US3862584A - Fire ranging method for launchers of self-propelled missiles - Google Patents

Fire ranging method for launchers of self-propelled missiles Download PDF

Info

Publication number
US3862584A
US3862584A US348001A US34800173A US3862584A US 3862584 A US3862584 A US 3862584A US 348001 A US348001 A US 348001A US 34800173 A US34800173 A US 34800173A US 3862584 A US3862584 A US 3862584A
Authority
US
United States
Prior art keywords
missile
launcher
trial
trajectory
launched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US348001A
Inventor
Hermann Karl Schmidt
Jean Michel Tauzin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNIM Groupe SA
Original Assignee
Constructions Navales et Industrielle de la Mediterranee CNIM SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constructions Navales et Industrielle de la Mediterranee CNIM SA filed Critical Constructions Navales et Industrielle de la Mediterranee CNIM SA
Application granted granted Critical
Publication of US3862584A publication Critical patent/US3862584A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/142Indirect aiming means based on observation of a first shoot; using a simulated shoot

Definitions

  • ABSTRACT A fire ranging method for launchers of self-propelled missiles consisting in measuring the angular deviation between the theoretical trajectory of the missile and the point where combustion of the acceleration propulsive charge ceases and in subjecting the launcher to an angular displacement in the opposite direction, the amplitude of said angular displacement being proportional to that of the measured deviation.
  • This invention relates to a fire ranging method for launchers of self-propelled missiles.
  • Ranging of self-propelled missiles is made very difficult owing to the magnitude of the deviations in accuracy caused by the effect of winds, this being particularly strong on missiles provided with a tail fin unit and having a relatively low speed of departure from the launcher.
  • the aim of the present invention is to provide amethod of ranging which obviates these various disadvantages.
  • a fire ranging method forlaunchers of self-propelled missiles in which the angular deviation between the theoretical trajectory of the missile and the point where combustion of the acceleration propulsive charge ceases is measured, and the launcher is subjected to angular movement in the opposite direction and with an amplitude proportional to that of the measured deviation, the proportion factor being adapted to the type of missile in question andis.determinedexperimentally.
  • FIG. 1 shows a curve illustrating diagrammatically the horizontal projection of the trajectory of a selfpropelled missile
  • FIG. 2 shows a diagram illustrating a visual method of ranging.
  • FIG. 3 is a schematic illustration illustrating a remote controlled method of ranging.
  • FIG. 1 illustrates, in a diagrammatic manner, the trajectory devia tion of a self-propelled missile.
  • the straight line AX shows the trajectory followed by the missile when there is no wind and the curve AY represents the trajectory followed by the missile when acted upon by a side wind from a direction perpendicular thereto, illustrated by. the vector V.
  • the trajectory of the missile is purely ballistic; the missile being situated in a mass of moving air, will be moved with the said mass of air, in other words the trajectory will bend in the reverse direction in the direction towards AX.
  • the launcher is equipped with a fixed grid-type collimator similar to that shown in FIG. 2, the optical axis of this collimator being strictly parallel to the axis of the launcher, and a visual reference mark represents the axis of the launcher. In the neutral position the reference mark is situated at the centre 0 of the collimator.
  • the operator locates the position B1 of themissile on his grid; he then engages the training mechanism and modifies the training setting so that the reference mark representing the axis of the launcher is situated on the grid in the position B2 symmetrical to B1 relatively to the centre 0 of the collimator.
  • the training mechanism is calculated so that the movement of the reference mark and the movement of the launcher are in the proportion l/k in order that the desired correction is automatically effected.
  • the sight comprises a reticle which the operator maintains by visually following the image of the missile until the end of the acceleration phase, the launcher being in a slave relationship whereby it is made to follow the movement of the sight in the reverse sense and with an amplitude which is in accordance with the value l/k.
  • This television camera can either be usedin combination with a grid in a similar fashion to the first constructional form or can be used to follow the missile visually in a manner similar to the second form.
  • a television camera is mounted on a launcher 12 such that its optical axis is parallel to the axis ofthe launcher 12.
  • the television camera 10 is coupled by conventional means, such as a cable 13, to a receiver 14.
  • the operator follows the missile on the receiver 14 during the acceleration trajectory section A-B (FIG. 1) until flame out in the same manner as was described above in connection with the use of the collimator of FIG. 2 and the appropriate launcher correction can then be made.
  • the appropriate launcher correction could be accomplished remotely by a correction signal to any conventional launcher repositioning mechanism 18.
  • This arrangement makes it possible to arrange the ranging means at the same place as the firing control means, all being under cover. Furthermore, it is possible to arrange that there should be some slight retention of the image on the screen, which facilitates the work of the operator entrusted with ranging; on the other hand it is possible to regulate the luminosity of this image relatively to the background.
  • this method makes it possible to obtain particularly inconspicuous ranging by carrying out for adjustment purposes, a first firing of a trial rocket of small size, the deviation of which will be observed in order to determine which correction has to be made.
  • the aerodynamic and propulsive features of the trial rocket are so determined that its acceleration trajectory corresponds as far as possible to the trajectory AB, even with different wind effects.
  • these features are determined so as to amplify the effect of certain deviation factors, the correction law being adapted appropriately.
  • the said rocket may be a blank but it may also be self-destroyable by means of any conventional destruct mechanism 20.
  • the trial rocket is fired; the correction angle is determined by means of this rocket, which explodes shortly after passing the point B, that is to say without a possibility of it being logged by the enemy; the launcher is trained and the real firing stage may then commence immediately.
  • This method thus eliminates all difficulties due to logging the point of impact, all the causes of errors due to too great a time lag between ranging tiring and real firing, and makes it possible to achieve complete surprise and to carry out ranging at night.
  • a fire ranging method for launchers of selfpropelled missiles comprising the step of firing a missile from a launcher, measuring the angular deviation between the theoretical trajectory of the missile and the actual location of the missile at the point where combustion of the missile propulsive charge ceases, moving the launcher in a direction opposite to the angular deviation at a predetermined proportional amplitude to that of the measured deviation, the predetermined proportion being a function of the particular missile being launched.
  • a method wherein the angular deviation is measured by tracking the missile with a television camera, transmitting a signal from said camera to a receiver remote from the launcher and transmitting a signal back to the launcher to effect moving of the launcher in the direction opposite to the angular deviation by said predetermined proportional amplitude.
  • a fire ranging method for launchers of selfpropelled missiles comprising the steps of launching a trial missile having propulsive and aerodynamic features which correspond during the combustion phase of flight of the trial missile to those of primary missiles to be launched from thelauncher, measuring the angular deviation between the theoretical trajectory of the trial missile and the actual location of the trial missile at the point where combustion of the propulsive charge ceases, moving the launcher in the direction opposite to the angular deviation at a predetermined proportional amplitude to that of the measured deviation, the predetermined proportion being a function of the particular missile being launched.

