US3890217A - Reactive sputtering apparatus and cathode elements therefor - Google Patents
Reactive sputtering apparatus and cathode elements therefor Download PDFInfo
- Publication number
- US3890217A US3890217A US459988A US45998874A US3890217A US 3890217 A US3890217 A US 3890217A US 459988 A US459988 A US 459988A US 45998874 A US45998874 A US 45998874A US 3890217 A US3890217 A US 3890217A
- Authority
- US
- United States
- Prior art keywords
- cathode
- substrate
- spaced
- wall
- cathode element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005546 reactive sputtering Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 238000004544 sputter deposition Methods 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 claims description 40
- 238000000151 deposition Methods 0.000 claims description 7
- 229910000765 intermetallic Inorganic materials 0.000 claims description 4
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 14
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 230000001965 increasing effect Effects 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000003534 oscillatory effect Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052729 chemical element Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 239000005336 safety glass Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
Definitions
- ABSTRACT A reactive sputtering apparatus is disclosed having metal cathode units, each of which comprises a cathode element and an electrostatic shield spaced from and surrounding it on all sides except that which is to be presented towards a substrate on to which a coating of a compound of the cathode metal is to be sputtered.
- the electrostatic shield being formed with spaced inner and outer walls between which the sputtering atmosphere can be fed into the working space between the cathode element and the substrate.
- the functions of electrostatic shielding and gas supply are thereby separated from one another. so that the spacings of the inner wall from the cathode element, and of the inner wall from the outer wall. can be dimen sioned to suit the different functions. and the risk of electrical breakdown can be much reduced.
- This invention relates to electrostatically shielded metal cathode units for use in reactive sputtering apparatus. and to apparatus incorporating such cathode units.
- Reactive sputtering apparatus customarily comprises a vacuum chamber.
- a cathode assembly arranged in the vacuum chamber in the vicinity of the substrate so as to present towards the substrate a surface of the metal whose compound is to be sputtered, means for applying a high negative potential to the cathode. and means for supplying a sputtering atmosphere of a reactive gas and another gas or gases (e.g. argon) at reduced pressure into the vacuum chamber.
- a glow discharge is effected between the cathode and substrate.
- ions of the gas or gases forming the sputtering atmosphere e.g. argon ions bombard the surface of the cathode, thereby reactively sputtering a film of a compound of the metal and the reactive gas on to the surface of the substrate.
- c. means for maintaining the substrate at a controlled elevated temperature in the vacuum chamber.
- d. means for supplying a sputtering atmosphere of oxygen and another gas or gases at a controlled reduced pressure into the vacuum chamber.
- a cathode assembly whose overall lateral dimensions are not substantially less than those of the substrate. arranged in the vacuum chamber in the vicinity of the substrate and presenting a plurality of spaced parallel strips comprising the metal whose oxide is to be deposited. extending parallel to the substrate surface. with passages between the strips for allowing the sputtering atmosphere to penetrate into the whole of the working space between the cathode assembly and the substrate.
- g. means for causing relative translational movement between the cathode assembly and the substrate in a direction parallel to the substrate surface and transverse to the length ofthe parallel strips. through an amplitude substantially smaller than the overall length of the cathode assembly. but sufficient to cause all parts of the substrate to be coated by sputtering from at least one of said parallel strips for equal deposition periods during the deposition process.
- the parallel strips which form the individual elements of the cathode assembly are each provided with a respective electrostatic shield spaced therefrom. the sputtering atmosphere being fed into the working space through the spaces between the cathode strips and their respective electrostatic shields.
- the breakdown voltage will be increased due to the scarcity of ionizable gas molecules in a thin layer of gas at low pressure.
- the flow rate of the sputtering atmosphere through the space between the cathode strip and its shield is adequate to maintain the concentration of the reactive gas in the working space.
- the increase in resistance to gas flow caused by a reduction in the spacing within the above range results in a local increase in the gas pressure and consequently the breakdown voltage remains low.
