US3634215A - Process for the electrolytic production of manganese dioxide - Google Patents
Process for the electrolytic production of manganese dioxide Download PDFInfo
- Publication number
- US3634215A US3634215A US11514A US3634215DA US3634215A US 3634215 A US3634215 A US 3634215A US 11514 A US11514 A US 11514A US 3634215D A US3634215D A US 3634215DA US 3634215 A US3634215 A US 3634215A
- Authority
- US
- United States
- Prior art keywords
- electrolyte
- lead
- copper
- manganese
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/21—Manganese oxides
Definitions
- Electrolytic production of manganese dioxide from an electrolyte with the use of lead cathodes substantially consists of a copper-contaminated manganese sulfate solution in sulfuric acid and is treated to contain copper in a concentration of less than 0.0005 weight percent.
- the present invention relates to a process for the electrolytic Iproduction of manganese dioxide from an electrolyte with the use of lead cathodes, the electrolyte consisting substantially of a copper-contaminated manganese sulfate solution in sulfuric acid.
- Lead cathodes are the cathodes normally used for the electrolytic production of manganese dioxide from a manganese sulfate solution in sulfuric acid. The reason for this is that lead and some of its alloys have good corrosion resistant properties in a sulfuric acid medium, even at elevated temperatures. These properties are occasioned by or correlated to the formation of a coherent protective lead sulfate film on the metallic cathode surface. vIf lead is the cathode material, the lead sulfate in fact undergoes cathodic reduction without formation of a lead sulfate film. Despite this, the cathode material is not subject to dissolution phenomena as a result of the high electrolytic excess voltage found to occur across lead cathodes traversed by current of satisfactory density.
- the process of the present invention for the electrolytic production of manganese dioxide with the use of lead cathodes from a copper-contaminated electrolyte consisting substantially of a manganese sulfate solution in sulfuric acid comprises more especially treating the electrolyte so as to establish a copper concentration of less than 0.0005 weight percent, preferably less than 0.0002 weight percent, therein.
- a preferred feature of the present process comprises withdrawing a portion of the sulfuric acid electrolyte from the electrolytic bath, adding commercial manganic oxide to the said Velectrolyte portion and establishing a pH-value of between 6.2 and 7.6, preferably between 6.8 and 7.2, therein, filtering the electrolyte portion so treated and recycling it to the electrolytic bath to maintain a given concentration of manganese therein.
- a further preferred feature of the present process comprises subjecting the electrolyte portion to preliminary neutralization with commercial manganic oxide to irst establish a preferred pH-value of between 5.0 and 5.5 therein, adding a basic compound to then establish a pH- value of between 6.2 and 7.6, preferably between 6.8 and 7.2, therein, filtering the whole and recycling the electrolyte portion so regenerated to the electrolytic bath.
- Useful basic compounds are calcium hydroxide, calcium oxide or alkali metal hydroxides.
- a further preferred feature of the present process comprises adding commercial manganic oxide to a sulfuric acid manganese sulfate solution to establish a pH-value of between 5.0 and 6.5, preferably 5.5, therein, ltering the solution, flowing it through a neutral cation exchanger, wherein the cation positions are all occupied by manganese ions, and using the solution so treated as the electrolytic bath, or using it for effecting regeneration of a spent electrolytic bath.
- the advantage offered by the process of the present invention resides in that the resulting manganese dioxide is practically free from lead contaminants and in that the lead cathodes have a considerably increased service life.
- Crude manganese ore is the source from which undesirable copper is introduced into the electrolytic baths, which generally contain between 40 and 300y grams/liter manganese, between l0 and 120 ⁇ grams/liter sulfuric acid, and have a pH-value of between 0 ⁇ and 5.
- the copper may be present in these baths in a concentration as high as between 0.001 and 0.03 weight percent.
- EXAMPLE l A sulfuric acid manganese sulfate solution containing grams/liter MnSO4, 65 grams/liter H2804 and 100 milliliters/liter copper and having a pH-value substantially of 0.5 was preneutralized with commercial manganese oxide to first establish a pH-value of up to 5.5. Following this, a further quantity of the same manganese oxide was added to establish a pH-value of up to 6.8, and the solution was filtered. The filtrate obtained, which was an electrolyte containing 0.0002 weight percent copper, was used for regenerating a bath for the electrolytic production of manganese dioxide. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain 0.10 weight percent lead. The lead cathode had a service life of more than 2,000 hours of electrolysis.
- EXAMPLE 2 The procedure was the same as that described in Example 1, save that the preneutralized solution was reacted with commercial manganese oxide and calcium hydroxide until a pH-value of between 7.0 and 7.2 was found to have been established, and the solution was filtered. This treatment enabled the concentration of copper in the filtrate to be reduced down to 0.00005 percent. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain 0.08 weight percent lead. The lead cathode had a service life of more than 3000 hours of electrolysis.
