US3117055A - Non-woven fabrica - Google Patents
Non-woven fabrica Download PDFInfo
- Publication number
- US3117055A US3117055A US85964059A US3117055A US 3117055 A US3117055 A US 3117055A US 85964059 A US85964059 A US 85964059A US 3117055 A US3117055 A US 3117055A
- Authority
- US
- United States
- Prior art keywords
- fabric
- woven
- fibers
- binder
- fabrics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims description 105
- 239000004745 nonwoven fabric Substances 0.000 claims description 38
- 229920005613 synthetic organic polymer Polymers 0.000 claims description 7
- 239000002491 polymer binding agent Substances 0.000 claims description 3
- 239000004744 fabric Substances 0.000 description 119
- 239000011230 binding agent Substances 0.000 description 59
- 239000000463 material Substances 0.000 description 26
- 239000000047 product Substances 0.000 description 24
- -1 felts Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000002245 particle Substances 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 19
- 239000002759 woven fabric Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 15
- 238000003825 pressing Methods 0.000 description 14
- 229920001577 copolymer Polymers 0.000 description 13
- 238000004049 embossing Methods 0.000 description 13
- 229920000728 polyester Polymers 0.000 description 13
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 244000010375 Talinum crassifolium Species 0.000 description 10
- 235000015055 Talinum crassifolium Nutrition 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 7
- 239000000806 elastomer Substances 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 229920002302 Nylon 6,6 Polymers 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 5
- 239000002657 fibrous material Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000002269 spontaneous effect Effects 0.000 description 5
- 229920001897 terpolymer Polymers 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- LZFNKJKBRGFWDU-UHFFFAOYSA-N 3,6-dioxabicyclo[6.3.1]dodeca-1(12),8,10-triene-2,7-dione Chemical compound O=C1OCCOC(=O)C2=CC=CC1=C2 LZFNKJKBRGFWDU-UHFFFAOYSA-N 0.000 description 3
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000006194 liquid suspension Substances 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 239000002952 polymeric resin Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- 229920001059 synthetic polymer Polymers 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005421 electrostatic potential Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000000935 solvent evaporation Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- SWGZHHCRMZDRSN-BTJKTKAUSA-N (Z)-but-2-enedioic acid 1-phenoxypropan-2-ylhydrazine Chemical compound OC(=O)\C=C/C(O)=O.NNC(C)COC1=CC=CC=C1 SWGZHHCRMZDRSN-BTJKTKAUSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241001522296 Erithacus rubecula Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical class O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000129 polyhexylmethacrylate Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 239000004749 staple nonwoven Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/305—Spray-up of reinforcing fibres with or without matrix to form a non-coherent mat in or on a mould
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
- B29K2105/0854—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/76—Processes of uniting two or more parts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2904—Staple length fiber
- Y10T428/2905—Plural and with bonded intersections only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2361—Coating or impregnation improves stiffness of the fabric other than specified as a size
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2861—Coated or impregnated synthetic organic fiber fabric
- Y10T442/2893—Coated or impregnated polyamide fiber fabric
Definitions
- Woven fabrics usually include knitted fabrics and may be defined as fabrics formed by the interlacing in a predetermined regular geometrical pattern of one or more long lengths of yarns or filaments.
- Non-woven fabrics are usually formed by a random or controlled deposition of filamentary strands to form a sheet or batt followed by binding these strands in some way to provide strength and dimensional stability.
- the advantage of low processing cost is one of the very desirable features of non-woven fabrics. All of the various processing steps which are required in the preparation of woven and knitted fabrics add considerably to the cost of the final product.
- the wool fibers must be formed into a yarn, the yarn must be twisted or plied, and the resulting final yarn product must then be Woven into a fabric. It would be extremely desirable to provide a process which would involve simple welllmown papermaking procedures but would produce a textile fabric having the properties of a woven fabric.
- a non woven fabric of synthetic organic fibers said fibers containing at least 30 crimps per inch, and being bonded at spaced points uniformly and randomly distributed throughout the fabric so that the average straight length of fiber between two points of bonding of that fiber is 3,117,055 Patented Jan. 7, 1964 ice Percent binderx i/Mz' of binder 40 where the percent binder is based on the total weight of the fabric, including the binder.
- the modulus (Mi) of the binder is between about 0.002 and about 25 grams per denier.
- the individual filamentary components of fabrics of this invention possess a high degree of lateral freedom and flexibility in three dimensions between intersection points and points of bonding, thereby providing these fabrics with a high degree of drape and softness, high tensile strength, low bulk and a soft handle in the same range as woven fabrics.
- the fabrics of this invention are characterized by a fabric density of 0.28 to 0.7 g./cc., a drape stiffness of not over 1.0 inch, a ratio of tensile strength to drape stiffness of at least 12.0 p.s.i., and a sonic velocity-elongation differential of at least 1.3. They are, therefore, readily distinguished from papers on the one hand and conventional thick and bulky non-woven felts on the other.
- the non-woven fabrics of this invention are equivalent in handle, thickness, drapability, strength and other aesthetic and physical properties to a wide spectrum of woven fabrics.
- FIGURE 1 shows schematically one type of apparatus useful for producing the products of this invention.
- FIGURE 2 shows a portion of a non-woven filamentary structure of this invention bonded at points of fiber crossing.
- FIGURE 3 illustrates the structure of a larger portion of a fabric of this invention greatly enlarged.
- FIGURE 4 is a graph comparing physical characteristics of a fabric of this invention with those of a conventional woven fabric and a paper of the same filamentary material.
- FIGURE 2 is a simple illustration greatly magnified of the structure of a fabric of this invention containing crimped andl/or looped filaments 15 bonded at spaced points 16 by an adherent such as. a fibrid.
- FIGURE 3 is an enlarged portion of a fabric of this invention comprising a multitude of the portions illustrated in FIGURE 2 and illustrating the uniformity of distribution of fibers, random disposition of fibers and uniformity of spaced points of bonding throughout the fabric.
- FIGURE 4 compares the change in sonic velocity with elongation of non-woven fabrics of this invention, conventional woven fabrics, and paper products made from the same materials. It can be seen from FIGURE 4 that the physical properties of non-woven fabrics of this invention are almost identical with those of woven fabrics but are quite different from paper products.
- the non-woven fabrics of the present invention combine the non-woven structure with its characteristic high dimensional stability and a high degree of drapability, flexibility and handle together with high strength and low bulk.
- Drapability is measured by determining the length of fabric which is necessary to cause the fabric to bend from the horizontal plane when under no constraint to such an extent as to contact a declining angle of 415 of slope from the point of departure of contact.
- a strip of fabric one inch wide is placed upon a block of WOOCl or other horizontal surface. Abutting the horizontal surface of this material is a 4l.5 inclined plane, which at its top adjoins the horizontal surface.
- the test specimen is placed with its narrow edge at the juncture of the horizontal and the inclined surfaces. It is then moved forward over the inclined surface until the free end touches the 41.5 slope of the testing block.