- a cathode unit for use in a reactive sputtering apparatus, comprising a metal cathode element and an electrostatic shield spaced from and surrounding the cathode element on all sides except that which is to be presented towards a substrate on to which a coating of a compound of the cathode metal is to be sputtered, wherein the electrostatic shield is formed with spaced inner and outer walls between which, in use, a sputtering atmosphere can be fed into the working space between the cathode element and the substrate.
- the functions of electrostatic shielding and supply of the sputtering atmosphere are separated from one another and the spacings of the double (i.e. inner and outer) shield walls from the cathode element and from one another can be dimensioned to suit the different requirements of the different functions.
- the cathode element and the inner wall can be spaced apart at a distance such that the breakdown voltage is substantially higher than the potential applied to the cathode element in use.
- the outer wall of the electrostatic shield can be spaced from the inner wall at a distance such that the interspace between the walls affords any de sired cross-sectional area for accommodating the flow of the sputtering atmosphere. without having to consider the effect on the breakdown voltage.
- the shield nevertheless remains compact in size and of low weight.
- the precise spacings used will depend upon the potential which is to be applied to the cathode element. the pressure in the working space and the flow rate of the sputtering atmosphere. For example. with an applied potential of 2 to k ⁇ " and a vacuum chamber pressure of the order of 5 X mm. Hg. the spacing between the cathode element and the inner wall of the electrostatic shield may be between 2 and 6 mm for an applied potential of 5 kV. the upper limit of the spacing increasing to l() mm if the applied potential is reduced to 2k ⁇ /'. With a throughput, which is defined as the product of pressure and volumetric flow rate. of the sputtering atmosphere of 0.8 litres. Torr/second [c.g.
- the spacing between the inner and outer walls may be between 3 and 5 mm.
- the spacing between the inner and outer walls will in general be chosen so as to lead to substantial uniformity of gas supply along the edges of the cathode element.
- the cathode unit may of course be one of a plurality of similar units. of elongated shape. which together make up a cathode assembly.
- the electrostatic shield may comprise an inner trough-shaped side and bottom wall spaced from and surrounding bottom and side surfaces of the cathode element. an outer trough-shaped side and bottom wall spaced from said inner wall. and single end walls spaced from the ends of the cathode element, which close off the ends of both trough-shaped walls.
- Baffles may be disposed within the interspace between the inner and outer walls for enhancing uniformity of flow rates of the sputtering atmosphere along the length of the cathode unit.
- a pair of inlet pipes for the sputtering atmosphere may be secured to the outer wall at positions on the centre line of the cathode unit but spaced from one another along the length of the cathode unit and opening into the interspace between the inner and outer walls.
- two baffles being disposed parallel to one another and to the length of the cathode unit. one on each side of the said centre line. to restrict passage of the sputtering atmosphere laterally from the inlet pipes.
- the baffles may each be in the form of a plate-like member secured at right angles to the adjacent part of the outer wall and having a height which varies along the length of the baffle. being greatest in regions nearest to the inlet pipes.
- the imention also resides in an apparatus for depositing a transparent. electrically conducting film ofa metallic compound on to the surface of a substrate by reactive sputtering, comprising a vacuum chamber, means for supporting the substrate in the vacuum chamber. a cathode unit including a metal cathode element arranged in the vacuum chamber so as to present towards the substrate a surface substantially parallel to the substrate surface and an electrostatic shield which is spaced from and surrounds the cathode element on all sides except that of the surface presented towards the substrate.
- the apparatus may comprise a plurality of such cathode units of elongated shape. together forming a cathode assembly which can be transversed parallel to the substrate surface and perpendicular to the length of the cathode units during the sputtering operation.
- FIG. 1 is a perspective view of a reactive sputtering apparatus.
- FIG. 2 is a diagrammatic side elevation of the cathode assembly of the apparatus of FIG. 1 showing the flow of the sputtering atmosphere through the eletrostatic shields of the individual cathode units,
- FIG. 3 is a cross-sectional view to a larger scale of one of the cathode units used in the apparatus of FIG.
