US3806250A - Nebuliser assemblies for flame spectrometry - Google Patents
Nebuliser assemblies for flame spectrometry Download PDFInfo
- Publication number
- US3806250A US3806250A US00223608A US22360872A US3806250A US 3806250 A US3806250 A US 3806250A US 00223608 A US00223608 A US 00223608A US 22360872 A US22360872 A US 22360872A US 3806250 A US3806250 A US 3806250A
- Authority
- US
- United States
- Prior art keywords
- rod
- nebuliser
- nozzle
- impact surface
- nebulising
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004611 spectroscopical analysis Methods 0.000 title claims abstract description 8
- 230000000712 assembly Effects 0.000 title 1
- 238000000429 assembly Methods 0.000 title 1
- 239000007788 liquid Substances 0.000 claims description 3
- 239000003380 propellant Substances 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 239000012488 sample solution Substances 0.000 description 16
- 239000011324 bead Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000007921 spray Substances 0.000 description 7
- 239000000446 fuel Substances 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/714—Sample nebulisers for flame burners or plasma burners
Definitions
- Domingo et a1. Biochemical Journal, volume 45, 1949, pages 400-408.
- a nebuliser for use in flame spectroscopy comprises a nebulising nozzle, a cloud chamber, an impact surface located in the cloud chamber in front of the nebulising nozzle, and control means, adjustable from outsidethe nebuliser assembly, arranged to move the impact surface along the nozzle axis for the purpose of ready adjustment of the nebulising effect during operation.
- the impact surface is also arranged to be adjusted 1 from outside the nebuliser so that: it can be moved to an off-axis position to reduce sensitivity when required.
- NEBULISER ASSEMBLIES FOR FLAME SPECTROMETRY NEBULISER ASSEMBLIES FOR FLAME SPECTROMETRY
- the pressurised gas passes through a venturi nozzle in,the nebuliser to produce a partial vacuum before exhausting into the cloud chamber.
- Sample solution is drawn into the region of low pressure through a capillary inlet and is thereby broken up into a fine spray composed of droplets of sample solution.
- the pressurised gas fed to the nebuliser may either be an oxidant, a fuel or an inert diluent gas depending upon the analytical flame used.
- the impact surface is typically a spherical surface mounted symmetrically aboutthe axis of cylindrical symmetry of the nebuliser nozzle and impact surfaces have been proposed which comprise for example a spherically ended rod, or a rod having attached thereto a ball, bead or other spherical device.
- the impact surface In order to obtain an optimum sensitivity under given analytical conditions the impact surface has to be accurately positioned on the axis of the nebuliser nozzle I with respect to the nozzle.
- the position is critical and is dependent inter alia upon the nebuliser configuration,.the pressurized gas used with the nebuliser and the solvent employed in the sample solution. It may, however, be desirableto reduce the sensitivity of the flame. spectrophotometer and this could conveniently be done by removal of the impact surface from the axial position.
- the position of the impactsurface has either not been adjustable or has only been adjustable as a skilled operation.
- Anobject of the invention isthe provision of a nebuliser assembly of the kind referred to in which the position of the impact surface is readily adjustable from the exterior of the nebuliser assembly whilst the nebuliser is in operation.
- a nebuliser assembly for use in flame spectroscopy including a cloud chamber, a nebulising nozzle directed into said cloud chamber and having means for applying a liquid analytical medium to be nebulised and a gaseous propellant medium for nebulising said analytical medium to said nebulising nozzle, an impact surface'mounted within said cloud chamber to lie upon the axis of said nebulising nozzle to receive droplets therefrom, and control means adjustable from outside said nebuliser assembly and arranged to move said impact surface in a direction along the axis of said nebulising nozzle to enable the position of said impact surface to be adjusted during operation of said nebuliser assembly.
- a gaseous flame-producing medium can be introduced into said cloud chamber through an annularaperture surrounding said nebuliser nozzle.
