US3795269A - Method of and apparatus for casting on moving surfaces - Google Patents
Method of and apparatus for casting on moving surfaces Download PDFInfo
- Publication number
- US3795269A US3795269A US00238346A US3795269DA US3795269A US 3795269 A US3795269 A US 3795269A US 00238346 A US00238346 A US 00238346A US 3795269D A US3795269D A US 3795269DA US 3795269 A US3795269 A US 3795269A
- Authority
- US
- United States
- Prior art keywords
- casting
- coating
- layer
- metal
- parting material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005266 casting Methods 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 52
- 238000000576 coating method Methods 0.000 claims abstract description 39
- 239000011248 coating agent Substances 0.000 claims abstract description 38
- 238000005058 metal casting Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 33
- 239000000454 talc Substances 0.000 claims description 12
- 229910052623 talc Inorganic materials 0.000 claims description 12
- 239000011236 particulate material Substances 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 5
- 230000001680 brushing effect Effects 0.000 claims description 4
- 229920002050 silicone resin Polymers 0.000 claims description 4
- 230000001464 adherent effect Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 56
- 235000012222 talc Nutrition 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 238000009749 continuous casting Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/0665—Accessories therefor for treating the casting surfaces, e.g. calibrating, cleaning, dressing, preheating
- B22D11/0668—Accessories therefor for treating the casting surfaces, e.g. calibrating, cleaning, dressing, preheating for dressing, coating or lubricating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C3/00—Selection of compositions for coating the surfaces of moulds, cores, or patterns
Definitions
- ABSTRACT In the casting of metals on or between movable end- [2]] Appl' 238346 less surfaces, a twolayer dressing is applied to each casting surface.
- the dressing includes a heat-insulating 52 US. Cl 164/73, 164/87, 164/158, coating fixedly adhered to the Casting Surface, 164/268 164/273 removable parting layer deposited on the coating for 511 1m.
- Various metal casting operations involve deposit of molten metal to be cast upon a moving endless surface such as the surface of a drum, the metal being solidified as it is transported on the surface (which may, for ex ample, be cooled as with water) and the cast ingot being separated-from the moving casting surface at a point spaced from the locality of molten metal delivery to the surface.
- molten aluminum or other metal to be cast is fed continuously between two synchronously rotating water-cooled metal drums which provide the casting surfaces. As the metal travels between the drums, it solidifies and emerges from the drums as a continuous thin ingot, ready to be rolled or otherwise worked.
- a variety of more or less permanent casting surface dressings have heretofore been proposed for [use in movable-surface casting apparatus.
- the dressing com positions employed have included, for instance, mixtures ofa resin with particulate refractory material and- /or finely divided carbon. While reasonably effective, these dressings are subject to gradual deterioration over extended periods of use. In particular, material of the dressing tends to be removed with or by the cast ingot. Thus, it is periodically necessary to remove and replace the worn dressing. Such interruption of the cast ing operation is economically undesirable as well as inconvenient.
- An object of the present invention is to provide new and improved dressings for movable endless casting surfaces. Another object is to provide procedures for casting metals on or between movable endless surfaces,
- a further object is to provide apparatus for casting metals on or between endless movable surfaces, wherein a surface dressing providing desired uniformity of heat extraction and separation of cast metal from the surfaces is maintained with little or no interruption of continuous casting.
- the present invention broadly contemplates the provision of a two layer insulating dressing on an endless casting surface comprising a moving mold.
- the inner layer of this dressing i.e. the layer applied directly to the casting surface, is durable, wear resistant, and selected primarily for its heatinsulating and mechanical properties.
- the outer layer which constitutes a sacrificial or parting layer, is a layer of removable material such as talc that may be applied freshly during each cycle of the moving casting surface. The purpose of the outer layer is to prevent adherence of the solidifying metal to the'underlying coating, and to protect the coating from deterioration through direct contact with the metal.
- the present invention separate dressing layers are provided to 'serve the separate (heat-insulating and parting) functions of a casting surface dressing.
- the inner layer or heat-insulating coating of the dressing of the invention is first applied to the casting surface so as to be essentially permanently adhered thereto.
- the outer or parting layer material e.g.
