US3899292A - Process for crumpling synthetic suede - Google Patents

Process for crumpling synthetic suede Download PDF

Info

Publication number
US3899292A
US3899292A US338565A US33856573A US3899292A US 3899292 A US3899292 A US 3899292A US 338565 A US338565 A US 338565A US 33856573 A US33856573 A US 33856573A US 3899292 A US3899292 A US 3899292A
Authority
US
United States
Prior art keywords
fiber
crumpling
sheet material
sheet
synthetic suede
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US338565A
Other languages
English (en)
Inventor
Kaoru Okazaki
Kenkichi Yagi
Miyoshi Okamoto
Koji Watanabe
Toyohiko Hikota
Masayoshi Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP47028572A priority Critical patent/JPS5037241B2/ja
Priority claimed from JP47028572A external-priority patent/JPS5037241B2/ja
Priority to JP47127678A priority patent/JPS5133601B2/ja
Priority claimed from JP47127678A external-priority patent/JPS5133601B2/ja
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to US338565A priority patent/US3899292A/en
Priority to FR7310359A priority patent/FR2177061B1/fr
Priority to GB1407173A priority patent/GB1389804A/en
Application granted granted Critical
Publication of US3899292A publication Critical patent/US3899292A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P7/00Dyeing or printing processes combined with mechanical treatment
    • D06P7/005Dyeing combined with texturising or drawing treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/82Textiles which contain different kinds of fibres
    • D06P3/8204Textiles which contain different kinds of fibres fibres of different chemical nature
    • D06P3/8214Textiles which contain different kinds of fibres fibres of different chemical nature mixtures of fibres containing ester and amide groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/929Carpet dyeing

