US3773168A - Pressurized-gas vessel and method of making same - Google Patents
Pressurized-gas vessel and method of making same Download PDFInfo
- Publication number
- US3773168A US3773168A US00230580A US3773168DA US3773168A US 3773168 A US3773168 A US 3773168A US 00230580 A US00230580 A US 00230580A US 3773168D A US3773168D A US 3773168DA US 3773168 A US3773168 A US 3773168A
- Authority
- US
- United States
- Prior art keywords
- vessel
- particles
- space
- gas
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000002904 solvent Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000011049 filling Methods 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 11
- 239000002002 slurry Substances 0.000 claims description 11
- 239000002360 explosive Substances 0.000 claims description 10
- 239000002923 metal particle Substances 0.000 claims description 8
- 238000000354 decomposition reaction Methods 0.000 claims description 7
- 238000005245 sintering Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000002040 relaxant effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 43
- 239000011148 porous material Substances 0.000 abstract description 16
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 abstract description 15
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 abstract description 15
- 230000004888 barrier function Effects 0.000 abstract description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 8
- 238000004880 explosion Methods 0.000 abstract description 7
- 230000015556 catabolic process Effects 0.000 abstract description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000005474 detonation Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 206010016754 Flashback Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 101100328887 Caenorhabditis elegans col-34 gene Proteins 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B15/00—Attaching articles to cards, sheets, strings, webs, or other carriers
- B65B15/04—Attaching a series of articles, e.g. small electrical components, to a continuous web
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/002—Use of gas-solvents or gas-sorbents in vessels for acetylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/12—Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/12—Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
- F17C13/123—Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures for gas bottles, cylinders or reservoirs for tank vehicles or for railway tank wagons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/056—Small (<1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/06—Vessel construction using filling material in contact with the handled fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0337—Granular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/23—Manufacturing of particular parts or at special locations
- F17C2209/238—Filling of insulants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/018—Acetylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/04—Reducing risks and environmental impact
- F17C2260/042—Reducing risk of explosion
Definitions
- ABSTRACT A pressurized-gas vessel, especially for acetylene and gases soluble in a solvent, which comprises a pressureretentive metal container, a body of porous material within the container and spaced from a wall thereof to form an intervening space, and a mass of sintered material filling this space and constituting a flame barrier and shock-wave attenuator to prevent explosion of the gas within the vessel while mechanically retaining the mass of porous material against breakdown during handling and transportation of the vessel.
- My present invention relates to a pressurized-gas vessel and, more particularly, to a cylinder, flask or bottle for containing and/or dispensing a compressed gas such as acetylene which is soluble in a solvent and is retained, in part, in solution therein.
- the present invention also relates to an improved method of making such vessels.
- gases such as acetylene
- metal pressure-retentive vessels containing a mass of a porous material, generally a mineral substance capable of absorbing large volumes of a liquid.
- the gas is stored in the form of a solution in this liquid, which is, in turn, trapped in the mass within the vessel.
- the liquid in the case of acetylene is usually acetone.
- the vessel is provided with a space free from the porous mass and designed to allow the gas to escape from the solvent and collect in a completely gaseous phase prior to being discharged from the vessel.
- acetylene and like gases are not only highly combustible, but are also highly explosive, even in the absence of oxygen, when compressed excessively or suddenly.
- pressurized-gas vessels of the character described must have a relatively large gascollecting space, generally aove the porous mass, to allow the gas to be introduced into the vessel and to be withdrawn therefrom with rapidity.
- the porous mass within a conventional pressurizedgas vessel may also be subject to detonation and shockwaves transmitted rearwardly by any duct system which may be connected to the tank.
- the shockwave which is applied to the head of the pouous mass, not only stresses the latter to produce additional fissures, cracks or the like (thereby reducing the effectiveness of the mass) but also enables decomposition of the explosive gas deeper within the porous mass.
- an essential feature of the invention resides in filling the intervening space between the porous solvent-trapping mass with a sintered porous body of fine-grained sintered material constituting a flame barrier and a device for attenuating the effect of shockwaves.
- a sintered porous body of fine-grained sintered material constituting a flame barrier and a device for attenuating the effect of shockwaves.