- the drape stiffness, designated C is measured in inches of free length of specimen extending beyond the horizontal surface edge.
- An equivalent test, the cantilever test of ASTM D1388- 55T gives values in the range of 50 to 2,000 mg.-cm., in measuring the stiffness of fabrics.
- Bulk of a fabric is determined by cutting a square portion of the fabric of uniform thickness, measuring its dimensions, including its thickness, and then calculating its volume.
- the fabric sample is measured for thickness in accordance with standard test described in A.S.T.M. specification D7653 by means of a conventional fabric thickness caliper device such as an Ames gage (manufactured by B. C. A-mes Company, Waltham, Mass).
- Ames gage manufactured by B. C. A-mes Company, Waltham, Mass.
- the thickness may be determined more accurately through microscopic examination of the edge of the fabric.
- the fabric sample is then Weighed and the bulk expressed in terms of volume per unit weight.
- Tensile strength is determined on a one-inch strip of fabric in conventional manner employing an Instron tensile tester. For purposes of this invention, tensile strength is determined at room temperature under ambient conditions of 65% relative humidity. The ratio of tensile strength of a fabric to its drape-stiffness is useful for comparing the fabrics of this invention with conventional woven fabrics, felts, and papers. The ratio is calculated by multiplying the tensile strength (lbs./in./ oz./yd. by the basis weight (oz/yd?) and dividing by the drape stiffness (in).
- Sonic velocity-elongation differential is a measurement of the effect of fabric elongation (and tension) on the velocity of sound transmission in the plane of the fabric. Measurement of sound velocity in fabrics is well known (see article by W. H. Charch, W. W. Mosely in 29 Textile Research Journal, page 525 (1959)) and involves wellestablished principles and techniques.
- the velocity of propagation of sound waves in a fabric is dependent on fabric tension and is indicative of certain fabric properties.
- Woven fabrics, and also the non-woven fabrics of this invention provide media through which sound travels at a velocity which is strongly dependent on the elongation (and the tension) in the fabric, indicating that both have very similar structural characteristics and properties despite their vastly different coarse structure (e.g., woven vs. non-woven).
- Other materials such as felts, papers, and leathers, transmit sound at a nearly constant velocity, that is, substantially independent of the degree of elongation of the structure.
- Sonic velocity in a fabric can be measured using a piezoelectric crystal signal source (or other source) to provide Vibrations of the desired frequency. Frequencies in the range of 1,000 to 40,000 c.p.s. are conveniently employed.
- a search transducer (a piezoelectric crystal is again suitable) is used, placed at a fixed distance from TABLE I Velocity at Different Elongations, kIIL/see.
- the paper material while having a high critical sonic velocity value, shows no substantial change as it is tensioned.
- the woven fabric and the non-woven fabrics of the present invention show a sonic velocity value which increases by at least 30% when the fabric is elongated 6%.
- a preferred and highly desirable embodiment of the present invention is a fabric containing continuous filaments of a very highly crimped and convoluted configuration, conveniently prepared by melt-spinning of synthetic filarnents with a cocurrent air stream which simultaneously orients and forwards them while they are also subject to the effect of a high static electrical potential charge between the jet and a collecting device upon which the filaments impinge. Under the influence of the electrical charge, the filaments separate and lay down in a completely random configuration upon the collecting device (a plate or other receiver) and spontaneously crimp and convolute, so that the resulting filament web is made up of fibers having at least 30 c.p.i., and as much as c.p.i. or more.
- Crilmps are measured by direct observation using a microscope with a scaled eyepiece, or by projection.
- the filaments are disposed randomly in the fabric and besides being crimped, are doubled, looped and bent to such a high degree that, on the average, any filament in the web has a free fiber length of at least 1.25 times the shortest distance between points of bonding of that filament with other filaments.
- a filament crimp is one in which the amplitude of the departure from a straight line is less than 3 times the radius of curvature of the crimp, the latter being always less than 0.5 inch.
- Filament loops have either an amplitude of departure from a straight line of at least 0.6 inch associated with a radius of curvature of at least 0.2 inch; or a radius of curvature of more than 0.5 inch.
- free fiber length is meant the length of any fiber portion, between points of bonding of that fiber, measured while that fiber portion is extended sufficiently to remove any crimp or loops therein.
- Such webs which may be suitably bonded by co-spun thermoplastic filaments or by fibrids sprayed or flocked onto the web during formation, are strong, soft, drapable, and flexible.
- binder fibers or fibrids must have a melting point lower than the fibers to be bound when the bonds are to be produced by heating.
- the resulting binder is in the form of a continuous or semi-continuous series of areas, bonding being effected at cross-over points and points of fiber intersection.
- the binder material may be in a continuous or semi-continuous reticulated web interlacing and interlocking with the web of continuous or staple fibers.
- Such continuous or semi-continuous distribution of binder is preferred for the practice of the present invention, because it gives a fabric having an unusually smooth surface and uniform thickness.
- a non-woven fabric of this invention is prepared using from 3%-50% by weight of a fibrid binder and at least 50% by Weight of a spontaneously elongatable synthetic polymer fiber.
- these two components comprise in sum at least 85% by weight of the total non-woven structure.
- the remainder may be any synthetic organic polymer fiber. $uch fabrics have excellent drapability.
- an elastomeric binder is utilized to prepare a non-woven fabric having a unique and surprising combination of low bulk, high flexibility and high strength, rendering them equivalent to woven apparel and decorator fabrics in physical characteristics.
- One structure contains at least by weight of an elastome-ric fibrid binder (by which is meant a fibrid binder of a synthetic elastomeric polymeric composition having a modulus of between about 0.002 and about 0.9 gram per denier), together with at least by weight of a spontaneously elon-gatable fiber, the remainder being any synthetic organic fiber.
- the elastomeric fibrid will have a modulus of between 0.002 and 0.1, but the most desirable products contain an elastomeric fibrid with a modulus between 0.005 and 0.05.
- fibrid is employed herein to designate a non-rigid, wholly synthetic polymeric particle capable of forming paper-like structures.
- a particle must possess an ability to form a Wa terleaf having a couched wet tenacity of at least about 0.002 gram per denier when a multitude of the said particles are deposited from a liquid suspension upon a screen, which waterleaf, when dried at a temperature below about 50 C., has a dry tenacity at least equal to its couched wet tenacity, and a capability, when a multitude of the said particles are deposited concomitantly with staple fibers from a liquid suspension upon a screen, to bond a substantial weight of the said fibers by physical entwinement of the said particles with the said fibers to give a composite waterleaf with a wet tenacity of at least about 0.002 gram per denier.
- acapability to bonda substantial weight of (staple) fibers is meant that at least 50% by weight of staple based on total staple and fibrids can be bonded from a concomitantly deposited mixture of staple and fibrids.
- fibrid particles have a Canadian freeness number between 90 and 790 and a high absorptive capacity for water, retaining at least 2.0 grams of water per gram of particle under a compression load of about 39 grams per square centimeter.