Definitions

  • the sheet has naps of superfine denier fiber at least on one surface, and comprises (a) a non-woven fabric made up to 0.01-0.3 denier superfine staple fibers of breaking strength below 3 grams and an elongation at break of 60-180 percent and (b) a polyurethane elastomer obtained by reacting a diol mixture by weight of about 20-40 parts of polycaprolactone diol of a molecular weight of about 1000-3000 and about 60-80 parts of polytetramethyleneetherglycol of a molecular weight of about 1000-3000 with an organic diisocyanate and a diamine chain extender.
  • An object of this invention is to provide a process for producing synthetic suede leathers which possess flexible and supple naps on the surface densely arranged, and which show a graceful writing" effect of finger marks in a manner remarkably like natural suede.
  • Another object is to provide a process for producing synthetic suede leathers which possess a flexible and supple touch and do not cause difficulties in the dyeing process. such as uneven dyeing. cracks on the surface. tear and wear. for example.
  • S 300 (cm wherein S is the cross-sectional area internally of the venturinozzle (cm and A is the cross-sectional area of the napped sheet.
  • said napped sheet having naps of superfine denier fiber at least on one surface and having a thickness of about 0.2-4.0 mm and a width of about 5-200 cm. and comprising (a) a non-woven fabric made up of 001-0. denier superfine staple fibers of a breaking strength below 3 grams and an elongation at break of 60-l 80 percent and (b) a polyurethane elastomer obtained by reacting a diol mixture. by weight.
  • polyesterpolyurethanes cannot resist the effects of the high temperature dyeing process of this invention, so sheets containing such polyurethane tend to develop surface cracks after dyeing and to tear or wear during dyeing according to this invention. Such sheets tend to have an inflexible touch.
  • the sheets comprising polycaprolactonepolyurethane are not an exception.
  • Polyetherpolyurethane especially diamine extended polytetramethyleneetherglycol polyurethane is often used as a polyurethane which should be durable to dyeing at high temperature because of its good hydrolysis resistance and heat resistance.
  • a napped sheet containing such polytctramethyleneetherglycol polyurethane provides a colored sheet by the dyeing process of this invention. but the resulting dyed sheet tends to show a strong rubber-like repulsive elasticity and an inflexible touch. Further. the aesthetic characteristic of the naps of the sheet is poor. Namely. the dyeing process of this invention is ineffective for softening the napped sheet made from polytetramethyleneetherglycol polyurethane.
  • the dyeing process of this invention is ineffective for softening the napped sheet made from polytetramethyleneetherglycol polyurethane.
  • an unsatisfactory sheet is provided by the dyeing method of this invention including crumpling the sheet by passing through a narrow venturi-nozzle at high temperature.
  • the softening effect by dyeing according to this invention is not remarkable in a sheet comprising a polytetramethyleneethcrglycol type polyurethane.
  • this effect is remarkable in a sheet comprising the above-described specific block polyurethane of this invention. That is to say. the reduction ratio of the flexibility value. defined later. of a sheet comprising polytetramethyleneetherglycol type polyurethane is ncar zero; on the other hand that of a sheet comprising the specific polycaprolactone-polytetramethyleneetherglycol type block polyurethane is beyond 20 percent; moreover there is no reduction of dyeing resistance as with a sheet comprising polyesterpolyurethane.
  • the rubber-like elasticity of the sheet is not relaxed by the crumpling effect in a hot water bath. i.e. the influence of both chemical and physical effects. and does not provide a graceful synthetic suede which is the object of this invention.
  • the block-polyurethane of this invention which contains a polyeaprolactone diol segment including ester groups in its main chain.
  • the napped sheet acts properly through the dyeing process of this invention. for example. adhesion between the fiber and the polyurethane decreases due to a erumpling effect in a hot water bath so that the flexibility of the sheet increases and graceful synthetic suedes.
  • Polytetramethyleneetherglycol type polyurethane is almost insoluble in dimethylsulfoxide. but the block polyurethane of this invention is easily soluble in that solvent. This fact shows that there is a remarkable difference between both types of polyurethane. Further. the wet coagulated block polyurethane of this invention takes on a non-microporous structure when observed through a microscope. On the other hand. the wet coagulated polytetramethyleneetherglycol type or polyalkyleneether type polyurethane seems to take on a microporous structure according to the description in U.S. Pat. No. 3.067.483. This is also a major difference between the respectives polyurethanes.
  • the content of the polycaprolactone diol in the diol mixture plays an important part in the polyurethane of this invention. Practically. an excessively high content of polycaprolactone causes cracks or tears upon dyeing the sheet. Such sheet does not become flexible through dyeing as compared to its flexibility before dyeing. On the other hand. an excessively low content of polycaprolactone does not provide a flexible sheet through the dyeing of this invention. because such polyurethane has almost the same properties as the polytetramethyleneetherglycol type polyurethane.
  • the preferable range of the ratio (by weight) of polycaprolactone diol to polytetramethyleneetherglycol in the diol mixture is 20/80 40/60. more preferably 20/80 35/65.
