US3429159A - Forming apparatus - Google Patents
Forming apparatus Download PDFInfo
- Publication number
- US3429159A US3429159A US649290A US3429159DA US3429159A US 3429159 A US3429159 A US 3429159A US 649290 A US649290 A US 649290A US 3429159D A US3429159D A US 3429159DA US 3429159 A US3429159 A US 3429159A
- Authority
- US
- United States
- Prior art keywords
- coil
- aperture
- plates
- apertures
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007493 shaping process Methods 0.000 description 15
- 230000001052 transient effect Effects 0.000 description 15
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/14—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49805—Shaping by direct application of fluent pressure
Definitions
- the apparatus comprises a conductive coil. which produces a transient magnetic field when current pulses are passed therethrough.
- the field is shaped by a field shaper means positioned adjacent to the coil which shaping means defines a plurality of apertures, each aperture being of a size for accommodating one of the work portions.
- Means are provided for placing selected ones of the apertures in operative condition.
- This invention relates to forming apparatus and, more particularly, to apparatus for forming material by energy acquired from a transient magnetic field.
- Apparatus has been developed for forming materials by employing transient magnetic fields of high intensity.
- An example of such apparatus is shown and described in the US. Patent No. 2,976,907, issued Mar. 28, 1961, :and assigned to the assignee of the present invention.
- an electrical current pulse of high amperage is passed through a conductive coil, thereby producing a transient magnetic field of high intensity.
- a conductive Work piece positioned in the transient magnetic field has a current induced in it corresponding to the changing flux of the transient magnetic field.
- the induced current pulse interacts with the magnetic field to produce a force acting on the work piece. If the force is sufficiently strong, a deformation of the work piece results.
- the shape of the deformation is dependent upon the shape of the magnetic field and the position of the work piece relative to the field. Repeated pulses of current may be applied to the conductive coil, thus causing a series of forming impulses to be applied to the work piece.
- a mangetic field shaper is that of a conductive body, such as a conductive plate having an aperture therein for accommodating the work piece.
- the area of the aperture is ordinarily smaller than the area enclosed by the coil.
- the field shaper is disposed relative to the coil such that the transient magnetic field produced by the coil induces a transient current in the field shaper which is concentrated on its inner surface around the aperture, and creates an intense field in the aperture.
- the flux density within the aperture and, therefore, the force on the work piece are dependent upon the shape of the inner surface of the field shaper at the aperture and upon the location of the inner surface relative to the work piece.
- a tube can be constricted intermediate its ends through the use of a field shaper which includes an annular flange projecting inwardly from the inner surface of the field shaper to define a narrow throat within the aperture.
- Another object of the invention is the provision of a magnetic forming apparatus for forming a necked-down area of a work piece.
- a further object of the invention is to provide improved magnetic forming apparatus which is low in cost and which is capable of rapidly performing a variety of sequential forming operations on work pieces or portions thereof of different sizes.
- Another object is to provide magnetic forming apparatus using at least one coil which produces only a single magnetic field, and using field shaping means wherein the effective size of the aperture used with the coil for forming may be varied.
- a more particular object of the invention is to provide improved magnetic forming apparatus using at least one coil and field shaping means adjacent thereto defining a plurality of apertures in which work pieces or portions thereof may be formed in response to energization of the coil.
- Still another object is to provide magnetic forming apparatus of the type described in which the work pieces or portions thereof may be readily inserted in the apertures.
- FIGURE 1 is a side elevational view, with part broken away, of forming apparatus constructed in accordance with the invention
- FIGURE 2 is a sectional view taken along the line 22 of FIGURE 1;
- FIGURE 3 is an enlarged respective view of one type of device which may be formed in the apparatus of the invention.
- FIGURE 4 is a side elevational view of another embodiment of the forming apparatus.
- FIGURE 5 is a sectional view taken along the line 55 of FIGURE 4;
- FIGURE 6 is a side diagrammatic view, with parts broken away, of a further embodiment of the forming apparatus and showing an alternative position thereof in phantom;
- FIGURE 7 is a sectional view, taken along the line 77 of FIGURE 6;
- FIGURE 8 is a side elevational view, with parts broken away, of a still further embodiment of the forming apparatus
- FIGURE 9 is a sectional view taken along the line 9-9 of FIGURE 8.