- Any normally solid wholly synthetic polymeric material may be employed in the production of fibrids.
- nonma-lly solid is meant that the material is nonfluid under normal room conditions.
- the fibrid characteristics recited above are a result of the combination of the morphology and non-rigid properties of the particle.
- the morphology is such that the particle is non-granular and has at least one dimension of very minor magnitude relative to its largest dimension, i.e., the fibrid particle is fiber-lilac or filn1-like.
- the individual fibrid particles are not identical in shape and may include both fiber-like and film-like structures.
- the nonrigid characteristic of the fibrid which renders it extremely supple in liquid suspension and which permits the physical entwinement described above, is presumably due to the presence of the minor dimension. Expressing this dimension in terms of denier, as determined in accordance with the fiber coarseness test described in Tappi 41, 17SA7A, No. 6 (June) 1958, fibrids have a denier no greater than about 15.
- Fibrid particles are usually frazzled, have a high specific surface area, and as indicated, a high absorptive capacity for water.
- Preferred fibrids are those the waterleaves of which when dried for a period of twelve hours at a temperature below the stick temperature of the polymer from which they are made (i.e., the minimum temperature at which a sample of the polymer leaves a wet molten trail as it is stroked with a moderate pressure across the smooth surface of a heated block) have a tenacity of at least about 0.005 gram per denier.
- Fibrid particles and their preparation are described in more detail in Belgian Patent 564,206. Fibrids can be prepared from a number of polymeric compositions, and a wide range of such fibrids can be used in the present invention, leading to a spectrum of fabrics as indicated above.
- polymeric resin binder has an initial modulus of more than 0.9 g./d., less than about 25% resinous binder based on the total weight of the fabric should be utilized to obtain fabrics having properties of woven fabrics of the same ⁇ weight and fiber content. if, for any reason, it is desired to employ more than 25% of a resin binder, an elastomeric binder should be employed in order to obtain good physical properties.
- One of the components used in preparing a preferred non-woven fabric of the present invention is a self-clongatable fiber.
- This may be defined as a fiber which, upon suitable thermal treatment, exhibits an internally generated increase in length of from 3% up to 25% of its original length.
- the phenomenon of spontaneous elongation in wholly synthetic organic polymer fibers is known and described, for example, in Belgian Patent 566,145, granted September 27, .195 8. This patent deals with spontaneously elongatable polyester fibers. However, spontaneous elongation as a phenomenon has been observed in other synthetic organic polymer fibers as well.
- a polyamide prepared by reacting p-xylylene diamine and azelaic acid has been observed to be spontaneously elongatable and is suitable for use in the fabrics of the persent invention.
- Condensation polymers generally such as polyesters, polyamides, and polyurethanes can be employed in the present invention.
- condensation polymer fibers acrylic, polyolefin, and other addition type polymers can be used to prepare products of this invention.
- Polyester fibers are the preferred selfelongatable fibers for the staple non-woven structures of this invention, while both polyarnide and polyester fibers are preferred for continuous filament products.
- two critical and significant components for one of the non-woven fabrics of this invention are self-elongatable fiber and a binder.
- these materials include conventional staple filaments of such materials as polyamides, polyesters, polyurethanes, acrylic fibers, polyethylene, polypropylene, rayon staple, cellulose acetate, and the like.
- crimped or uncrimped fibers of this type may be used so long as the other requirements of this invention are met. Uncrimped fibers give greater improvement in dimensional stability, while crimped fibers permit greater bulkiness.
- Such fibers in the fabrics of the present invention can be advantageous in that the presence of these fibers can be employed for additional strength, more uniform fabric surface appearance, greater dimensional stability, additional dyeability, or other properties which are connected with or dependent upon the characteristics of the fiber material employed.
- the choice of such fibrous material will depend upon the end result desired, and, if the amount of such fiber is kept below 15% of the total weight of the fabric, fabric characteristics which are unique in the fabrics of the present invention will not be impaired and may sometimes be improved.
- non-fibrous material in addition to the fibrous components, moderate amounts of non-fibrous material can be employed in the fabrics of the present invention.
- non-fibrous maerials can be added to an extent not greater than by weight of the total structure to obtain a wide variety of particular product advantages such as color, surface properties, and the like.
- inorganic particulate matter such as pigments, clays, metal oxides, and similar structures. These may be added by incorporation into the fibrid structure before the non-woven fabric of this invention is formed therefrom.
- particulate structures derived from synthetic organic polymer resins, synthetic elastomers, and the like.
- non-woven materials from wholly synthetic sheet forming particles is described in some detail in Belgian Patent 564,206.
- papermaking machinery such as the Fourdrinier machine and other comparable pieces of apparatus, as Well as carding machines, Rando-Webber machines, and other equivalent devices.
- fibrids or resins are used to bond fibers together in a non-woven structure of high original strength.
- a certain amount of fusion of the binder material takes place.
- the precise degree of fusion will depend upon the temperature of pressing, the time of pressing, and the pressure involved.
- fibrid binder particles are used, and under extreme conditions of high heat, long pressing time and high pressure, the fibrid particle identity is lost and the fibrid particles become fused more or less completely into the nonwoven structures. Under more moderate conditions of temperature and pressure, the fibrids are fused Without complete destruction of their particulate and specific nature.
- the pressing operation which will be described in further detail in the examples below, is a desirable adjunct of the present invention and leads to superior products.
- pressing is employed to form a fabric of high strength, it is also possible at the same time to impress on the fabric a pattern or embossed effect of some type for the purposes of improved appearance, modified surface behavior or other known modifications. Pressing may be continuous throughout the entire fabric surface or it may be intermittent or in a pattern, such as cross-lines, diamonds, circles, isolated dots, and so on.
- the embossing procedure offers a valuable improvement in the woven-like characteristics which are desired.
- the self-elongatable fibers elongate and assume a third-dimensional configuration on tne surface of the fabric, due to penetration of portions of the fibers into the interstices of the screen. Similar response to other preferred embossing techniques is also possible, and such third-dimensional configurations make an important contribution to the suppleness and drapability of the products obtained thereby.
- the binders useful in this invention may be any synthetic organic polymeric material having a modulus between about 0.002 and about 25 grams per denier.
- elastomeric binders in this class are the various butadiene-styrene copolymers containing from 30% to 70% combined butacliene, and also terpolymers of butadiene, styrene, and acrylonitrile.
- elastomeric binders include copolymers and terpolymers containing a major proportion of poly(rnethyl acrylate) and lesser amounts of other acrylates and acrylic acid; a mixture of 98% polymethyl methacrylate plus 2% glyciclyl methacrylate in the amount of 10 parts, and about 86 parts of the acrylate ester copolymer mentioned above; a terpolymer containing methyl acrylate, methyl methacrylate, and acrylic acid; a copolymer of ethyl acrylate with 2% acrylic acid; a mixture of 49 parts polyhexylmethacrylate, 49 parts polyethyl acrylate, and 2 parts polyacrylic acid prepared by solution polymerization in benzene using benzoyl peroxide as initiator; poly(ethylene/propylene) containing 3% dicumyl peroxide.
