US3885115A - Switch-over contact - Google Patents

Switch-over contact Download PDF

Info

Publication number
US3885115A
US3885115A US415652A US41565273A US3885115A US 3885115 A US3885115 A US 3885115A US 415652 A US415652 A US 415652A US 41565273 A US41565273 A US 41565273A US 3885115 A US3885115 A US 3885115A
Authority
US
United States
Prior art keywords
contact
arms
fixed
contact arms
switching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US415652A
Other languages
English (en)
Inventor
Wolfgang Adalbert Schrotter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amphenol Corp
Original Assignee
Bunker Ramo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bunker Ramo Corp filed Critical Bunker Ramo Corp
Application granted granted Critical
Publication of US3885115A publication Critical patent/US3885115A/en
Assigned to ALLIED CORPORATION A CORP. OF NY reassignment ALLIED CORPORATION A CORP. OF NY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BUNKER RAMO CORPORATION A CORP. OF DE
Assigned to CANADIAN IMPERIAL BANK OF COMMERCE, NEW YORK AGENCY, AS AGENT reassignment CANADIAN IMPERIAL BANK OF COMMERCE, NEW YORK AGENCY, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMPHENOL CORPORATION
Assigned to AMPHENOL CORPORATION, A CORP. OF DE reassignment AMPHENOL CORPORATION, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALLIED CORPORATION, A CORP. OF NY
Anticipated expiration legal-status Critical
Assigned to AMPHENOL CORPORATION A CORP. OF DELAWARE reassignment AMPHENOL CORPORATION A CORP. OF DELAWARE RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CANADIAN IMPERIAL BANK OF COMMERCE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/24Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting
    • H01H1/26Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting with spring blade support