- the pressure and thus the volumetric capacity of the explosive gas can be increased substantially by comparison with conventional systems without rendering the system unable under flashbacks as previously described. Furthermore, the porous mass within the vessel is not able to shift with respect to the walls and thus the system can be handled relatively roughly without damage to this porous mass.
- the body of sintered material have such a grain size as to ensure a pore width which is relatively small in comparison to the pore length.
- the pores of the body are relatively narrow and of small cross-section.
- the acetylene can break down or decompose only very slowly with a flame which cannot spread readily because of the long pores when the acetylene pressure lies below a predetennined value.
- acetylene pressures of 30 atmospheres (absolute) and less to maintain a mean pore width of at most 0.4 mm. Under these conditions, the break-down of acetylene can proceed without detonation.
- the particles which are sintered together to form the porous sintered mass preferably are metallic and inert to attack by the solvent or the gas while consisting of spheroids or balls with a diameter of at most 1.6 mm.
- the sintered mass in the regions of the space around the porous body closer to the outlet of the vessel, the sintered mass is thicker and, in the region of the outlet, the porous sintered body has its maximum thickness.
- the thickness of the sintered body must be kept sufficiently small and the pore cross-section sufficiently large as to permit the pressurized-gas vessel to be filled and emptied in short order.
- the flame barrier preferably has a melting point which lies below the decomposition temperature of the solubilized gas and solvent. This arrangement has the advantage that, upon decomposition with elevating temperatures, the pores of the sintered flame barrier are blocked and the flow of gas to an explosion region is limited.
- the melting of the flame barrier also has the effect of withdrawing heat of fusion from the porous body and thereby acts to limit the temperature rise.
- the sintered mass is composed of bronze or an aluminum alloy, preferably consisting of 5 to 7 percent by weight silicon, 0.1 to 0.3 percent by weight magnesium, 0.3 to 0.6 percent by weight manganese and 3 to 5 percent by weight copper, the balance being aluminum.
- the vessel described above is produced by casting the po rous solvent-absorbing mass from an aqueous slurry of the porous material and drying the slurry within the vessel.
- the monolithic mass solidifies and shrinks inwardly away from the walls of the vessel to define the intervening space of a cross-section which increases toward the top of the vessel.
- the intervening space between the porous mass and the metal wall of the vessel is filled with the fine-grained metal particles and the system subjected to a sintering temperature below the transition point of the metal of the vessel and thus below the annealing or embrittlement temperature of the vessel wall.
- the intervening space is filled with the sinter powder under pressure, i.e., by entrainment with a gas stream which is forced into the vessel under a pressure differential between the interior of the conduit and the interior of the vessel.
- the pressure in the feedline is sufficient to tensionally stress the vessel and thereby place the porous mass, when the pressure is relieved under precompression.
- an explosion within the vessel need not place the monolithic porous mass in tension so that breakdown of the solventtrapping porous mass is reduced. It should be understood that, in no case, should the applied pressure exceed the maximum pressure capacity of the vessel.
- FIG. l is a vertical cross-sectional view through a vessel according to the invention, the parts being shown somewhat diagrammatically;
- FIG. 2 is a sequence diagram illustrating the steps of the present method.
- FIG. I show a pressure-retentive vessel 1, having a cylindrical wall portion la closed at the top and bottom by hemispherical portions 1b and 10, respectively, here shown to be unitary within wall I.
- these parts may be formed on separate members which are joined together at steps, welds or the like in the wall of the vessel.
- the upper dome 1b is provided with a neck 1d forming a filling and emptying opening 6.
- the major part of the volume of the vessel is filled with a porous monolithic mass 3 adapted to absorb a solvent such as acetone.
- This monolithic mass may be composed of diatomaceous earth or other mineral material, with appropriate binder, capable of forming a highly porous structure.
- the porous mass 3 Between the porous mass 3 and the wall la, 1b of the vessel, there is formed a space filled with fine-grained sinter metal particles 2 which are sintered together to form a coherent rigid body.
- the porous mass 3 In the region 5 of the gas-collecting space around the porous mass 3, close to the inlet or outlet fitting 1d, the porous mass 3 is provided with a recess 3a designed to increase the thickness of the sintered metal layer in the region of the fitting id.
- the sintered mass has thus a greater thickness in the region of the opening to increase the effectiveness as a flame barrier.