- Another useful elastomeric binder is obtained by reacting poly(tetramethylene ether) glycol of approximately 1000 molecular weight with tolylene 2,4- diisocyanate to give a glycol-terminated macrointermediate and this is treated to give an isocyanate-ended, low molecular weight polymer by combining the macrointermediate with methylene bis(4-phenylisocyanate). This low molecular weight polymer is then reacted further with h drazine to give a high molecular weight elastomer polymer in accordance with the disclosure of French Patent 1,172,566.
- non-elastomeric binders useful in this invention are polyamides such as polyhexamethylene adipamide, polycaproamide, copolymers of polyhexamethylene adipamide and polycaproamide (preferably an 20 copolymer, respectively), poly-N-methoxy hexamethylene adiparnide and the like.
- Representative polyesters useful as binders include polyethylene terephthalate, polyethylene isophthalate, copolymers of polyethylene terephthalate and polyethylene isophthalate (preferably an 80/20 copolymer, respectively), poly(hexahydro-p-xylylene terephthalate), etc.
- Particularly useful urethane binders are the urethanes formed by reacting piperazine and ethylene bis-chloroformate, the polyurethanes of hexamethylene diamine and ethylene bis-chloroformate, etc.
- EXAMPLE 1 Using an apparatus assembly essentially as shown in FIGURE 1 and comprising a spinneret adapted to spin two dilferent polymers simultaneously, polyhexamethylene adipamide (40 relative viscosity) and an 80/20 copolymer of polycaproamide and polyhexamethylene adipamide (41 relative viscosity) are spun into filaments at a temperature of about 290 C. The filaments are spun into a quiescent atmosphere, at ambient temperature (25 C.) and relative humidity (70% A copper aspirator jet is located 8 inches below the spinneret to forward the filaments to a receiver. The jet has the following dimensions:
- the aspirator jet which is supported in the filament line by insulated means, is supplied with 40 p.s.i.g. air and connected to an 8000 volt source of electrostatic potential (rectifier generator Model No. H-40 available from New Jersey Engineering Company, Kenilworth, New Jersey).
- the receiver is a 12 x 12 inch solid aluminum plate, manipulated manually and grounded. Filaments are collected into hand sheets by interposing the receiver into the filament line and rotating the same until a uniform sheet of the desired thickness and configuration is obtained.
- Stability of the batt produced is enhanced by subsequently heating the sheet to a temperature in the vicinity of 200-220 C. Embossing with pattern during such heating can be employed to provide modifications of surface appearance, handle, drape, etc.
- the jet delivering the binder filaments can be separated from the jet delivering the major fraction of the filaments.
- a fabric prepared as described above (with 10% binder fibers) is found to have, after bonding, the following properties:
- EXAMPLE 2 Spontaneously elongatable fibers of polyethylene terephthalate are prepared in accordance with the teaching of Belgian Patent 556,145 in the following manner. Polyethylene terephthalate is spun at 295 C. through a spinneret having 27 orifices, each 0.009 inch in diameter, and the resulting filaments are collected into a yarn which is wound up at a speed of 1200 yds/min. The yarn is found to have a denier as-spun of 135, a birefringence of 0.0094 and a crystallinity level which indicates it is substantially amorphous. The yarn is passed from the feed roll to a bath of water maintained at 20 C.
- the yarn speed at the draw roll is 400 yds./rnin.
- the draw ratio is 2.80.
- the birefringence of the drawn yarn is 0.1902.
- the drawn yarn is immersed in water at 70 C. for a period of 5 minutes. During this process the yarn shrinks 38.3% of its original length.
- the yarn is dried and is then found to be spontaneously elongatable. The spontaneous elongation is tested by immersing a 10 measured length of the yarn in water at C. for 5 minutes. This treatment causes the yarn to increase in length by 9.3% of its original length.
- the fibers have a modulus of about 20.
- polyester fibers which exhibit spontaneous elongation amounting to as much as 29%.
- This yarn is suitable for cutting into staple lengths for further processing as described below in accordance with the teaching of the present invention.
- EXAMPLE 3 A dispersion in water of an elastomer terpolymer containing 92% ethyl acrylate, 6% methyl acrylate, and 2% acrylic acid (Rhoplex B-15), 46% solids, is converted to highly stable fibrids as follows.
- the compounded mixture is converted to fibrids by shear precipitating techniques, that is, by adding the resin blend to a Waring Blender containing a 5% solution of sodium sulfate in hot water with 0.01% of an organic quaternary ammonium salt as wetting agent.
- the Blender is operated at full speed during the addition.
- the resulting fibrids are used in the form of the slurry as prepared.
- a slurry of 3 parts of staple fibers (A inch long, 3 denier) prepared as in Example 2 and having a spontaneous elongation of 10% when treated wtih boiling water, and 2 parts of fibrids in 10,000 parts of Water is prepared and a waiterleaf is formed in. the manner already described.
- the sheet is removed from the screen, dried, placed between a cotton cloth sheet and a 12-mesh wire screen, and dried at C. for 3 minutes.
- the dried sheet is then placed between SO-rnesh screens and embossed and bonded at 205 C. for one minute at 200 psi.
- the sheet is further cured by exposing to air at C. for 5 minutes.
- the sheet is washed and tumble dried before testing.
- the fabric contain 40% elastomeric binder which has a modulus of 0.01 g./den. before curing and 0.015 after curing. It has a tensile strength of 5.9 lbs./in./oz../yd. a basis weight of 3.5 oZ./yd. a drape stiffness of 0.75 inch, and a wet tensile strength of 4.5 lbs./in./oZ./yd. Under microscopic examination, it is seen that the individual fibers are highly crimped and convoluted, having 60-80 c.p.i., and a free-fiber length of about 1.6x between adjacent bonding sites. The fabric is found to have good strength retention when exposed rto dry-cleaning solvents. The embossing treatment produces a fabric resembling ()xford cloth in appearance, with excellent whiteness, good retention of whiteness, medium porosity and good handle.
- EXAMPLE 4 An aqueous suspension of self-elongatable fibers prepared as in Example 2 and having a spontaineous elongation of 10% upon immersion in boiling water is prepared by combining 10,000 pants of water with 3 parts of inch long, 3 denier per filament of these selfel-ongatable polyester fibers thoroughly wetted with a 5% solution of Alkanol HC surface active agent (a polyethylene oxide ethe-r fatty alcohol). To this suspension of fibers is added a sutfieient portion of an elastomer fibrid slurry prepared from a 45/55 butadiene-styrene e lasitome- LO provide 2.0 parts of the compounded fibrids in suspension form.
- Alkanol HC surface active agent a polyethylene oxide ethe-r fatty alcohol
- the butadiene-styrene elastorner has a modulus of 0.008 gram per denier.
- This fiber-binder suspension is then poured into a headbox of a sheet mold, and therefrom a waterleaf is deposited onto an 8" x 8" lOO-mesh screen under espirator vacuum.