- FIG. 4 is a longitudinal sectional view of the cathode unit of FIG. 3,
- FIG. 5 is a sectional plan view of the cathode unit of FIGS. 3 and 4, and
- FIG. 6 is a diagrammatic representation of the relationship between breakdown voltage and cathode/ shield spacing for different gas flow conditions.
- FIG. 1 illustrates a reactive sputtering apparatus which comprises a cylindrical vacuum vessel with removable vacuum-tight end closures (not shown].
- the cathode assembly 27 comprises a plurality of spaced, parallel cathode units each comprising an element or strip 271, having an upper surface of indium/tin alloy, and an earthed electrostatic shield 28.
- the cathode as sembly 27 can be oscillated back and forth in the direction perpendicular to the length of the elements or strips 271, as described below.
- End walls 284 are common to both the inner and outer walls 281, 282 and close off the ends of the troughs.
- the interspace between the walls 281, 282 forms a passage for the inflow of the sputtering atmosphere from a pipe 33 and branch pipes 331 into the working space 32 between the cathode assembly 27 and substrate 31.
- the sputtering atmosphere is thus fed into the working space from outlets extending along both sides of each elongated cathode element or strip 271.
- Each of the elements 271 is hollow, as shown in FIGS. 3 and 4, its interior being filled with cooling water which is supplied through a flexible pipe 52 which enters near one end of the element. The water leaves through a second flexible pipe 51 near the other end of the element 271.
- the pipes 51.. 52 connect the elements 271 in series. but the pipes extending between the adjacent elements have been omitted from FIGS. 1, 2, 4 and 5 for clarity.
- the high-tension lead 44 from source 45 is of the co-axial cable type. the outer conductor being earthed and connected to both inner and outer walls 281 and 282 of the electrostatic shield 28, as shown in FIG. 3. Similar cables 44 connect the elements 271 to one another.
- a pair of branch pipes 331 supplying the sputtering atmosphere are secured to the outer wall 282 at positions on the centre line of the cathode unit but spaced from one another along the length of the cathode unit. and open into the interspace between the inner wall 281 and the outer wall 282 of the electrostatic shield 28.
- the spacing between the walls 281 and 282 may be between 3 and 5 mm to provide a sufficient degree of resistance to the flow of the sputtering atmosphere to cause the flow rate to be made substantially uniform along the length of the cathode element or strip 271. If further uniformity of the flow rate along the length ofelement 271 is desired.
- baffles in the form of two plate-like members or strips 283 may be disposed in the interspace between the walls 281. 282.
- the baffles 282 may be secured at right angles to the outer wall 282 and parallel to one another and to the length of the cathode unit. one on each side of the centre line of the unit. their height being varied along their length so as to be greatest in the regions nearest to the inlet pipes 331. They are thus profiled so as to produce a greater resistance to lateral flow in the regions X near the pipes 331 than in the regions Y remote therefrom (FIG. 4).
- the total flow rate may for example be l6 litres/second at a pressure of 0.05 Torr. through the electrostatic shield 28.
- the spacing between the inner wall 281 and the cathode element or strip 271 may be 3 mm for use with a potential of 2 to 5 kV and a vac- 28. in which space the pressure will be of the order of r 5 X l mm. Hg. and there is no gas flow to cause local increases in pressure.
- Curve A illustrates the relationship when there is no gas flow.
- Curve B represents the relationship when the product of gas pressure in the working space 32 and the rate of gas flow through the space between the cathode element and the shield is 0.4 litre.
- Torrlsecond e.g. a flow rate of 8 litres/second and a pressure of 0.05 Torr.
- Curve C represents the relationship when the product of pressure and gas flow is 0.8 litres.
- Torr/second e.g. l6 litres/second and 0.05 Torr.
