US3790303A - Gas turbine bucket - Google Patents
Gas turbine bucket Download PDFInfo
- Publication number
- US3790303A US3790303A US00241165A US3790303DA US3790303A US 3790303 A US3790303 A US 3790303A US 00241165 A US00241165 A US 00241165A US 3790303D A US3790303D A US 3790303DA US 3790303 A US3790303 A US 3790303A
- Authority
- US
- United States
- Prior art keywords
- bucket
- blade
- gas turbine
- root
- turbine bucket
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
Definitions
- ABSTRACT In a gas turbine bucket, having a blade and a root,
- the blade is reinforced by eutectic fibers disposed in grain-orientated form, whilst in the root of the bucket the structure is nonorientated and enjoys a desirably high impact strength and ductility.
- the prior art discloses gas turbine buckets which are reinforced by eutectic fibers, solidified in grainorientated form. They suffer from the disadvantage of having only a low notch impact strength. While a low notch impact strength in the blade of the bucket does not result in any substantial disadvantages, the bucket root itself suffers from the serious disadvantage that it is unable to deform itself sufficiently in the zone at which it is joined to the rotor.
- An object of the present invention is to provide a gas turbine bucket, the blade of which is reinforced in known manner by eutectic fibers but having sufficient impact strength in the bucket root.
- the crystals embedded in the parent material are formed as fibers disposed longitudinally in parallel to the bucket blade and extending into the bucket root, the bucket root having a non-orientated structure.
- FIG. 1 is a gas turbine bucket in section
- FIG. 2 is an apparatus forproducing a gas turbine bucket of the-kind illustrated in FIG. 1.
- FIG. 1 shows a gas turbine bucket 1 comprising a bucket blade 2 and a bucket root 3.
- the gas turbine bucket l is composed 'of a eutectic alloy, the bucket blade having been subjected to grain-oriented solidification.
- the crystals embedded in the parent material 4 take the form of longitudinally parallel fibers 5 extending from the outer end of the bucket blade 2 through the blade and into the bucket root 3.
- a gas turbine bucket of this kind is constructed as follows.
- a melt of a pseudo binary eutectic alloy Co1 ,,Cr Cr ,Co,C containing in weight percentages, 56.] percent cobalt, 40 percent chromium and 2.4 percent carbon, is cast into a precision mold of corundum.
- the precision mold 6 is introduced into a graphite succeptor 7 which may be inductively heated by means of a heating spiral 8. To this endthe precision mold 6 is introduced into the graphite succeptor 7 so that the bucket blade 2 and the upper quarter of the bucket root 3 are disposed in the graphite succeptor 7 while the lower part of the bucket root 3 extends from the aforementioned succeptor, as shown in FIG. 2.
- the graphite succeptor 7 is heated to a temperature between .1 ,400 and l,600 C. and is maintained at the aforementioned temperature. Since the melting temperature of the alloy is 1,310 C., the melt forming the bucket blade is retained in the superheated, fluid state while the bucket root 3 solidifies. After solidification of the bucket root 3, the graphite succeptor 7 is moved upwardly in the direction of the arrow and axially relative to the precision mold 6, the velocity of the said motion being between 5 and cm/h. Accordingly, the melt solidifies in the upper quarter of the bucket root 3 and then in the bucket blade 2, the solidification front moving from the bucket root 3 to the upper end of the bucket blade 2. The gas turbine blade may be stripped from the mold as soon as the precision mold 6 has been entirely withdrawn from the graphite succeptor 7 and the melt has solidified.
- the blade structure is reinforced by eutectic fibers which are solidified in grain-oriented form, whilst in the root per se of the bucket the structure is non-oriented, as is illustrated in FIG. 1, and has an advantageous ductility at the operating temperature of the turbine bucket.
- the method is also suitable for the following alloys:
- Gas turbine bucket formed of a eutectic alloy and having a root and a bIade,-said blade having a crystalline structure oriented in parallel to the longitudinal orientation of the bucket blade whilst in the bucket root the structure is not grain-oriented and is ductile at the operating temperature of the turbine.
- Gas turbine bucket according to claim 1 in the blade of which crystals embedded in matrix are present as fibers disposed longitudinally in parallel to the blade and extend through the blade and to the root per se.