- FIGURE 10 is an enlarged sectional view taken along the line 1010 of FIGURE 8 and illustrating a plug and work piece used therein.
- the apparatus of the invention is utilized for forming a plurality of conductive work pieces or portions thereof (hereinafter referred to collectively as work portions).
- the apparatus illustrated in FIGURES 1 and 2 comprises a conductive coil 11 for producing a transient magnetic field and field shaping means 13 and 15 positioned adjacent to the coil.
- the field shaping means define a plurality of apertures 17 and 19, each being of a size for accommodating one of the work portions to be formed.
- Means 21 are provided for placing selected ones of the field shaping means in an operative condition.
- Energizing means 23 is provided for supplying the coil 11 with one or more current pulses to thereby establish the transient magnetic field which forms the work portions positioned in the selected aperture.
- the magnetic forming apparatus illustrated therein includes the coil 11 which is a helically wound conductor.
- the coil 11 is insulated by suitable insulation 24 and the insulated coil is embedded in an annulus 25 of high strength conductive metal having a radially extending slot 26.
- the coil 11 produces a transient magnetic field when the same is selectively connected to the energizing means 23, which is a suitable pulse source such as a charged capacitor bank.
- the transient magnetic field is shaped by the field shaping means 13 and 15 which comprise a pair of generally rectangular conductive plates of a high strength metal, such as beryllium copper, steel, etc., extending transversely of the axis of the coil 11 at opposite ends of the coil.
- the plate 13 defines the aperture 17 and the plate 15 defines an aperture 19.
- the surface of the plates 13 and 15 at the apertures are chamfered to provide a desired magnetic field strength and configuration for forming work portions disposed in the apertures.
- the aperture 17 is larger than the aperture 19 for accommodating a correspondingiy larger work portion.
- Each of the plates 13 and 15 is separable at the respective apertures 17 and 19 along interfaces 27 and 28, respectively. This permits the separable parts of each plate to be moved away from each other to facilitate the insertion of a work portion in the associated aperture. In order that current flows around the apertures and produces a proper forming field, the plates do not actually contact each other at the interface on at least one side of the aperture. Contact may be avoided by a strip of insulation 29 attached to one interface. To facilitate movement of the separable parts of the plates 13 and 15, the plate 13 is supported between upper and lower tracks 30 and 31, respectively, and, similarly, the plate 15 is supported between upper and lower tracks 33 and 35, respectively. As will be observed from FIGURES 1 and 2, the plate 15 is shown having its two parts separated from each other.
- the aperture 19 is inoperative because of the excessive gap and because it is not properly aligned with the coil.
- the aperture 17 may be rendered inoperative by separating the separable parts of the plate 13.
- the apertures may be selectively rendered operative or inoperative in accordance with the relative position of the separable parts of the plates.
- the means 21 for placing the field shaping means in operative condition are pneumatic actuators connected to the separable parts of the plates 13 and 15 for moving same with respect to each other.
- one of the separable parts of each plate may be fixed with respect to the coil 11, and only one of the separable parts made movable with respect thereto.
- Rectangular blocks 37 and 39 of high strength insulating material are provided on the opposite side of each of the field shaper plates 13 and 15 from the coil 11 to provide backup for the plates to prevent their being pushed away from the coil due to the force of the magnetic field produced thereby.
- Axial apertures 40 are provided in the blocks 37 and 39 to permit positioning of the work portions in the field shaping means 13 and 15.
- the blocks 37 and 39 are, in turn, encased by an annular channel shaped metallic casing 41 which provide structural support and at the same time limits stray magnetic fields outside of the apparatus.
- the casing 41 is, in turn,
- FIGURES 1 and 2 The operation of the apparatus illustrated in FIGURES 1 and 2 will be described in connection with a specific application in which such apparatus is of advantage. It is to be understood, however, that the invention may be used for other applications, with or without modification.