- the excess water is squeezed from the waterleaf by placing it while still on a IOU-mesh screen between absorbent cloths and rolling it with a steel rolling pin.
- the waterleaf is then lus of 3 grams per denier.
- the web, as formed, is then placed between two SO-mesh screens, and pressed at 175 C. for 1 /2 minutes at 5000 p.s.i.
- the resulting sheet is so'fit, drapable, clothlike and withrenroved from the screen and placed between 50-mesh 5 out any papery quality. Due to the embossing effect of screens, which in turn are placed between sheets of pulp the screens, it is like a woven broadcloth in appearance. board and dried in a press at 150 C. and 95 lbs./ sq. in. The sheet is found by chemical analysis to contain 3.9% pressure for minutes. Following this pressing trcatof the binder component. The basis weight is 3.1 oz./yd. ment, the non-woven sheet is obtained in the form of a the sheet density is 0.01 lb./in. and the drape stiffness is fabric having a woven texture due to the imprint of the 1 1.0 inch.
- the sheet is 18 mils thick and has a tensile 100-mesl1 screen and the 50-mesh screen which had bee strength of 6.26 lbs./in./oz./yd.
- the free fiber length strength to drape stillness is approximately 19 lbs. is about 1.5x (an average of 1.5 times the straight line
- a similar sheet, wtih a fibrid binder content of 3.6%, distance between bond points), crimp level is about 60 is pressed for 45 seconds at 50 p.s.i. to give a sheet with c.p.i., and fabric density is 0.4 g./cc.
- the sheet is tested a drape stiffness of 0.6 inch.
- Examples 8 and 9 were prepared by admixing 3 parts EXAMPLE 5 0t: staple fibers with 8000 parts of water with vigorous 30 stirring 1n the presence of a small amount of an alcohol Poly(hexanrethylene adi am'ide) having a relative visas wetting agent. To the fiber suspension thus formed is cosity of 41 is spun through a 59-hole spinneret, each added an aqueous slurry containing 2 parts of the fibrid hole being 0.007 inch in diameter. The spinnerct delivers indicated. This stock is poured into a head box of a 14 grams of polymer per minute.
- the yarn is led 011- sheet mold and a waterleaf deposited on an 8 x 8 100- rectly a Pneumatic l PP Y 3 inches below mesh screen.
- the screen with the deposited waterleaf is the spinneret f p g With P T s removed from the sheet mold and placed between abl forwards the yarn and 911 the Same timfi alllemletfis.
- Example 10 The non-woven fabric of Example 10 was prepared in least c.p.i.). As the filaments are accelerated toward a manner i il t th t f E l 3 d 9 b t i the y are Sprayed Wfih fiulfidl'ied cflpolyamidfl the absence of elastomer.
- the waterleaf was then wetted fibrids consisting of an 80/20 copolymer of polyhexa- 45 with a 46% aqueous dispersion f Rhoplex B 15 d methylene adipam-ide and polycaproamide which are the treated waterleaf was then cured at 130 C. and flocked onto the thrcadline.
- This copolymcr has a modu- 50 lbs/sq. in. pressure for 10 minutes.
- ethyl acrylate 6% methyl acrylato, and 2% acrylic acid, formed by c Fiber OSelf-el0ngatablo polyhrnitlc fibers (poly(pxylylenc azeleamidc)).
- Elastomer added as a dispersion in water, sold as Rhoplex 13-15 by Robin and Haas 00., used as received.
- a non-woven 66-nylon fiber fabric bonded with a synthetic polymer binder.
- Fibers of polyethylene terephthalate are. melt spun from a 30-hole spinneret, having a hole diameter of 7 mils, at a rate of 10 g./min.
- the spinning technique employed involves the principles shown in FIGURE 1.
- the fresh- 1y spun filaments are passed over a chromic oxide bar to give an induced electrical charge on the filaments.
- An air jet is employed to attenuate and forward the filaments, advance the filaments to a collector, and permit a random laydown of fibers. There is obtained an unbonded non-woven batt having a weight of 0.5 o-z./yd.
- the batt of unbonded fibers is consolidated by placing it between wire screens and pressing at 100 p.s.i. at 50 C.
- the web is then removed from the screens, wetted with water containing a synthetic wetting agent, and placed on a glass fabric which has been coated with polytetr-afiuoroethylene resin.
- the web is exposed to steam at atmospheric pressure for ten seconds, which causes fiber shrinkage and fiber crimping leading to an area reduction of 75% of the web.
- This preshrunk web is then bonded, employing an aqueous dispersion. of the terpolymer resin material of Example 3. Resin impregnation of this web gives a bonded sheet having a binder content of 40% by weight.
- the bonded sheet is then heat-treated to effect elongation of the filaments and complete the resin-bonding and crosslinking operations simultaneously. This is done by placing the webbetween 50 mesh wire screens and heating it in a pressat 210 C. at 200 p.s.i. pressure for one minute. Following this treatment, the sheet is cured in an oven for five minutes at 175 C. and is then washed and dried.
- the resulting non-woven fabric is a soft, drapable material having a pleasant feel and a texture similar to that of a woven fabric of the same material.
- the polyester fibers hawe a crimp of 80 or more crimps per inch and the free fiber length is approximately 1.6.
- the modulus of the binder is 0.015 gram/denier.
- the polyester filaments have a modulus of approximately 20 grams/ denier, and the denier of these filaments is approximately 1.4.
- the fabic has a base weight of 3.2 oz./yd., a tensile strength of 7.5 lbs./in./oZ./yd. and a tongue tear strength of 1.4 lbs./o-z./yd.
- the sheet density is 0.37 gram/cm. and the drape stiffness is 0.69 inch.
- the sheet has a ratio of tensile strength to drape stiffness of 20.9.
- a similar fabric is prepared. by .co-spinning with the fibers a copolymer binder of 80% ethylene terephthalate and 20% ethylene isophthalate.
- EXAMPLE 14 A non-woven web prepared as in Example 1 and comprising 95.3% polyhexamethylene adipamide fibers and 4.7% of an 80/20 copolymer of 6/66 nylon fiber, said web weighing 14 oz./ sq. yd. at a thickness of 35 mils, is impregnated with a solution of a polymer to bind the fibers at spaced points and impart strength and integrity to the structure.
- the polymer is prepared by reacting a poly(tetramethylene ether) glycol of approximately 1000 molecular weight with tolylene-2,4-diisocyanate to give a glycol-terminated macrointermediate, and this is treated to give an isocyanate-ended low molecular weight polymer by combining the macrointermediate with methylene bis- (4-phenylisocyana'te). This low molecular weight polymer is then reacted further with hydrazine to give a high molecular weight elastomer polymer in accordance with the teaching of French Patent 1,172,566. This synthetic elastomer is dissolved in dimethylformamide to give a final solids content of 15%.
- the nylon web is impregnated by soaking in this solution for 5 minutes to insure adequate pickup of the binder.
