US3634215A - Process for the electrolytic production of manganese dioxide - Google Patents

Process for the electrolytic production of manganese dioxide Download PDF

Info

Publication number
US3634215A
US3634215A US11514A US3634215DA US3634215A US 3634215 A US3634215 A US 3634215A US 11514 A US11514 A US 11514A US 3634215D A US3634215D A US 3634215DA US 3634215 A US3634215 A US 3634215A
Authority
US
United States
Prior art keywords
electrolyte
lead
copper
manganese
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11514A
Inventor
Eberhard Preisler
Karl-Friedrich Frorath
Georg Strauss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knapsack AG
Original Assignee
Knapsack AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knapsack AG filed Critical Knapsack AG
Application granted granted Critical
Publication of US3634215A publication Critical patent/US3634215A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides

Definitions

  • Electrolytic production of manganese dioxide from an electrolyte with the use of lead cathodes substantially consists of a copper-contaminated manganese sulfate solution in sulfuric acid and is treated to contain copper in a concentration of less than 0.0005 weight percent.
  • the present invention relates to a process for the electrolytic Iproduction of manganese dioxide from an electrolyte with the use of lead cathodes, the electrolyte consisting substantially of a copper-contaminated manganese sulfate solution in sulfuric acid.
  • Lead cathodes are the cathodes normally used for the electrolytic production of manganese dioxide from a manganese sulfate solution in sulfuric acid. The reason for this is that lead and some of its alloys have good corrosion resistant properties in a sulfuric acid medium, even at elevated temperatures. These properties are occasioned by or correlated to the formation of a coherent protective lead sulfate film on the metallic cathode surface. vIf lead is the cathode material, the lead sulfate in fact undergoes cathodic reduction without formation of a lead sulfate film. Despite this, the cathode material is not subject to dissolution phenomena as a result of the high electrolytic excess voltage found to occur across lead cathodes traversed by current of satisfactory density.
  • the process of the present invention for the electrolytic production of manganese dioxide with the use of lead cathodes from a copper-contaminated electrolyte consisting substantially of a manganese sulfate solution in sulfuric acid comprises more especially treating the electrolyte so as to establish a copper concentration of less than 0.0005 weight percent, preferably less than 0.0002 weight percent, therein.
  • a preferred feature of the present process comprises withdrawing a portion of the sulfuric acid electrolyte from the electrolytic bath, adding commercial manganic oxide to the said Velectrolyte portion and establishing a pH-value of between 6.2 and 7.6, preferably between 6.8 and 7.2, therein, filtering the electrolyte portion so treated and recycling it to the electrolytic bath to maintain a given concentration of manganese therein.
  • a further preferred feature of the present process comprises subjecting the electrolyte portion to preliminary neutralization with commercial manganic oxide to irst establish a preferred pH-value of between 5.0 and 5.5 therein, adding a basic compound to then establish a pH- value of between 6.2 and 7.6, preferably between 6.8 and 7.2, therein, filtering the whole and recycling the electrolyte portion so regenerated to the electrolytic bath.
  • Useful basic compounds are calcium hydroxide, calcium oxide or alkali metal hydroxides.
  • a further preferred feature of the present process comprises adding commercial manganic oxide to a sulfuric acid manganese sulfate solution to establish a pH-value of between 5.0 and 6.5, preferably 5.5, therein, ltering the solution, flowing it through a neutral cation exchanger, wherein the cation positions are all occupied by manganese ions, and using the solution so treated as the electrolytic bath, or using it for effecting regeneration of a spent electrolytic bath.
  • the advantage offered by the process of the present invention resides in that the resulting manganese dioxide is practically free from lead contaminants and in that the lead cathodes have a considerably increased service life.
  • Crude manganese ore is the source from which undesirable copper is introduced into the electrolytic baths, which generally contain between 40 and 300y grams/liter manganese, between l0 and 120 ⁇ grams/liter sulfuric acid, and have a pH-value of between 0 ⁇ and 5.
  • the copper may be present in these baths in a concentration as high as between 0.001 and 0.03 weight percent.
  • EXAMPLE l A sulfuric acid manganese sulfate solution containing grams/liter MnSO4, 65 grams/liter H2804 and 100 milliliters/liter copper and having a pH-value substantially of 0.5 was preneutralized with commercial manganese oxide to first establish a pH-value of up to 5.5. Following this, a further quantity of the same manganese oxide was added to establish a pH-value of up to 6.8, and the solution was filtered. The filtrate obtained, which was an electrolyte containing 0.0002 weight percent copper, was used for regenerating a bath for the electrolytic production of manganese dioxide. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain 0.10 weight percent lead. The lead cathode had a service life of more than 2,000 hours of electrolysis.
  • EXAMPLE 2 The procedure was the same as that described in Example 1, save that the preneutralized solution was reacted with commercial manganese oxide and calcium hydroxide until a pH-value of between 7.0 and 7.2 was found to have been established, and the solution was filtered. This treatment enabled the concentration of copper in the filtrate to be reduced down to 0.00005 percent. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain 0.08 weight percent lead. The lead cathode had a service life of more than 3000 hours of electrolysis.
  • EXAMPLE 3 A sulfuric acid manganese sulfate solution the same as that used in Example l was neutralized with commercial manganic oxide to establish a pH-value of 5.5, and filtered. Following this, the filtrate was passed through a neutral cation exchanger, wherein the cation positions were all occupied by manganese. The electrolyte leaving the cation exchanger contained less than 0.0001 percent copper. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain less than 0.08 weight percent lead, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