- a flexible mechanical joint between a yoke structure 43 and a coupling rod 45 is covered by a flexible rubber boot 47.
- Such a construction is sometimes utilized in vehicles, wherein the flexible rubber boot is used to retain lubricant at the flexible joint.
- the boot is secured by means of two rings 49 and 51 positioned a short distance in from the respective ends of the boot.
- the rings 49 and 51 may be tightened to the boot by the apparatus shown in FIGURES 1 and 2.
- the ring 49 is positioned between the two separable parts of the plate 13, and the plate closed such that the aperture 17 is in an operative condition accommodating the ring 49.
- a suitable transient magnetic field may then be produced by the coil 11 to magnetically form the ring 49 against the boot.
- the separable parts of the plate 13 may then be opened and the separable parts of the plate 15 brought together so that the aperture 19 encloses the ring 51.
- a transient magnetic field is produced by the coil 11 to form the ring 51 against the boot.
- FIGURES 4 and 5 A forming apparatus of similar configuration to that of FIGURES 1 and 2 is illustrated in FIGURES 4 and 5. Parts similar to those in FIGURES 1 and 2 are indicated with the same reference numeral and the subscrip a.
- diiferent sized work portions are formed in the same plane in the forming apparatus. More particularly, as illustrated, two coils 53 and 55 of spiral configuration and substantially fiat cross section are embedded, respectively, in two annular blocks 57 and 59 of high strength insulation, such as fiber glass. As illustrated, the pulse source 23a feeds the two coils in series, but, for certain applications the coils may be coupled in parallel.
- the annular blocks 57 and 59 are spaced from each other and are supported and backed by rectangular plates 61 and 63, respectively, of a high strength material such as steel.
- the plates 61 and 63 are, in turn, fixedly supported by a machine frame (not shown).
- Each plate has therein a central opening 64 large enough to accommodate insertion of work portions.
- the space between the two plates 61 and 63 is occupied in part by four spacers 65 formed of a high strength metal, one being positioned at each corner.
- the plates 61 and 63 are fastened to the spacers 65 by suitable means such as bolts (not shown).
- the field shaping means 13a and 15a comprises two field shaper plates 67 and 69 which are positioned in coplanar relationship in the space between the blocks 57 and 59.
- the plates 67 and 69 define apertures 71 and 73, respectively, and are separable at the apertures which they define along interfaces 75 and 77, respectively. Actual contact between the separable parts of the plates is avoided by insulating strips 78 attached to the interfaces 75 and 77.
- the separable parts of the plates 67 and 69 are guided by the insulating blocks 57 and 59 and by tracks 70 provided on the spacers 65.
- the apertures 71 and 73 may be made of different sizes for accommodating work portions of different sizes.
- the separable parts of the plates 67 and 69 are movable with respect to each other in different directions such that the plates may be alternately closed to render the respective apertures 71 and 73 in an operative condition. More particularly, the interfaces 75 and 77 are mutually perpendicular as are the directions in which the separable parts are moved relative to each. Thus, with one plate having its parts sufi'iciently separated, the other may be closed to render its aperture in an operative condition.
- an apparatus which includes a coil, such as the coil 11 of FIGURE 1, disposed between two pairs of separable field shaper plates, each pair being as illustrated in FIGURES 4 and 5.
- a coil such as the coil 11 of FIGURE 1
- Such a construction is capable of handling work portions of up to four different sizes, and capable of simultaneously forming two work portions if sufficient energy is provided.
- FIGURES 6 and 7 an embodiment of of the forming apparatus is illustrated, which is similar to FIGURES 4 and 5 except that a single field shaper 79 is provided which includes a plurality of apertures 81, 83 and 85. Parts similar to those in FIGURES 4 and 5 are indicated with the same reference numeral and the subscript b.
- the field shaper plate 79 is supported in an upper track 87 and a lower track 89 on a rectangular frame structure 91 which also supports the pneumatic actuators 21b.
- the plate 79 defines the three vertically spaced apertures 81, 83, and 85 of different sizes, and is separable into two parts at the apertures along a vertically extending interface 93.