- the first step (I) is to introduce a slurry of solids and water into the vessel during the porous-core casting operation.
- the vessel is then heated as symbolized at w to dry the slurry into the porous mass 3' (step II) which shrinks away from the wall of the vessel I to define the space 2a.
- a plunger llll is introduced to shape the recess 3a in the porous body 3.
- the sinter particles 2' are introduced under pressure.
- a high-pressure pump I2 may be connected to the opening 6 and can force particles into the space Zn from a hopper 13.
- the pressure, measured at I4, preferably lies just below the pressure capacity of the vessel 1' so that, without bursting, the latter may be expanded to a diameter D ii from its original diameter D (compare steps II and III).
- the contraction of the walls applies a prestress to the porous body 3' as represented by the arrows I5.
- a ram 4 is introduced through the opening 6 to densify the particle mass at 5', whereupon the assembly is sintered under pressure in step 5.
- the chamber 16 represents a pressure container in which the vessel may be held from the time in which it is to be filled with the sinter particles through the final sintering stage.
- An acetylene vessel having a acpacity of 8.5 m (STP) and an acetylene delivery pressure of i8 kglcm is composed of steel and has a nominal bursting pressure of kg/cm and an empty volume of 50 liters.
- the cylindrical vessel has a wall thickness of 3.5 mm, an internal diameter of 26 cm and end caps or domes of the type described in connection with FIG. 1.
- the vertical height of the vessel is 110 cm.
- aqueous slurry (22 percent by weight solids) of material for porous mass 3 is introduced into the vessel until the latter is filled to a point just below the inlet and outlet fitting.
- the vessel is slowly heating to a temperature of 105C and held at this temperature to bake and dry the slurry.
- the resulting porous mass occupies percent of the volume of the vessel leaving a space which increases in cross-section from top to bottom.
- the porous mass has a capacity of 19.5 liters of acetone a porosity of 90 percent and an average pore width of 0.0001 mm.
- the porous mass 2, 2' has a porosity of 40 percent, an average pore diameter of 0.1 mm and an average pore length of 0,4 mm.
- a pressurized-gas tank for an explosive gas, soluble in a solvent comprising:
- a pressure-retentive vessel having an outlet and at least one wall surrounding the space within said vessel
- porous mass adapted to receive said solvent and said gas in said space in said vessel and spaced with all-around clearance from said wall thereof to form with said wall an annular intervening space communicating with said outlet and surrounding said porous mass;
- a pressurized-gas tank for an explosive gas, soluble in a solvent comprising:
- porous mass adapted to receive said solvent and said gas in said vessel and spaced from at least one wall thereof to form with said wall an intervening space;
- a method of making a pressurized-gas tank comprising the steps of:
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19712111025 DE2111025C3 (de) | 1971-03-08 | Druckgasbehälter und Verfahren zu seiner Herstellung |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3773168A true US3773168A (en) | 1973-11-20 |
Family
ID=5800864
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00230580A Expired - Lifetime US3773168A (en) | 1971-03-08 | 1972-03-01 | Pressurized-gas vessel and method of making same |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3773168A (de) |
| AT (1) | AT350516B (de) |
| AU (1) | AU458947B2 (de) |
| FR (1) | FR2128700B1 (de) |
| GB (1) | GB1320106A (de) |
| IT (1) | IT949743B (de) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3908755A (en) * | 1973-08-08 | 1975-09-30 | New Hudson Corp | Safety system for pressurized vessels |
