US3864920A - Floating breakwater - Google Patents
Floating breakwater Download PDFInfo
- Publication number
- US3864920A US3864920A US398368A US39836873A US3864920A US 3864920 A US3864920 A US 3864920A US 398368 A US398368 A US 398368A US 39836873 A US39836873 A US 39836873A US 3864920 A US3864920 A US 3864920A
- Authority
- US
- United States
- Prior art keywords
- floating
- wave
- breakwater
- floating body
- bodies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims abstract description 35
- 230000005484 gravity Effects 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 239000006260 foam Substances 0.000 claims description 6
- 229920003002 synthetic resin Polymers 0.000 claims description 4
- 239000000057 synthetic resin Substances 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000004567 concrete Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000011152 fibreglass Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241001455273 Tetrapoda Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/04—Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
- E02B3/06—Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
- E02B3/062—Constructions floating in operational condition, e.g. breakwaters or wave dissipating walls
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/11—Hard structures, e.g. dams, dykes or breakwaters
Definitions
- ABSTRACT A floating breakwater in which the floating body is formed by housing a floating material as-a floating source and a weighting material as a source for increasing weight in a hollow shell composed of a rigid materialand provided'with a projection on the upper portion.
- the specific gravity of the floating body is made to be 0.15 0.75 owing to the floating material and the weighting material.
- the present invention relates to a floating breakwater having a very high wave breaking efficiency, and which is simple, cheap, and short in length.
- An object of the present invention is to provide a floating breakwater having a very excellent wave breaking efficiency which has a simple structure, can be provided at a low cost, and has a ratio of the height of wave passed through the floating body to the height of wave before passing the floating body of less than 0.5 in a length of the floating body of less than one-half of the wave length.
- the inventors have found that the wave breaking efficiency is influenced by phase difference, reflection, friction, whirlpool action of the wave, and the like.
- the specific gravity of the floating body is controlled in order to increase the wave breaking efficiency due to the phase difference to fix the floating body at a constant position near the water level as far as possible and to control the upward and downward motion against the water level effectively, and the wave breaking efficiency due to the reflection and friction is enhanced by providing a projected body on the upper side of the floating body.
- the present invention relates to a floating breakwater in which the floating body is formed by housing a floating material as a floating source and a weighting material as a source for increasing weight and the specific gravity of the floating body is made to be 0.15 0.75 owing to the floating material and the weighting material.
- the present invention comprises a built-up floating breakwater which can be easily built-up at a location to be provided and can be produced cheaply, a floating breakwater constructed with a floating body and a plane plate in which a viscosity resistance owing to water is utilized and the upward and downward motion of the floating body against the water level is restrained, a floating and submerging type breakwater provided with a tube float having an air inlet in the floating body and various improved breakwaters.
- FIG. 1 illustrates curves showing a relation of the shape of the floating body to the passed through wave height ratio
- FIG. 2 illustrates curves showing a relation of the specific gravity of the floating body to the passed through wave height ratio
- FIG. 3 is a plan view of an embodiment of floating breakwater of the present invention.
- FIG. 4 is a side view showing a partial cross-section of the floating breakwater of FIG. 3;
- FIG. Si is a partial cross-section showing the connection of the projected hollow body with the substrate of the floating breakwater of FIG. 3;
- FIG. 6 is a front view showing a partial cross-section of the floating breakwater of FIG. 3;
- FIG. 7 is a perspective view of an embodiment of floating breakwater of the present invention.
- FIG. 8 is a plan view of the embodiment of FIG. 7;
- FIG. 9 is a side yiew showing a partial cross-section of the embodiment of FIG. 7;
- FIG. 10 is a perspective view of an embodiment of floating breakwater of the present invention.
- FIG. 11 is a plan view of the embodiment of FIG. 10;
- FIG. 12 is a side view showing a partial cross-section of the embodiment of FIG. 10;
- FIG. 13 is a cross-sectional side view of an embodiment of floating breakwater of the present invention.
- FIG. '14 is a side view of an embodiment of floating breakwater of the present invention.
- FIG. 15 is a side view of an embodiment of floating breakwater of the present invention.
- FIG. 16 is a side view of an embodiment of floating breakwater of the present invention.
- a foaming material and a weighting material are charged in a rectangular hollow floating body and a floating body, the upper surface of which is a corrugated form and both the floating bodies are determined with respect to the influence upon the wave breaking efficiency and the result is shown in FIG. 1.
- Both the floating bodies have a width (b) of 350 mm and a length (l) of 500 mm.