- the parting layer protects the insulating layer against direct contact with the metal being cast, the insulating layer or coating exhibits greatly enhanced durability as compared with previously known single-layer casting surface dressings used for similar purposes. That is to say, the effectiveness and uniformity of heat insulation provided by the insulating coating of the present dressing remain essentially unimpaired over very extended periods of use.
- the parting layer which is relatively inexpensive, is continuously removed and replenished, providing a maintained effectiveness of its parting and protective functions without interruption of the casting operation.
- FIG. I is a schematic side elevational view of an illustrative type of continuous casting apparatus arranged for the practice of the present invention in one embodiment thereof;
- FIG. 2 is an enlarged fragmentary sectional view taken along the line 2-2 of FIG. 1;
- FIG. 3 is a schematic elevational view of a further example of casting apparatus arranged for the practice of the present invention.
- FIG. 1 there is shown in schematic side elevational view.a casting machine comprising a pair of flat endless belts l and 11, e.g. fabricated of steel, mounted for continuous movement around guide and drive rollers l4, l5, and 17, 20, respectively.
- the belts l0 and 11 and their respective rollers 14, 15 and 17, are mutually disposed and arranged so that in portions of their respective paths, the two belts move in parallel, closely spaced relation to each other, in the same direction and at a common velocity,.so as to define between them an extended casting region 22;
- the facing surfaces of the .two belts advancing through this casting region constitute the casting surfaces of the apparatus.
- Molten metal 23 supplied from a trough 24 is fed continuously to the inlet end of the casting region 22, i.e. between the parallel facing surfaces of the two moving belts l0 and 11, so as to be carried through the casting region by and between the synchronously moving belts. As the metal thus traverses the casting region, it
- nozzles 28 may be provided for spraying a suitable coolant fluid such as water on the outwardly facing surfaces of the portions of the two belts l0 and 11 traversing the casting region.
- the casting surface of each of the belts I0 and 11 is continuously coated with a fixedly adherent layer or coating of heat-insulating material having appropriate thermal and mechanical properties for use as a dressing in the casting operation.
- This layer or coating (represented at 30 in FIG. 2) may be applied to the casting surface of the steel belt as a paint or paintlike substance and may be subsequently cured as with heat.
- the insulating layer may, for example, incorporate a silicone resin as the insulating material. It must be sufficiently flexible to travel with the belt-around the rollers without cracking or spalling. However, its chemical properties (as regards reactivity with molten aluminum or other metal being cast) are not critical as is the case in a conventional belt dressing.
- eachbelt there is applied to the casting surface of eachbelt (as by means schematically shown as hoppers 32 in FIG. 1) a second, parting layer which may (e.g. in the case of aluminum casting operations) conveniently be a powdered material such as talc.
- the layer of talc (represented at 34 in FIG. 2) coats the insulating layer 30 and protects it from direct contact with the metal being cast. It will be noted that thisouter layer of the dressing is applied to the casting surfaces of the belts prior to contact of those surfaces with molten metal being cast, i.e. during each cycle of the belts.
- the material of parting layer 34 should be chemically inert with respect to the metal being cast; more particularly, it should be able to withstand the temperature of the molten metal, should not be wettable by the molten metal, should be nonabrasive (since it will or may come into contact with mechanical parts of the casting apparatus) and nontoxic, and it should in addition be of such character as to adhere effectively to the insulating layer 30 as it is carried into contact with molten metal in the casting region 22. As explained, this material has as its primary function the protection of the inner, insu lating layer 30.
- the parting layer 34 will be at least partially removed.
- the casting surfaces of the belts (after separation from contact with thecast strip 26) are cleaned to remove the remnant of the parting layer from the belt so that upon reapplication of the parting layer material to the belt, a smooth and even surface will result.
- the parting layer residue may be removed from the belts during each cycle by means of rotating stainless steel brushes 36 which brush the remaining talc off the belt surfaces, and with which may be associated suitable vacuum systems (not shown) for completely carrying away the brushed talc.
- the insulating layer should accordingly be capable of withstanding the brushing operation.
- the insulating layer In addition to this mechanical property and to the properties of thermal insulation, flexibility and freedom from spalling, the insulating layer must also be thermally stable through the range of temperatures to which it is exposed.