| US4017252A (en) * | 1973-10-12 | 1977-04-12 | S.T. Dupont | Method for the storage of a liquefied gas in the presence of an adsorbant support having open cells |
| DE4128119A1 (de) * | 1991-08-24 | 1993-02-25 | Bayer Ag | Verfahren zur absorption von explosionsfaehigen gasen in einer stoffaustauschkolonne |
| WO2005098307A1 (de) * | 2004-04-09 | 2005-10-20 | Franz Stuhlbacher | Verfahren zum befüllen eines behältnisses mit gas |
| CN102242860A (zh) * | 2010-05-14 | 2011-11-16 | 吴银森 | 具有防爆填料的民用石油液化气罐及制作方法 |
| US20110277846A1 (en) * | 2002-12-09 | 2011-11-17 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
| US20130125656A1 (en) * | 2011-11-22 | 2013-05-23 | The Boeing Company | Method And Apparatus For Shockwave Attenuation |
| US8740071B1 (en) | 2011-11-22 | 2014-06-03 | The Boeing Company | Method and apparatus for shockwave attenuation via cavitation |
| US20140166670A1 (en) * | 2012-12-14 | 2014-06-19 | Quantum Fuel Systems Technologies Worldwide Inc. | Concentric Shells for Compressed Gas Storage |
| CN104254487A (zh) * | 2011-12-05 | 2014-12-31 | 蓝波股份有限公司 | 用于控制气体从裂口增压容纳系统逃逸的速率的方法 |
| US8981261B1 (en) | 2012-05-30 | 2015-03-17 | The Boeing Company | Method and system for shockwave attenuation via electromagnetic arc |
| US9630895B2 (en) | 2012-04-13 | 2017-04-25 | Entegris, Inc. | Storage and stabilization of acetylene |
| US12435836B2 (en) * | 2023-10-12 | 2025-10-07 | Verne Inc. | Composite-overwrapped pressure vessel system |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB173506A (en) * | 1920-12-31 | 1922-04-06 | Svenska Aktiebolaget Gas Accum | Improvements in receivers for storing gas under pressure |
| US2883040A (en) * | 1953-04-27 | 1959-04-21 | Union Carbide Corp | Monolithic porous filler for cylinders and method of producing same |
| US3703976A (en) * | 1970-10-28 | 1972-11-28 | Univ Oklahoma State | High pressure storage vessel |
-
1972
- 1972-02-16 AT AT126572A patent/AT350516B/de not_active IP Right Cessation
- 1972-03-01 AU AU39522/72A patent/AU458947B2/en not_active Expired
- 1972-03-01 US US00230580A patent/US3773168A/en not_active Expired - Lifetime
- 1972-03-01 IT IT21237/72A patent/IT949743B/it active
- 1972-03-02 GB GB981772A patent/GB1320106A/en not_active Expired
- 1972-03-07 FR FR7207872A patent/FR2128700B1/fr not_active Expired
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB173506A (en) * | 1920-12-31 | 1922-04-06 | Svenska Aktiebolaget Gas Accum | Improvements in receivers for storing gas under pressure |
| US2883040A (en) * | 1953-04-27 | 1959-04-21 | Union Carbide Corp | Monolithic porous filler for cylinders and method of producing same |
| US3703976A (en) * | 1970-10-28 | 1972-11-28 | Univ Oklahoma State | High pressure storage vessel |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3908755A (en) * | 1973-08-08 | 1975-09-30 | New Hudson Corp | Safety system for pressurized vessels |
| US4017252A (en) * | 1973-10-12 | 1977-04-12 | S.T. Dupont | Method for the storage of a liquefied gas in the presence of an adsorbant support having open cells |
| US4019850A (en) * | 1973-10-12 | 1977-04-26 | S.T. Dupont | Method for the storage of liquefied gas in the presence of a fibrous adsorbant support |
| DE4128119A1 (de) * | 1991-08-24 | 1993-02-25 | Bayer Ag | Verfahren zur absorption von explosionsfaehigen gasen in einer stoffaustauschkolonne |
| US9062829B2 (en) | 2002-12-09 | 2015-06-23 | Entegris, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
| US20110277846A1 (en) * | 2002-12-09 | 2011-11-17 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
| US9636626B2 (en) | 2002-12-09 | 2017-05-02 | Entegris, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
| US8506689B2 (en) * | 2002-12-09 | 2013-08-13 | Advanced Technology Mateials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
| WO2005098307A1 (de) * | 2004-04-09 | 2005-10-20 | Franz Stuhlbacher | Verfahren zum befüllen eines behältnisses mit gas |