- L is a wave length (unit: meter)
- H unit: meter
- HT unit: meter
- the wave breaking efficiency of the floating body is shown by the passed through wave height ratio (I-lT/I-I), and the smaller the value, the higher is the wave breaking efficiency.
- the inventors have made various experiments and found that the lower portion of the floating body has no relation and when a projected body is formed on the upper portion, a high wave breaking efficiency can be obtained and that when the height of the projected body is about one-half of the wave height, the wave breaking efficiency is high.
- FIG. 2 a relation of the specific gravity of the floating body to the passed through wave height ratio is shown in FIG. 2.
- an excellent wave breaking efficiency can be obtained by adjusting the specific gravity to 0.15 0.75.
- a floating body 1 is made of rigid materials, such as metal, concrete, fiberglass reinforced plastic and the like, and is composed of a projected hollow body 2, a submerged body 3 and a laminated substrate 4.
- the laminated substrate 4 is composed of two water resistant plates, each of which has fiberglass reinforced plastic coatings on the upper and lower surfaces, and a foamed material inserted between the plates.
- the projected hollow body and submerged body are produced by bending a water resistant plate 5 having fiberglass reinforced plastic coating on the upper and lower surfaces in the form of a gutter having a trapezoidal (FIGS. 3, 4 and 6) or semicircular cross-sectional shape.
- the flange 6 of the gutter is fixed to the laminated substrate 4 together with a holding plate 7 or 7' by means of bolts 8 or adhesive (not shown).
- the interior of the projected hollow body is empty or filled at least partly with synthetic resin foam 9.
- the interior of the submerged body is empty or filled at least partly with water or with materials having a specific gravity larger than water, such as earth and sand, concrete, iron block and the like.
- water holes 10 may be made in the wall of the submerging body so that water can enter into the submerging body when the floating body 1 is arranged in the water level.
- the body 1 When the floating body 1 is arranged on the water level, the body 1 is fixed by connecting rope or chain 12 to holes 11 formed in the front and rear edges of the body 1 and to anchor 13 so that'the projected hollow bodies 2, 2', 2", etc. extend in a direction perpendicular to the direction of wave.
- the submerged bodies 3, 3', 3", etc. are fixed to the laminated substrate 4 in a direction perpendicular to the direction of the projected hollow bodies 2, 2, 2", etc., in order to reinforce the laminated substrate 4, which bonds the projected hollow bodies 2, 2, 2", etc. with each other; along the direction of wave.
- the cross-sectional shapes of the projected hollow body and the submerging body may be trapezoid as shown in the figures, semicircle, rectangle, triangle and other optional shapes. However, when the height of the projected hollow body is about one-half of the wave height, a best wave breaking efficiency can be attained.
- the specific gravity of the floating body 1, which is determined from the amount of water or the weight of filler contained as a weighting material in the interior of the submerging bodies 3, 3', 3", etc., and the volume of the projected hollow bodies 2, 2, 2", etc., or the amount of foam contained as a floating material in the projected hollow bodies 2, 2', 2", etc., is selected within the range of 0.15 0.75.
- any type of floating body 1 having projections on the surface thereof can attain the object of the present invention.
- FIGS. 7, 8 and 9 show another embodiment of the floating breakwaters of the present invention.
- a floating body 1 is composed of a projected hollow body 15, a submerged body 16 and a bonding element 17 which bonds the bodies 15 and 16 with each other.
- the bonding element 17 is made into a cylindrical shape and is closed tightly at both ends.
- the interior of the bonding element 17 is filled with water up to about half of the volume.
- the interior of the bonding element 17 may be filled at least partly with materials having a specific gravity larger than water, such as earth and sand, concrete, iron block and the like.
- the interior of the projected hollow body 15 is empty or filled at least partly with synthetic resin foam 9.
- the interior of the submerging body 16 is filled at least partly with water or with earth and sand, concrete, iron block and the like, as described in the case of the bonding element 17.
- the cross-sectional shapes of the bodies 15 and 16 may be trapezoid, semicircle, rectangle, triangle and other optional shapes.
- the height of the projected hollow body 15 is about one-half of the wave height, a best wave breaking efficiency can be attained.
- the projected hollow bodies 15 and the submerged bodies 16 are bonded through a plurality of the bonding elements 17 arranged in parallel so that a plurality of the bonded bodies are arranged in parallel and are perpendicular to the direction of wave.
- the projected hollow body 15 and the submerging body 16 may be divided into unit bodies 15, 15", 15", etc., and 16', 16", 16", etc. respectively. The bonding of the projected hollow body 15 with the submerging body 16, or the bonding of the unit projected hollow bodies 15', 15", 15", etc.