ELECTROLYTIC PRODUCTION OF MANGANESE DIOXIDE FROM AN ELECTROLYTE WITH THE USE OF LEAD CATHODES. THE ELECTROLYTE SUBSTANTIALLY CONSISTS OF A COPPER-CONTAMINATED MANGANESE SULFATE SOLUTION IN SULFURIC ACID AND IS TREATED TO CONTAIN COPPER IN A CONCENTRATION OF LESS THAN 0.0005 WEIGHT PERCENT.

Description

Jan. 1l, 1972 E. PREISLER l-TrAL PROCESS FOR THE ELEOTROLYTIC PRODUCTION OF MANGANES DIOXIDE Filed Feb. 16, 1970 m gama@ awww @www /uqesoJJog qd United States Patent U.s. Cl. 204-83 9 Claims ABSTRACT OF THE DISCLOSURE Electrolytic production of manganese dioxide from an electrolyte with the use of lead cathodes. The electrolyte substantially consists of a copper-contaminated manganese sulfate solution in sulfuric acid and is treated to contain copper in a concentration of less than 0.0005 weight percent.
The present invention relates to a process for the electrolytic Iproduction of manganese dioxide from an electrolyte with the use of lead cathodes, the electrolyte consisting substantially of a copper-contaminated manganese sulfate solution in sulfuric acid.
Lead cathodes are the cathodes normally used for the electrolytic production of manganese dioxide from a manganese sulfate solution in sulfuric acid. The reason for this is that lead and some of its alloys have good corrosion resistant properties in a sulfuric acid medium, even at elevated temperatures. These properties are occasioned by or correlated to the formation of a coherent protective lead sulfate film on the metallic cathode surface. vIf lead is the cathode material, the lead sulfate in fact undergoes cathodic reduction without formation of a lead sulfate film. Despite this, the cathode material is not subject to dissolution phenomena as a result of the high electrolytic excess voltage found to occur across lead cathodes traversed by current of satisfactory density.
Experience has shown, however, that the stability in the electrolyte is not always ensured and that the lead may be subject to dissolution phenomena, despite a satisfactory cathode load. While the dissolution rate is not high enough to effect the disappearance of the mechanical strength of cathodes within normal operation periods, the fact remains that enough lead penetrates into the electrolyte with the result that the product obtained by anodic precipitation then contains relatively high proportions of lead, which forbid its use in many fields of application.
It has now unexpectedly been found that the dissolution of lead cathodes is primarily occasioned by a layer of copper found to form thereon. This is all the more an unexpected result bearing in mind that the electrolytic excess voltage found to occur across a copper cathode is not substantially smaller than that found to occur across a lead cathode having dimensions the same as those of the copper cathode and traversed by current of identical density (cf. the ligure of the accompanying diagram, curves I and II). The polarization of the cathode effected by the electrolytic excess voltage, the value of which increases as the current density increases (with negative signs) has been found to reach a Value of -960 millivolts for the lead cathode and about 800 millivolts for the copper electrode, for a current density of l.2 amperes persquare decimeter. Lead, however, is subject to dissolution phenomena only in those cases in which the cathode potential is less negative than the lead corrosion potential which approaches a value of -520 millivolts in the electrolyte used.
3,634,215 Patented Jan. 11., 1972 It has been observed, however, that spongy copper is deposited on the cathode once the copper in the electrolyte commences to exceed a given concentration. As a result, the true cathode surface is considerably enlarged with respect to the geometric surface. This is accompanied by a reduction of the real current density and accordingly of the electrolytic excess voltage across the cathode with the result that the cathode potential is likely to drop to values more positive than the corrosion potential of lead, despite the high nominal current density (cf. curves III and IV). Lead which comes into contact with cathode areas not tightly covered with copper is accordingly subject to dissolution phenomena, the dissolution rate being the higher the stronger the deviation of the cathode potential from the corrosion potential, in positive direction.
It has also been found that the formation of spongy copper precipitate is occasioned by the presence of a certain minimum proportion of copper ions in the electrolyte.
The process of the present invention for the electrolytic production of manganese dioxide with the use of lead cathodes from a copper-contaminated electrolyte consisting substantially of a manganese sulfate solution in sulfuric acid comprises more especially treating the electrolyte so as to establish a copper concentration of less than 0.0005 weight percent, preferably less than 0.0002 weight percent, therein.
A preferred feature of the present process comprises withdrawing a portion of the sulfuric acid electrolyte from the electrolytic bath, adding commercial manganic oxide to the said Velectrolyte portion and establishing a pH-value of between 6.2 and 7.6, preferably between 6.8 and 7.2, therein, filtering the electrolyte portion so treated and recycling it to the electrolytic bath to maintain a given concentration of manganese therein.
A further preferred feature of the present process comprises subjecting the electrolyte portion to preliminary neutralization with commercial manganic oxide to irst establish a preferred pH-value of between 5.0 and 5.5 therein, adding a basic compound to then establish a pH- value of between 6.2 and 7.6, preferably between 6.8 and 7.2, therein, filtering the whole and recycling the electrolyte portion so regenerated to the electrolytic bath.
Useful basic compounds are calcium hydroxide, calcium oxide or alkali metal hydroxides.
