode D1 for absorbing a counter electromotive force is connected to the relay Ry connected to the aforesaid collector. Coupled with zener diode ZD connected between the base of the transistor T4 and the ground, as well as coupled with resistor R11 connected in parallel between the base and the collector of the transistor T4, the transistor T4 constitutes a constant voltage circuit.
- transistors T6 and T7 constitute an a stable multi-vibrator circuit MVC, coupled with resistors R12, R13, R12 and R15 plus capacitors C3 and C4.
- the multi-vibrator MVC oscillates to impress A.C. voltage by way of capacitor C to the bridge circuit B, while the differential amplifying circuit output, which is produced upon decrease in resistance R between the detecting electrodes due to the deposited dew, brings the transistor T3 in electrically conductive condition by way of resistor R7, whereby the transistor T5 is also brought into an electrically conductive condition.
- the relay Ry is actuated to close contacts (not shown) which constitute the switch 6 to supply an electric current to the heating device 1.
- the use of a capacitor for coupling the oscillator to the bridge circuit renders the moisture preventive device more compact and lighter in weight as compared with the conventional device using a transformer.
- the frequency of AC. voltage to be impressed on the bridge circuit B is preferably in the range from 100 to 1,000 Hertz. In case the frequency is below 100 Hz, then special electrolytic corrosion on detecting electrodes will be caused, while if it is greater than 1,000 H2, there will be a danger of causing malfunctioning due to the influence of stray capacitance.
- the trigger level of the differential amplifying circuit having a temperature sensitive element in its detecting circuit is high in a cold environment and low in a warm environment, such that the moisture preventive device of the invention is best suited for the output condition of bridge circuit including detecting electrodes.
- the moisture preventive device may be operated under a constant dew depositing condition, irrespective of the summer season and winter season, daytime and early morning, or south and north of a country, thereby insuring desired transparency for a window glass with improved driving safety and savings in electric power.
- the temperature sensitive element D may be connected other suitable positions, besides those shown in FIGS. 3 and 5. While description has been thus far directed to the window glass of an automobile, it should not be construed that present invention is limited to the aforesaid embodiments.
- the invention may be applied to window glass in any type of vehicle or building for the prevention of moisture thereon.
- the moisture preventive device of the present invention a warm air blower may be used in place of the aforesaid heating element.
- a moisture preventive device for a window glass of an automobile which device has a pair of dew drop detecting electrodes mounted on the surface of glass, a circuit for detecting the variation in impedance between said electrodes and a moisture preventive means operating by means of the output from said detecting circuit, wherein the improvement comprises:
- said dew drop detecting electrodes including a pair of electrodes extending in parallel with each other and mounted in a position on the window glass of an automobile which will not hinder the field of view of a driver; said detecting circuit being provided with a resistor bridge circuit which incorporates said detecting electrodes therein, and a differential amplifying circuit, one of whose input terminals is directly connected to one of the detecting terminals of said bridge circuit and the other of which input terminals is connected to the other of said detecting terminals by way of a temperature sensitive semiconductor diode exposed to the same ambient temperature as are the detecting electrodes such that the variation in resistance of said diode cancels out the variation in resistance between the detecting electrodes caused by ambient temperature variation;
- said moisture preventive means being provided with heating means for heating said window glass, switch means for connecting an electric power source or said heating means and operating circuit means for closing or opening said switch means by the output from a differential amplifier.
- a moisture preventive device for glass as set forth in claim 1, wherein said voltage impressing means is an oscillator and said detecting circuit is connected to said oscillator by way of a capacitor.
- a moisture preventive device for glass as set forth in claim 2, wherein said oscillator oscillates A.C. voltage of a frequency of to l,OO0 Hertz.