Definitions

  • the two contact arms of the switch-over contact have the form of an arc, i.e., they are elastically bent in the undeformed or unstressed state, but assume essentially the form of a straight line segment in the deformed or stressed state.
  • the switchover assembly comprises a pair of fixed contact members, and a pair of resilient contact arms, the fixed ends of the arms being mounted at substantially a common point in the device, the arms being bent to substantially a straight line positioning the free ends of the arms between the fixed contacts.
  • An armature actuates to move the free ends of the arms into and out of contact with the fixed contact members.
  • the present invention relates to a switchover contact for relays or manually operated switches with at least one fixed contact and at least one resilient contact arm cooperating with a second fixed contact.
  • switch-over contacts for example those used in relays, have the form of a simple, flat spring, and are moved by an armature via an insulating member from the one position (rest position) to another position (closed position) and vice versa, with the springs undergoing certain uncontrollable elastic deformations in the final switched position, i.e., when contact is established.
  • expensive adjustments to the contact force required for low contact resistance are necessary.
  • Another disadvantage of prior art switch-over contacts results from the fact that in the switched position, the switch-over contact is constantly forced into locked position by the armature, so that vibrations or bouncing motions of the armature per se are transferred to closed contacts.
  • switch-over contacts comprising two spaced leaf springs. These models are free of the above-mentioned shortcoming of a transfer of armature vibrations and armature bouncing to the closed contact arm. However, even these switch-over contacts are not free of uncontrollable elastic deformations of the respective contact arm when contact is established under pressure from the armature, which means that adjustments must be made.
  • the contacts are mounted on a single insulating member, the contact positions are well defined. but several contact ends must be bent after inserting the insulating member into the coil carrier. If, for the purpose of obtaining a certain terminal pattern,
  • Precise presetting of the elastics deformation is also hampered by the increasing influence of acceptable thickness tolerances (about 0.01 mm) and edge zones of increased strength, e.g., edges of cut or slotted pieces, when the spring cross section decreases.
  • acceptable thickness tolerances about 0.01 mm
  • edge zones of increased strength e.g., edges of cut or slotted pieces
  • contact force tolerances of about 30%.
  • the two contact arms of the above-described switch-over contact have the form of an arc, i.e., they are elastically bent in the undeformed or unstressed state, but assume essentially the form of a straight line segment in the deformed or stressed state.
  • This switch-over contact configuration has the advantages that the spring characteristics, i.e., the forcepath diagram, is known and that therefore the contact forces can be precisely predicted. Elastic deformations can therefore be accurately controlled in the critical state of contact establishment so that laborious and, hence, costly adjustments need not be made.
  • the contact forces can be determined by a single reference measurement and can be checked, after assembly of the contact set, with an optical test in which the contact arm is visually verified to be straight in the closed position of the contact set. Moreover, knowing the stress characteristics of the contact arm when in the straight position, determination of the point at which the armature becomes effective through an actuating member at the time of contact interruption can be made. This, in turn, allows optimization of the design of the armatureresetting spring and, hence, of both the magnetic flux pattern and the relay coil.
  • two contact arms are preferably areed in opposite directions, but mounted in a position symmetric with respect to a common symmetry line.
  • the contact arms When the two contact arms are in the form of blades or elongated leaves and mounted together at one end of each arm, the contact arms enclose an angle with the common symmetry line in the deformed straighf state.
  • the spacing of the deformed contact arms can therefore be precisely predetermined; the spacing elim inates any interaction between the contact arms and, hence, any influence of the armature upon closed contacts, provided that the armature acts upon the contact which is open.
  • the clamping points of the tongues of each contact arm are arranged in offset relationship with respect to the longitudinal direction of the contact arm.
  • the tongues are then of different spring characteristics, and hence respond differently to vibrations and bouncing motions. This. in turn, increases the probability that the two tongues do not simultaneously interrupt the contact when contact bouncing occurs.
  • the total time of the backward bouncing motion is therefore determined by the bouncing of the tongue which is less prone to bouncing.
  • the different free lengths of the springs must be appropriately taken into account.
  • contact arms which consist of one piece made of a resilient material (and which also include contact tongues if desired) and of another piece made of a relatively easily bending material and serving as soldering terminal.
  • the two piece configuration provides the advantage that the contact-arm portion establishing contact consists of a material suitable for leaf springs which can given optimal spring characteristics by hardening, whereas the contact-arm portion serving as soldering terminal can be easily bent after hardening of the spring material and after assembly and adjustment of the individual contacts.
  • the contacts are preferably made of two-metal material for leaf springs; the resilient material is composed of beryllium bronze and the relatively easily bending material consists essentially of brass.
  • FIG. 1 is a cross section side view of a miniaturized relay containing a switchover contact according to the invention.
  • FIG. 2 is a side view of a switch-over contact in which the contact arms are shown in the unstressed state
  • FIG. 3 is a top view of the switch-over contact shown in FIG. 2, with an additional clamping point provided for one of the tongues.
  • FIG. 4 is a top view of the switch-over contact of FIGS. 2 and 3 and shows the contact in the unfolded state.
  • FIG. 1 shows a relay which is generally denoted by 22 and comprises a coil 6 carrier with windings 15.
  • Two pole shoes 23 and 24 are mounted inside coil 6 and extend in longitudinal direction of the coil body.
  • Switch-over contact 20 consists of two contact arms 31, 32 in the form of elongated flat elements which carry contact ribs 25 and 26 on their opposite sides and on the ends facing the resting contact 3 and the main contact 4, respectively. Contact arms 31 and 32 are clamped at point 5, bent at a right angle with respect to the longitudinal axis of coil 6 at bend 37 opposite contact ribs 25 and 26, and formed as soldering terminals 8 and 9 protruding from the relay.
  • Relay 22 is shown in the rest state (no excitation) in which armature 16 has disengaged pole shoe 24.
  • the armature is transferred into this position by armatureresetting spring 14.
  • actuating member 13 At the movable end 39 of armature 16, there is mounted an actuating member 13 provided with a U-shaped cut 28 shown in FIG. 1 with the legs 41 and 43 of the U facing out of the sheet.