- the eutectic alloy is a member of the group of alloys consisting of CoCrC, NbNb C, Ta'Ta C,
- Ni-Ni Nb Ni Ni Ti, NiAlvCr, CoTiC, Ni-TaC,
- the alloy is a CoCrC alloy consisting essentially of 56.1 wt. percent cobalt, 40 wt. percent chromium and 2.4 wt. percent carbon.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH522571A CH544217A (de) | 1971-04-08 | 1971-04-08 | Gasturbinenschaufel |
Publications (1)
Publication Number | Publication Date |
---|---|
US3790303A true US3790303A (en) | 1974-02-05 |
Family
ID=4290034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00241165A Expired - Lifetime US3790303A (en) | 1971-04-08 | 1972-04-05 | Gas turbine bucket |
Country Status (5)
Country | Link |
---|---|
US (1) | US3790303A (fr) |
CH (1) | CH544217A (fr) |
DE (1) | DE2122353C3 (fr) |
FR (1) | FR2136170A5 (fr) |
GB (1) | GB1377137A (fr) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4103063A (en) * | 1976-03-23 | 1978-07-25 | United Technologies Corporation | Ceramic-metallic eutectic structural material |
US4190094A (en) * | 1978-10-25 | 1980-02-26 | United Technologies Corporation | Rate controlled directional solidification method |
US4540038A (en) * | 1984-06-05 | 1985-09-10 | Westinghouse Electric Corp. | Method for production of combustion turbine blade having a hybrid structure |
US4637448A (en) * | 1984-08-27 | 1987-01-20 | Westinghouse Electric Corp. | Method for production of combustion turbine blade having a single crystal portion |
US4659288A (en) * | 1984-12-10 | 1987-04-21 | The Garrett Corporation | Dual alloy radial turbine rotor with hub material exposed in saddle regions of blade ring |
US4712604A (en) * | 1986-10-14 | 1987-12-15 | The United States Of America As Represented By The Secretary Of The Air Force | Apparatus for casting directionally solidified articles |
US4850802A (en) * | 1983-04-21 | 1989-07-25 | Allied-Signal Inc. | Composite compressor wheel for turbochargers |
US5451142A (en) * | 1994-03-29 | 1995-09-19 | United Technologies Corporation | Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface |
US5468548A (en) * | 1993-08-02 | 1995-11-21 | United Technologies Corporation | Directionally solidified eutectic reinforcing fibers and fiber reinforced composites containing the fibers |
EP1818510A1 (fr) * | 2006-02-08 | 2007-08-15 | Siemens Aktiengesellschaft | Aube de turbine, notamment pour une turbine à gaz ou une turbine à vapeur |
US20110293431A1 (en) * | 2009-01-21 | 2011-12-01 | Harald Harders | Component having varying structures and method for production |
WO2015148994A3 (fr) * | 2014-03-27 | 2015-11-26 | General Electric Company | Article destiné à être utilisé dans des environnements à forte contrainte et comportant de multiples structures grainées |
WO2017168777A1 (fr) * | 2016-03-31 | 2017-10-05 | 三菱重工業株式会社 | Procédé de conception de pale de turbine, procédé de fabrication de pale de turbine, et pale de turbine |
US10287896B2 (en) * | 2013-09-17 | 2019-05-14 | United Technologies Corporation | Turbine blades and manufacture methods |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4464094A (en) * | 1979-05-04 | 1984-08-07 | Trw Inc. | Turbine engine component and method of making the same |
US4921405A (en) * | 1988-11-10 | 1990-05-01 | Allied-Signal Inc. | Dual structure turbine blade |
US5106266A (en) * | 1989-07-25 | 1992-04-21 | Allied-Signal Inc. | Dual alloy turbine blade |