- Excess binder is removed by passing the soaked structure through squeeze rolls followed immediately by immersing the web in a water bath to coamilate the polymer.
- Dimethylformamide being completely miscible in water is leached out of the structure by continuous immersion in the coagulation tank which held a volume of water substantially larger than the quantity of dimethylforma-mide to be removed from the web.
- Coagulation rather than solvent evaporation, is favored as a means of fixing the binder in the non-woven substrate because of a high degree of porosity obtained by the former procedure in contrast to the largely impermeable film produced by solvent evaporation.
- the coagulated and leached substrate is dried at about C. in a slack condition.
- the product is soft and drapable This product is then buffed with abrasive paper to produce a suede surface.
- the resulting product is soft and drapable with a suede-like surface texture which renders it SUllLElbllC as an apparel fabric for childrens and womens skirts, mens jackets, etc.
- T o produce a porous leather-like material suitable for shoe uppers, a coating is applied in accordance with the teachings of copending application Serial No. 723,669 filed March 25, 1958, by E. K. Holden, now abandoned.
- the coated fabric is dried at about '100 C. and then dyed a dark brown and again dried.
- a leather-like grain is imprinted on the surface of the dyed fabric by preheating the material at 70 C. for 10 minutes and then embossing with a grained flat plate at 70 C. at 700 p.s.i
- EXAMPLE 15 Highly crimped filaments of nylon 66 yarn are prepared by passing conventional nylon yarn through a fiuid torque jet. Just prior to its entrance into the jet, the yarn is passed over a heated metal plate (about 250 C.). The heated filaments are twisted and crimped by the action of the jet, which also cools, sets, and untwists the filaments below the plate. The result is a continuous filament yarn with 40 to 60 crimps per inch.
- a quantity of these filaments is cut by hand into approximately /s lengths (relaxed).
- Two parts of the short lengths of fiber are dispersed in approximately 1000 parts of water with 10 parts of carboxymethyl cellulose and one part of a quaternary alkyl ammonium salt as wetting agent to assist in the dispersion.
- To the dispersion is added an equal amount of fibrids formed from the syn thetic elastomer of Example 14.
- a hand-sheet is prepared from this dispersion, and the waterleaf is found to be soft, stretchable, drapable, and similar to a soft flannel in handle.
- the sheet is pressed at C. at 400 p.s.i. pressure for 10 seconds, it is pressed at C. at 400 p.s.i. pressure for 10 seconds, it is pressed at C. at 400 p.s.i. pressure for 10 seconds, it
- the fibers are found to have 40 to 50 crimps per inch in both the unpressed and the pressed sheets.
- the density of the unpressed sheet is about 0.30 g./cc., while that of the pressed sheet is 0.61 g./cc.
- the non-woven fabrics of this. invention are characterized by a high degree of drapabili-ty and flexibility, and a desirable level of loftiness, and handle. Because of these and other properties, they are well suited to end uses which have heretofore employed woven fabrics of varying weights and weaves. Among such uses may be listed apparel; draperies; upholstery materials; household furnishings, such as table cloths, napkins, and bed linens; shaped articles, such as gloves, heat coverings. In the field of apparel fabrics, the fabrics of the present invention are specifically well suited to work and service clothing, sports wear, outer wear, bathing suits, shirts, and the like.
- fabric utilities include foundations for leather-like laminates, backings for vinyl-coated upholstery, and other fabrics, automobile and airplane headliners, fiiter cloths and other industrial felts. These fabrics are also suitable with proper coatings or surface treatment for use as fuel pump diaphragms, hosing, flexible couplings, and air bel- 15 lows for use in instrumentation work and decorative covers for desk equipment, radios, ash trays, cigarette boxes, and the like.
- the products of the present invention be heat-treated to a degree sufiicient to fuse at least a portion of the fibrid binders.
- non-fused products are also of interest and have found applications in a number of the utilities indicated above.
- the non-woven fabrics of the present invention are embossable and can be obtained with any of a wide variety of surface patterns which may be impressed upon the fabric during the pressing or fusing process.
- Such embossed configurations not only supply decorative and attractive appearance, but can be used to control the physical properties of the fabric.
- an embossing pattern consisting of a number of parallel fine lines in one direction only produces a fabric which has a greater flexibility in one direction than in the other direction. Embossing with a cross-hatched type of pattern of fine lines increases the stiffness of the fabric in both directions.
- embossing techniques can be used to alter the handle and feel of the fabric and also to control the receptivity of the fabric to printing, dyeing, and other coloring post-treatments.
- the bulk of the non-woven fabric can be controlled to any desired degree, and compression can be introduced to lead to a more compact structure, if this is desired.
- Fabrics of the present invention can be buffed to expose surfaces which are densely populated with uniformly distributed fiber ends of equal length. Such buffed surfaces are very attractive and resemble to a surprising degree in hand suede leather and other similar products.
- the products of the present invention have a number of advantages in comparison to previously known nonwoven fabrics.
- the present materials show equal or higher strength, greater dimensional stability, and greater flexibility.
- the non-woven fabrics of the present invention have a much softer handle, greater strength and flexibility, and a better dyeability and printability.
- the fabrics of the present invention show an excellent degree of post-formability, high elongation and reversible deformation, excellent wash-wear characteristics, outstanding tensile and stitch strength, and, as has already been indicated, a degree of drapability and controllable handle which has not hitherto been achieved in non-Woven fabrics in the art.
- EXAMPLE By repeating the procedure of Example 1 to produce a web of amorphous poly(ethylene terephthalate) filaments and then relaxing or shrinking the Web in a stepwise (controlled) manner, that is, by partially shrinking,
- the fibers useful in this invention have a bending stiffness which is proportional to the product of the initial modulus (Mi) of the fiber and the 3/2 power of the fiber denier.
- the product M1 X (1 is between 1 and 1000 and preferably between 5 and 250.
- a nonwoven fabric comprising crimped synthetic organic fibers, said fibers having at least 30 crimps per inch of unextended length, the fabric containing between about 3% and about by weight of a synthetic organic polymer binder which is dispersed throughout the fabric, and bonds the fibers so that the average free fiber length between bond points is at least 1.25 times the average straight line distance between these bond points, the binder having an initial tensile modulus (Mi) of between about 0.002 and about 25 grams per denier and being present in an amount such that Percent bindorXi/ZVH (binder) 40 the fabric having a density between about 0.28 and about 0.7 g./cc., a drape stiffness of less than about 1.0 inch, a ratio of tensile strength to drape stiffness of at least 12.0 lbs. and a sonic velocity transmission at 6% elongation of the fabric, equal to at least 1.3 times its value at 0% elongation.