- Curve D shows the relationship with a product of 1.6 litres. Torr/second.
- the breakdou n voltage reaches a maximum at a spacing of around 4 to 7 mm. depending on the gas flow.
- the maximum ⁇ aluc ofthe breakdown voltage is reduced as the gas flow is increased and in the conditions represented by curve C. which are most generally used. it is only 3 k ⁇ '. which is within the preferred operating range.
- cathode units comprising elements or strips 271 are shown for clarity. In practice, the number of cathode units used will depend on the length of the substrate to be coated. being generally chosen so that an oscillation having an amplitude equal to the spacing between the centre lines of the elements or strips 271 will cause all parts of the substrate to be covered.
- the cathode units are mounted on pairs of rollers 41 at each of their ends, and these rollers run on horizontal guide rails 42 secured to opposite sides of the vessel 40.
- the cathode units are connected to one another by adjustable link rods 43 which maintain their spacing and parallel alignment with one another and ensure that all the units can move together along the guide rails in the direction perpendicular to their length.
- a flexible high-tension lead 44 connects the cathode elements or strips 271 to the negative terminal of a high-voltage source 45.
- a pair of pulleys 46 is mounted on a transverse shaft 47 at each end of the vessel 40 and a pair of traction wires or cables 48 connected at each end to the electrostatic shields 28 ofthe end units are led over the pulleys 46 to form drive means.
- One of the shafts 47 passes through the wall of the vessel 40 and is connected via a variable-amplitude oscillatory motion device 49 to an electric motor 50.
- a pair of horizontal support rails 53 (only one of which is shown) are secured to opposite sides of the vessel 40 to support the substrate 31 which is to be provided with a transparent conducting film.
- a radiant heater 54 is secured in the vessel 40. fed through low-tension leads 55 and busbars 56 from a low voltage power unit 57. The heater 54 extends above the whole area of the substrate 31.
- thermocouple 58 is placed on the upper surface of the substrate 31 and connected through leads 59 to a calibrated dial instrument 60 to indicate the tempera ture of the substrate.
- a vacuum pump (not shown) is connected to the interior of the vessel 40 through an exhaust connection 61 and a gas supply 62 of the selected atmosphere is connected through a flow meter 63 and needle valve 64 to a flexible pipe 65, connected to the supply pipe 33.
- Supply of the sputtering atmosphere direct to the working space 32 from between the walls 28], 282 of the electrostatic shields 28 assists in maintaining uniformity of the oxygen concentration in the working space. This has been found most important for ensuring that the deposited film has uniform and consistent proper ties of transparency and electrical conductivity. as de scribed in our co-pending application referred to above.
- the vessel 40 is evacuated through the exhaust connection 61 and the selected sputtering atmosphere is supplied through the inlet 65, while the substrate is heated to the desired temperature by the heater 54.
- the cathode assembly 27 comprising the strips 271 is oscillated back and forth along the guide rails 42 by the motor 50 and the high negative voltage is applied to the strips 271 by the source 45.
- the vessel 40 and rails 42, 53, as well as the electrostatic shields 28. are carthed. A film of indium/tin oxides is thus sputtered on to the lower surface of the substrate 31.
- the heating effect on the substrate of the plasma in the working space is such that the heataing current supply from the low voltage power unit has to be reduced to maintain the substrate temperature constant within i 10C. of the desired value.
- An automatic control circuit of known type (not shown) can be used for this purpose.
- the amplitude of the oscillatory motion of the strips 271 is adjusted to equal the spacing between the centre lines of the strips. This spacing can be adjusted by means of the link rods 43. All parts of the substrate 31 are effectively covered for equal deposition times by the strips during one part or another of each oscillatory cycle.
- a substantially uniform highly transparent film oflow specific resistivity can thus be deposited on the substrate. Variations in the specific resistivity can readily be kept within ltl7r of a mean value.
- the double-walled construction of the electrostatic shield 28 gives an excellent protec tion against electrical breakdown while enabling the cathode assembly to be kept relatively compact.