- an actuator 96 is attached to the frame structure 91 which is guided for vertical movement by opposed vertically extending tracks 97 and 98 attached to the spacers 65b disposed between and at opposed sides of the plates 61b and 63b. Movement of the frame structure 91 effects vertical movement of the field shaper plate 79, thereby permitting a selected aperture to be axially aligned with the coils 53b and 55b for operation therewith, depending upon the effective aperture size desired.
- the actuator 96 may be a hydraulic device, a jack screw, a rack and pinion, or any other suitable device.
- FIGURES 8, 9 and 10 a forming apparatus is shown which is similar to that shown in FIGURES 4 and 5 except that a single field shaper plate 99 is provided which contains two horizontally spaced apertures 100 and 101 of different sizes. Parts similar to those shown in FIGURES 4 and 5 are indicated with the same reference numeral and the subscript c.
- the coils 53c and 550 are oval for the purpose of exposing the two apertures 100 and 101 in the field shaper plate 99.
- the plate 99 is separable at both of the apertures along an interface 103 and the parts are guided for vertical movement by opposed tracks 104 attached to the spacer 656.
- An insulating layer 105 attached to one face of the interface prevents the two parts from contacting each other.
- the aperture which is not being used for forming is filled with a conductive plug 107, as shown in FIGURE 10.
- a similar plug may be provided for the aperture 100, and when positioned in the aperture 100 renders that aperture inoperative. In the latter case, of course, the plug 107 is removed to permit insertion of a work portion in the aperture 101.
- the invention provides an improved forming apparatus.
- the apparatus is particularly adaptable to the forming of a plurality of conductive work pieces or portions thereof by utilizing a coil or coils producing a single magnetic field and a field shaper or field shapers in which the effective aperture size may be selectively varied.
- the forming device of the invention is capable of performing a variety of sequential forming operations on work portions of different sizes. The Work portions are readily inserted into the apparatus and removed therefrom through relative movement of separable parts of the shaper or shapers.
- Apparatus for forming a plurality of conductive work portions comprising, at least one conductive coil for producing a magnetic field, field shaping means positioned adjacent to said coil and defining a plurality of apertures, each aperture being of a size for accommodating one of the work portions, means for placing selected ones of said apertures in an operative condition, and means for energizing said coil for forming work portions in those of said apertures in the operative condition.
- said field shaping means comprise at least one conductive plate having at least one of the apertures therein, said plate being separable at said aperture therein to facilitate placement of a work portion in said aperture.
- said field shaping means comprise a pair of conductive plates, each having an aperture therein and being separable at said aperture therein into at least two relatively displaceable parts, and wherein said placing means comprise means for effecting relative movement of the separable parts of each of said plates between a separated relationship and an adjacent relationship wherein said aperture defined thereby is in the operative condition.
- said field shaping means comprise two plates disposed transversely of the axis of said coil, each plate being at a respective end of said coil, each plate having an aperture therein and being separable at said aperture therein into at least two relatively displaceable parts, said separable parts of said plates being movable in different directions so as to permit the separable parts of one plate to be brought together with the separable parts of the other plate separated, and wherein said placing means comprise means for effecting relative movement of the separable parts of each of said plates between a separated relationship and an adjacent relationship wherein said aperture defined thereby is in the operative condition.
- said field shaping means comprise a single plate having a plurality of apertures therein.