- Mi initial tensile modulus
- fibers are continuous filaments.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Nonwoven Fabrics (AREA)
- Paper (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US859640D UST859640I4 (de) | 1959-12-15 | ||
US85964059 US3117055A (en) | 1959-12-15 | 1959-12-15 | Non-woven fabrica |
ES0263194A ES263194A1 (es) | 1959-12-15 | 1960-12-13 | Un procedimiento para obtener una tela no tejida comprendiendo fibras organicas sinteticas y encrespadas |
NL259016A NL122418C (de) | 1959-12-15 | 1960-12-14 | |
DE19601435113 DE1435113A1 (de) | 1959-12-15 | 1960-12-14 | Faservliesstoff fuer Bekleidungszwecke |
AT935660A AT294747B (de) | 1959-12-15 | 1960-12-14 | Vliesstoff |
DK496760A DK117763B (da) | 1959-12-15 | 1960-12-14 | Fremgangsmåde til fremstilling af et stærkt, ikke-vævet tekstilstof. |
GB4299260A GB914714A (en) | 1959-12-15 | 1960-12-14 | Non-woven fabrics |
CH1401460A CH446259A (de) | 1959-12-15 | 1960-12-15 | Verfahren zur Herstellung eines drapierbaren Nonwovens |
FR874609A FR1306205A (fr) | 1959-12-15 | 1961-09-29 | Articles fibreux non-tissés |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85964059 US3117055A (en) | 1959-12-15 | 1959-12-15 | Non-woven fabrica |
FR874609A FR1306205A (fr) | 1959-12-15 | 1961-09-29 | Articles fibreux non-tissés |
Publications (1)
Publication Number | Publication Date |
---|---|
US3117055A true US3117055A (en) | 1964-01-07 |
Family
ID=42199172
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US859640D Pending UST859640I4 (de) | 1959-12-15 | ||
US85964059 Expired - Lifetime US3117055A (en) | 1959-12-15 | 1959-12-15 | Non-woven fabrica |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US859640D Pending UST859640I4 (de) | 1959-12-15 |
Country Status (9)
Country | Link |
---|---|
US (2) | US3117055A (de) |
AT (1) | AT294747B (de) |
CH (1) | CH446259A (de) |
DE (1) | DE1435113A1 (de) |
DK (1) | DK117763B (de) |
ES (1) | ES263194A1 (de) |
FR (1) | FR1306205A (de) |
GB (1) | GB914714A (de) |
NL (1) | NL122418C (de) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3272898A (en) * | 1965-06-11 | 1966-09-13 | Du Pont | Process for producing a nonwoven web |
US3272687A (en) * | 1964-07-22 | 1966-09-13 | Eastman Kodak Co | Vapor permeable non-woven fibrous element |
US3275732A (en) * | 1963-07-05 | 1966-09-27 | Fiber Industries Inc | Process for preparing thick and thin novelty yarns |
US3293718A (en) * | 1963-07-01 | 1966-12-27 | Du Pont | Apparatus for forming non-woven web structures |
US3314122A (en) * | 1963-07-01 | 1967-04-18 | Du Pont | Apparatus for forming non-woven web structures |
US3326740A (en) * | 1963-04-29 | 1967-06-20 | Stevens & Co Inc J P | Multi-directional strectchable nonwoven fabric |
US3368934A (en) * | 1964-05-13 | 1968-02-13 | Du Pont | Nonwoven fabric of crimped continuous polyethylene terephthalate fibers |
US3396071A (en) * | 1963-03-25 | 1968-08-06 | Ici Ltd | Non-woven polypropylene fabrics |
US3413179A (en) * | 1966-12-28 | 1968-11-26 | Dunlop Rubber Co | Flexible sheet material and method for making same |
US3438844A (en) * | 1965-06-04 | 1969-04-15 | Kendall & Co | Spot-bonded nonwoven fabrics and their preparation |
US3439085A (en) * | 1963-10-25 | 1969-04-15 | Freudenberg Carl Kg | Process for the production of non-woven elastic polyurethane fabric |
US3441468A (en) * | 1964-12-24 | 1969-04-29 | Glanzstoff Ag | Process for the production of non-woven webs |
US3459627A (en) * | 1964-06-12 | 1969-08-05 | Du Pont | Nonwoven fabric with columnar bonds |
US3459631A (en) * | 1965-11-24 | 1969-08-05 | Kem Wove Ind Inc | Bendable,high loft,bonded,non-woven,textile fabric |
US3503836A (en) * | 1963-08-10 | 1970-03-31 | Rasmussen O B | Split fibrous sheet and method for making the same |
DE2406321A1 (de) * | 1974-02-09 | 1975-08-21 | Lutravil Spinnvlies | Spinnvlies aus endlosen faeden aus polyamid-6 |
US4047991A (en) * | 1975-09-12 | 1977-09-13 | Fiberlok, Inc. | Polyester batt and method for producing such |
US4050977A (en) * | 1974-09-19 | 1977-09-27 | Fiberlok, Inc. | Composite batt and method for producing same |
US4051294A (en) * | 1975-09-12 | 1977-09-27 | Fiberlok, Inc. | Fiberous batt and method for producing such |
US4053673A (en) * | 1975-09-12 | 1977-10-11 | Fiberlok, Inc. | Glow-resistant batt and process for producing such |
US4053674A (en) * | 1975-09-12 | 1977-10-11 | Fiberlok, Inc. | Glow-resistant batt and process for producing such |
US4092194A (en) * | 1975-04-09 | 1978-05-30 | E. I. Du Pont De Nemours And Company | Process for making ceramic refractory oxide fiber-reinforced ceramic tube |
US4146417A (en) * | 1976-05-04 | 1979-03-27 | Johnson & Johnson | Method for producing bonded nonwoven fabrics using ionizing radiation |
US4199388A (en) * | 1978-05-15 | 1980-04-22 | Geonautics, Inc. | Method for making a multi-ply continuous filament ballistic helmet |
US4256524A (en) * | 1976-11-26 | 1981-03-17 | Monsanto Company | Process for solvent bonding blended nonwoven fabrics and fabric produced therefrom |
US4296163A (en) * | 1978-08-01 | 1981-10-20 | Teijin Limited | Fibrous composite having elasticity |
US4324421A (en) * | 1978-12-30 | 1982-04-13 | Hoechst Aktiengesellschaft | Identity card with incorporated fibrids |
DE1635583C2 (de) * | 1964-08-17 | 1982-06-09 | E.I. du Pont de Nemours and Co., 19898 Wilmington, Del. | Tufting-Grundmaterial |
US4340558A (en) * | 1976-05-05 | 1982-07-20 | Colgate-Palmolive Company | Scrim reinforced plastic film |
US4376675A (en) * | 1979-05-24 | 1983-03-15 | Whatman Reeve Angel Limited | Method of manufacturing an inorganic fiber filter tube and product |
US4486485A (en) * | 1983-08-24 | 1984-12-04 | Burlington Industries, Inc. | Nonwoven textile structures with reversible stretch |
US5134016A (en) * | 1990-10-31 | 1992-07-28 | E. I. Du Pont De Nemours And Company | Fiber reinforced porous sheets |