- a nebuliser assembly as set. out in the foregoing paragraph comprising further means, also adjustable from without the nebuliser assembly, adapted to move the impact surface from a position on the axis of the nebulising nozzle to an off-axis positionand to return the impact surface thereto.
- FIG. 1 shows one form of flame spectrometer employing a nebuliser assembly
- FIG. 2 showsinlongitudinal section, a nebuliser assembly embodying the present invention.
- FIG. 1 shows in general form a system for performing atomic absorption measurements and including a. nebuliser ,21, a cloud chamber 22, and a burner 8.
- Thenebuliser 21 is fedwith compressed airfrom a cylinder 9 and with sample solution from a vessel 10.
- Fuel and auxiliary air are fed from cylinders Hand 12 through a common line 13. Mixing of the fuel/air mixture and sample solution spray occurs in the cloud chamber 22, and the resulting mixturev is fed to the burner 8 which produces an analytical flame 14 wherein evaporation of the sample solution solvent takes place and vaporisation of the sample occurs.
- Radiation from a source 15 provides a beam of radiation having one or more characteristic spectral line(s).
- the beam of radiation emitted by the source 15 isfocussed and passed through the flame .14 containing the vapour of the sample solution containing an unknown quantity of the material under examination, into. a. monochromator 16.
- Certain spectral lines are absorbed by the vapour of the sample from the beam of radiation indicating the presence of a'particular element in the vaporised solution if the beam of radiation is of a specific wavelength corresponding to the energy required to excite atoms which have been vaporised, from their ground state to the resonant energy level.
- Adjustment of the monochromator 16 to the wavelength of the spectral lines which are to be absorbed gives a beam of radiation of narrow bandwidth about that wavelength.
- the resultant beam of radiation is directed onto a radiation sensitivedevice 17 which provides an output Signal which is amplified by an amplifier 18 and applied to a meter 19 which provides an inunknown samples are introduced into the flame 14 andwhen no sample is introduced into the flame l4.
- a nebuliser assembly comprising a nebuliser generally indicated at 21, a cloud chamber 22 (shown in part) and a cloud chamber cap 23 is provided with an impact surface 24 in the form of a spherical bead 25 mounted upon a rod 26 to lie upon the axis of cylindrical symmetry of the nebuliser 21 in the manner shown.
- the nebuliser 21 is mounted within a bore in the cloud chamber cap 23, a shoulder 27 coacting with an O-ring 28 to provide a gas-tight seal.
- the nebuliser 21 is provided with a capillary sample conduit 29 and a nozzle 30.
- the forward portion 31 of the nozzle 30 projects through a recess 32 in the cloud chamber cap 23 and through a member 33 which serves to seal the recess 32 except foran annular passageway 34 surrounding the forward portion 31 of the nozzle 30.
- the cloud chamber 22 is mounted on the cap 23 by means of a screwed collar 35 and a sealing ring 36 is arranged to provide a gas-tight seal.
- a portion 37 'of the cloud chamber cap 23 is provided with a machined sump 38 communicating with a drain tube 39 passing through the cap 23.
- the rod 26 is rigidly mounted upon a control rod 40, passing as a rotation fit through the cap 23v and a control assembly 41, and is terminated by 'a knob 42 mounted thereupon, an O-ring 43 co-operating with, the wall of the surrounding bore to provide a gas-tight seal.
- the control assembly 41 comprises a screwed bush 44 mounted in the cloud chamber cap 23 and contains a coil spring 45 seated about the control rod 40 and held in slight compression between a shoulder 46 and a circlip 47 mounted on the rod 40.
- a cap 48 is at tached to the bush 44 by means of screws 49 and 49.
- the control rod 40 includes a flattened portion 50 which co-operates with a flat-ended insert 51 held in place by means of a coil spring 52 and a screw cap 53.
- the nebuliser assembly of FIG. 2 is fed with air, fuel and sample solution in the manner described with reference to FIG. 1 of the drawings.