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Automation & Control Theory (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Control Of Resistance Heating (AREA)
- Window Of Vehicle (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1479973A JPS5347131B2 (de) | 1973-02-07 | 1973-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3902040A true US3902040A (en) | 1975-08-26 |
Family
ID=11871085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US437979A Expired - Lifetime US3902040A (en) | 1973-02-07 | 1974-01-30 | Temperature compensating vehicle window heating system |
Country Status (6)
Country | Link |
---|---|
US (1) | US3902040A (de) |
JP (1) | JPS5347131B2 (de) |
BE (1) | BE812312A (de) |
CA (1) | CA993024A (de) |
DE (1) | DE2405230C3 (de) |
GB (1) | GB1459248A (de) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4032745A (en) * | 1974-04-19 | 1977-06-28 | Saint-Gobain Industries | Control system for vehicle window heater |
US4092635A (en) * | 1976-09-20 | 1978-05-30 | Baxter Travenol Laboratories, Inc. | Humidity sensor alarm unit |
US4227411A (en) * | 1979-09-24 | 1980-10-14 | Rca Corporation | Relative humidity measurement |
US4259565A (en) * | 1978-09-05 | 1981-03-31 | Mita Industrial Company Limited | Method of controlling heaters for copying apparatus |
US4260876A (en) * | 1978-12-11 | 1981-04-07 | Anthony's Manufacturing Company, Inc. | Dew point differential power controller |
US4479113A (en) * | 1982-01-20 | 1984-10-23 | The United States Of America As Represented By The United States Department Of Energy | Compensated intruder-detection systems |
US4506137A (en) * | 1983-02-18 | 1985-03-19 | Meister Jack B | Temperature responsive control circuit for electric window de-fogger/deicer heater |
US4693172A (en) * | 1984-12-10 | 1987-09-15 | British Aerospace Plc | Automatic mist preventing system for vehicle transparencies |
US5682788A (en) * | 1995-07-12 | 1997-11-04 | Netzer; Yishay | Differential windshield capacitive moisture sensor |
WO1998030409A1 (en) * | 1997-01-07 | 1998-07-16 | Libbey-Owens-Ford Co. | Insulating glass with capacitively coupled heating system |
US5801307A (en) * | 1995-07-12 | 1998-09-01 | Netzer; Yishay | Differential windshield capacitive moisture sensors |
US5821501A (en) * | 1996-02-26 | 1998-10-13 | Eip Equipment And Safety Products Ltd. | Heated mirror |
FR2764258A1 (fr) * | 1997-06-06 | 1998-12-11 | Bosch Gmbh Robert | Dispositif pour chauffer une vitre notamment une vitre de vehicule automobile |
US5899078A (en) * | 1997-03-25 | 1999-05-04 | Peak Energy Systems, Inc. | Method and apparatus for reducing energy use by refrigeration door and frame heaters |
US6144017A (en) * | 1997-03-19 | 2000-11-07 | Libbey-Owens-Ford Co. | Condensation control system for heated insulating glass units |
US20030150129A1 (en) * | 2001-04-25 | 2003-08-14 | Dong-Chual Kang | Apparatus and method for removing moisture |
US7019260B1 (en) * | 1999-05-20 | 2006-03-28 | Glavarbel | Automotive glazing panel with solar control coating comprising a data transmission window |
US20100043293A1 (en) * | 2008-08-20 | 2010-02-25 | Anthony, Inc. | Refrigerator door construction including a laminated package |
USD612517S1 (en) | 2008-08-20 | 2010-03-23 | Anthony, Inc. | Door |