Abstract

A fire ranging method for launchers of self-propelled missiles consisting in measuring the angular deviation between the theoretical trajectory of the missile and the point where combustion of the acceleration propulsive charge ceases and in subjecting the launcher to an angular displacement in the opposite direction, the amplitude of said angular displacement being proportional to that of the measured deviation.

Description

United States Patent Schmidt et a1.
[ 1 Jan.28,1975
[ 1 FIRE RANG'ING METHOD FOR LAUNCHERS OF SELF-PROPELLED MISSILES 89/].819, 41 E, 41 L, 41 TV; 102/87; 250/203 R, 203 CT; 356/140 TELEVISION [56] References Cited UNITED STATES PATENTS 728,716 5/1903 Hubbard ct a1. 89/41 E 1,218,706 3/1917 Semple 89/41 E Primary Examiner-Stephen C. Bentley Attorney, Agent, or Firm-Finnegan, Henderson, Farabow & Garrett [57] ABSTRACT A fire ranging method for launchers of self-propelled missiles consisting in measuring the angular deviation between the theoretical trajectory of the missile and the point where combustion of the acceleration propulsive charge ceases and in subjecting the launcher to an angular displacement in the opposite direction, the amplitude of said angular displacement being proportional to that of the measured deviation.
10 Claims, 3 Drawing Figures SELF-DESTRUCT MECHANISM 2o TELEVISION RECEIVER ROCKET LAUNCHER LAUNCHER POSITIONING MECHANlSM PATENTEB JAN 2 8 I975 SHEEI 1 BF 2 PAIENTED 3,862,584
sum 20F 2 SELF-DESTRUCT MECHANISM 2O TELEVISION CAMERA Is v I4 ROCKET 2 I LAUNCHER l2 TELEVISION RECEIVER LAUNCHER POSITIONING MECHANISM FIRE RANGING METHOD FOR LAUNCHERS OF SELF-PROPELLED MISSILES This invention relates to a fire ranging method for launchers of self-propelled missiles.
Ranging of self-propelled missiles is made very difficult owing to the magnitude of the deviations in accuracy caused by the effect of winds, this being particularly strong on missiles provided with a tail fin unit and having a relatively low speed of departure from the launcher.
In fact, at the missile acceleration phase, the action of side wind on the tail fin unit, which is situated at the rear, causes the missile to pivot slightly and come round tothewind; then in the ballistic phase of the path of travel of the missile the wind by a drift effect brings the missile towards the ideal trajectory it would have without wind effect. However, with missiles having a low starting speed, the divergence caused at the beginning of the missile trajectory is much greater then the subsequent drift. As a result, ranging with this kind of missile is very uncertain.
Furthermore, ranging operations based on observation of impact are very difficult because these divergences are of suchan amount that the points of impact may go out of the field of vision of the observer, and also the correction. elements thus determined at the moment of impact have lost some of their value at the moment they are used for the purpose of subsequent firing owning to the rapid variations in air conditions at ground level and low altitudes. Furthermore, ranging by observation of points of impact considerably reduces the effect of surprise.
The aim of the present invention is to provide amethod of ranging which obviates these various disadvantages.
According to thepresent invention there is provided a fire ranging method forlaunchers of self-propelled missiles, in which the angular deviation between the theoretical trajectory of the missile and the point where combustion of the acceleration propulsive charge ceases is measured, and the launcher is subjected to angular movement in the opposite direction and with an amplitude proportional to that of the measured deviation, the proportion factor being adapted to the type of missile in question andis.determinedexperimentally.
Embodiments of the invention will now be described by way of example only, with reference to the accompanying drawings, in which:
FIG. 1 shows a curve illustrating diagrammatically the horizontal projection of the trajectory of a selfpropelled missile;
FIG. 2 shows a diagram illustrating a visual method of ranging. v
FIG. 3 is a schematic illustration illustrating a remote controlled method of ranging.
Referring now to the drawings in detail, FIG. 1. illustrates, in a diagrammatic manner, the trajectory devia tion of a self-propelled missile. The straight line AX shows the trajectory followed by the missile when there is no wind and the curve AY represents the trajectory followed by the missile when acted upon by a side wind from a direction perpendicular thereto, illustrated by. the vector V.
At the beginning, at A, the speed of the missile is very low, the deviation caused by the wind is at the maximum and then decreases asymptotically, to maintain a stable value from the instant at which the combustion of the propulsive acceleration charge is completed.
From this moment, the trajectory of the missile is purely ballistic; the missile being situated in a mass of moving air, will be moved with the said mass of air, in other words the trajectory will bend in the reverse direction in the direction towards AX.