- the removable parting layer serves to protect the underlying insulating layer against damage such as might otherwise result from contact with the ingot being cast.
- the insulating layer has a very markedly enhanced useful lifetime as compared with the lifetime of conventional single layer belt dressings.
- the belt casting surfaces after traversing the casting region 22 and transporting the solidifying metal through that region while removing heat from the metal), are brushed to remove residual talc so that their casting surfaces are clean and smooth at the end of each cycle, i.e. for reapplication ofa fresh parting layer from hoppers 32 prior to return of the casting surfaces to the casting region.
- the insulating coating is formed by spraying on the casting surface of a steel belt a paint having the following composition:
- talcum or Celite may be used in place of the mica, in the specified amount.
- one suitable material is the tale commercially available under the designation fDesert Talc Micro 706," deposited evenly on the casting belts using a hopper distribution system.
- the specified material has a particle distribution of 100% 12 microns, 90% 7.5 microns, 80% 5.5 microns, 70% 4.2 microns, 60% 3.4 microns, 50% 2.75 microns, 40% 2.2 microns, 30% 1.5 microns, 1 micron, 10% Mim vJ2 c,.
- FIG. 3 shows another type of continuous casting appa'ratus in which the present invention may be used.
- the structure of FIG. 3 includes a pair of drums 40, 41, e.g. fabricated of steel or the like, and having cylindrical surfaces which constitute the casting surfaces of the apparatus.
- the two drums are mounted in axially parallel, closely adjacent relation, as illustrated, and are driven by suitable means (not shown) in the directions respectively indicated by arrows 42 and 43, such that molten metal 44 supplied above and between the drums (cg. by suitable conventional means, not shown) is advanced by the rotation of the drums through the nip or narrow space 45 defined between them, emerging as a thin flat continuous ingot 46.
- All the foregoing features of the FIG. 3 apparatus are gen- 'erally conventional, and, further in accordance with conventional practice, the drums may be cooled internally as by circulation of water.
- the cylindrical casting surfaces of the two drums in FIG. 3 are coated with an insulating layer having the properties of the insulating layer 30 of the apparatus of FIG. I.
- Hoppers 47 supply parting layer material such as tale to the coated drum surfaces prior to contact of the surfaces with the molten metal 44 during each cycle of revolution of the drums.
- rotary brushes 48 (corresponding to the brushes 36 in FIG. 1) remove the residue of parting layer material from the drum surfaces prior to supply to fresh parting layer material for the next cycle.
- the functions of the respective layers of the dressing in the apparatus of FIG. 3 are essentially the same as the functionsof the corresponding layers inthe apparatus of FIG. 1.
- a method of continuously casting ametal ingot in contact with a moving surface including the steps ofa. continuously advancing an endless metal casting surface along a closed path while b. continuously bringing molten metal into contact with said surface at a first locality in said path and while c. continuously separating freshly cast ingot from said surface at a second locality in said path, wherein the improvement comprises d. said casting surface bearing a continuous and fixedly adherent heat-insulating coating; and
- the layer-applying step includes the steps of i. cleaning the coated casting surface to remove parting material therefrom as said surface advances beyond said second locality and thereafter ii. applying a fresh layer of parting material to the surface prior to return of the surface to the first locality.
- said parting material is a dry particulate material and wherein said cleaning step comprises brushing the coated casting surface to effect substantially complete removal of residual particles of parting material therefrom.
- Apparatus for casting metal including a. a movable endless casting surface and b. means for delivering molten metal thereto,
- the improvement comprises c. a thermally insulating coating deposited on and fixedly adhered to said casting surface and g d. means for continuously applying to said casting surface, during movement thereof, a discrete layer of parting material for preventing metal from sticking to said coating, deposited on said coating so as to be interposed between said coating and the metal delivered to said casting surface.