- Compressed air enters a-chamber 60 of the nebuliser assembly and exhausts through the nozzle 30 into the cloud chamber 22. Passage of the compressed air produces a partial vacuum in the region adjacent the open end of the capillary sample conduit 29, the outer end of which is connected to a source of sample solution, drawing the sample solution through the conduit 29 and at the same time causing it to break up into a fine spray.
- the spray strikes the impact surface 24 of the head 25 when the latter is in the position shown.
- Pre-mixed air and fuel gas is introduced into the recess 32 and further mixing takes place between the fuel gas and the air in passing through the annular passageway 34 before the mixing with the compressed gas and sample spray in the cloud chamber 22.
- the fuel gas used depends upon the nature of the analysis as does the proportion of fuel gas to air and the type of compressed gas used to feed the nebuliser.
- the mixed gases and sample solution spray pass through the cloud chamber 22 to the burner 8 as shown in FIG. 1. Any droplets of sample solution which collect on the walls of the cloud chamber 22 willdrain into the sump 38 and will be exhausted via the pipe 39.
- the position of the impact surface 24 on the axis of the nebuliser nozzle 30 is critical and must be adjusted for optimum sensitivity of each analysis. This is readily achieved in the embodiment described, by rotation of the cap 48 mounted on the bush 44 which imparts an axial force to the circlip 47 and hence to the control rod 40 which is thus moved axially within the cloud chamber cap 23 causing a corresponding movement of the bead 25 along the axis of the nebuliser nozzle 30. The limit of this travel is determined by the length of the machined portion 50 of the rod 40. Rotation of the rod 40 is prevented by cooperation between the insert 51 under the pressure exerted by the coil spring 52, and the machined portion 50 of the rod 40.
- a rotary motion is imparted to the control rod 40 by means of the control knob 42 causing the insert 51 to ride out of the machined portion 50 of the control rod 40.
- the bead 25 is held in an adjacent off-axis position by the pressure of the insert 51 upon the control rod 40.
- the return of the bead 25 to its original axial position is effected by a reverse rotation of the knob 42, causing the insert 51 to ride back into the flat 50, thus locating the bead 25 in its original position. In this way the mechanism returns the impact surface accurately to the position previously set by means of the control assembly 41.
- the impact surface 24 of the bead 25 can project into the mouth of the nozzle 30 preventing the translation of the bead 25 into an offaxis position by a simple rotary action.
- the control knob 42 is pushed axially inwards against the pressure of the coil spring 45 to cause the axial movement of the bead 25 away from the nozzle 30 before the rotary motion is imparted to the control rod 40.
- inward axial pressure must-again be applied to the control knob 42 before rotation.
- Provision of the control assembly described and illustrated in FIG. 2 enables the position of the impact surface 24 to be precisely and easily adjusted from the exterior of the nebuliser assembly and .permits the translation of the impact surface to an off-axis position also from the exterior of the assembly. In addition, adjustment of the position of the impact surface in either sense may be effected whilst the nebuliser is in operation and a flame established on the burner 12. Provision of the control assembly makes the removal and replacement of the bead and the positioning of the bead steel, the nozzle 30 of tantalum and the rod 26 of titanium or stainless steel coated with an inert plastic material.
- the bead 25 is constructed of titanium or sapphire and the capillary sample conduit 29 of platinumliridium alloy.
- a nebuliser assembly for use in flame spectroscopy comprising:
- a cloud chamber a cloud chamber; a nebulising nozzle directed into said cloud chamber;
- a nebuliser assembly as claimed in claim 1 further comprising urging means which tends to restore said impact surface to an axial position with respect to said nebulising nozzle.
- a nebuliser assembly as claimed in claim 4 wherein the surface of said rod facing said pin when said impact surface is in the vicinity of the axis of said nebulising nozzle is flat and said flat surface is perpendicular to said pin when said impact surface lies on the axis of said nebulising nozzle.