By way of example, in the case of a certain rocket having a range of 15 kilometres, a combustion period for the acceleration propulsive charge of 2 seconds and a launcher departure speed of 35m/sec, it is estimated that the deviation caused by a side wind of l metre/- second is about 240 metres, whereas the compensation due to drift is only about 40 metres, that is to say the deviation at the point of impact is about 200 metres.
As a result, for a wind of 5 m/s the deviation is of the order of 1 km. This explains why regulating fire by observation of the point of impact can only be very uncertam.
Work carried out by the applicants has shown that if one considers on the one hand the angle a defined by the straight lines AB and AX and on the other hand the angle c defined by the tangent BC to the trajectory at the point B and the straight line AX, there exists, for a very great variety of winds, a correlation between these two angles a and c which can be expressed as a=kc, and this factor k can be considered with quite adequate approximation as constant for a given type of projectile.
Thus, if the missile is observed during its acceleration phase, it is easy to determine the angle a by any sighting or aiming means; once this angle a is measured, it is sufficient tomake the launcher pivot through an angle c=a/k to obtain the desired correction of the trajectory.
According to a first constructionalform the launcher is equipped with a fixed grid-type collimator similar to that shown in FIG. 2, the optical axis of this collimator being strictly parallel to the axis of the launcher, and a visual reference mark represents the axis of the launcher. In the neutral position the reference mark is situated at the centre 0 of the collimator. When firing, the operator follows the missile visually during the acceleration trajectory section AB, this being more easily done since a considerable flame is discharged by the nozzle of the missile. At the moment of extinction, which corresponds to the point B, the operator locates the position B1 of themissile on his grid; he then engages the training mechanism and modifies the training setting so that the reference mark representing the axis of the launcher is situated on the grid in the position B2 symmetrical to B1 relatively to the centre 0 of the collimator.
The training mechanism is calculated so that the movement of the reference mark and the movement of the launcher are in the proportion l/k in order that the desired correction is automatically effected.
It is also possible to arrange the training mechanism so asto obtain the ratio l/k: in this case the operator has to bring the reference from O to position Bl, which is simpler.
According to another way of carrying out the invention, the sight comprises a reticle which the operator maintains by visually following the image of the missile until the end of the acceleration phase, the launcher being in a slave relationship whereby it is made to follow the movement of the sight in the reverse sense and with an amplitude which is in accordance with the value l/k.
It is also possible to couple with the launcher a television camera to avoid the operator having to be in the immediate vicinity of the launcher. This television camera can either be usedin combination with a grid in a similar fashion to the first constructional form or can be used to follow the missile visually in a manner similar to the second form.
For example, as shown in FIG. 3, a television camera is mounted on a launcher 12 such that its optical axis is parallel to the axis ofthe launcher 12. The television camera 10 is coupled by conventional means, such as a cable 13, to a receiver 14. When the rocket is fired, the operator follows the missile on the receiver 14 during the acceleration trajectory section A-B (FIG. 1) until flame out in the same manner as was described above in connection with the use of the collimator of FIG. 2 and the appropriate launcher correction can then be made. The appropriate launcher correction could be accomplished remotely by a correction signal to any conventional launcher repositioning mechanism 18.
This arrangement makes it possible to arrange the ranging means at the same place as the firing control means, all being under cover. Furthermore, it is possible to arrange that there should be some slight retention of the image on the screen, which facilitates the work of the operator entrusted with ranging; on the other hand it is possible to regulate the luminosity of this image relatively to the background.
Visual following of the missile is all the easier since the combustion of the propulsive charge is usually accompanied by a considerable emission of light. This process permits particularly easy ranging when firing at night.
It is also possible to arrange an infra-red sight.