- Apparatus for depositing a transparent, electrically conducting film of a metallic compound on to the surface of a substrate by reactive sputtering comprising a vacuum chamber, means for supporting the substrate in the vacuum chamber.
- a cathode unit including a metal cathode element arranged in the vacuum chamber so as to present towards the substrate a surface substantially parallel to the substrate surface and an electrostatic shield inside said chamber which is spaced from and surrounds the cathode element on all sides except that of the surface presented towards the substrate, means for connecting the cathode element to a source of high negative potential, and means for supplying a sputtering atmosphere ofa reactive gas and another gas or gases at reduced pressure through the electrostatic shield into the working space between the cathode element and the substrate.
- the electrostatic shield is formed with spaced inner and outer walls between which. in use. the sputtering atmosphere is fed into the working space.
- Apparatus according to claim 2 wherein a pair of inlet pipes for the sputtering atmosphere are secured to the outer wall at positions on the centre line of the cathode unit but spaced from one another along the length of the cathode unit and opening into the interspace between the inner and outer walls, two baffles being disposed parallel to one another and to the length of the cathode unit, one on each side of the said centre line. to restrict passage of the sputtering atmosphere laterally from the inlet pipes.
- baffles are each in the form of a plate-like member secured at right angles to the adjacent part of the outer wall and having a height which varies along the length of the baffle. being greatest in regions nearest to the inlet pipes.
- the cathode element is of elongated form and the electrostatic shield comprises an inner trough-shaped side and bottom wall spaced from and surrounding bottom and side surfaces of the cathode element, an outer troughshaped side and bottom wall spaced from said inner wall, and single end walls spaced from the ends of the cathode element, which close off the ends of both trough-shaped walls 6.
- Apparatus according to claim 1, comprising a plurality of said cathode units of elongated shape, together forming a cathode assembly which can be traversed parallel to the substrate surface and perpendicular to the length of the cathode units during the sputtering operation.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2018473A GB1443827A (en) | 1973-04-27 | 1973-04-27 | Reactive sputtering apparatus and cathode units therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US3890217A true US3890217A (en) | 1975-06-17 |
Family
ID=10141798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US459988A Expired - Lifetime US3890217A (en) | 1973-04-27 | 1974-04-11 | Reactive sputtering apparatus and cathode elements therefor |
Country Status (13)
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945911A (en) * | 1974-08-28 | 1976-03-23 | Shatterproof Glass Corporation | Cathodes for sputter-coating glass sheets or other substrates |
US3976555A (en) * | 1975-03-20 | 1976-08-24 | Coulter Information Systems, Inc. | Method and apparatus for supplying background gas in a sputtering chamber |
US4009090A (en) * | 1975-12-03 | 1977-02-22 | Shatterproof Glass Corporation | Sputter-coating of glass sheets or other substrates |
US4116806A (en) * | 1977-12-08 | 1978-09-26 | Battelle Development Corporation | Two-sided planar magnetron sputtering apparatus |
US4175030A (en) * | 1977-12-08 | 1979-11-20 | Battelle Development Corporation | Two-sided planar magnetron sputtering apparatus |