  • the diol component of the polyurethane of this invention contains partly polycaprolactone diol.
  • Polycaprolactone diol is a polyester diol. but every polyester diol is not always usable. For example. when polyethyleneadipate diol or polybuthyleneadipate diol is used instead of polycaprolaetone diol. the resulting sheet tends to be inflexible and to develop cracks upon dyeing on its surface, even if other conditions of this invention are satisfied. It seems therefore that stability in the process of production is insufficient in such cases.
  • the method of producing the polyurethane is described as follows:
  • the block polyurethane of this invention is prepared by reacting a diol mixture of about 20-40 parts of polycaprolactone diol of a molecular weight of 1000-3000 and about 6080 parts of polytetrame thyleneetherglyco] ofa molecular weight of 1000-3000 with a molar excess of an organic diisocyanate to yield an isocyanatcterminated intermediate called a prepolymer. dissolving said prepolymer in an organic solvent. and further reacting said prepolymer with a diamine chain extending agent.
  • Organic diisocyanates which are useful for the preparation of the block polyurethanes of this invention include preferably aromatic diisocyanates such as diphenylmethane-4.4'-diisocyanate. tolylene diisocyanate. naphthylene diisocyanate. diphenyl diisocyanate and xylylene diisocyanate. and aliphatic diisocyanates such as hexamethylene diisocyanate and lysine diisocyanate.
  • aromatic diisocyanates such as diphenylmethane-4.4'-diisocyanate. tolylene diisocyanate. naphthylene diisocyanate. diphenyl diisocyanate and xylylene diisocyanate.
  • aliphatic diisocyanates such as hexamethylene diisocyanate and lysine diisocyanate.
  • Chain extending agents which are usable in this invention are restricted to diamines, especially diamines having primary amino groups.
  • Diamines having at least one secondary amino group. glycols and aminoalcohols are unsuitable because the resulting sheet cannot resist the dyeing conditions of this process.
  • Such primary diamines include hydrazines. aliphatic diamines such as ethylene diamine. propylenediamine, trimethylenediamine. tetramethylene diamine. pentamethylenediamine. hexamethylenediamine and 1.4- diaminopiperazine and aromatic diamines such as phenylenediamine. tolylenediamine, naphthylenediamine and 4.4-diaminodiphenylmethane.
  • Aromatic diamines are preferable in the respect of a heat resistance and a dyeing resistance at high temperature.
  • the most preferable combination of a diisocyanate and a diamine is that of diphenylmethane-4.4-diisocyanate and 4.4-diaminodiphenylmethane.
  • the solvents which are used in this process are required to dissolve the .diamine chain extended polyurethane.
  • Such solvents include dimethylformamide. diethylformamide. dimethylacetamide. dimethylsulfoxide and hexamethylphosphoramide.
  • polyurethane monofunctional compounds such as di-n-butylamine. diethylamine. di-n-propylamine and aniline may be added during the preparation of the polyurethane.
  • O-G-O is a polycaprolactone diol residue or polytetramethyleneetherglyeol residue and comprises. by weight. about 20-40 percent of polycaprolactone diol residue and about 60-80 percent of polytetramethyleneetherglycol residue
  • A is a difunctional organic residue shown by the formula p is an integer from 1 to 3 and n is an integer at least 1. That is to say. the polyurethane which contains the repeating structure of several A units is the most preferred polyurethane of this invention.
  • Such structure and content of polycaprolactone diol in the diol component seems to be more the essential factors which give good dyeing resistance and flexibility to the resulting sheet.
  • superfine 0.01 0.3 denier staple fiber of an elongation at break of 60-18071 and of a breaking strength of below 3 grams is used as the fiber of the non-woven fabric.
  • a preferred fiber is superfine denier polyester fiber, especially superfine polyethyleneterephtalate fiber. Practically, it is most preferable to use a superfine denier fiber in the form of bundles each comprising at least about five fibers, but the superfine denier fiber is usable also in the form of random web.
  • This invention offers several advantages as follows, by using such high elongation superfine denier fibers.
  • the degree of intertwining of fibers more greatly influences the properties of a nonwoven fabric than the characteristics of the fiber, and in this case the strength of the non-woven fabric increases by using the superfine denier fiber.
  • the number of fibers per unit cross-sectional area may be increased more than in the case ofa fabric, and
  • the resulting product tends to show uneven dyeing, such as polyurethane being fully colored and fiber being little colored, or polyurethane and fiber being dyed in different colors because of different affinity for the dye, or different rate of exhaus tion of dye between the fiber and the polyurethane.
  • the color differs between naps of the sheet made from fiber and the skin of the sheet made from polyurethane.
  • the high elongation superfine denier fiber has similar properties on dyeing to the polyurethane elastomer in this invention, so the resulting sheet never shows uneven dyeing between the naps and the skin. This is explained from the results obtained by FIG. 1.
  • FIG. 1 shows the relation of the dye adsorption and dye concentration of the bath in the dyeing process of this invention at the following conditions: temperature: 130C, time: 1 hour and dye: Terasil Orange SRL (Color Index No. Dis. Orange Curve 1 shows the relation for the 0.1 denier polyethyleneterephtalate fiber having an elongation at break of 90 percent and a breaking strength of 0.6 grams, which forms fiber bundles.