- EXAMPLE 3 A sulfuric acid manganese sulfate solution the same as that used in Example l was neutralized with commercial manganic oxide to establish a pH-value of 5.5, and filtered. Following this, the filtrate was passed through a neutral cation exchanger, wherein the cation positions were all occupied by manganese. The electrolyte leaving the cation exchanger contained less than 0.0001 percent copper. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain less than 0.08 weight percent lead, for example.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1908493A DE1908493C3 (de) | 1969-02-20 | 1969-02-20 | Verfahren zur elektrolytischen Gewinnung von Braunstein |
Publications (1)
Publication Number | Publication Date |
---|---|
US3634215A true US3634215A (en) | 1972-01-11 |
Family
ID=5725824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11514A Expired - Lifetime US3634215A (en) | 1969-02-20 | 1970-02-16 | Process for the electrolytic production of manganese dioxide |
Country Status (8)
Country | Link |
---|---|
US (1) | US3634215A (no) |
BE (1) | BE746291A (no) |
CS (1) | CS167892B2 (no) |
DE (1) | DE1908493C3 (no) |
FR (1) | FR2041054B1 (no) |
GB (1) | GB1256991A (no) |
NL (1) | NL167735C (no) |
NO (1) | NO125883B (no) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1874827A (en) * | 1931-05-12 | 1932-08-30 | Burgess Battery Co | Production of manganese dioxide |
FR1448939A (fr) * | 1965-06-28 | 1966-08-12 | E J Lavino & Co | Procédé de préparation d'une solution de sulfate de manganèse à partir de ferromanganèse et d'un minerai essentiellement constitué par du bioxyde de manganèse |
-
1969
- 1969-02-20 DE DE1908493A patent/DE1908493C3/de not_active Expired
-
1970
- 1970-02-04 GB GB1256991D patent/GB1256991A/en not_active Expired
- 1970-02-12 NL NL7002017A patent/NL167735C/xx not_active IP Right Cessation
- 1970-02-16 US US11514A patent/US3634215A/en not_active Expired - Lifetime
- 1970-02-17 CS CS1095A patent/CS167892B2/cs unknown
- 1970-02-19 NO NO0595/70A patent/NO125883B/no unknown
- 1970-02-20 BE BE746291D patent/BE746291A/xx not_active IP Right Cessation
- 1970-02-20 FR FR707006153A patent/FR2041054B1/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
NO125883B (no) | 1972-11-20 |
NL167735B (nl) | 1981-08-17 |
DE1908493B2 (de) | 1978-08-10 |
BE746291A (fr) | 1970-08-20 |
DE1908493A1 (de) | 1970-09-17 |
NL7002017A (no) | 1970-08-24 |
DE1908493C3 (de) | 1979-04-12 |
NL167735C (nl) | 1982-01-18 |
CS167892B2 (no) | 1976-05-28 |
GB1256991A (no) | 1971-12-15 |
FR2041054A1 (no) | 1971-01-29 |
FR2041054B1 (no) | 1974-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3909381A (en) | Purification of chromium plating solutions by electrodialysis | |
US5478448A (en) | Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid | |
KR960008617B1 (ko) | 황산을 회수하는 방법 | |
US5302260A (en) | Galvanic dezincing of galvanized steel | |
US1972835A (en) | Coating ferrous articles with zinc | |
US2080506A (en) | Process of and apparatus for electroplating articles | |
US3933605A (en) | Non-polluting pickling method | |
US4064022A (en) | Method of recovering metals from sludges | |
US3616332A (en) | Process for recovering silver from scrap materials and electrolyte composition for use therein | |
US2119560A (en) | Electrolytic process for the extraction of metallic manganese | |
US2317153A (en) | Process for the electrodeposition of manganese | |
US3634215A (en) | Process for the electrolytic production of manganese dioxide | |
US2453757A (en) | Process for producing modified electronickel | |
US2404453A (en) | Removal of chlorate from caustic soda | |
US3271279A (en) | Electrodeposition of copper from chromium-containing solution | |
US3632490A (en) | Method of electrolytic descaling and pickling | |
EP0612359B1 (de) | Verfahren zur regeneration von altbeizen | |
DE3816419C1 (no) | ||
US5244551A (en) | Process of regenerating waste pickle which contains metal salts and acids | |
US2333578A (en) | Electrolytic chromate production | |
WO2000026440A2 (de) | Kreislaufverfahren zum beizen von kupfer und kupferlegierungen | |
DE1816608A1 (de) | Verfahren zum Entfernen von Verunreinigungen aus einer Loesung von im Nassverfahren zu raffinierendem Zink | |
US3841978A (en) | Method of treating a titanium anode | |
Kruglikov et al. | The Use of Immersed Electrochemical Modules in Plating Shops for the Regeneration of Process Solutions and Purification of Water in Reclaim Tanks. | |
US2673179A (en) | Process for the recovery of zinc |