US4362611A (en) * | 1981-07-27 | 1982-12-07 | International Business Machines Corporation | Quadrupole R.F. sputtering system having an anode/cathode shield and a floating target shield |
US4420385A (en) * | 1983-04-15 | 1983-12-13 | Gryphon Products | Apparatus and process for sputter deposition of reacted thin films |
US4526670A (en) * | 1983-05-20 | 1985-07-02 | Lfe Corporation | Automatically loadable multifaceted electrode with load lock mechanism |
US20050211544A1 (en) * | 2004-03-29 | 2005-09-29 | Seagate Technology Llc | Electrical biasing of gas introduction means of plasma apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2403645A2 (fr) * | 1977-09-14 | 1979-04-13 | Vide & Traitement Sa | Four pour le traitement thermochimique, en continu, de pieces metalliques, par bombardement ionique |
JPS57111031A (en) * | 1980-12-27 | 1982-07-10 | Clarion Co Ltd | Sputtering device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3325394A (en) * | 1963-07-01 | 1967-06-13 | Ibm | Magnetic control of film deposition |
US3361659A (en) * | 1967-08-14 | 1968-01-02 | Ibm | Process of depositing thin films by cathode sputtering using a controlled grid |
US3369991A (en) * | 1965-01-28 | 1968-02-20 | Ibm | Apparatus for cathode sputtering including a shielded rf electrode |
US3526584A (en) * | 1964-09-25 | 1970-09-01 | Western Electric Co | Method of providing a field free region above a substrate during sputter-depositing thereon |
US3595775A (en) * | 1969-05-15 | 1971-07-27 | United Aircraft Corp | Sputtering apparatus with sealed cathode-shield chamber |
-
1973
- 1973-04-27 GB GB2018473A patent/GB1443827A/en not_active Expired
-
1974
- 1974-04-08 CA CA197,030A patent/CA1024937A/en not_active Expired
- 1974-04-09 DE DE2418008A patent/DE2418008A1/de not_active Withdrawn
- 1974-04-10 NL NL7404891A patent/NL7404891A/xx unknown
- 1974-04-11 US US459988A patent/US3890217A/en not_active Expired - Lifetime
- 1974-04-12 IT IT12736/74A patent/IT1010755B/it active
- 1974-04-16 ZA ZA00742375A patent/ZA742375B/xx unknown
- 1974-04-18 FR FR7413485A patent/FR2227345B1/fr not_active Expired
- 1974-04-22 CH CH551774A patent/CH590936A5/xx not_active IP Right Cessation
- 1974-04-25 SE SE7405594A patent/SE408913B/xx unknown
- 1974-04-26 SU SU2023934A patent/SU764619A3/ru active
- 1974-04-26 BE BE143706A patent/BE814286A/xx unknown
- 1974-04-27 JP JP4715974A patent/JPS539594B2/ja not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3325394A (en) * | 1963-07-01 | 1967-06-13 | Ibm | Magnetic control of film deposition |
US3526584A (en) * | 1964-09-25 | 1970-09-01 | Western Electric Co | Method of providing a field free region above a substrate during sputter-depositing thereon |
US3369991A (en) * | 1965-01-28 | 1968-02-20 | Ibm | Apparatus for cathode sputtering including a shielded rf electrode |
US3361659A (en) * | 1967-08-14 | 1968-01-02 | Ibm | Process of depositing thin films by cathode sputtering using a controlled grid |
US3595775A (en) * | 1969-05-15 | 1971-07-27 | United Aircraft Corp | Sputtering apparatus with sealed cathode-shield chamber |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945911A (en) * | 1974-08-28 | 1976-03-23 | Shatterproof Glass Corporation | Cathodes for sputter-coating glass sheets or other substrates |
US3976555A (en) * | 1975-03-20 | 1976-08-24 | Coulter Information Systems, Inc. | Method and apparatus for supplying background gas in a sputtering chamber |
US4009090A (en) * | 1975-12-03 | 1977-02-22 | Shatterproof Glass Corporation | Sputter-coating of glass sheets or other substrates |
US4116806A (en) * | 1977-12-08 | 1978-09-26 | Battelle Development Corporation | Two-sided planar magnetron sputtering apparatus |