WO1991001433A1 (fr) * | 1989-07-25 | 1991-02-07 | Allied-Signal Inc. | Aube de turbine a double alliage |
EP0513407B1 (fr) * | 1991-05-13 | 1995-07-19 | Asea Brown Boveri Ag | Procédé de fabrication d' une aube de turbine |
DE4219470A1 (de) * | 1992-06-13 | 1993-12-16 | Asea Brown Boveri | Bauteil für hohe Temperaturen, insbesondere Turbinenschaufel, und Verfahren zur Herstellung dieses Bauteils |
DE4219469A1 (de) * | 1992-06-13 | 1993-12-16 | Asea Brown Boveri | Hohen Temperaturen aussetzbares Bauteil, insbesondere Turbinenschaufel, und Verfahren zur Herstellung dieses Bauteils |
DE4432999C2 (de) * | 1994-09-16 | 1998-07-30 | Mtu Muenchen Gmbh | Laufrad einer Turbomaschine, insbesondere einer axial durchströmten Turbine eines Gasturbinentriebwerks |
EP2716386A1 (fr) * | 2012-10-08 | 2014-04-09 | Siemens Aktiengesellschaft | Composants de turbine à gaz, leur procédé de fabrication et moule destiné à utiliser ce procédé |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2422193A (en) * | 1944-06-12 | 1947-06-17 | Westinghouse Electric Corp | Method of making cast turbine blading |
US3044746A (en) * | 1960-05-18 | 1962-07-17 | Gen Electric | Fluid-flow machinery blading |
US3260505A (en) * | 1963-10-21 | 1966-07-12 | United Aircraft Corp | Gas turbine element |
US3342455A (en) * | 1964-11-24 | 1967-09-19 | Trw Inc | Article with controlled grain structure |
US3494709A (en) * | 1965-05-27 | 1970-02-10 | United Aircraft Corp | Single crystal metallic part |
-
1971
- 1971-04-08 CH CH522571A patent/CH544217A/de not_active IP Right Cessation
- 1971-05-06 DE DE19712122353 patent/DE2122353C3/de not_active Expired
-
1972
- 1972-04-05 FR FR7211859A patent/FR2136170A5/fr not_active Expired
- 1972-04-05 US US00241165A patent/US3790303A/en not_active Expired - Lifetime
- 1972-04-06 GB GB1589572A patent/GB1377137A/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2422193A (en) * | 1944-06-12 | 1947-06-17 | Westinghouse Electric Corp | Method of making cast turbine blading |
US3044746A (en) * | 1960-05-18 | 1962-07-17 | Gen Electric | Fluid-flow machinery blading |
US3260505A (en) * | 1963-10-21 | 1966-07-12 | United Aircraft Corp | Gas turbine element |
US3342455A (en) * | 1964-11-24 | 1967-09-19 | Trw Inc | Article with controlled grain structure |
US3494709A (en) * | 1965-05-27 | 1970-02-10 | United Aircraft Corp | Single crystal metallic part |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4103063A (en) * | 1976-03-23 | 1978-07-25 | United Technologies Corporation | Ceramic-metallic eutectic structural material |
US4190094A (en) * | 1978-10-25 | 1980-02-26 | United Technologies Corporation | Rate controlled directional solidification method |
US4850802A (en) * | 1983-04-21 | 1989-07-25 | Allied-Signal Inc. | Composite compressor wheel for turbochargers |
US4540038A (en) * | 1984-06-05 | 1985-09-10 | Westinghouse Electric Corp. | Method for production of combustion turbine blade having a hybrid structure |
US4637448A (en) * | 1984-08-27 | 1987-01-20 | Westinghouse Electric Corp. | Method for production of combustion turbine blade having a single crystal portion |
US4659288A (en) * | 1984-12-10 | 1987-04-21 | The Garrett Corporation | Dual alloy radial turbine rotor with hub material exposed in saddle regions of blade ring |