  • Curve 2 shows the relation for the polyurethane of this invention used in Example 1.
  • Curve 3 shows the relation for the 0.1 denier polyethyleneterephtalate fiber having an elongation at break of 35 percent and a breaking strength of 5.0 grams, which deviates from this invention.
  • the denier of the superfine denier fiber is in the region of 0.01-0.31, more preferably 0.050.2. Excessive decrease in denier causes lowering of the breaking strength of the fiber, which causes poor raising properties of the sheet such as wear and tear of naps, and furthermore causes excessive increase of reflection of light by the surface of the sheet so that the color of the sheet never becomes clear.
  • the superfine denier fiber of this invention is prepared by means of the general melt-spinning method of a specific method comprising spinning at least two different polymers from a single orifice and dissolving at least one component from the resulting multicomponent fiber, such multi-component fiber known as an islands-in-a-sea type fiber, a polymer blend type fiber that is a filament of an intimate mixture of two mutual incompatible fiberforrning organic polymers, a multi-layer type fiber, a side-by-side type fiber and a core and sheath type fiber.
  • the islands-in-asea type fiber and the polymer blend type fiber are useful, in particular the islands-in-a-sea type fiber is most suitable for this invention in the respect of appearance of naps.
  • a method of producing such islands-in-a-sea type fiber is described in U.S. Pat. No. 3,531,368.
  • the present invention it is the most preferred method to use the fiber bundles which are obtained by eliminating the sea component of said islands-in-a-sea fiber.
  • the superfine denier fiber of this invention may be produced through the process described in U.S. Pat. No. 3,531,368, with proper modification or combination of the conditions of fiber manufacture.
  • a superfine denier fiber of higher breaking elongation is needed, it is possible to decrease the draw ratio at drawing.
  • a super-draw effect of polyethyleneterephtalate is usable.
  • the heat treatment with relaxation is also useful in such case.
  • the control of the breaking strength of the fiber is accomplished by altering the degree of polymerization of the polymer.
  • the fiber denier increase and de crease of the number of islands in the islands-in-a-sea fiber
  • the temperature at drawing. etc. As described above. the elongation and the strength of the fiber are changeable independently. so one who is experienced in fiber manufacture can easily prepare the fiber of this invention.
  • One of the representative methods comprises impregnating the non-woven fabric with the solution of the block polyurethane, said non-woven fabric obtained by the process comprising forming a web from the abovementioned multi-component fibers such as islands-in-a sea type staple fiber. etc. intertwining the web by needle punching or other methods. and dissolving the soluble component of the fiber with a solvent. Then the impregnated sheet is wet-coagulated in water, dried and buffed to obtain a napped sheet. and then dyed by passing repeatedly, together with the fluid. through a venturi-nozzle which has a specific internal cross-sectional area.
  • Another preferred method comprises setting the non-woven fabric with a water-soluble binder such as polyvinylalcohol or carboxymethylcellulose in an aqueous solution. then dissolving the soluble component of the fiber to obtain a sheet made of the superfine denier fiber, impregnating said sheet with a solution of the block polyurethane of this invention, wet-coagulating in water. extracting the water-soluble binder and the solvent in hot water. and then buffing and dyeing in accordance with the described procedure.
  • a water-soluble binder such as polyvinylalcohol or carboxymethylcellulose
  • a suitable ratio of the impregnated polyurethane weight to fiber weight is in the region of about /100 100/100.
  • a slicing and pressing process may be added to the procedure to control the thickness of the napped sheet.
  • a finishing buff or a softening treatment may be applied to the dyed sheet which is sufficiently flexible and has a graceful nap appearance. akin to that of high quality natural suedes.
  • the venturi-nozzle may be selected upon the basis of its caliber, when the cross-sectional shape is circular. But the shape is not always required to be circular and it may be polygonal, elliptical or any other regular or irregular shape, so the cross-sectional area of the hollow part of the venturi-nozzle becomes important.
  • a preferable cross-sectional area of the hollow part of the venturinozzle is related to the width and thhickness of the sheet, and in this invention the ratio of the crosssectional area of the hollow part of the venturi-nozzle to that of the sheet should be in the range from 2 to 22.
  • the value of the cross-sectional area of the hollow part of the venturi-nozzle is in the region from 10 to 300 (em When the cross-sectional area of the hollow part of the venturi-nozzle exceeds 300 cm disadvantages occur in manufacturing the nozzle and installing the nozzle in the dyeing equipment.
  • venturi-nozzle may be used not only during dyeing, but also other steps such as preor after-treatments, and in any case a graceful synthetic suede is obtained.
  • Aqueous liquid is preferable as the fluid of this invention.
  • This liquid may comprise plain water or it may contain dyestuffs and dyeing assistants such as acids, alkalis and surfactants.