A further preferred feature of the present process comprises adding commercial manganic oxide to a sulfuric acid manganese sulfate solution to establish a pH-value of between 5.0 and 6.5, preferably 5.5, therein, ltering the solution, flowing it through a neutral cation exchanger, wherein the cation positions are all occupied by manganese ions, and using the solution so treated as the electrolytic bath, or using it for effecting regeneration of a spent electrolytic bath.
The advantage offered by the process of the present invention resides in that the resulting manganese dioxide is practically free from lead contaminants and in that the lead cathodes have a considerably increased service life.
Crude manganese ore is the source from which undesirable copper is introduced into the electrolytic baths, which generally contain between 40 and 300y grams/liter manganese, between l0 and 120` grams/liter sulfuric acid, and have a pH-value of between 0` and 5. The copper may be present in these baths in a concentration as high as between 0.001 and 0.03 weight percent.
The following examples illustrate the process of the present invention.
EXAMPLE l A sulfuric acid manganese sulfate solution containing grams/liter MnSO4, 65 grams/liter H2804 and 100 milliliters/liter copper and having a pH-value substantially of 0.5 was preneutralized with commercial manganese oxide to first establish a pH-value of up to 5.5. Following this, a further quantity of the same manganese oxide was added to establish a pH-value of up to 6.8, and the solution was filtered. The filtrate obtained, which was an electrolyte containing 0.0002 weight percent copper, was used for regenerating a bath for the electrolytic production of manganese dioxide. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain 0.10 weight percent lead. The lead cathode had a service life of more than 2,000 hours of electrolysis.
EXAMPLE 2 The procedure was the same as that described in Example 1, save that the preneutralized solution was reacted with commercial manganese oxide and calcium hydroxide until a pH-value of between 7.0 and 7.2 was found to have been established, and the solution was filtered. This treatment enabled the concentration of copper in the filtrate to be reduced down to 0.00005 percent. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain 0.08 weight percent lead. The lead cathode had a service life of more than 3000 hours of electrolysis.
EXAMPLE 3 A sulfuric acid manganese sulfate solution the same as that used in Example l was neutralized with commercial manganic oxide to establish a pH-value of 5.5, and filtered. Following this, the filtrate was passed through a neutral cation exchanger, wherein the cation positions were all occupied by manganese. The electrolyte leaving the cation exchanger contained less than 0.0001 percent copper. Manganese dioxide, precipitated therefrom with the use of a lead cathode, was found to contain less than 0.08 weight percent lead, for example.
We claim:
1. A process for the electrolytic production of manganese dioxide from an electrolyte with the use of lead cathodes, the electrolyte being substantially comprised of a copper-contaminated manganese sulfate solution in sulfuric acid, which comprises establishing a concentration of copper of less than 0.0005 weight percent in the electrolyte.
2. The process as claimed in claim 1, which comprises establishing a concentration of copper of less than 0.0002 weight percent in the electrolyte.
3. The process as claimed in claim 1, which comprises establishing the concentration of copper in the electrolyte by withdrawing a portion of the sulfuric acid electrolyte from an electrolytic bath, adding commercial manganic 4 oxide to the said electrolyte portion and establishing a pH-Value of between 6.2 and 7.6 therein, filtering the electrolyte portion so treated and recycling it to the electrolytic bath to maintain a given concentration of manganese therein.
4. The process as claimed in claim 3, which comprises adding commercial manganic oxide to the said electrolyte portion and thereby establishing a pH-value of between 6.8 and 7.2 therein.
5. The process as claimed in claim 3, which comprises subjecting the electrolyte portion to preliminary neutralization to rst establish a pH-value of between 5.0 and 5.5 therein, adding a basic compound to then establish a pH-value of between 6.2 and 7.6 therein, filtering the whole and recycling the electrolyte portion so regenerated to the electrolytic bath.
6. The process a claimed in claim 5, which comprises adding a basic compound to the said preneutralized electrolyte portion to establish a pH-value of between 6.8 and 7.2 therein.
7. The process as claimed in claim 5, wherein the basic compound is a member selected from the group consisting of calcium hydroxide, calcium oxide and alkali metal hydroxides.
8. The process as claimed in claim 1, which comprises adding commercial manganic oxide to a sulfuric acid manganese sulfate solution to establish a pH-value of between 5.0 and 6.5 therein, filtering the solution, fiowing it through a neutral cation exchanger, wherein the cation positions are all occupied by manganese ions, and using the solution so treated as the electrolytic bath, or using it for effecting regeneration of a spent electrolytic bath.
9. The process a claimed in claim 8, which comprises adding commercial manganic oxide to the sulfuric acid manganese sulfate solution to establish a pH-value of 5.5 therein.
References Cited UNITED STATES PATENTS 2,741,590 4/1956 Kunin 204--96 2,867,570 l/1959 Dufour et al 204-83 3,065,155 11/1962 Welsh 204-96 X 3,455,798 7/1969 Mehne et al 204-83 JOHN H. MACK, Primary Examiner D. R. VALENTINE, Assistant Examiner U.S. Cl. X.R. 204-96
US11514A 1969-02-20 1970-02-16 Process for the electrolytic production of manganese dioxide Expired - Lifetime US3634215A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1908493A DE1908493C3 (en) 1969-02-20 1969-02-20 Process for the electrolytic extraction of manganese dioxide