- a nebuliser assembly as claimed in claim 1 further comprising:
- a nebuliser assembly as claimed in claim 1 further comprising an annular aperture surrounding said nebuliser nozzle through which a gaseous flame-producing medium may be introduced into said cloud chamber.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Sampling And Sample Adjustment (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB403171A GB1382254A (en) | 1971-02-05 | 1971-02-05 | Flame spectrometry apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US3806250A true US3806250A (en) | 1974-04-23 |
Family
ID=9769434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00223608A Expired - Lifetime US3806250A (en) | 1971-02-05 | 1972-02-04 | Nebuliser assemblies for flame spectrometry |
Country Status (7)
Country | Link |
---|---|
US (1) | US3806250A (enrdf_load_stackoverflow) |
JP (1) | JPS545714B1 (enrdf_load_stackoverflow) |
AU (1) | AU463491B2 (enrdf_load_stackoverflow) |
CH (1) | CH536659A (enrdf_load_stackoverflow) |
DE (1) | DE2204938C3 (enrdf_load_stackoverflow) |
FR (1) | FR2124490B1 (enrdf_load_stackoverflow) |
GB (1) | GB1382254A (enrdf_load_stackoverflow) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4220413A (en) * | 1979-05-03 | 1980-09-02 | The Perkin-Elmer Corporation | Automatic gas flow control apparatus for an atomic absorption spectrometer burner |
US4250553A (en) * | 1979-03-05 | 1981-02-10 | The Perkin-Elmer Corporation | Fluid flow measurement system |
US4361401A (en) * | 1978-05-22 | 1982-11-30 | Instrumentation Laboratory Inc. | Automatic sample deposition in flameless analysis |
US4577517A (en) * | 1982-08-30 | 1986-03-25 | Labtest Equipment Co. (S.E. Asia) Pty. Ltd. | Nebulizer |
US4915616A (en) * | 1987-05-18 | 1990-04-10 | Saibu Gas Co. | System utilizing gas flame for appreciation or ornamentation |
US5186621A (en) * | 1990-03-28 | 1993-02-16 | The Texas A & M University System | Chimney holder and injection tube mount for use in atomic absorption and plasma spectroscopy |
WO1995025280A3 (de) * | 1994-03-17 | 1995-12-07 | Harald Berndt | Vorrichtung zur handhabung von flüssigkeiten für analytische zwecke |
USD389557S (en) | 1996-05-17 | 1998-01-20 | Precision Glassblowing of Colorado, Inc. | Nebulizer |
WO1998040165A1 (en) * | 1997-03-07 | 1998-09-17 | Varian Australia Pty. Ltd. | Spectroscopic atomisation assembly |
DE19719903A1 (de) * | 1997-05-12 | 1998-11-19 | Deutsch Zentr Luft & Raumfahrt | Meßvorrichtung und Verfahren zur Reinigung von Kontaminationsbereichen einer Meßvorrichtung |
EP0552290B1 (en) * | 1990-10-11 | 2000-02-02 | Advanced Research & Technology Institute | Process and apparatus for fragmenting biomaterials |
AU737783B2 (en) * | 1997-03-07 | 2001-08-30 | Agilent Technologies Australia (M) Pty Ltd | Spectroscopic atomisation assembly |
US20050287033A1 (en) * | 2004-06-25 | 2005-12-29 | University Technologies International Inc. | Micro flame detector and method for gas chromatography |
US20080213908A1 (en) * | 2004-06-25 | 2008-09-04 | Uti Limited Partnership | Flame detector |
US20120003593A1 (en) * | 2007-08-10 | 2012-01-05 | G.B.D. Corp | Method and apparatus for producing a visible hydrogen flame |
US20150285770A1 (en) * | 2010-02-26 | 2015-10-08 | Rosario Mannino | Jet assembly for use in detectors and other devices |
CN106872384A (zh) * | 2017-04-07 | 2017-06-20 | 北京瀚时仪器有限公司 | 一种用于原子吸收分光光度计的高效雾化器 |