Furthermore, this method makes it possible to obtain particularly inconspicuous ranging by carrying out for adjustment purposes, a first firing of a trial rocket of small size, the deviation of which will be observed in order to determine which correction has to be made.
According to a first form of embodiment the aerodynamic and propulsive features of the trial rocket are so determined that its acceleration trajectory corresponds as far as possible to the trajectory AB, even with different wind effects.
According to a second form of embodiment these features are determined so as to amplify the effect of certain deviation factors, the correction law being adapted appropriately.
The said rocket may be a blank but it may also be self-destroyable by means of any conventional destruct mechanism 20.
It is also possible to introduce into the fuel charge of the trial rocket a constituent which increases the brilliance of the flame and reduces the emission of smoke, so as to make visual sighting easier.
Thus the trial rocket is fired; the correction angle is determined by means of this rocket, which explodes shortly after passing the point B, that is to say without a possibility of it being logged by the enemy; the launcher is trained and the real firing stage may then commence immediately.
This method thus eliminates all difficulties due to logging the point of impact, all the causes of errors due to too great a time lag between ranging tiring and real firing, and makes it possible to achieve complete surprise and to carry out ranging at night.
What we claim is: i 1. A fire ranging method for launchers of selfpropelled missiles comprising the step of firing a missile from a launcher, measuring the angular deviation between the theoretical trajectory of the missile and the actual location of the missile at the point where combustion of the missile propulsive charge ceases, moving the launcher in a direction opposite to the angular deviation at a predetermined proportional amplitude to that of the measured deviation, the predetermined proportion being a function of the particular missile being launched.
2. A method according to claim 1 wherein the measuring of the angular deviation is effected by logging on a grid the position of the missile at the end of the combustion phase.
3. A method according to claim 1, wherein the measuring of the angular deviation is effected by following the'missile by means of a reticle.
4. A method according to claim 1 wherein the angular deviation is measured by tracking the missile with a television camera, transmitting a signal from said camera to a receiver remote from the launcher and transmitting a signal back to the launcher to effect moving of the launcher in the direction opposite to the angular deviation by said predetermined proportional amplitude.
5. A method according to claim 4 wherein the launcher is moved through an angle 0 where c=a/k, a is the angle defined by a first projection on a horizontal surface of a theoretical trajectory of a missile launched in the absence of wind and a second projection on a horizontal surface of the actual trajectory of a missile from the launcher until combustion of the propulsive charge ceases and where k is a contant which is determined by the aerodynamic and propulsive characteris tics of the missile launched.
6. A method according to claim 1 wherein the launcher is moved through an angle 0 where c=a/k, a is the angle defined by a first projection on a horizontal surface of a theoretical trajectory of a missile launched in the absence of wind and a second projection on a horizontal surface of the actual trajectory of a missile from the launcher until combustion of the propulsive charge ceases and where k is a constant which is determined by the aerodynamic and propulsive characteristics of the missile launched.
7. A fire ranging method for launchers of selfpropelled missiles comprising the steps of launching a trial missile having propulsive and aerodynamic features which correspond during the combustion phase of flight of the trial missile to those of primary missiles to be launched from thelauncher, measuring the angular deviation between the theoretical trajectory of the trial missile and the actual location of the trial missile at the point where combustion of the propulsive charge ceases, moving the launcher in the direction opposite to the angular deviation at a predetermined proportional amplitude to that of the measured deviation, the predetermined proportion being a function of the particular missile being launched.
8. A method according to claim 7 wherein the trial rocket is of a self-destroying type.
9. A method according to claim 7 wherein the aerodynamic and propulsive features of the trial missile are determined so that the acceleration trajectory of the trial missile is substantially identical to the acceleration tions of the trial missile is amplified by a predetermined proportion relative to the acceleration trajectory of the primary missile which is intended to be launched by