  • the opposite internal faces 29 and 30 of the U-shaped cut embrace contact arms 31 and 32.
  • FIGS. 2 through 4 Details of the switch-over contact and of contact arms 31 and 32 are shown in FIGS. 2 through 4.
  • contact arms 31 and 32 are made of a split leaf, e.g., by slotting, and are joined along line of symmetry 33.
  • the contact arms can be produced as separate parts of different shapes, if desired.
  • Contact arms 31 and 32 are bent along line of symmetry 33 so that apertures 34 and 35 are aligned and result in an attachment opening 10, as shown in FIG. 3.
  • Contact arms 31 and 32 can be made from a single material, e.g., of a material normally used for leaf springs. However, it it advantageous to use two-metal strips, one section of which consists of a resilient material such as beryllium bronze, whereas the other section is made of a material which can be easily bent, such as brass.
  • the contact-arm configuration is such that the transition point between the two different metals is situated near attachment opening 10.
  • the ends which carry contact ribs 25 and 26 are formed by leaf springs 1 and 2, whereas soldering terminals 8 and 9 consist of the material which can be easily bent. Two-metal components of this type are readily available on the market and need not be described in detail.
  • leaf springs 1 and 2 are arced toward opposite sides of line of symmetry X so that a continuous arc results between clamping point 5 and contact points defined by Contact ribs 25 or 26.
  • This configuration has the advantage that the elastic deformation of the two leaf springs 1 and 2, and hence the contact forces exerted by these springs, can be exactly predetermined for the stressed state in which the springs assume the form of straightline segments.
  • leaf spring 1 When leaf spring 1 is transferred from the unstressed position shown in FIG. 2 into a stressed straight" position, the straight position is reached while leaf spring 1 includes an angle with the axis of symmetry X. When this angle is taken into account in the determination of the straight and stressed state of a leaf spring, a welldefmed distance between the two leaf springs is observed in the stressed state. Though this distance is smaller than the distance usually employed in contact devices, the resulting gap eliminates any interaction between leaf springs 1 and 2, and hence any influence of armature 16 upon the closed contacts via the open contact.
  • the distance between the ends of the two leaf springs shown in the stressed state is denoted by A in FIG. 1. This small distance between leaf springs l and 2 facilitates a reduction of the distance between resting contact 3 and main contact 4, which is essential for miniaturization.
  • switch-over contact is mounted in relay 22 by affixing contacts 3 and 4, along with switch-over contact arms 31, 32, on a common insulator 7, whereupon insulator 7 is inserted from the right side (FIG. 1) into coil 6. Since soldering terminals 8 and 9 are made of a relatively soft, flexible material, the soldering terminals can be easily bent without any damage to the assembled device or changes in the contact forces of the switch-over contact.
  • Relay 22 functions as follows:
  • Relay 22 is shown in the rest state (no excitation) in FIG. 1.
  • lower leaf spring 1 bears against rest contact 3, leaf spring 1 being in the stressed, straight state and acting via contact rib 26.
  • the upper inner face 29 of U-shaped cut 28 on actuating member 13 prevents upper leaf spring 2 from engaging main contact 4.
  • armature 16 is drawn to pole shoe 24 and releases upper leaf spring 2 which, under the influence of its intinsic spring force, bears against main contact 4 in the stressed, straight state.
  • Lower inner face 30 of U-shaped cut 28 bears against lower leaf spring 1 at point 12 and, hence, overcomes the spring force of leaf spring 1 and removes the same from resting contact 3.
  • U-shaped cut 28 is preferably dimensioned, between the legs 41, 43 of the U, so that contact rib 26 is lifted from resting contact 3 before contact rib touches main contact 4 (switchover mode), or that the opposite function is obtained (sequence reversal mode).
  • armature 16 is returned by armatureresetting spring 14 into the original position, whereupon lower leaf spring 1 and lower inner face of cut 28 on actuating member 13 move downward.
  • Upper inner face 29 of actuating member 13 then contacts upper leaf spring 2 and pushes contact rib 25 away from main contact 4.
  • Actuating member 13 continues downwardly (FIG. 1) until lower inner face 30 has completely disengaged from leaf spring 1 due to contact rib 26 engaging fixed contact 3.
  • the leaf spring establishing contact i.e., leaf spring 1
  • leaf spring 1 has disengaged from the armature.
  • Complete disengagement of the armature means that no bouncing motions of the armature can be transferred to the leaf spring which establishes contact.
  • leaf springs 1 and 2 carry a slit 17 of a certain width between the free end 45 and clamping point 5.
  • Slit 17 is conveniently arranged so that two tongues 18 and 19, which are symmetric with respect to symmetry line B, are obtained.
  • the two tongues increase the reliability with which each contact arm establishes contact.
  • the bouncing features of each contact arm can be improved by clamping one of the tongues (in the case considered, tongue 19) at point 21 which is off-set from the clamping point 47 of tongue 18 (off-set in longitudinal direction of symmetry line B). This measure increases the probability that both tongues 18 and 19 do not simultaneously break contact when bouncing motions occur.
  • the advantage of different bouncing performance features of the two tongues 18 and 19 can also be obtained by using tongues of different thicknesses or varying width, e.g., tongues of trapezoidal shape.
  • an electrical switching device the combination of a first and a second fixed contact member in spaced oppositely facing relation to each other, a movable contact element for making contact alternatively to said first or to said second fixed contact member, said movable contact element comprising two contact arms, each arcuately curved when in free state, each having a contacting surface at one end thereof, the other ends of said contact arms being mounted to a fixed support so that their contacting surfaces are in the space between said first and second fixed contact members, and actuating means for moving said movable contact element, including a member engaging both contact arms, the improvement constituted by the sides of said contact arms which are concavely curved in free state facing outwardly from a common line a symmetry between said contact arms as mounted, and the location of said fixed contact members with respect to said contact arms being such that when the contacting surface of one of said contact arms engages one of said fixed contacts, said one of said contact arms has a curvature substantially less than that of its free state conformation.
  • each contact arm has the form of a flat leaf and is slitted from its free end to a clamping point so that a plurality of individual tongues are formed for each arm.
  • each contact arm is formed of an integral piece consisting of a resilient material serving as a contact-tongue portion and of a material which can be relatively easily bent to serve as a soldering terminal portion.
  • said actuating means has a U-shaped member affixed thereto for confining said contact arms between the legs of said U-shaped member, said U-shaped member being affective upon actuation of said armature to move said contact arms into and out of contact with said fixed contact members.