- said applying means being disposed ahead of said first locality for depositing a layer of said particulate material on the coated casting surface
- g. means beyond said second locality for removing residual particulate material from the casting surface.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23834672A | 1972-03-27 | 1972-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3795269A true US3795269A (en) | 1974-03-05 |
Family
ID=22897485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00238346A Expired - Lifetime US3795269A (en) | 1972-03-27 | 1972-03-27 | Method of and apparatus for casting on moving surfaces |
Country Status (13)
Country | Link |
---|---|
US (1) | US3795269A (en, 2012) |
JP (1) | JPS4914320A (en, 2012) |
BE (1) | BE797306A (en, 2012) |
BR (1) | BR7302196D0 (en, 2012) |
CA (1) | CA990932A (en, 2012) |
CH (1) | CH579958A5 (en, 2012) |
DE (1) | DE2315036B2 (en, 2012) |
DK (1) | DK129319B (en, 2012) |
ES (1) | ES413006A1 (en, 2012) |
FR (1) | FR2177970B1 (en, 2012) |
GB (1) | GB1424205A (en, 2012) |
IT (1) | IT982572B (en, 2012) |
NL (1) | NL7304244A (en, 2012) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3914084A (en) * | 1973-11-06 | 1975-10-21 | Kornylac Co | Continuous molding machine |
US3983889A (en) * | 1974-05-20 | 1976-10-05 | Leichtmetall-Gesellschaft Mbh | Process for cleaning the surface of continuously cast strip |
US4027716A (en) * | 1974-03-11 | 1977-06-07 | Metallgesellschaft Aktiengesellschaft | Method for preparing a continuous casting belt |
US4069860A (en) * | 1975-11-24 | 1978-01-24 | Southwire Company | Ablative band for a casting machine |
US4298053A (en) * | 1974-03-18 | 1981-11-03 | Metallurgie Hoboken-Overpelt | Casting belts for machines for the continuous casting of metals |
US4582114A (en) * | 1983-04-28 | 1986-04-15 | Kawasaki Steel Corporation | Continuous casting apparatus for the production of cast sheets |
US5437326A (en) * | 1992-08-18 | 1995-08-01 | Hazelett Strip-Casting Corporation | Method and apparatus for continuous casting of metal |
WO1996002339A1 (en) * | 1994-07-19 | 1996-02-01 | Alcan International Limited | Process and apparatus for casting metal strip and injector used therefor |
US5515908A (en) * | 1992-06-23 | 1996-05-14 | Kaiser Aluminum & Chemical Corporation | Method and apparatus for twin belt casting of strip |
US5638893A (en) * | 1993-10-07 | 1997-06-17 | Fata Hunter, Inc. | Parting agent spray system |
US5697423A (en) * | 1994-03-30 | 1997-12-16 | Lauener Engineering, Ltd. | Apparatus for continuously casting |
US5927377A (en) * | 1997-01-06 | 1999-07-27 | Continuus Properzi S.P.A | Method of wiping and application of mold release solution to a rotary chill casting wheel |
RU2142353C1 (ru) * | 1995-11-14 | 1999-12-10 | Фата Хантер, Инк. | Способ и литейная машина цепного типа для непрерывной разливки |
US6063215A (en) * | 1995-10-16 | 2000-05-16 | Kaiser Aluminum & Chemical Corporation | Method of manufacturing casting belts for use in the casting of metals |
US6125915A (en) * | 1994-03-30 | 2000-10-03 | Golden Aluminum Company | Method of and apparatus for cleaning a continuous caster |
US6354364B1 (en) | 1994-03-30 | 2002-03-12 | Nichols Aluminum-Golden, Inc. | Apparatus for cooling and coating a mold in a continuous caster |
US6581675B1 (en) | 2000-04-11 | 2003-06-24 | Alcoa Inc. | Method and apparatus for continuous casting of metals |
US20070289717A1 (en) * | 2003-12-23 | 2007-12-20 | Joachim Kroos | Method for Making Hot Strips of Lightweight Construction Steel |