US20110109115A1 (en) * | 2008-07-08 | 2011-05-12 | Kazuo Yamada | Terminal structure and glass plate with terminal for vehicles |
CN102474914A (zh) * | 2009-12-24 | 2012-05-23 | 乐金华奥斯有限公司 | 防结露发热玻璃系统及其控制方法 |
CN103200717A (zh) * | 2013-03-23 | 2013-07-10 | 北京兴科迪科技有限公司 | 车窗自动除雾器 |
US20150122474A1 (en) * | 2012-04-27 | 2015-05-07 | Sl Holding, Kolding Aps | Temperature-controlled window and mehtod of controlling thereof |
WO2015142644A3 (en) * | 2014-03-21 | 2016-04-14 | Teledyne Instruments, Inc. | Detection and correction of window moisture condensation |
CN105934660A (zh) * | 2014-01-30 | 2016-09-07 | Bsh家用电器有限公司 | 用于家用电器的在平面加热器上的温度测量 |
WO2017152370A1 (zh) * | 2016-03-08 | 2017-09-14 | 张舒维 | 一种用于农业生产的新型土壤湿度检测设备 |
US12082314B2 (en) | 2019-10-28 | 2024-09-03 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for regulating a resistive element intended for deicing and/or demisting a support, and the associated device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2218710B1 (de) * | 1973-02-16 | 1976-04-30 | Saint Gobain | |
JPS52127912A (en) * | 1976-04-19 | 1977-10-27 | Nippon Sheet Glass Co Ltd | Autoononnfogging plate glass |
DE3513157A1 (de) * | 1985-04-12 | 1986-10-16 | VEGLA Vereinigte Glaswerke GmbH, 5100 Aachen | Verfahren zur regelung der temperatur von elektrisch beheizbaren sichtscheiben |
DE3726122C1 (de) * | 1987-08-06 | 1988-12-22 | Daimler Benz Ag | Verfahren zur Regelung von Parametern der Innenraumluft in einem Kraftfahrzeug mit einer Klimaanlage |
JPH035259A (ja) * | 1989-06-01 | 1991-01-11 | Nippondenso Co Ltd | ウインドガラスの加熱装置 |
GB9418477D0 (en) * | 1994-09-14 | 1994-11-02 | Glaverbel | A heated glazing panel and a control circuit for use therewith |
DE19524945A1 (de) | 1995-07-08 | 1997-01-09 | Cerasiv Gmbh | Spanabhebendes Schneidwerkzeug |
GB2419415A (en) * | 2004-09-20 | 2006-04-26 | Bioquell Uk Ltd | Sterilisation sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2684592A (en) * | 1949-04-11 | 1954-07-27 | American Instr Co Inc | Automatic temperature-compensated humidity indicator |
US2707880A (en) * | 1950-02-18 | 1955-05-10 | Honeywell Regulator Co | Relative humidity measuring apparatus |
US2733607A (en) * | 1956-02-07 | miller | ||
US3634841A (en) * | 1968-10-10 | 1972-01-11 | Findlay Irvine Ltd | Temperature and salinity indicating and/or control apparatus |
US3696360A (en) * | 1971-06-16 | 1972-10-03 | Vapor Corp | Impending condensation alarm |
US3749885A (en) * | 1970-12-18 | 1973-07-31 | Asahi Glass Co Ltd | Defogging glass plate |
US3832527A (en) * | 1970-12-18 | 1974-08-27 | Asahi Glass Co Ltd | Defogging glass plate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4868701U (de) * | 1971-12-03 | 1973-08-31 |
-
1973
- 1973-02-07 JP JP1479973A patent/JPS5347131B2/ja not_active Expired
-
1974
- 1974-01-30 US US437979A patent/US3902040A/en not_active Expired - Lifetime
- 1974-01-30 CA CA191,297A patent/CA993024A/en not_active Expired
- 1974-02-04 DE DE2405230A patent/DE2405230C3/de not_active Expired
- 1974-02-07 GB GB571274A patent/GB1459248A/en not_active Expired
- 1974-03-14 BE BE142014A patent/BE812312A/xx not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2733607A (en) * | 1956-02-07 | miller | ||
US2684592A (en) * | 1949-04-11 | 1954-07-27 | American Instr Co Inc | Automatic temperature-compensated humidity indicator |