Claims (10)

1. A fire ranging method for launchers of self-propelled missiles comprising the step of firing a missile from a launcher, measuring the angular deviation between the theoretical trajectory of the missile and the actual location of the missile at the point where combustion of the missile propulsive charge ceases, moving the launcher in a direction opposite to the angular deviation at a predetermined proportional amplitude to that of the measured deviation, the predetermined proportion being a function of the particular missile being launched.
2. A method according to claim 1 wherein the measuring of the angular deviation is effected by logging on a grid the position of the missile at the end of the combustion phase.
3. A method according to claim 1, wherein the measuring of the angular deviation is effected by following the missile by means of a reticle.
4. A method according to claim 1 wherein the angular deviation is measured by tracking the missile with a television camera, transmitting a signal from said camera to a receiver remote from the launcher and transmitting a signal back to the launcher to effect moving of the launcher in the direction opposite to the angular deviation by said predetermined proportional amplitude.
5. A method according to claim 4 wherein the launcher is moved through an angle c where c a/k, a is the angle defined by a first projection on a horizontal surface of a theoretical trajectory of a missile launched in the absence of wind and a second projection on a horizontal surface of the actual trajectory of a missile from the launcher until combustion of the propulsive charge ceases and where k is a contant which is determined by the aerodynamic and propulsive characteristics of the missile launched.
6. A method according to claim 1 wherein the launcher is moved through an angle c where c a/k, a is the angle defined by a first projection on a horizontal surface of a theoretical trajectory of a missile launched in the absence of wind and a second projection on a horizontal surface of the actual trajectory of a missile from the launcher until combustion of the propulsive charge ceases and where k is a constant which is determined by the aerodynamic and propulsive characteristics of the missile launched.
7. A fire ranging method for launchers of self-propelled missiles comprising the steps of launching a trial missile having propulsive and aerodynamic features which correspond during the combustion phase of flight of the trial missile to those of primary missiles to be launched from the launcher, measuring the angular deviation between the theoretical trajectory of the trial missile and the actual location of the trial missile at the point where combustion of the propulsive charge ceases, moving the launcher in the direction opposite to the angular deviation at a predetermined proportional amplitude to that of the measured deviation, the predetermined proportion being a function of the particular missile being launched.
8. A method according to claim 7 wherein the trial rocket is of a self-destroying type.
9. A method according to claim 7 wherein the aerodynamic and propulsive features of the trial missile are determined so that the acceleration trajectory of the trial missile is substantially identical to the acceleration trajectory of the primary missile intended to be launched from said launcher.
10. A method according to claim 9 wherein the aerodynamic and propulsive features of the trial missile are determined so that the acceleration trajectory deviations of the trial missile is amplified by a predetermined proportion relative to the acceleration trajectory of the primary missile which is intended to be launched by said launcher.
US348001A 1972-04-19 1973-04-05 Fire ranging method for launchers of self-propelled missiles Expired - Lifetime US3862584A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7213720A FR2181148A5 (en) 1972-04-19 1972-04-19