Landscapes

  • Contacts (AREA)
  • Tumbler Switches (AREA)
  • Push-Button Switches (AREA)
US415652A 1972-11-15 1973-11-14 Switch-over contact Expired - Lifetime US3885115A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2256044A DE2256044B2 (de) 1972-11-15 1972-11-15 Umschaltkontakt
DE19752502078 DE2502078A1 (de) 1972-11-15 1975-01-20 Umschaltkontakt

Publications (1)

Publication Number Publication Date
US3885115A true US3885115A (en) 1975-05-20

Family

ID=25764095

Family Applications (1)

Application Number Title Priority Date Filing Date
US415652A Expired - Lifetime US3885115A (en) 1972-11-15 1973-11-14 Switch-over contact

Country Status (5)

Country Link
US (1) US3885115A (fr)
CA (1) CA1005503A (fr)
DE (2) DE2256044B2 (fr)
FR (2) FR2206571B1 (fr)
GB (1) GB1446558A (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087667A (en) * 1975-01-20 1978-05-02 Bunker Ramo Corporation Double-throw contact
US5186315A (en) * 1990-07-19 1993-02-16 Merlin Gerin High voltage disconnecting switch
US5719541A (en) * 1994-07-08 1998-02-17 Eh-Schrack Components-Aktiengesellschaft Relay
US11133140B2 (en) * 2017-04-14 2021-09-28 Panasonic Intellectual Property Management Co., Ltd. Contact device and electromagnetic relay
US11776783B2 (en) * 2018-10-15 2023-10-03 Tyco Electronics Austria Gmbh Kit and method for the assembly of at least two variants of a relay and contact spring for a relay

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2256044B2 (de) * 1972-11-15 1980-09-25 Bunker Ramo Corp., Oak Brook, Ill. (V.St.A.) Umschaltkontakt
DE2633734C2 (de) * 1976-07-27 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Elektromagnetisches Miniaturrelais
SE433687B (sv) * 1979-12-21 1984-06-04 Ericsson Telefon Ab L M Fjedergrupp for rele
DE3608314A1 (de) * 1986-03-13 1987-09-17 Westinghouse Fanal Schaltfeder
DE4322238A1 (de) * 1993-07-03 1995-01-12 Abb Patent Gmbh Elektrisches Schaltgerät
DE19636560A1 (de) * 1996-09-09 1998-03-12 Siemens Ag Justierfrei einstellbare Kontaktkraft an Hilfsschaltern
DE19905419A1 (de) * 1999-02-10 2000-08-17 Bayerische Motoren Werke Ag Stützeinrichtung für ein Einspurfahrzeug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812406A (en) * 1954-03-02 1957-11-05 Bell Telephone Labor Inc Electrical contact
US2852639A (en) * 1954-11-08 1958-09-16 Leach Corp Relay
US3020365A (en) * 1959-04-23 1962-02-06 Columbia Broadcasting Syst Inc Self-normalling video jack
US3146327A (en) * 1962-11-06 1964-08-25 Nippon Electric Co Sealed magnetically operable switch
US3165607A (en) * 1961-08-11 1965-01-12 Ibm Armature for electro-magnetic relay
US3168627A (en) * 1962-03-07 1965-02-02 Western Electric Co Relay with positively driven contacts
US3376526A (en) * 1967-01-23 1968-04-02 Siemens Ag Electrical relay and contact arrangement therefor
US3689856A (en) * 1971-09-15 1972-09-05 T Bar Inc Switch having opposed dome and flexible bifurcated contacts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616993A (en) * 1947-07-17 1952-11-04 Bell Telephone Labor Inc Pretensioned spring
BE540332A (fr) * 1954-10-25
DE2256044B2 (de) * 1972-11-15 1980-09-25 Bunker Ramo Corp., Oak Brook, Ill. (V.St.A.) Umschaltkontakt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812406A (en) * 1954-03-02 1957-11-05 Bell Telephone Labor Inc Electrical contact
US2852639A (en) * 1954-11-08 1958-09-16 Leach Corp Relay
US3020365A (en) * 1959-04-23 1962-02-06 Columbia Broadcasting Syst Inc Self-normalling video jack
US3165607A (en) * 1961-08-11 1965-01-12 Ibm Armature for electro-magnetic relay
US3168627A (en) * 1962-03-07 1965-02-02 Western Electric Co Relay with positively driven contacts
US3146327A (en) * 1962-11-06 1964-08-25 Nippon Electric Co Sealed magnetically operable switch
US3376526A (en) * 1967-01-23 1968-04-02 Siemens Ag Electrical relay and contact arrangement therefor
US3689856A (en) * 1971-09-15 1972-09-05 T Bar Inc Switch having opposed dome and flexible bifurcated contacts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087667A (en) * 1975-01-20 1978-05-02 Bunker Ramo Corporation Double-throw contact
US5186315A (en) * 1990-07-19 1993-02-16 Merlin Gerin High voltage disconnecting switch
US5719541A (en) * 1994-07-08 1998-02-17 Eh-Schrack Components-Aktiengesellschaft Relay
US11133140B2 (en) * 2017-04-14 2021-09-28 Panasonic Intellectual Property Management Co., Ltd. Contact device and electromagnetic relay
US11776783B2 (en) * 2018-10-15 2023-10-03 Tyco Electronics Austria Gmbh Kit and method for the assembly of at least two variants of a relay and contact spring for a relay