CN116183531A (zh) * | 2023-03-14 | 2023-05-30 | 上海元析仪器有限公司 | 一种易拆装的原子吸收分光光度计火焰原子化器 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57159347U (enrdf_load_stackoverflow) * | 1981-03-31 | 1982-10-06 | ||
JPS60124262U (ja) * | 1984-01-26 | 1985-08-21 | 富士電機株式会社 | 内部通風形回転電機 |
JPS61119017U (enrdf_load_stackoverflow) * | 1985-01-11 | 1986-07-26 | ||
DE3516176A1 (de) * | 1985-05-06 | 1986-11-06 | Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen | Pneumatischer zerstaeuber fuer die atomabsorptionsspektroskopie |
BR9104352A (pt) * | 1991-10-03 | 1992-03-10 | Mcq Do Brasil Ind E Comercio L | Injetor preparador de amostras para espectrofotometros de chama ou plasma |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3469789A (en) * | 1967-06-07 | 1969-09-30 | Corning Glass Works | Sample introducing device for spectro-chemical analysis |
US3516771A (en) * | 1968-08-01 | 1970-06-23 | Hewlett Packard Co | Burner for spectroscopic use |
-
1971
- 1971-02-05 GB GB403171A patent/GB1382254A/en not_active Expired
-
1972
- 1972-02-02 CH CH153272A patent/CH536659A/de not_active IP Right Cessation
- 1972-02-02 JP JP1144272A patent/JPS545714B1/ja active Pending
- 1972-02-03 AU AU38613/72A patent/AU463491B2/en not_active Expired
- 1972-02-03 DE DE2204938A patent/DE2204938C3/de not_active Expired
- 1972-02-04 US US00223608A patent/US3806250A/en not_active Expired - Lifetime
- 1972-02-04 FR FR7203795A patent/FR2124490B1/fr not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3469789A (en) * | 1967-06-07 | 1969-09-30 | Corning Glass Works | Sample introducing device for spectro-chemical analysis |
US3516771A (en) * | 1968-08-01 | 1970-06-23 | Hewlett Packard Co | Burner for spectroscopic use |
Non-Patent Citations (2)
Title |
---|
Domingo et al.: Biochemical Journal, volume 45, 1949, pages 400 408. * |
Rauterberg et al.: Angewandte Chemie volume 53, 1940, pages 477 479. * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4361401A (en) * | 1978-05-22 | 1982-11-30 | Instrumentation Laboratory Inc. | Automatic sample deposition in flameless analysis |
US4250553A (en) * | 1979-03-05 | 1981-02-10 | The Perkin-Elmer Corporation | Fluid flow measurement system |
US4220413A (en) * | 1979-05-03 | 1980-09-02 | The Perkin-Elmer Corporation | Automatic gas flow control apparatus for an atomic absorption spectrometer burner |
US4577517A (en) * | 1982-08-30 | 1986-03-25 | Labtest Equipment Co. (S.E. Asia) Pty. Ltd. | Nebulizer |
US4915616A (en) * | 1987-05-18 | 1990-04-10 | Saibu Gas Co. | System utilizing gas flame for appreciation or ornamentation |
US5186621A (en) * | 1990-03-28 | 1993-02-16 | The Texas A & M University System | Chimney holder and injection tube mount for use in atomic absorption and plasma spectroscopy |
EP0552290B1 (en) * | 1990-10-11 | 2000-02-02 | Advanced Research & Technology Institute | Process and apparatus for fragmenting biomaterials |
WO1995025280A3 (de) * | 1994-03-17 | 1995-12-07 | Harald Berndt | Vorrichtung zur handhabung von flüssigkeiten für analytische zwecke |
USD389557S (en) | 1996-05-17 | 1998-01-20 | Precision Glassblowing of Colorado, Inc. | Nebulizer |
WO1998040165A1 (en) * | 1997-03-07 | 1998-09-17 | Varian Australia Pty. Ltd. | Spectroscopic atomisation assembly |
AU737783B2 (en) * | 1997-03-07 | 2001-08-30 | Agilent Technologies Australia (M) Pty Ltd | Spectroscopic atomisation assembly |