US8672019B1 (en) * | 2012-12-27 | 2014-03-18 | Berndorf Band Gmbh | Cleaning unit for a continuous metal strip as well as a strip casting installation with such a cleaning unit |
US20140367066A1 (en) * | 2011-02-02 | 2014-12-18 | Salzgitter Flachstahl Gmbh | Process and device for producing a cast strip with material properties which are adjustable over the strip cross section |
CN104981302A (zh) * | 2012-12-27 | 2015-10-14 | 百德福钢带有限公司 | 用于金属环形带的清洁设备和具有这种清洁设备的带浇铸设备 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4913700A (en, 2012) * | 1972-05-19 | 1974-02-06 | ||
US3871905A (en) * | 1972-11-17 | 1975-03-18 | Hazelett Strip Casting Corp | Method of forming a protective, flexible, insulating coating for covering the metal casting surface of a flexible casting belt |
DE2411448C2 (de) * | 1974-03-11 | 1985-07-04 | Schweizerische Aluminium Ag, Chippis | Metallisches Gießband für Stranggießkokillen |
DE2660733C2 (de) * | 1974-04-23 | 1986-01-30 | Schweizerische Aluminium Ag, Chippis | Beschichtung für metallische Gießbänder in einer Bandgießmaschine für Aluminium |
JPS551964A (en) * | 1978-06-21 | 1980-01-09 | Yuasa Battery Co Ltd | Method and apparatus for continuous casting of grating for lead storage battery |
US4708194A (en) * | 1981-07-27 | 1987-11-24 | Allied Corporation | Method and apparatus for rapidly solidifying metal employing a metallic conditioning brush |
JPS5841657A (ja) * | 1981-09-04 | 1983-03-10 | Satoshi Yamaguchi | 帯状鋼体製造装置 |
JPS60124446A (ja) * | 1983-12-09 | 1985-07-03 | Kawasaki Steel Corp | ベルト式連続鋳造機での連続鋳造方法 |
JPS60136849U (ja) * | 1984-02-20 | 1985-09-11 | 三菱重工業株式会社 | 連続鋳造装置 |
JPH0377748A (ja) * | 1989-08-18 | 1991-04-03 | Nippon Steel Corp | 薄板連続鋳造機用のブラシ装置 |
SE9603837L (sv) * | 1996-10-17 | 1998-04-18 | Graenges Ab | Metod för bandgjutning av aluminium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1248453A (en) * | 1914-11-05 | 1917-12-04 | John Carr | Die-casting machine. |
US3163896A (en) * | 1961-06-23 | 1965-01-05 | Aluminium Lab Ltd | Coated belt and method of making same for continuous metal casting process |
US3193888A (en) * | 1961-08-29 | 1965-07-13 | Aluminium Lab Ltd | Continuous casting apparatus including endless steel belt with red iron oxide coating |
US3695342A (en) * | 1970-03-09 | 1972-10-03 | Robert Petit | Continuous casting machine with controlled extractor movement |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4512816Y1 (en, 2012) * | 1967-06-05 | 1970-06-03 |
-
1972
- 1972-03-27 US US00238346A patent/US3795269A/en not_active Expired - Lifetime
-
1973
- 1973-03-19 GB GB1317373A patent/GB1424205A/en not_active Expired
- 1973-03-20 CA CA166,464A patent/CA990932A/en not_active Expired
- 1973-03-20 IT IT2187673D patent/IT982572B/it active
- 1973-03-23 DK DK161073AA patent/DK129319B/da unknown
- 1973-03-26 DE DE2315036A patent/DE2315036B2/de active Pending
- 1973-03-26 BE BE129238A patent/BE797306A/xx unknown
- 1973-03-26 FR FR7310729A patent/FR2177970B1/fr not_active Expired
- 1973-03-26 ES ES413006A patent/ES413006A1/es not_active Expired
- 1973-03-26 CH CH435973A patent/CH579958A5/xx not_active IP Right Cessation
- 1973-03-27 BR BR732196A patent/BR7302196D0/pt unknown
- 1973-03-27 JP JP48034169A patent/JPS4914320A/ja active Pending
- 1973-03-27 NL NL7304244A patent/NL7304244A/xx not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1248453A (en) * | 1914-11-05 | 1917-12-04 | John Carr | Die-casting machine. |