- Said movable means comprise means for moving said plate with respect to said coil for selectively positioning said apertures to have their axes aligned with the axis of said coil.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electromagnets (AREA)
- Particle Accelerators (AREA)
- Magnetically Actuated Valves (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64929067A | 1967-06-27 | 1967-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3429159A true US3429159A (en) | 1969-02-25 |
Family
ID=24604184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US649290A Expired - Lifetime US3429159A (en) | 1967-06-27 | 1967-06-27 | Forming apparatus |
Country Status (5)
Country | Link |
---|---|
US (1) | US3429159A (enrdf_load_stackoverflow) |
CH (1) | CH477927A (enrdf_load_stackoverflow) |
DE (1) | DE1752637A1 (enrdf_load_stackoverflow) |
FR (1) | FR1571101A (enrdf_load_stackoverflow) |
GB (1) | GB1207917A (enrdf_load_stackoverflow) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3581540A (en) * | 1969-02-10 | 1971-06-01 | Gulf Energy & Environ Systems | Inductive device |
US3590464A (en) * | 1969-03-07 | 1971-07-06 | Gulf Energy & Environ Systems | Threaded fastener and method of making the same |
US3626218A (en) * | 1970-12-31 | 1971-12-07 | Nasa | Shock wave convergence apparatus |
EP0396848A3 (de) * | 1989-05-09 | 1991-04-24 | Austria Metall Aktiengesellschaft | Teilbarer Magnetumformer |
US20050028341A1 (en) * | 2003-07-01 | 2005-02-10 | Durand Robert D. | Method of manufacturing a combined driveshaft tube and yoke assembly |
RU2660505C2 (ru) * | 2016-12-26 | 2018-07-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки листовых материалов |
RU2660500C2 (ru) * | 2016-12-26 | 2018-07-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Способ и устройство для формоизменения оболочки из труднодеформируемого материала магнитно-импульсной штамповкой |
RU2691014C1 (ru) * | 2018-12-05 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2691020C1 (ru) * | 2019-01-10 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2691012C1 (ru) * | 2018-12-05 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2691013C1 (ru) * | 2018-12-05 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2691018C1 (ru) * | 2019-01-10 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2692005C1 (ru) * | 2018-12-05 | 2019-06-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2693409C1 (ru) * | 2018-12-05 | 2019-07-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2743270C1 (ru) * | 2020-07-23 | 2021-02-16 | Публичное акционерное общество "Императорский Тульский оружейный завод" (ПАО "Императорский Тульский оружейный завод") | Устройство для формоизменения оболочки типа "стакан" магнитно-импульсной штамповкой |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2414383A1 (fr) * | 1978-01-13 | 1979-08-10 | Kh Polt I Im V I Lenina | Inducteur pour le travail des metaux par pression d'un champ magnetique impulsionnel |
FR2450145A1 (fr) * | 1979-03-02 | 1980-09-26 | Angenieux Clb Sa | Procede d'assemblage des elements composant les cadres de bicyclettes et vehicules similaires, ainsi que les organes et les moyens correspondants de mise en oeuvre |
US7467532B2 (en) * | 2005-10-18 | 2008-12-23 | Ford Global Technologies, Llc | Apparatus for electromagnetically forming a workpiece |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2976907A (en) * | 1958-08-28 | 1961-03-28 | Gen Dynamics Corp | Metal forming device and method |
US3108325A (en) * | 1961-01-13 | 1963-10-29 | Gen Dynamics Corp | Forming device |
US3252313A (en) * | 1964-12-21 | 1966-05-24 | Gen Motors Corp | Electromagnetic forming method and apparatus |
US3347074A (en) * | 1964-12-21 | 1967-10-17 | Gen Motors Corp | Electromagnetic forming apparatus and method |
-
1967
- 1967-06-27 US US649290A patent/US3429159A/en not_active Expired - Lifetime
-
1968
- 1968-06-25 GB GB30119/68A patent/GB1207917A/en not_active Expired
- 1968-06-26 FR FR1571101D patent/FR1571101A/fr not_active Expired
- 1968-06-27 CH CH959968A patent/CH477927A/de not_active IP Right Cessation