US4175030A (en) * | 1977-12-08 | 1979-11-20 | Battelle Development Corporation | Two-sided planar magnetron sputtering apparatus |
US4362611A (en) * | 1981-07-27 | 1982-12-07 | International Business Machines Corporation | Quadrupole R.F. sputtering system having an anode/cathode shield and a floating target shield |
US4420385A (en) * | 1983-04-15 | 1983-12-13 | Gryphon Products | Apparatus and process for sputter deposition of reacted thin films |
US4526670A (en) * | 1983-05-20 | 1985-07-02 | Lfe Corporation | Automatically loadable multifaceted electrode with load lock mechanism |
US20050211544A1 (en) * | 2004-03-29 | 2005-09-29 | Seagate Technology Llc | Electrical biasing of gas introduction means of plasma apparatus |
Also Published As
Publication number | Publication date |
---|---|
AU6775774A (en) | 1975-10-16 |
DE2418008A1 (de) | 1974-11-21 |
IT1010755B (it) | 1977-01-20 |
FR2227345B1 (enrdf_load_stackoverflow) | 1977-10-14 |
GB1443827A (en) | 1976-07-28 |
JPS539594B2 (enrdf_load_stackoverflow) | 1978-04-06 |
SE408913B (sv) | 1979-07-16 |
ZA742375B (en) | 1975-11-26 |
BE814286A (fr) | 1974-10-28 |
NL7404891A (enrdf_load_stackoverflow) | 1974-10-29 |
JPS5013275A (enrdf_load_stackoverflow) | 1975-02-12 |
SU764619A3 (ru) | 1980-09-15 |
CA1024937A (en) | 1978-01-24 |
FR2227345A1 (enrdf_load_stackoverflow) | 1974-11-22 |
CH590936A5 (enrdf_load_stackoverflow) | 1977-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3890217A (en) | Reactive sputtering apparatus and cathode elements therefor | |
SU740157A3 (ru) | Устройство дл нанесени прозрачной электропровод щей пленки на поверхность подложки | |
US6719848B2 (en) | Chemical vapor deposition system | |
CN1752281B (zh) | 制程处理室中阴极的射频接地 | |
US4223048A (en) | Plasma enhanced chemical vapor processing of semiconductive wafers | |
US4517448A (en) | Infrared furnace with atmosphere control capability | |
CA1269950A (en) | Glow-discharge decomposition apparatus | |
US3945911A (en) | Cathodes for sputter-coating glass sheets or other substrates | |
US4933203A (en) | Process for depositing amorphous hydrogenated silicon in a plasma chamber | |
US3866565A (en) | Vapor deposition apparatus with rotating drum mask | |
US4287548A (en) | Surge voltage arrester with reduced minimum operating surge voltage | |
CN114672768A (zh) | 薄膜沉积装置 | |
CN117737704A (zh) | 薄膜沉积装置 | |
AU746388B2 (en) | Apparatus and method for forming a deposited film by means of plasma CVD | |
EP0118643A1 (en) | Cathode assembly for glow discharge deposition apparatus | |
US4608943A (en) | Cathode assembly with localized profiling capabilities | |
US3962530A (en) | High-voltage liquid-cooled apparatus and supply leads therefor | |
US5090356A (en) | Chemically active isolation passageway for deposition chambers | |
US4915978A (en) | Method and device for forming a layer by plasma-chemical process | |
JP2006261363A (ja) | プラズマ処理装置 | |
US3288700A (en) | Sputtering apparatus including a folded flexible conveyor | |
EP0100611A1 (en) | Reduced capacitance electrode assembly | |
EP0061158A1 (en) | Method for firing thick film electronic circuits | |
CN110241403B (zh) | 一种减小温差的加热器及其制作方法和应用 | |
US4247734A (en) | Flexible thermocouple for vacuum electric furnaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENGLISH ELECTRIC VALVE COMANY LIMITED 106 WATERHOU Free format text: LICENSE;ASSIGNOR:SAUNDERS-ROE DEVELOPMENTS LIMITED;REEL/FRAME:004066/0798 Effective date: 19820423 Owner name: ENGLISH ELECTRIC VALVE COMPANY LIMITED, ENGLAND Free format text: LICENSE;ASSIGNOR:SAUNDERS-ROE DEVELOPMENTS LIMITED;REEL/FRAME:004066/0798 Effective date: 19820423 |