| US7913723B2 (en) | 2004-04-09 | 2011-03-29 | Exess Engineering Gmbh | Method for filling a container with gas |
| US20110132915A1 (en) * | 2004-04-09 | 2011-06-09 | Franz Stuhlbacher | Method for filling a container with gas |
| US8267128B2 (en) | 2004-04-09 | 2012-09-18 | Fuxs Gmbh Igr | Method for filling a container with gas |
| US20070272324A1 (en) * | 2004-04-09 | 2007-11-29 | Franz Stuhlbacher | Method For Filling A Container With Gas |
| CN102242860A (zh) * | 2010-05-14 | 2011-11-16 | 吴银森 | 具有防爆填料的民用石油液化气罐及制作方法 |
| US8740071B1 (en) | 2011-11-22 | 2014-06-03 | The Boeing Company | Method and apparatus for shockwave attenuation via cavitation |
| US8806945B2 (en) * | 2011-11-22 | 2014-08-19 | The Boeing Company | Method and apparatus for shockwave attenuation |
| US20130125656A1 (en) * | 2011-11-22 | 2013-05-23 | The Boeing Company | Method And Apparatus For Shockwave Attenuation |
| CN104254487A (zh) * | 2011-12-05 | 2014-12-31 | 蓝波股份有限公司 | 用于控制气体从裂口增压容纳系统逃逸的速率的方法 |
| US9630895B2 (en) | 2012-04-13 | 2017-04-25 | Entegris, Inc. | Storage and stabilization of acetylene |
| US8981261B1 (en) | 2012-05-30 | 2015-03-17 | The Boeing Company | Method and system for shockwave attenuation via electromagnetic arc |
| US20140166670A1 (en) * | 2012-12-14 | 2014-06-19 | Quantum Fuel Systems Technologies Worldwide Inc. | Concentric Shells for Compressed Gas Storage |
| US9234625B2 (en) * | 2012-12-14 | 2016-01-12 | Quantum Fuel Systems Technologies Worldwide Inc. | Concentric is shells for compressed gas storage |
| US9618157B2 (en) | 2012-12-14 | 2017-04-11 | Quantum Fuel Systems Llc | Concentric shells for compressed gas storage |
| US12435836B2 (en) * | 2023-10-12 | 2025-10-07 | Verne Inc. | Composite-overwrapped pressure vessel system |
Also Published As
| Publication number | Publication date |
|---|---|
| AU3952272A (en) | 1973-09-06 |
| DE2111025A1 (de) | 1972-09-14 |
| GB1320106A (en) | 1973-06-13 |
| FR2128700A1 (de) | 1972-10-20 |
| FR2128700B1 (de) | 1975-10-24 |
| DE2111025B2 (de) | 1976-10-28 |
| AU458947B2 (en) | 1975-02-25 |
| ATA126572A (de) | 1978-11-15 |
| IT949743B (it) | 1973-06-11 |
| AT350516B (de) | 1979-06-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3773168A (en) | Pressurized-gas vessel and method of making same | |
| US4642204A (en) | Method of containing radioactive or other dangerous waste material and a container for such waste material | |
| US4055247A (en) | Explosion containment device | |
| US6725941B2 (en) | Fire retardant delivery system | |
| US5212343A (en) | Water reactive method with delayed explosion | |
| US3665857A (en) | Base ejecting ordnance projectile | |
| EP0112127A2 (de) | Druckgasabgabevorrichtung dessen Gasdruck mit Hilfe eines Treibmittels erhöht wird und Herstellungsverfahren davon | |
| AU2001259865A1 (en) | Fire retardant delivery system | |
| US3276369A (en) | Shaped charge device | |
| US20040050282A1 (en) | Rocket motors with insensitive munitions systems and projectiles including same | |
| US4115311A (en) | Nuclear waste storage container with metal matrix | |
| JPS621561B2 (de) | ||
| US3246056A (en) | Production of low-permeability, highdensity, carbon and graphite bodies | |
| US5790963A (en) | Method of disposing of explosive munitions | |
| US3703976A (en) | High pressure storage vessel | |
| US4170941A (en) | Igniter for a block of propellant powder | |
| US3344209A (en) | Fabrication of materials by high energy-rate impaction | |
| US5592027A (en) | Compacting flammable and/or explosive metal waste | |
| US2358951A (en) | Perforator gun | |
| US2732800A (en) | coursen | |
| US3804017A (en) | Method for mitigating blast and shock transmission within a confined volume | |
| JPS61502A (ja) | 粉体の成形方法 | |
| US3349562A (en) | High energy additive addition means for a rocket motor | |
| RU95115223A (ru) | Способ уплотнения самовоспламеняющихся и/или взрывоопасных металлических отходов | |
| USH360H (en) | Slurry filled obscuration payload |