  • Dyeing equipment which is adaptable to receive and use a venturi-nozzle of this invention is described, for example. in U.S. Pat. No. 3,510,251.
  • the number of passages of the napped sheet through the venturinozzle affects the flexibility of the product.
  • the napped sheet is required to pass the venturi-nozzle at least about ten times.
  • the flow rate of fluid upon passing the venturi-nozzle influences the flexibility and the appearance of naps.
  • the preferred flow rate is in the region of about 20l 50 m/min.
  • the preferred temperature of dyeing of this invention is about -150C. preferably about ll0l40C.
  • a sheet dyed at a higher temperature than above tends to develop cracks on its surface; on the other hand, a sheet dyed at a lower temperature than above mentioned tends to experience uneven dyeing because of lowering the dye adsorption of the fibers. Soaping and reduction clearing after dyeing are preferred treatments to improve the color-fastness of the products.
  • Flexibility is defined as the force in grams required to bend, through a deflection of 2 mm, a sample of 2 cm X 5 cm, which sample is restrained at spaced points 1 cm apart at a common level. The bending is accomplished by a pull rod which contacts the sample midway between the spaced points and the pull rod is preferably connected to a load cell to measure the required force.
  • One such apparatus is the Shimazu Autograph 180.000.
  • the sheet which possesses a value below 100 grams is considered especially flexible.
  • the lowering ratio of flexibility value is defined as follows:
  • A is the flexibility of the sheet before dyeing and B is the flexibility of the sheet after dyeing.
  • Appearance of naps is defined as the degree of pilling by ASTM Dl375-67 (random tumble pilling tester). The classification of the appearance of naps by the observation of thirty persons corresponds to the degree of pilling test by said ASTM designation.
  • non-woven fabric was made from islands-in-a-sea type staple fiber of 3.4 denier. 49 mm length. 5 crimps/in. and a draw ratio of 2.3 which comprised 50 parts of island component of polyethyleneterephtalate whose intrinsic viscosity was 0.66 and 50 parts of sea component containing 47 parts of polystyrene and 3 parts of polyethylene glycol.
  • a 15 percent solution of polyurethane as a comparative solution was prepared by the above-described 55 method using only polytetramethyleneetherglycol instead of the diol mixture.
  • 13 percent dimethylformamide solution of the block polyurethane elastomcr of this invention was prepared using a diol mixture comprising 25 parts of polycaprolacetone of molecular weight 1,500 and parts of polytetramethyleneetherglycol of molecular weight 1.500 in accordance with method (B) in Example 1. Further. l3 percent dimethylformamide solutions of polyurethane. as comparisons. were prepared using only the above polycaprolacetone diol and using a diol mixture comprising 50 parts of the above polycaprolacetone diol and 50 parts of the above polytetramethyleneetherglycol separately.
  • the non-woven fabric ofthis invention was immersed in each polyurethane solution and the resulting napped and impregnated sheet had a thickness of 0.95 mm and a width of 50 cm in accordance with the method (C hand that of the latter was only 4.7 percent.
  • Each sheet was dyed in the manner of Example 1 using a cylindrical venturi-nozzle having a cross-sectional area of its hollow part of 35 cm (the ratio of nozzle to sheet is 7.73) and the dyestuff mix ture comprising 8 o.w.f. percent of Kayalon Polyester Light Red BF (Color Index No. Dis. Red 152) and 2 o.w.f. percent Kayalon Polyester Scarlet RSF (Color Index No. Dis. Red 143).
  • the properties of fiber obtained from each sheet before dyeing were as follows: strength: 1.2 grams. elongation at break: 85 percent and denier: 0.09. The properties of each sheet are shown in Table 2.
  • the sheet of this invention showed good appearance of nap and had a flexible touch.
  • the comparison 1 using polycaprolacetonepolyurethane had an extremely poor dyeing resistance.
  • the comparison 2 using polyurethane comprising a diol mixture deviating from the extend of this invention showed poor dyeing resistance, though better than comparison 1. such as lowering of strength of the sheet and development of cracks on its surface. poor appearance of nap and poor flexibility (the ratio of flexibility reduction was only 6.4 /1).
  • Example 2 Properties of Sheet a thickness of 0.8 mm and a width of 90 cm were obtained. Each sheet was dyed in the manner of Example 1 using a cylindrical venturi-nozzle having a crosssectional area of its hollow parts of 60 cm (the ratio of nozzle to sheet is 8.33). The properties of fiber were as follows: strength: 0.700.90 grams. elongation at break: 91-93 percent and denier: 0.12.
  • No. 3-2 using an aliphatic diamine was slightly inferior to No. 3-] using an aromatic diamine with respect to properties of nap and dyeing resistance.
  • No. 3-3 using aliphatic diisocyanatc was inferior to No. 3-1 and to No. 3-4 using aromatic diisocyanate with respect to such properties.
  • No. 3-1 using dipheny1methane-4,4-diisocyanate was better than No. 3-4 using tolylene diisocyanate with respect to flexibility and properties of nap.
  • Example 3 Various 15 percent dimethylformamide solutions of polyurethane shown in Table 3 were prepared in accordance with the method (B) in Example 1. The nonwoven fabric obtained in Example 1 is immersed in those solutions and the resulting napped sheets having showed an effective flexibility value of above 20 percent. On the other hand. the comparison 1 using a diol ratio of 10/90 showed little flexibility value reduction (only 6'72) and comparison 2 and comparison 3 using a polyurethane whose structure deviated from this invention provided unsatisfactory sheets.