US3163896A (en) * | 1961-06-23 | 1965-01-05 | Aluminium Lab Ltd | Coated belt and method of making same for continuous metal casting process |
US3193888A (en) * | 1961-08-29 | 1965-07-13 | Aluminium Lab Ltd | Continuous casting apparatus including endless steel belt with red iron oxide coating |
US3695342A (en) * | 1970-03-09 | 1972-10-03 | Robert Petit | Continuous casting machine with controlled extractor movement |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3914084A (en) * | 1973-11-06 | 1975-10-21 | Kornylac Co | Continuous molding machine |
US4027716A (en) * | 1974-03-11 | 1977-06-07 | Metallgesellschaft Aktiengesellschaft | Method for preparing a continuous casting belt |
US4298053A (en) * | 1974-03-18 | 1981-11-03 | Metallurgie Hoboken-Overpelt | Casting belts for machines for the continuous casting of metals |
US3983889A (en) * | 1974-05-20 | 1976-10-05 | Leichtmetall-Gesellschaft Mbh | Process for cleaning the surface of continuously cast strip |
US4069860A (en) * | 1975-11-24 | 1978-01-24 | Southwire Company | Ablative band for a casting machine |
US4582114A (en) * | 1983-04-28 | 1986-04-15 | Kawasaki Steel Corporation | Continuous casting apparatus for the production of cast sheets |
US5515908A (en) * | 1992-06-23 | 1996-05-14 | Kaiser Aluminum & Chemical Corporation | Method and apparatus for twin belt casting of strip |
US6102102A (en) * | 1992-06-23 | 2000-08-15 | Kaiser Aluminum & Chemical Corporation | Method and apparatus for continuous casting of metals |
CN1054087C (zh) * | 1992-08-18 | 2000-07-05 | 哈茨来特带钢公司 | 金属连铸的方法及装置 |
US5437326A (en) * | 1992-08-18 | 1995-08-01 | Hazelett Strip-Casting Corporation | Method and apparatus for continuous casting of metal |
US5638893A (en) * | 1993-10-07 | 1997-06-17 | Fata Hunter, Inc. | Parting agent spray system |
US6354364B1 (en) | 1994-03-30 | 2002-03-12 | Nichols Aluminum-Golden, Inc. | Apparatus for cooling and coating a mold in a continuous caster |
US6125915A (en) * | 1994-03-30 | 2000-10-03 | Golden Aluminum Company | Method of and apparatus for cleaning a continuous caster |
US5839500A (en) * | 1994-03-30 | 1998-11-24 | Lauener Engineering, Ltd. | Apparatus for improving the quality of continously cast metal |
US5697423A (en) * | 1994-03-30 | 1997-12-16 | Lauener Engineering, Ltd. | Apparatus for continuously casting |
US6019159A (en) * | 1994-03-30 | 2000-02-01 | Golen Aluminum Company | Method for improving the quality of continuously cast metal |
US6089308A (en) * | 1994-03-30 | 2000-07-18 | Nichols Aluminum | Method and apparatus for improving the quality of continuously cast metal |
EP0908255A1 (en) * | 1994-07-19 | 1999-04-14 | Alcan International Limited | Process and apparatus for casting metal strip and injector used therefor |
AU706227B2 (en) * | 1994-07-19 | 1999-06-10 | Novelis Inc. | Process and apparatus for casting metal strip and injector used therefor |
WO1996002339A1 (en) * | 1994-07-19 | 1996-02-01 | Alcan International Limited | Process and apparatus for casting metal strip and injector used therefor |
US5671800A (en) * | 1994-07-19 | 1997-09-30 | Alcan International Ltd. | Injector for casting metal strip |
US5636681A (en) * | 1994-07-19 | 1997-06-10 | Alcan International Limited | Process and apparatus for casting metal strip |
US6063215A (en) * | 1995-10-16 | 2000-05-16 | Kaiser Aluminum & Chemical Corporation | Method of manufacturing casting belts for use in the casting of metals |