US2707880A (en) * | 1950-02-18 | 1955-05-10 | Honeywell Regulator Co | Relative humidity measuring apparatus |
US3634841A (en) * | 1968-10-10 | 1972-01-11 | Findlay Irvine Ltd | Temperature and salinity indicating and/or control apparatus |
US3749885A (en) * | 1970-12-18 | 1973-07-31 | Asahi Glass Co Ltd | Defogging glass plate |
US3832527A (en) * | 1970-12-18 | 1974-08-27 | Asahi Glass Co Ltd | Defogging glass plate |
US3696360A (en) * | 1971-06-16 | 1972-10-03 | Vapor Corp | Impending condensation alarm |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4032745A (en) * | 1974-04-19 | 1977-06-28 | Saint-Gobain Industries | Control system for vehicle window heater |
US4092635A (en) * | 1976-09-20 | 1978-05-30 | Baxter Travenol Laboratories, Inc. | Humidity sensor alarm unit |
US4259565A (en) * | 1978-09-05 | 1981-03-31 | Mita Industrial Company Limited | Method of controlling heaters for copying apparatus |
US4260876A (en) * | 1978-12-11 | 1981-04-07 | Anthony's Manufacturing Company, Inc. | Dew point differential power controller |
US4227411A (en) * | 1979-09-24 | 1980-10-14 | Rca Corporation | Relative humidity measurement |
US4479113A (en) * | 1982-01-20 | 1984-10-23 | The United States Of America As Represented By The United States Department Of Energy | Compensated intruder-detection systems |
US4506137A (en) * | 1983-02-18 | 1985-03-19 | Meister Jack B | Temperature responsive control circuit for electric window de-fogger/deicer heater |
US4693172A (en) * | 1984-12-10 | 1987-09-15 | British Aerospace Plc | Automatic mist preventing system for vehicle transparencies |
US5682788A (en) * | 1995-07-12 | 1997-11-04 | Netzer; Yishay | Differential windshield capacitive moisture sensor |
US5801307A (en) * | 1995-07-12 | 1998-09-01 | Netzer; Yishay | Differential windshield capacitive moisture sensors |
US5821501A (en) * | 1996-02-26 | 1998-10-13 | Eip Equipment And Safety Products Ltd. | Heated mirror |
WO1998030409A1 (en) * | 1997-01-07 | 1998-07-16 | Libbey-Owens-Ford Co. | Insulating glass with capacitively coupled heating system |
US5852284A (en) * | 1997-01-07 | 1998-12-22 | Libbey-Owens-Ford Co. | Insulating glass with capacitively coupled heating system |
US6144017A (en) * | 1997-03-19 | 2000-11-07 | Libbey-Owens-Ford Co. | Condensation control system for heated insulating glass units |
US5899078A (en) * | 1997-03-25 | 1999-05-04 | Peak Energy Systems, Inc. | Method and apparatus for reducing energy use by refrigeration door and frame heaters |
FR2764258A1 (fr) * | 1997-06-06 | 1998-12-11 | Bosch Gmbh Robert | Dispositif pour chauffer une vitre notamment une vitre de vehicule automobile |
US7019260B1 (en) * | 1999-05-20 | 2006-03-28 | Glavarbel | Automotive glazing panel with solar control coating comprising a data transmission window |
US20030150129A1 (en) * | 2001-04-25 | 2003-08-14 | Dong-Chual Kang | Apparatus and method for removing moisture |
US7231727B2 (en) * | 2001-04-25 | 2007-06-19 | Isgk Co., Ltd. | Apparatus and method for removing moisture |
US20110109115A1 (en) * | 2008-07-08 | 2011-05-12 | Kazuo Yamada | Terminal structure and glass plate with terminal for vehicles |
US20100043293A1 (en) * | 2008-08-20 | 2010-02-25 | Anthony, Inc. | Refrigerator door construction including a laminated package |
USD612517S1 (en) | 2008-08-20 | 2010-03-23 | Anthony, Inc. | Door |