  • Brill Scarlet D-FGL Brill Scarlet D-FGL.
  • a non-woven fabric of this invention was prepared in The properties of each product are shown in Table 4. accordance with Example 1 substituting a draw ratio of lt is clear from Table 4 that the sheet of this invention 2.2 and a comparison sample was also prepared substiis flexible and the ratio of flexibility reduction was 49 tuting a draw ratio of 4.0. percent. Further.
  • Both sheets had aldiaminodiphenylmethane.
  • the resulting napped sheet most the same value of tensile strength and good colorhad a thickness of 0.95 mm and a width of cm and fastness which was far superior as compared with natuwas dyed in accordance with method (C) in Example ral suede.
  • PE l polyethy lcltcturephthalate 15
  • EXAMPLE A non-woven fabric was made from islands-in-a-sea type staple fiber of 3.4 denier. 49 mm length. crim'p s/in and a draw ratio of 2.3 which comprised parts each sheet are shown in Table (i. No. 6-1 is an example of the sheet dyed with Jigger type dyeing equipment, and it was not desirable because of causing a decrease of thickness by tension during dyeing and the anisotof island component of polyethyleneterephtalate whose 5 ropy of elongation, though the appearance of the naps intrinsic viscosity was 0.66 and 50 parts of sea compo was good. No.
  • Example 5 TABLE 5 method was in accordance with (C) in Example 1.
  • the properties of the resulting dyed sheets are shown in Table 7.
  • the dyed sheet of this invention was flexible (Example 5) Properties of PET Properties of dyed sheet fibers
  • Tensile properties Tensile Judgment denier breaking breakstrength elongation recovery (71) strength ing (g/cm (/2 (3071 elongag) elongation) tiont after after 1 hr. 10 his.
  • the comparison sample I using the ex- 55 cessively small venturi-nozzle showed tear and wear during dyeing and the comparison sample 2 using the excessively large venturi-nozzle showed no effect of flexing and poor appearance of naps.
  • i shows the ratio of the cross-sectional area of the throat of ⁇ cntnri-no/7le to that ofthe sheet.
  • EXAMPLE 8 The napped sheet before dyeing obtained in accordance with Example 1 was dyed at various temperatures shown in Table 8. The dyeing method was in accordance with (C) in Example 1. The properties of the resulting sheets are shown in Table 8.
  • the comparison 1 dyed at 60C was an insufficiently colored product whose fiber component did not dye at all.
  • the comparison sampleZ dyed at 160C showed numerous cracks on its surface and exhibited tear and wear in many places.
  • the invention samples 1 and 2 showed a softening effect through dyeing and good nap appearance.
  • No. 2 dyed at 100C required a long dyeing time and showed an insufficiency with respect to depth of color tone. and slightly deficient flexibility as compared with No. 2 dyed at 125C.
  • EXAMPLE 9 wherein S is the reduced cross-sectional area and A is A polymer blend type superfine denier fiber was prepared from 30 parts of polyethyleneterephtalate in the manner of Example 1 and 70 parts of polystyrene.
  • a nonwoven fabric was prepared in accordance with Example 1 using said polymer blend type fiber.
  • a napped sheet was prepared in accordance with Example 1 and the properties of the fibers of the sheet were as follows: denier: 0.07. strength: 1.5 grams, elongation: 85 percent.
  • the napped sheet was dyed in accordance with Example 1.
  • the resulting product shows preferred flex ibility. though it was inferior to the product made of islands-in-a-sea type fibers in respect of density of nap and writing effect.
  • the properties were as follows:
  • the cross-sectional area of the napped sheet (cm' said napped sheet having naps of superfine denier fiber on at least one surface thereof and having a thickness of about 0.2-4.0 mm and a width of about 5-200 cm. and comprising (a) nonwoven fabric made up of 0.1-0.3 denier superfine staple fibers having .a breaking strength of below 3 grams and an elongation at break of 60-180 percent.
  • a polyurethane elastomer comprising the reaction product of a diol mixture consisting essentially by weight of 20-40 parts of polycaprolactone diol having a molecular weight of about 1000- 3000 and 60-80 parts of polytetramethyleneetherglycol having a molecular weight of about 1000-3000 with an organic diisocyanate and a diamine chain extender and repeatedly contacting the suede with the dye liquid after the suede emerges from the said area of reduced cross-section.
  • a process for crumpling synthetic suede leather sheet material as claimed in claim 1 wherein a superfine denier fiber is such fiber that is obtained by dissolving at least one component from a multicomponent fiber with a solvent.
  • said multi-componcnt fiber comprising at least two different polymers.
  • a process for crumpling synthetic suede leather sheet material as claimed in claim 13 wherein the aromatic diisocyanate is diphenylmethane-4 4'- diisocyanate.
  • H ll I C-N p is an integer of l3 and n is an integer of at least l. 18. The method defined in claim 1 wherein said-area of reduced cross-section is circular in shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
US338565A 1972-03-23 1973-03-06 Process for crumpling synthetic suede Expired - Lifetime US3899292A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP47028572A JPS5037241B2 (ru) 1972-03-23 1972-03-23
JP47127678A JPS5133601B2 (ru) 1972-12-21 1972-12-21
US338565A US3899292A (en) 1972-03-23 1973-03-06 Process for crumpling synthetic suede
FR7310359A FR2177061B1 (ru) 1972-03-23 1973-03-22
GB1407173A GB1389804A (en) 1972-03-23 1973-03-23 Finishing simulated suede leather sheets