RU2142353C1 (ru) * | 1995-11-14 | 1999-12-10 | Фата Хантер, Инк. | Способ и литейная машина цепного типа для непрерывной разливки |
US5927377A (en) * | 1997-01-06 | 1999-07-27 | Continuus Properzi S.P.A | Method of wiping and application of mold release solution to a rotary chill casting wheel |
US6581675B1 (en) | 2000-04-11 | 2003-06-24 | Alcoa Inc. | Method and apparatus for continuous casting of metals |
US20070289717A1 (en) * | 2003-12-23 | 2007-12-20 | Joachim Kroos | Method for Making Hot Strips of Lightweight Construction Steel |
US7806165B2 (en) * | 2003-12-23 | 2010-10-05 | Salzgitter Flachstahl Gmbh | Method for making hot strips of lightweight construction steel |
US20140367066A1 (en) * | 2011-02-02 | 2014-12-18 | Salzgitter Flachstahl Gmbh | Process and device for producing a cast strip with material properties which are adjustable over the strip cross section |
US9393615B2 (en) * | 2011-02-02 | 2016-07-19 | Salzgitter Flachstahl Gmbh | Process and device for producing a cast strip with material properties which are adjustable over the strip cross section |
US8672019B1 (en) * | 2012-12-27 | 2014-03-18 | Berndorf Band Gmbh | Cleaning unit for a continuous metal strip as well as a strip casting installation with such a cleaning unit |
CN104981302A (zh) * | 2012-12-27 | 2015-10-14 | 百德福钢带有限公司 | 用于金属环形带的清洁设备和具有这种清洁设备的带浇铸设备 |
Also Published As
Publication number | Publication date |
---|---|
BR7302196D0 (pt) | 1974-06-27 |
ES413006A1 (es) | 1976-06-01 |
DK129319B (da) | 1974-09-30 |
FR2177970B1 (en, 2012) | 1979-10-05 |
DE2315036A1 (de) | 1973-10-18 |
CH579958A5 (en, 2012) | 1976-09-30 |
DE2315036B2 (de) | 1974-08-01 |
BE797306A (fr) | 1973-09-26 |
JPS4914320A (en, 2012) | 1974-02-07 |
CA990932A (en) | 1976-06-15 |
FR2177970A1 (en, 2012) | 1973-11-09 |
IT982572B (it) | 1974-10-21 |
DK129319C (en, 2012) | 1975-03-24 |
GB1424205A (en) | 1976-02-11 |
NL7304244A (en, 2012) | 1973-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3795269A (en) | Method of and apparatus for casting on moving surfaces | |
US4425411A (en) | Mold with thermally insulating, protective coating | |
US6102102A (en) | Method and apparatus for continuous casting of metals | |
CN1157585A (zh) | 用于浇注金属带的方法与设备及其所用的喷注器 | |
JPH0224791B2 (en, 2012) | ||
JPS599259B2 (ja) | 金属ストリップの製造方法 | |
JPH0724924B2 (ja) | ドラム式連鋳機 | |
US3871905A (en) | Method of forming a protective, flexible, insulating coating for covering the metal casting surface of a flexible casting belt | |
CA2103606A1 (en) | Method and apparatus for continuous casting of metal | |
US4027716A (en) | Method for preparing a continuous casting belt | |
US5651412A (en) | Strip casting with fluxing agent applied to casting roll | |
CN101927324B (zh) | 一种改善铸带表面质量的方法 | |
JPS5852462B2 (ja) | カナガタエンシンチユウゾウニオケル チルカボウシヨウバンド | |
JPS583788B2 (ja) | レンゾクウンテンスルチユウゾウキカイヨウオビジヨウカナガタ | |
CA1071944A (en) | Sealing layer for protective ceramic coatings on strip moulds of continuous strip casting machines | |
JPH05293630A (ja) | スプレイ・デポジット法による長尺のチュ−ブ状プリ フォ−ムの製造方法 | |
US1570802A (en) | Means for preventing adherence of cast metal to the mold | |
JPH01170553A (ja) | 急冷金属薄帯の製造装置 | |
GB1335961A (en) | Method of making a strip | |
US5927377A (en) | Method of wiping and application of mold release solution to a rotary chill casting wheel | |
JPH09504830A (ja) | 連続鋳造鋼ストリップ | |
JPH0421628Y2 (en, 2012) | ||
JPH0433754A (ja) | 連続鋳造装置及び連続鋳造方法 | |
JPS63112050A (ja) | 耐摩耗金属帯の製造方法 | |
JPS5852742B2 (ja) | 金型遠心力鋳造法 |