Publications (1)

Publication Number Publication Date
US3862584A true US3862584A (en) 1975-01-28

Family

ID=9097126

Family Applications (1)

Application Number Title Priority Date Filing Date
US348001A Expired - Lifetime US3862584A (en) 1972-04-19 1973-04-05 Fire ranging method for launchers of self-propelled missiles

Country Status (7)

Country Link
US (1) US3862584A (en)
JP (1) JPS4917099A (en)
DE (1) DE2315880A1 (en)
FR (1) FR2181148A5 (en)
GB (1) GB1380531A (en)
IL (1) IL41943A0 (en)
IT (1) IT981559B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261091A2 (en) * 1986-09-17 1988-03-23 Aktiebolaget Bofors A method and an apparatus for tracking a missile in its trajectory
EP0519315A1 (en) * 1991-06-20 1992-12-23 DIEHL GMBH & CO. Device for measuring the height profile of a ground wind
US5454265A (en) * 1991-06-20 1995-10-03 Diehl Gmbh & Co. Installation for the measurement of the altitude of a surface wind, particularly for improving the hitting accuracy of unguided projectiles
FR2762384A1 (en) * 1997-04-18 1998-10-23 Rheinmetall Ind Ag WEAPON SCORING METHOD OF A WEAPON SYSTEM AND WEAPON SYSTEM FOR IMPLEMENTING THIS PROCESS
US5993215A (en) * 1998-05-15 1999-11-30 Kotsiopoulos; Thomas G. Training weapon with trigger actuated indicator light
US6237462B1 (en) * 1998-05-21 2001-05-29 Tactical Telepresent Technolgies, Inc. Portable telepresent aiming system
US20060178085A1 (en) * 2005-02-04 2006-08-10 Nicholas Sotereanos Remotely controlled vehicle
US7350744B1 (en) * 2006-02-22 2008-04-01 Nira Schwartz System for changing warhead's trajectory to avoid interception