Also Published As

Publication number Publication date
DE2256044B2 (de) 1980-09-25
DE2502078A1 (de) 1976-07-22
FR2298174B2 (fr) 1981-05-29
CA1005503A (en) 1977-02-15
GB1446558A (en) 1976-08-18
FR2298174A2 (fr) 1976-08-13
DE2256044A1 (de) 1974-05-22
FR2206571A1 (fr) 1974-06-07
FR2206571B1 (fr) 1977-06-03

Similar Documents

Publication Publication Date Title
US3885115A (en) Switch-over contact
CA2288827C (fr) Relais a bancs de contact
US4087667A (en) Double-throw contact
US4063203A (en) Reed switch
US3152237A (en) Electrical switching devices with movable contact engageable with v-shaped contact
US2344809A (en) Electromagnetically operated switch
US3699292A (en) Slidable contact member for minature switch
US2226385A (en) Switch
US3048749A (en) Electric relay
US2378784A (en) Snap-action switch
US2525044A (en) Snap action switch
US3539742A (en) Electrical snap switch having stressed blade
US3211854A (en) Electro-magnetic relay utilizing spring clip means to facilitate assembly of the relay
JPH04245126A (ja) 操作スライダを備えた電力リレー
US4025884A (en) Relay construction
US3869685A (en) Sealed contact capable of being magnetically actuated
US2819362A (en) Switches
US3239727A (en) Electromagnetic switching device
US4535311A (en) Contact support means for an electromagnetic relay
US2435484A (en) Electric contact device
US3577182A (en) Switch-over contact arrangement for power relays
US3278872A (en) Electromagnetic relay with simplified structure
US3559132A (en) Contact spring relays
US2272496A (en) Switching device
US2824924A (en) Multiple relay assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLIED CORPORATION COLUMBIA ROAD AND PARK AVENUE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BUNKER RAMO CORPORATION A CORP. OF DE;REEL/FRAME:004149/0365

Effective date: 19820922

AS Assignment

Owner name: CANADIAN IMPERIAL BANK OF COMMERCE, NEW YORK AGENC

Free format text: SECURITY INTEREST;ASSIGNOR:AMPHENOL CORPORATION;REEL/FRAME:004879/0030

Effective date: 19870515

AS Assignment

Owner name: AMPHENOL CORPORATION, LISLE, ILLINOIS A CORP. OF D

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALLIED CORPORATION, A CORP. OF NY;REEL/FRAME:004844/0850

Effective date: 19870602

Owner name: AMPHENOL CORPORATION, A CORP. OF DE, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALLIED CORPORATION, A CORP. OF NY;REEL/FRAME:004844/0850

Effective date: 19870602

AS Assignment

Owner name: AMPHENOL CORPORATION A CORP. OF DELAWARE

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CANADIAN IMPERIAL BANK OF COMMERCE;REEL/FRAME:006147/0887

Effective date: 19911114