- unit submerging bodies 16, 16", 16", etc. is effected by a most suitable means, such as bolts and adhesive, depending upon the properties of the projected hollow body 15, the submerging body 16 and the bonding element 17.
- the bonding portion of the adjacent unit bonded bodies, each of which is composed of units 15 and 16, 15" and 16'', etc., and the bonding portion of the bonding element 17 with the projected hollow body and the submerging body 16 may be provided with seal or packing.
- a floating body 1 is composed of a plurality of cylindrical shells 18 arranged in parallel and a plurality of cylindrical bonding elements 17 which penetrate through the cylindrical shells 18 and bond the shells 18 with each other.
- the floating body 1 is arranged so that the shells 18 are arranged in parallel and are perpendicular to the direction of wave.
- the cylindrical shell 18 is closed at both ends 18a.
- a floating material 9 as a floating source of the floating body 1
- a weighting material 19 as a source for in creasing the weight of the floating body 1, whereby the specific gravity of the floating body 1 is increased and the up-and-down motion of the floating body 1 on the water level is effectively controlled.
- I-Ioles are formed in the wall of the shell 18 in order to pass the bonding element 17 through the shell 18, and the shell 18 is provided with seal or packing at the bonding portion of the holes and the bonding element 17.
- the shell 18 may be provided with tubes 18b in the interior thereof. in order to insert the bonding element 17 into the tubes 18b.
- the floating material 9 to be used as a floating source of the floating body I mention may be made of foams of polyurethane, polystyrene, polyethylene, polypropylene, polyamide and the like, and gases, such as air and the like.
- foams of polyurethane, polystyrene, polyethylene, polypropylene, polyamide and the like and gases, such as air and the like.
- weighting material 19 to be used as a source for increasing the weight of the floating body mention may be made of liquids, such as water and the like, earth and sand, concrete, iron block and the like.
- the floating breakwater In general, when it is intended to arrange the floating breakwater on the sea, it is often required that the floating breakwater is arranged at a position, which is a passage of ships for a certain period of time. In this case, the floating breakwater must be removed when ships pass the position. Further, if it is intended to adopt such a mooring method that the floating breakwater is floated when an extraordinary large wave is generated due to the typhoon, a very high mooring strength is required.
- FIG. 13 shows an improved floating breakwater of the present invention.
- This floating breakwater is an up-and-down type breakwater which can be freely floated and sunk and can solve inexpensively the above described drawbacks by a very simple structure.
- This float 22 acts as a floating element
- the numeral 23 represents a buoy which serves to float always one end of the flexible tube 20 on the water level
- the numeral 24 represents the cock of the flexible tube 20
- the numeral 25 represents a ship provided with a pump.
- the rotary motion of wave becomes smaller according to the hyperbolic function as the depth of the wave from the water level is larger.
- the wave breaking efflciency of the floating body I having the above described structure and shape can be more improved.
- the wave breaking efficiency is improved by disturbing the above described rotary motion of wave under the water level.
- a net bag 27 containing a plurality of solid blocks 26 having a wave breaking efflciency is hung under a floating body 1.
- the floating breakwater of the present inven' tion Since the floating breakwater of the present inven' tion is located at a certain position near the water level, the floating breakwater has an improved wave breaking efficiency.
- plates 28 are fixed to a floating body 1 by means of rigid supports 29, whereby the plate 28 is subjected to a viscosity resistance due to water and the upand-down motion of the floating body 1 against the water level is more effectively controlled.
- a floating breakwater assembly comprising:
- a. a plurality of substantially equally dimensioned, elongated, floating bodies each comprising a rigid hollow upper shell and a rigid hollow lower shell bonded together, each upper shell projecting upwardly and out of the water along its entire length to a height of at least one half of the average height of waves to be broken,
- the specific gravity of the overall assembly being from 0.15 to 0.75.
- said floatation material is a synthetic resin foam.