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470953A (en) * 1977-11-08 1979-06-07 Tomokichi Yamazaki *kinoko* cultivating method and container using raw log shaped culturing base having core rod
JPS5497252A (en) * 1978-01-18 1979-08-01 Michio Kasai Cultivation of mushroom
JPS55152960U (en) * 1979-04-20 1980-11-04
US4387865A (en) * 1980-08-25 1983-06-14 The United States Of America As Represented By The Secretary Of The Navy Method for steering a solid propellant ballistic vehicle
US4589225A (en) * 1983-03-11 1986-05-20 Stensaas Larry J Plant fertilization using a microbiological system for phosphorus extraction and distribution
JPS6345160U (en) * 1986-09-09 1988-03-26
JPH0789794B2 (en) * 1988-03-07 1995-10-04 株式会社サイシン Mushroom cultivation
CN103848694A (en) * 2014-03-23 2014-06-11 四川金堂海纳生物医药技术研究所 Preparation method of toadstool culture medium
CN104098373A (en) * 2014-03-25 2014-10-15 四川金堂海纳生物医药技术研究所 Preparation method of morchella vulgaris special-use nutrition package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US728716A (en) * 1902-05-19 1903-05-19 Elmer W Hubbard Sight for guns.
US1218706A (en) * 1914-10-28 1917-03-13 John B Semple Gun.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US728716A (en) * 1902-05-19 1903-05-19 Elmer W Hubbard Sight for guns.
US1218706A (en) * 1914-10-28 1917-03-13 John B Semple Gun.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261091A2 (en) * 1986-09-17 1988-03-23 Aktiebolaget Bofors A method and an apparatus for tracking a missile in its trajectory
EP0261091A3 (en) * 1986-09-17 1989-03-15 Aktiebolaget Bofors A method and an apparatus for tracking a missile in its trajectory
EP0519315A1 (en) * 1991-06-20 1992-12-23 DIEHL GMBH & CO. Device for measuring the height profile of a ground wind
US5454265A (en) * 1991-06-20 1995-10-03 Diehl Gmbh & Co. Installation for the measurement of the altitude of a surface wind, particularly for improving the hitting accuracy of unguided projectiles
FR2762384A1 (en) * 1997-04-18 1998-10-23 Rheinmetall Ind Ag WEAPON SCORING METHOD OF A WEAPON SYSTEM AND WEAPON SYSTEM FOR IMPLEMENTING THIS PROCESS
US5993215A (en) * 1998-05-15 1999-11-30 Kotsiopoulos; Thomas G. Training weapon with trigger actuated indicator light
US6237462B1 (en) * 1998-05-21 2001-05-29 Tactical Telepresent Technolgies, Inc. Portable telepresent aiming system
US6679158B1 (en) * 1998-05-21 2004-01-20 Precision Remotes, Inc. Remote aiming system with video display
US20060178085A1 (en) * 2005-02-04 2006-08-10 Nicholas Sotereanos Remotely controlled vehicle
US8083569B2 (en) 2005-02-04 2011-12-27 Nicholas Sotereanos Remotely controlled vehicle
US7350744B1 (en) * 2006-02-22 2008-04-01 Nira Schwartz System for changing warhead's trajectory to avoid interception

Also Published As

Publication number Publication date
IL41943A0 (en) 1973-06-29
GB1380531A (en) 1975-01-15
IT981559B (en) 1974-10-10
FR2181148A5 (en) 1973-11-30
DE2315880A1 (en) 1973-10-25
JPS4917099A (en) 1974-02-15

Similar Documents

Publication Publication Date Title
US3862584A (en) Fire ranging method for launchers of self-propelled missiles
US4015258A (en) Weapon aiming system
EP1281038B1 (en) Precision gunnery simulator system and method
RU2584210C1 (en) Method of firing guided missile with laser semi-active homing head
US3598344A (en) Missile command system
GB2107835A (en) Correcting, from one shot to the next, the firing of a weapon
US4086841A (en) Helical path munitions delivery
RU2538509C1 (en) Guided missile firing method
RU2351508C1 (en) Short-range highly accurate weaponry helicopter complex
RU2669690C1 (en) Method of correction of shooting from artillery-type weapon
RU2596173C1 (en) High-precision weapon guidance system
RU2549559C1 (en) Method of weapon systems control of units of rocket artillery during firing
RU2436032C1 (en) Guided missile control method
GB1264084A (en)
RU2496081C1 (en) Method of control over aircraft flight
DE3337873A1 (en) BULLET FOR GRENADE LAUNCHER SYSTEMS
RU2715466C1 (en) Method of target tracking using special missile
EP4126667A1 (en) Target acquisition system for an indirect-fire weapon
US3779194A (en) Marine missiles for destruction of submarine targets
RU2707494C1 (en) Remote mining method
RU2439462C1 (en) Method of precision weapons control
RU120209U1 (en) TARGET COMPLEX
RU2297588C1 (en) Method for guidance of telecontrolled missile with control surfaces deployed after launch
RU2343392C1 (en) Method of control of shooting from gun with guided missile
RU2435127C1 (en) Method to control cannon firing by controlled projectile