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP47028572A JPS5037241B2 (ru) 1972-03-23 1972-03-23
JP47127678A JPS5133601B2 (ru) 1972-12-21 1972-12-21
US338565A US3899292A (en) 1972-03-23 1973-03-06 Process for crumpling synthetic suede

Publications (1)

Publication Number Publication Date
US3899292A true US3899292A (en) 1975-08-12

Family

ID=27286240

Family Applications (1)

Application Number Title Priority Date Filing Date
US338565A Expired - Lifetime US3899292A (en) 1972-03-23 1973-03-06 Process for crumpling synthetic suede

Country Status (3)

Country Link
US (1) US3899292A (ru)
FR (1) FR2177061B1 (ru)
GB (1) GB1389804A (ru)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046504A (en) * 1974-10-23 1977-09-06 Kuraray Co., Ltd. Process for preparation of colored suede sheet materials
DE2905185A1 (de) * 1978-02-13 1979-08-23 Toray Industries Bogenmaterial
US4286014A (en) * 1978-01-31 1981-08-25 Toray Industries, Incorporated Composite sheet material
US4302493A (en) * 1979-08-14 1981-11-24 Toray Industries, Incorporated Dense, elegant and pliable sheet material comprising fibrous base impregnated with a diol-hindered amine polyurethane system
US4386127A (en) * 1979-08-14 1983-05-31 Toray Industries, Inc. Dense, elegant and pliable sheet material comprising fibrous base impregnated with a diol-hindered amine polyurethane system
EP0165345A1 (en) * 1983-02-10 1985-12-27 Toray Industries, Inc. Grained artificial leather having good colour fastness and dyeing method of ultrafine polyamide fibers
EP0327031A2 (en) * 1988-02-01 1989-08-09 Asahi Kasei Kogyo Kabushiki Kaisha A urethane prepolymer composition and a polyurethane coating composition system
EP0305596B1 (en) * 1983-02-10 1992-01-15 Toray Industries, Inc. Process for dyeing ultrafine polyamide fibers
EP1302587A2 (en) * 2001-10-12 2003-04-16 ALCANTARA S.p.A. Production of suede-finish woven and non-woven fabric with high-elasticity microfiber
CN109337035A (zh) * 2018-10-10 2019-02-15 江苏华峰超纤材料有限公司 高耐甲苯性超细纤维合成革用聚氨酯树脂及其制备方法
CN109705299A (zh) * 2018-08-29 2019-05-03 旭川化学(苏州)有限公司 一种镜面革用水性聚氨酯树脂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2539725C3 (de) * 1974-09-13 1979-12-06 Asahi Kasei Kogyo K.K., Osaka (Japan) Auf einer Oberfläche eine Florschicht aufweisendes, wildlederähnliches Kunstleder und Verfahren zu seiner Herstellung
DE2951307A1 (de) * 1979-12-20 1981-07-02 Akzo Gmbh, 5600 Wuppertal Wildlederartiges flaechengebilde

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2524119A (en) * 1949-08-26 1950-10-03 Theodore Van Heek Process of manufacturing crushed velvet
US2978291A (en) * 1958-09-05 1961-04-04 Burlington Industries Inc Process and apparatus for treating textile materials with a liquid
US3510251A (en) * 1966-07-30 1970-05-05 Hisaka Works Ltd Method and apparatus for treating textile material with liquid
US3619253A (en) * 1968-12-30 1971-11-09 Du Pont Color control for suedelike polymeric sheet materials
US3718012A (en) * 1970-09-21 1973-02-27 M Vinas Device for the wet treatment of textile materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531368A (en) * 1966-01-07 1970-09-29 Toray Industries Synthetic filaments and the like
GB1218191A (en) * 1966-10-17 1971-01-06 Toray Industries Improvements relating to non-woven fibrous felt and methods of manufacturing such felt
US3705226A (en) * 1969-07-09 1972-12-05 Toray Industries Artificial leather and a method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2524119A (en) * 1949-08-26 1950-10-03 Theodore Van Heek Process of manufacturing crushed velvet
US2978291A (en) * 1958-09-05 1961-04-04 Burlington Industries Inc Process and apparatus for treating textile materials with a liquid
US3510251A (en) * 1966-07-30 1970-05-05 Hisaka Works Ltd Method and apparatus for treating textile material with liquid
US3619253A (en) * 1968-12-30 1971-11-09 Du Pont Color control for suedelike polymeric sheet materials
US3718012A (en) * 1970-09-21 1973-02-27 M Vinas Device for the wet treatment of textile materials