US8613161B2 (en) | 2008-08-20 | 2013-12-24 | Anthony, Inc. | Refrigerator door construction including a laminated package |
CN102474914A (zh) * | 2009-12-24 | 2012-05-23 | 乐金华奥斯有限公司 | 防结露发热玻璃系统及其控制方法 |
US10202800B2 (en) * | 2012-04-27 | 2019-02-12 | Wicurit Aps | Temperature-controlled window and method of controlling thereof |
US20150122474A1 (en) * | 2012-04-27 | 2015-05-07 | Sl Holding, Kolding Aps | Temperature-controlled window and mehtod of controlling thereof |
CN103200717A (zh) * | 2013-03-23 | 2013-07-10 | 北京兴科迪科技有限公司 | 车窗自动除雾器 |
CN105934660A (zh) * | 2014-01-30 | 2016-09-07 | Bsh家用电器有限公司 | 用于家用电器的在平面加热器上的温度测量 |
US20160334814A1 (en) * | 2014-01-30 | 2016-11-17 | BSH Hausgeräte GmbH | Temperature measurement on a surface heater for a household appliance |
CN105934660B (zh) * | 2014-01-30 | 2019-08-06 | Bsh家用电器有限公司 | 用于家用电器的在平面加热器上的温度测量 |
WO2015142644A3 (en) * | 2014-03-21 | 2016-04-14 | Teledyne Instruments, Inc. | Detection and correction of window moisture condensation |
US9629204B2 (en) | 2014-03-21 | 2017-04-18 | Teledyne Instruments, Inc. | Detection and correction of window moisture condensation |
WO2017152370A1 (zh) * | 2016-03-08 | 2017-09-14 | 张舒维 | 一种用于农业生产的新型土壤湿度检测设备 |
US12082314B2 (en) | 2019-10-28 | 2024-09-03 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for regulating a resistive element intended for deicing and/or demisting a support, and the associated device |
Also Published As
Publication number | Publication date |
---|---|
JPS49105813A (de) | 1974-10-07 |
DE2405230A1 (de) | 1974-08-08 |
AU6500674A (en) | 1975-07-31 |
BE812312A (fr) | 1974-07-01 |
JPS5347131B2 (de) | 1978-12-19 |
CA993024A (en) | 1976-07-13 |
GB1459248A (en) | 1976-12-22 |
DE2405230C3 (de) | 1978-10-05 |
DE2405230B2 (de) | 1978-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3902040A (en) | Temperature compensating vehicle window heating system | |
US3934111A (en) | Apparatus for heating a window | |
US4407141A (en) | Temperature sensing means for refrigerator | |
GB1285069A (en) | Battery charging arrangements | |
GB1480193A (en) | Heatable panes | |
US5465091A (en) | Touch sensor | |
US3594775A (en) | System for detecing frost, snow and ice on a road surface | |
GB1451231A (en) | Gas sensitive devices | |
US3422677A (en) | Ice condition detecting device | |
GB1438256A (en) | Temperature sensing and controlling apparatus | |
US3673589A (en) | Intruder detector | |
US2753548A (en) | Temperature indicating and warning system | |
US3626400A (en) | Self-checking fluid level indicators | |
US3284787A (en) | Multi-purpose alarm system | |
GB1038759A (en) | Improvements in and relating to heating circuits for electrically heated blankets | |
GB1425262A (en) | Temperature control systems | |
US4348662A (en) | Capacity sensing intrusion alarm apparatus | |
GB1185584A (en) | Radio Transmitter for High Voltage Electric Power Transmission Line | |
US3993983A (en) | Apparatus for sensing variations in the heat exchange properties of a medium | |
JPS6228709Y2 (de) | ||
JPS57203927A (en) | Temperature sensor | |
JP3062831B2 (ja) | イオン化式煙感知器 | |
CA1036690A (en) | Apparatus for sensing variations in the heat exchange properties of a medium | |
JPS60129538A (ja) | 電気暖房器の制御装置 | |
FR2264957A1 (en) | Anti-misting device for automobile - uses temp responsive elements to compensate for temp variations |