Publications (1)

Publication Number Publication Date
US3634215A true US3634215A (en) 1972-01-11

Family

ID=5725824

Family Applications (1)

Application Number Title Priority Date Filing Date
US11514A Expired - Lifetime US3634215A (en) 1969-02-20 1970-02-16 Process for the electrolytic production of manganese dioxide

Country Status (8)

Country Link
US (1) US3634215A (en)
BE (1) BE746291A (en)
CS (1) CS167892B2 (en)
DE (1) DE1908493C3 (en)
FR (1) FR2041054B1 (en)
GB (1) GB1256991A (en)
NL (1) NL167735C (en)
NO (1) NO125883B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1874827A (en) * 1931-05-12 1932-08-30 Burgess Battery Co Production of manganese dioxide
FR1448939A (en) * 1965-06-28 1966-08-12 E J Lavino & Co Process for preparing a solution of manganese sulfate from ferromanganese and an ore essentially consisting of manganese dioxide

Also Published As

Publication number Publication date
NL167735C (en) 1982-01-18
GB1256991A (en) 1971-12-15
DE1908493A1 (en) 1970-09-17
CS167892B2 (en) 1976-05-28
NO125883B (en) 1972-11-20
NL167735B (en) 1981-08-17
DE1908493C3 (en) 1979-04-12
BE746291A (en) 1970-08-20
FR2041054B1 (en) 1974-06-14
FR2041054A1 (en) 1971-01-29
NL7002017A (en) 1970-08-24
DE1908493B2 (en) 1978-08-10

Similar Documents

Publication Publication Date Title
US3909381A (en) Purification of chromium plating solutions by electrodialysis
US5478448A (en) Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid
KR960008617B1 (en) Process for recovering sulfuric acid
US5302260A (en) Galvanic dezincing of galvanized steel
US1972835A (en) Coating ferrous articles with zinc
US2080506A (en) Process of and apparatus for electroplating articles
US3933605A (en) Non-polluting pickling method
US4064022A (en) Method of recovering metals from sludges
US2119560A (en) Electrolytic process for the extraction of metallic manganese
US2317153A (en) Process for the electrodeposition of manganese
US3634215A (en) Process for the electrolytic production of manganese dioxide
US2453757A (en) Process for producing modified electronickel
US3271279A (en) Electrodeposition of copper from chromium-containing solution
US2735810A (en) Cathode
US3632490A (en) Method of electrolytic descaling and pickling
EP0612359B1 (en) Method for recycling used pickling liquors
DE3816419C1 (en)
US5244551A (en) Process of regenerating waste pickle which contains metal salts and acids
US2333578A (en) Electrolytic chromate production
WO2000026440A2 (en) Circular method for pickling copper and copper alloys
DE1816608A1 (en) Process for removing impurities from a solution of zinc to be refined by the wet process
US3841978A (en) Method of treating a titanium anode
Kruglikov et al. The Use of Immersed Electrochemical Modules in Plating Shops for the Regeneration of Process Solutions and Purification of Water in Reclaim Tanks.
US2673179A (en) Process for the recovery of zinc
US2863810A (en) Process for electrowinning zinc