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046504A (en) * 1974-10-23 1977-09-06 Kuraray Co., Ltd. Process for preparation of colored suede sheet materials
US4286014A (en) * 1978-01-31 1981-08-25 Toray Industries, Incorporated Composite sheet material
DE2905185A1 (de) * 1978-02-13 1979-08-23 Toray Industries Bogenmaterial
FR2416794A1 (fr) * 1978-02-13 1979-09-07 Toray Industries Matieres denses et flexibles en feuilles composites impregnees d'elastomeres de polyurethane
US4212916A (en) * 1978-02-13 1980-07-15 Toray Industries, Inc. Dense, flexible composite sheet material
US4302493A (en) * 1979-08-14 1981-11-24 Toray Industries, Incorporated Dense, elegant and pliable sheet material comprising fibrous base impregnated with a diol-hindered amine polyurethane system
US4386127A (en) * 1979-08-14 1983-05-31 Toray Industries, Inc. Dense, elegant and pliable sheet material comprising fibrous base impregnated with a diol-hindered amine polyurethane system
EP0305596B1 (en) * 1983-02-10 1992-01-15 Toray Industries, Inc. Process for dyeing ultrafine polyamide fibers
EP0165345A1 (en) * 1983-02-10 1985-12-27 Toray Industries, Inc. Grained artificial leather having good colour fastness and dyeing method of ultrafine polyamide fibers
EP0327031A2 (en) * 1988-02-01 1989-08-09 Asahi Kasei Kogyo Kabushiki Kaisha A urethane prepolymer composition and a polyurethane coating composition system
US4929667A (en) * 1988-02-01 1990-05-29 Asahi Kasei Kogyo Kabushiki Kaisha Urethane prepolymer composition and a polyurethane coating composition system
EP0327031A3 (en) * 1988-02-01 1990-02-07 Asahi Kasei Kogyo Kabushiki Kaisha A urethane prepolymer composition and a polyurethane coating composition system
EP1302587A2 (en) * 2001-10-12 2003-04-16 ALCANTARA S.p.A. Production of suede-finish woven and non-woven fabric with high-elasticity microfiber
EP1302587A3 (en) * 2001-10-12 2004-10-06 ALCANTARA S.p.A. Production of suede-finish woven and non-woven fabric with high-elasticity microfiber
CN109705299A (zh) * 2018-08-29 2019-05-03 旭川化学(苏州)有限公司 一种镜面革用水性聚氨酯树脂及其制备方法
CN109337035A (zh) * 2018-10-10 2019-02-15 江苏华峰超纤材料有限公司 高耐甲苯性超细纤维合成革用聚氨酯树脂及其制备方法

Also Published As

Publication number Publication date
FR2177061A1 (ru) 1973-11-02
FR2177061B1 (ru) 1985-02-15
GB1389804A (en) 1975-04-09

Similar Documents

Publication Publication Date Title
US3899292A (en) Process for crumpling synthetic suede
US6900148B2 (en) Leather-like sheet material
EP0084203B1 (en) Ultra-fine sheath-core composite fibers and composite sheets made thereof
KR101152038B1 (ko) 인공피혁용 기재, 인공피혁 및 인공피혁용 기재의제조방법
US4620852A (en) Grained artificial leather having good color fastness and dyeing method of ultrafine polyamide fibers
KR20020040648A (ko) 입모 피혁형 시트 및 그의 제조방법
CA1088264A (en) Process for preparation of colored suede sheet materials
US4756947A (en) Grained artificial leather having good color fastness of ultrafine polyamide fibers
US10435838B2 (en) Dyed artificial leather and a production method therefor
JP3226024B2 (ja) 高度の耐摩耗性を有する起毛人工皮革
CA1101197A (en) Process for the preparation of suede-like raised woven or knitted fabric
EP0165345B1 (en) Grained artificial leather having good colour fastness and dyeing method of ultrafine polyamide fibers
US4390566A (en) Method of producing soft sheet
KR20020027655A (ko) 플러시 피혁 형태의 시트 형상물 및 그 제조방법
US4212916A (en) Dense, flexible composite sheet material
ITMI20012779A1 (it) Procedimento per la preparazione di un materiale tessile composito e il materiale tessile composito cosi' ottenuto di elevata durabilita' e'
JP3280302B2 (ja) 人工皮革用基布及び人工皮革
EP0082013B1 (en) Binding agent for pile fabrics and a method of producing pile fabric
JPS6135311B2 (ru)
JPH0959881A (ja) 蒸れの少ない黒色系スエード調人工皮革
JP3181639B2 (ja) ナイロン66編織物
KR102175133B1 (ko) 마모 및 마찰견뢰도가 우수한 인공피혁 및 이의 제조방법
EP0305596B1 (en) Process for dyeing ultrafine polyamide fibers
KR0160467B1 (ko) 인공피혁 제조방법
JP3090749B2 (ja) スエード調人工皮革

Legal Events

Date Code Title Description
CC Certificate of correction