US4712604A (en) * | 1986-10-14 | 1987-12-15 | The United States Of America As Represented By The Secretary Of The Air Force | Apparatus for casting directionally solidified articles |
US5468548A (en) * | 1993-08-02 | 1995-11-21 | United Technologies Corporation | Directionally solidified eutectic reinforcing fibers and fiber reinforced composites containing the fibers |
US5451142A (en) * | 1994-03-29 | 1995-09-19 | United Technologies Corporation | Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface |
EP1818510A1 (fr) * | 2006-02-08 | 2007-08-15 | Siemens Aktiengesellschaft | Aube de turbine, notamment pour une turbine à gaz ou une turbine à vapeur |
US20110293431A1 (en) * | 2009-01-21 | 2011-12-01 | Harald Harders | Component having varying structures and method for production |
US10287896B2 (en) * | 2013-09-17 | 2019-05-14 | United Technologies Corporation | Turbine blades and manufacture methods |
US11008875B2 (en) * | 2013-09-17 | 2021-05-18 | Raytheon Technologies Corporation | Turbine blades and manufacture methods |
WO2015148994A3 (fr) * | 2014-03-27 | 2015-11-26 | General Electric Company | Article destiné à être utilisé dans des environnements à forte contrainte et comportant de multiples structures grainées |
CN107073571A (zh) * | 2014-03-27 | 2017-08-18 | 通用电气公司 | 具有多个晶粒结构的用于在高应力环境中使用的制品 |
WO2017168777A1 (fr) * | 2016-03-31 | 2017-10-05 | 三菱重工業株式会社 | Procédé de conception de pale de turbine, procédé de fabrication de pale de turbine, et pale de turbine |
KR20180112047A (ko) * | 2016-03-31 | 2018-10-11 | 미츠비시 쥬고교 가부시키가이샤 | 터빈 날개의 설계 방법, 터빈 날개의 제조 방법 및 터빈 날개 |
CN108779680A (zh) * | 2016-03-31 | 2018-11-09 | 三菱重工业株式会社 | 涡轮叶片的设计方法、涡轮叶片的制造方法以及涡轮叶片 |
CN108779680B (zh) * | 2016-03-31 | 2020-10-02 | 三菱重工业株式会社 | 涡轮叶片的设计方法、涡轮叶片的制造方法以及涡轮叶片 |
US10975700B2 (en) | 2016-03-31 | 2021-04-13 | Mitsubishi Heavy Industries, Ltd. | Turbine blade designing method, turbine blade manufacturing method, and turbine blade |
Also Published As
Publication number | Publication date |
---|---|
GB1377137A (en) | 1974-12-11 |
DE2122353C3 (de) | 1977-07-28 |
DE2122353A1 (de) | 1973-06-14 |
FR2136170A5 (fr) | 1972-12-22 |
DE2122353B2 (de) | 1974-02-14 |
CH544217A (de) | 1973-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3790303A (en) | Gas turbine bucket | |
US3650635A (en) | Turbine vanes | |
KR940008941B1 (ko) | 성분이 개량된 니켈계 초합금의 주조품 및 그 제조방법 | |
CN108396200B (zh) | 一种钴基高温合金及其制备方法和在重型燃气轮机中的应用 | |
JP6833029B2 (ja) | チタンを含まない超合金、粉末、方法および部品 | |
CN104630565B (zh) | 高强度高塑性Ni‑Cr‑Co基涡轮盘叶片材料及制备方法 | |
CN104630596A (zh) | 一种高韧性抗辐照多基元合金及制备方法 | |
JPS6221859B2 (fr) | ||
CN114346515B (zh) | 钛-钢电弧增材过渡层用铜-镍基焊丝及其制备方法 | |
JP7233422B2 (ja) | ガスタービン用途のための酸化耐性の高い合金 | |
JPS5582737A (en) | Gas turbine nozzle material | |
CA1080512A (fr) | Alliages eutectiques a base de cobalt a solidification orientee | |
CN117102491A (zh) | 一种提高大尺寸gh4099零部件塑性的加工方法 | |
CN102618778A (zh) | 无药皮高铬铸铁焊补用电焊条及其制备方法 | |
KR100739513B1 (ko) | 용접합금 및 용접용 제품, 용접재 및 용접재의 제조방법 | |
KR102114253B1 (ko) | 크리프 강도가 우수한 Ni계 초내열합금 및 그 제조방법 | |
JPS626615B2 (fr) | ||
JPH11279681A (ja) | 高強度鋳鉄 | |
TWI663263B (zh) | 高抗潛變等軸晶鎳基超合金 | |
US3782928A (en) | Composite alloy for high temperature applications | |
JPS6366381B2 (fr) | ||
Fuchs et al. | Designing with Ni-Base Alloys | |
US2769736A (en) | Process of improving the properties of heat resistant alloys | |
JPH09195004A (ja) | ステンレス鋼 | |
JPH0841566A (ja) | 耐酸化ニッケル基単結晶合金及びその製造方法 |