- ballast material is water
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Revetment (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/536,783 US3991576A (en) | 1972-09-19 | 1974-12-27 | Floating breakwater |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10798072U JPS5432350Y2 (enrdf_load_stackoverflow) | 1972-09-19 | 1972-09-19 | |
JP11364072U JPS5421865Y2 (enrdf_load_stackoverflow) | 1972-09-30 | 1972-09-30 | |
JP5431273U JPS505440U (enrdf_load_stackoverflow) | 1973-05-09 | 1973-05-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/536,783 Division US3991576A (en) | 1972-09-19 | 1974-12-27 | Floating breakwater |
Publications (1)
Publication Number | Publication Date |
---|---|
US3864920A true US3864920A (en) | 1975-02-11 |
Family
ID=27295237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US398368A Expired - Lifetime US3864920A (en) | 1972-09-19 | 1973-09-18 | Floating breakwater |
Country Status (3)
Country | Link |
---|---|
US (1) | US3864920A (enrdf_load_stackoverflow) |
FR (1) | FR2199771A5 (enrdf_load_stackoverflow) |
GB (1) | GB1435780A (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4712944A (en) * | 1981-12-30 | 1987-12-15 | Rose Leo J | Sea wave dissipator apparatus and method for its manufacture |
EP0558363A1 (fr) * | 1992-02-27 | 1993-09-01 | ETAT FRANCAIS Représenté par le délÀ©gué général pour l'armement | Ponton flottant |
DE4431081C1 (de) * | 1994-09-01 | 1996-04-25 | Awu Consult Ingenieurgesellsch | Schwimmfähiges Wellenschutzsegment und Verfahren zur Herstellung einer Wellenschutzwand |
US5911542A (en) * | 1997-01-31 | 1999-06-15 | Diamond Dock, L.L.C. | Unsinkable floating dock system |
US6102616A (en) * | 1999-04-09 | 2000-08-15 | Foote; Howard G. | Wave break |
WO2002042047A3 (en) * | 2000-11-22 | 2003-03-27 | Dennis G Smith | Ribbed module, security sign and security barrier submergence system |
WO2003037592A3 (en) * | 2001-11-01 | 2004-02-12 | Wave Dispersion Technologies I | Ribbed module for wave energy dispersion |
WO2002042046A3 (en) * | 2000-11-16 | 2004-02-26 | Dennis G Smith | Vessel exclusion barrier/line of demarcation |
US6715958B2 (en) * | 2002-07-29 | 2004-04-06 | 638731 Bc Ltd. | Floating wave attenuator |
WO2009008747A3 (en) * | 2007-07-11 | 2009-03-05 | Mariteq Holdings Ltd | A floating structure and its method of construction |
US20100067987A1 (en) * | 2008-09-18 | 2010-03-18 | I.M.F.S. International Marine Floatation Systems Inc. | Water ballasted wave attenuator |
US9556573B2 (en) | 2014-05-19 | 2017-01-31 | Christopher Fred Betcher | Wave attenuation system and method |
US20200018033A1 (en) * | 2018-07-16 | 2020-01-16 | Jiangsu University Of Science And Technology | Quickly-detachable airbag-type floating breakwater |
WO2021127605A1 (en) * | 2019-12-19 | 2021-06-24 | Oceanetics, Inc. | Waterfront barrier system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1091883B (it) * | 1978-01-13 | 1985-07-06 | Pirelli | Frangiflutti galleggiante |
US4776724A (en) * | 1986-05-05 | 1988-10-11 | Nippon Kokan Kabushiki Kaisha | Floating wave dissipation structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US436644A (en) * | 1890-09-16 | Floating breakwater | ||
US2638695A (en) * | 1950-07-07 | 1953-05-19 | John W Phillips | Kite float for the head ropes of fishing nets |
US2658350A (en) * | 1951-08-31 | 1953-11-10 | John W Magill | Portable floating type breakwater unit for effecting wave energy dissipation |
US3103200A (en) * | 1960-09-13 | 1963-09-10 | California Research Corp | Mooring buoy |
US3534558A (en) * | 1966-12-23 | 1970-10-20 | Grenobloise Etude Appl | Floating breakwaters |
US3791150A (en) * | 1971-09-07 | 1974-02-12 | Debero Kogyo Co Ltd | Floating breakwater for attenuating seas |
-
1973
- 1973-09-13 GB GB4297773A patent/GB1435780A/en not_active Expired
- 1973-09-18 US US398368A patent/US3864920A/en not_active Expired - Lifetime
- 1973-09-18 FR FR7333469A patent/FR2199771A5/fr not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US436644A (en) * | 1890-09-16 | Floating breakwater | ||
US2638695A (en) * | 1950-07-07 | 1953-05-19 | John W Phillips | Kite float for the head ropes of fishing nets |
US2658350A (en) * | 1951-08-31 | 1953-11-10 | John W Magill | Portable floating type breakwater unit for effecting wave energy dissipation |