DE19719903A1 (de) * | 1997-05-12 | 1998-11-19 | Deutsch Zentr Luft & Raumfahrt | Meßvorrichtung und Verfahren zur Reinigung von Kontaminationsbereichen einer Meßvorrichtung |
US20050287033A1 (en) * | 2004-06-25 | 2005-12-29 | University Technologies International Inc. | Micro flame detector and method for gas chromatography |
US20080213908A1 (en) * | 2004-06-25 | 2008-09-04 | Uti Limited Partnership | Flame detector |
US20120003593A1 (en) * | 2007-08-10 | 2012-01-05 | G.B.D. Corp | Method and apparatus for producing a visible hydrogen flame |
US20150285770A1 (en) * | 2010-02-26 | 2015-10-08 | Rosario Mannino | Jet assembly for use in detectors and other devices |
CN106872384A (zh) * | 2017-04-07 | 2017-06-20 | 北京瀚时仪器有限公司 | 一种用于原子吸收分光光度计的高效雾化器 |
CN116183531A (zh) * | 2023-03-14 | 2023-05-30 | 上海元析仪器有限公司 | 一种易拆装的原子吸收分光光度计火焰原子化器 |
CN116183531B (zh) * | 2023-03-14 | 2023-09-05 | 上海元析仪器有限公司 | 一种易拆装的原子吸收分光光度计火焰原子化器 |
Also Published As
Publication number | Publication date |
---|---|
JPS545714B1 (enrdf_load_stackoverflow) | 1979-03-20 |
GB1382254A (en) | 1975-01-29 |
AU3861372A (en) | 1973-08-09 |
FR2124490B1 (enrdf_load_stackoverflow) | 1976-01-16 |
FR2124490A1 (enrdf_load_stackoverflow) | 1972-09-22 |
CH536659A (de) | 1973-05-15 |
DE2204938B2 (de) | 1979-11-29 |
AU463491B2 (en) | 1975-07-10 |
DE2204938A1 (de) | 1972-08-17 |
DE2204938C3 (de) | 1980-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3806250A (en) | Nebuliser assemblies for flame spectrometry | |
US4125225A (en) | Corrosion-free nebulizer | |
US4762995A (en) | Monodisperse aerosol generator | |
US4629478A (en) | Monodisperse aerosol generator | |
US5464157A (en) | Nebulizer for use in an atomic absorption system | |
US4924097A (en) | Monodisperse aerosol generator for use with infrared spectrometry | |
US5818581A (en) | Elemental analysis method and apparatus | |
Skogerboe et al. | Microwave plasma emission spectrometry | |
US5175433A (en) | Monodisperse aerosol generator for use with infrared spectrometry | |
CA2316825C (en) | Direct injection high efficiency nebulizer for analytical spectrometry | |
Savage et al. | Development and characterization of a miniature inductively coupled plasma source for atomic emission spectrometry | |
US6499675B2 (en) | Analytical apparatus using nebulizer | |
JPS583592B2 (ja) | 質量分析計への試料導入方法及び装置 | |
US4687929A (en) | Monodisperse aerosol generator | |
Whaley et al. | Spray chamber placement and mobile phase flow rate effects in liquid chromatography/inductively coupled plasma atomic emission spectrometry | |
Dryahina et al. | Ion Chemistry in Dielectric Barrier Discharge Ionization: Recent Advances in Direct Gas Phase Analyses | |
JPS6257067B2 (enrdf_load_stackoverflow) | ||
US3866831A (en) | Pulsed ultrasonic nebulization system and method for flame spectroscopy | |
Koropchak et al. | Aerosol particle size effects on plasma spectrometric analysis | |
AU8325291A (en) | Method and apparatus for analytical sample preparation | |
Matusiewicz | A microwave plasma cavity assembly for atomic emission spectrometry | |
US3529913A (en) | Means for generating sample flames | |
JP3435931B2 (ja) | 原子吸光分光光度計 | |
Wang et al. | A concentric capillary nebulizer (CCN) for inductively-coupled plasma atomic emission spectrometry | |
AU737783B2 (en) | Spectroscopic atomisation assembly |