- 1968-06-27 DE DE19681752637 patent/DE1752637A1/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2976907A (en) * | 1958-08-28 | 1961-03-28 | Gen Dynamics Corp | Metal forming device and method |
US3108325A (en) * | 1961-01-13 | 1963-10-29 | Gen Dynamics Corp | Forming device |
US3252313A (en) * | 1964-12-21 | 1966-05-24 | Gen Motors Corp | Electromagnetic forming method and apparatus |
US3347074A (en) * | 1964-12-21 | 1967-10-17 | Gen Motors Corp | Electromagnetic forming apparatus and method |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3581540A (en) * | 1969-02-10 | 1971-06-01 | Gulf Energy & Environ Systems | Inductive device |
US3590464A (en) * | 1969-03-07 | 1971-07-06 | Gulf Energy & Environ Systems | Threaded fastener and method of making the same |
US3626218A (en) * | 1970-12-31 | 1971-12-07 | Nasa | Shock wave convergence apparatus |
EP0396848A3 (de) * | 1989-05-09 | 1991-04-24 | Austria Metall Aktiengesellschaft | Teilbarer Magnetumformer |
US20050028341A1 (en) * | 2003-07-01 | 2005-02-10 | Durand Robert D. | Method of manufacturing a combined driveshaft tube and yoke assembly |
RU2660500C2 (ru) * | 2016-12-26 | 2018-07-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Способ и устройство для формоизменения оболочки из труднодеформируемого материала магнитно-импульсной штамповкой |
RU2660505C2 (ru) * | 2016-12-26 | 2018-07-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки листовых материалов |
RU2691014C1 (ru) * | 2018-12-05 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2691012C1 (ru) * | 2018-12-05 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2691013C1 (ru) * | 2018-12-05 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2692005C1 (ru) * | 2018-12-05 | 2019-06-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2693409C1 (ru) * | 2018-12-05 | 2019-07-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2691020C1 (ru) * | 2019-01-10 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2691018C1 (ru) * | 2019-01-10 | 2019-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Устройство для магнитно-импульсной штамповки |
RU2743270C1 (ru) * | 2020-07-23 | 2021-02-16 | Публичное акционерное общество "Императорский Тульский оружейный завод" (ПАО "Императорский Тульский оружейный завод") | Устройство для формоизменения оболочки типа "стакан" магнитно-импульсной штамповкой |
Also Published As
Publication number | Publication date |
---|---|
FR1571101A (enrdf_load_stackoverflow) | 1969-06-13 |
GB1207917A (en) | 1970-10-07 |
DE1752637A1 (de) | 1971-05-19 |
CH477927A (de) | 1969-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3429159A (en) | Forming apparatus | |
US3252313A (en) | Electromagnetic forming method and apparatus | |
DE1488515B2 (de) | Verfahren zum Verformen einer elektrischen Spule | |
DE2538320A1 (de) | Permanentmagnetischer laeufer fuer dynamoelektrische maschinen und verfahren zu dessen herstellung | |
DE1564189B2 (de) | Elektromagnetisches Relais | |
DE2307788C3 (de) | Magnetron | |
US3360972A (en) | Magnetomotive metal working device | |
US3486356A (en) | Forming apparatus and method | |
ES491671A0 (es) | Un metodo para introducir un nucleo magnetico en una bobina | |
US3541823A (en) | Electromagnetic forming apparatus | |
US3715070A (en) | Cold welding machine | |
US3312093A (en) | Coil construction | |
US3133226A (en) | Magnetic structure for traveling wave tubes | |
DE4302630C1 (de) | Koaxial-Beschleuniger zum axialen Beschleunigen eines Plasmarings | |
DE1227975B (de) | Elektrischer Impulsgeber | |
EP0053380A1 (de) | Verfahren und Vorrichtung zum Schweissen magnetisierbarer Werkstücke mit umlaufendem elektrischen Lichtbogen | |
JPS57128906A (en) | Lamination fixing device of iron core for electric equipment | |
GB1356814A (en) | Magnetic recorder heads | |
DE1279619B (de) | Vorrichtung zur Umformung zylindrischer Hohlkoerper mit Hilfe gepulster Magnetfelder | |
DE2512714A1 (de) | Vorrichtung zum induzieren einer elektrischen spannung | |
GB1586796A (en) | Magnetic field inductors for pressure forming | |
DE1060556B (de) | Elektrische Ruehrwicklung | |
DE2638369A1 (de) | Eisenkern fuer transformatoren, drosseln o.dgl. | |
AT237084B (de) | Elektromagnetisches Relais | |
JPS55146920A (en) | Single phase reactor |