US3103200A (en) * | 1960-09-13 | 1963-09-10 | California Research Corp | Mooring buoy |
US3534558A (en) * | 1966-12-23 | 1970-10-20 | Grenobloise Etude Appl | Floating breakwaters |
US3791150A (en) * | 1971-09-07 | 1974-02-12 | Debero Kogyo Co Ltd | Floating breakwater for attenuating seas |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4712944A (en) * | 1981-12-30 | 1987-12-15 | Rose Leo J | Sea wave dissipator apparatus and method for its manufacture |
EP0558363A1 (fr) * | 1992-02-27 | 1993-09-01 | ETAT FRANCAIS Représenté par le délÀ©gué général pour l'armement | Ponton flottant |
FR2688014A1 (fr) * | 1992-02-27 | 1993-09-03 | France Etat Armement | Ponton flottant. |
DE4431081C1 (de) * | 1994-09-01 | 1996-04-25 | Awu Consult Ingenieurgesellsch | Schwimmfähiges Wellenschutzsegment und Verfahren zur Herstellung einer Wellenschutzwand |
US5911542A (en) * | 1997-01-31 | 1999-06-15 | Diamond Dock, L.L.C. | Unsinkable floating dock system |
US6102616A (en) * | 1999-04-09 | 2000-08-15 | Foote; Howard G. | Wave break |
WO2002042046A3 (en) * | 2000-11-16 | 2004-02-26 | Dennis G Smith | Vessel exclusion barrier/line of demarcation |
WO2002042047A3 (en) * | 2000-11-22 | 2003-03-27 | Dennis G Smith | Ribbed module, security sign and security barrier submergence system |
WO2003037592A3 (en) * | 2001-11-01 | 2004-02-12 | Wave Dispersion Technologies I | Ribbed module for wave energy dispersion |
US6715958B2 (en) * | 2002-07-29 | 2004-04-06 | 638731 Bc Ltd. | Floating wave attenuator |
WO2009008747A3 (en) * | 2007-07-11 | 2009-03-05 | Mariteq Holdings Ltd | A floating structure and its method of construction |
US20100067987A1 (en) * | 2008-09-18 | 2010-03-18 | I.M.F.S. International Marine Floatation Systems Inc. | Water ballasted wave attenuator |
US20110150573A1 (en) * | 2008-09-18 | 2011-06-23 | I.M.F.S. International Marine Floatation Systems Inc. | Water ballasted wave attenuator |
US8132986B2 (en) * | 2008-09-18 | 2012-03-13 | I.M.F.S. International Marine Floatation Systems Inc. | Water ballasted wave attenuator |
US9556573B2 (en) | 2014-05-19 | 2017-01-31 | Christopher Fred Betcher | Wave attenuation system and method |
US9963847B2 (en) | 2014-05-19 | 2018-05-08 | Christopher Fred Betcher | Wave attenuation system and method |
US20200018033A1 (en) * | 2018-07-16 | 2020-01-16 | Jiangsu University Of Science And Technology | Quickly-detachable airbag-type floating breakwater |
US10745876B2 (en) * | 2018-07-16 | 2020-08-18 | Jiangsu University Of Science And Technology | Quickly-detachable airbag-type floating breakwater |
WO2021127605A1 (en) * | 2019-12-19 | 2021-06-24 | Oceanetics, Inc. | Waterfront barrier system |
Also Published As
Publication number | Publication date |
---|---|
GB1435780A (en) | 1976-05-12 |
FR2199771A5 (enrdf_load_stackoverflow) | 1974-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3991576A (en) | Floating breakwater | |
US3864920A (en) | Floating breakwater | |
US4123667A (en) | Wave energy generator-breakwater-barge-dock | |
US3191386A (en) | Hovering bag breakwater | |
MXPA04007209A (es) | Aparato celular de cilindros verticales y metodo de construccion. | |
USRE28966E (en) | System and barrier for containing an oil spill | |
WO2002026019A2 (en) | Floating breakwater system | |
US3800542A (en) | Floating boom | |
US6485230B2 (en) | Submersible modular dike and method for segregating body of water | |
US6715958B2 (en) | Floating wave attenuator | |
US3798913A (en) | Device for stabilizing and damping the movements of floating units and increasing their buoyancy | |
US3889476A (en) | Submersible caissons and their applications | |
US2044795A (en) | Harbor | |
US3611728A (en) | Structure for confining and storing floating liquid products | |
US3548599A (en) | Floating oil barrier | |
US3703084A (en) | Boom system for oil containment | |
CA1126039A (en) | Floating breakwater | |
JPS58146610A (ja) | 浮揚式防舷装置 | |
RU1799946C (ru) | Способ определени части соленой акватории и устройство дл его осуществлени | |
GB2084520A (en) | Pontoons | |
JPH06981B2 (ja) | 消波構造体 | |
US898128A (en) | Steady-floating structure. | |
JP2690268B2 (ja) | 浮き消波体 | |
JPH0351410A (ja) | フレキシブルマウンド | |
JPS62276112A (ja) | 人工礁およびその施工方法 |