US5194106A (en) * | 1990-10-31 | 1993-03-16 | E. I. Du Pont De Nemours And Company | Method of making fiber reinforced porous sheets |
US5470639A (en) * | 1992-02-03 | 1995-11-28 | Fiberweb North America, Inc. | Elastic nonwoven webs and method of making same |
US5997989A (en) * | 1992-02-03 | 1999-12-07 | Bba Nonwovens Simpsonville, Inc. | Elastic nonwoven webs and method of making same |
US6171433B1 (en) | 1996-07-17 | 2001-01-09 | Iowa State University Research Foundation, Inc. | Method of making polymer powders and whiskers as well as particulate products of the method and atomizing apparatus |
US20030098529A1 (en) * | 2000-07-21 | 2003-05-29 | Robert Drumm | Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same |
US20030121989A1 (en) * | 2001-12-31 | 2003-07-03 | Michael Rajendran S. | Headliners, door panels and interior trim parts that are lofty, acoustical and structural |
US20030233735A1 (en) * | 2002-06-15 | 2003-12-25 | Kimberly-Clark Worldwide, Inc. | Use of a pulsating power supply for electrostatic charging of nonwovens |
US6709623B2 (en) | 2000-12-22 | 2004-03-23 | Kimberly-Clark Worldwide, Inc. | Process of and apparatus for making a nonwoven web |
US20040077247A1 (en) * | 2002-10-22 | 2004-04-22 | Schmidt Richard J. | Lofty spunbond nonwoven laminate |
US20050087288A1 (en) * | 2003-10-27 | 2005-04-28 | Haynes Bryan D. | Method and apparatus for production of nonwoven webs |
EP1755850A1 (de) * | 2004-06-09 | 2007-02-28 | Industrial Composites Engineering Pty Ltd | Verfahren zur bildung oder härtung von polymerverbundstoffen |
US20080122134A1 (en) * | 2002-12-24 | 2008-05-29 | Michael Rajendran S | Headliners, door panels and interior trim parts that are lofty, acoustical and structural |
US7504060B2 (en) | 2003-10-16 | 2009-03-17 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for the production of nonwoven web materials |
AU2005251829C1 (en) * | 2004-06-09 | 2011-02-03 | Industrial Composites Engineering Pty Ltd | Method for forming or curing polymer composites |
US20220194287A1 (en) * | 2020-12-21 | 2022-06-23 | Jesse Tyler Lockamy | Mountable fabric ashtray |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3338992A (en) * | 1959-12-15 | 1967-08-29 | Du Pont | Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers |
US3502763A (en) * | 1962-02-03 | 1970-03-24 | Freudenberg Carl Kg | Process of producing non-woven fabric fleece |
GB1073183A (en) * | 1963-02-05 | 1967-06-21 | Ici Ltd | Leather-like materials |
US20040043212A1 (en) | 2000-08-05 | 2004-03-04 | Peter Grynaeus | Thermal control nonwoven material |
DE102005030484B4 (de) * | 2005-06-28 | 2007-11-15 | Carl Freudenberg Kg | Elastischer Vliesstoff, Verfahren zu dessen Herstellung und dessen Verwendung |
CN107780053B (zh) * | 2017-04-19 | 2020-05-19 | 安徽工程大学 | 一种纳米纤维膜、制备方法及其应用 |
CN108589049B (zh) * | 2018-05-09 | 2020-09-04 | 安徽工程大学 | 一种具有pH响应性的气凝胶电纺纤维膜及其制备方法 |
CN113881134B (zh) * | 2020-07-01 | 2023-07-25 | 中国石油天然气股份有限公司 | 一种用于亲水无纺布的组合物及其应用 |
CN112941724B (zh) * | 2021-01-29 | 2023-03-31 | 刘学谷 | 一种抗菌无纺布生产线及生产工艺 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US705691A (en) * | 1900-02-20 | 1902-07-29 | William James Morton | Method of dispersing fluids. |
US2197896A (en) * | 1937-02-15 | 1940-04-23 | Du Pont | Artificial wool |
US2336745A (en) * | 1941-12-20 | 1943-12-14 | Fred W Manning | Method and apparatus for making unwoven and composite fabrics |
US2385873A (en) * | 1942-04-18 | 1945-10-02 | Carborundum Co | Method of forming web material |
US2416390A (en) * | 1943-02-25 | 1947-02-25 | Du Pont | Free fall fiber |
US2465996A (en) * | 1946-10-04 | 1949-04-05 | Bloch Godfrey | Yarn and fabric |
US2676128A (en) * | 1951-06-18 | 1954-04-20 | Du Pont | Process of preparing nonwoven fabric and product |
US2810426A (en) * | 1953-12-24 | 1957-10-22 | American Viscose Corp | Reticulated webs and method and apparatus for their production |
-
0
- US US859640D patent/UST859640I4/en active Pending
-
1959
- 1959-12-15 US US85964059 patent/US3117055A/en not_active Expired - Lifetime
-
1960
- 1960-12-13 ES ES0263194A patent/ES263194A1/es not_active Expired
- 1960-12-14 GB GB4299260A patent/GB914714A/en not_active Expired
- 1960-12-14 DK DK496760A patent/DK117763B/da unknown
- 1960-12-14 DE DE19601435113 patent/DE1435113A1/de active Pending
- 1960-12-14 AT AT935660A patent/AT294747B/de not_active IP Right Cessation
- 1960-12-14 NL NL259016A patent/NL122418C/xx active
- 1960-12-15 CH CH1401460A patent/CH446259A/de unknown
-
1961
- 1961-09-29 FR FR874609A patent/FR1306205A/fr not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US705691A (en) * | 1900-02-20 | 1902-07-29 | William James Morton | Method of dispersing fluids. |
US2197896A (en) * | 1937-02-15 | 1940-04-23 | Du Pont | Artificial wool |
US2336745A (en) * | 1941-12-20 | 1943-12-14 | Fred W Manning | Method and apparatus for making unwoven and composite fabrics |
US2385873A (en) * | 1942-04-18 | 1945-10-02 | Carborundum Co | Method of forming web material |
US2416390A (en) * | 1943-02-25 | 1947-02-25 | Du Pont | Free fall fiber |
US2465996A (en) * | 1946-10-04 | 1949-04-05 | Bloch Godfrey | Yarn and fabric |
US2676128A (en) * | 1951-06-18 | 1954-04-20 | Du Pont | Process of preparing nonwoven fabric and product |
US2810426A (en) * | 1953-12-24 | 1957-10-22 | American Viscose Corp | Reticulated webs and method and apparatus for their production |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3396071A (en) * | 1963-03-25 | 1968-08-06 | Ici Ltd | Non-woven polypropylene fabrics |
US3326740A (en) * | 1963-04-29 | 1967-06-20 | Stevens & Co Inc J P | Multi-directional strectchable nonwoven fabric |
US3293718A (en) * | 1963-07-01 | 1966-12-27 | Du Pont | Apparatus for forming non-woven web structures |
US3314122A (en) * | 1963-07-01 | 1967-04-18 | Du Pont | Apparatus for forming non-woven web structures |
US3275732A (en) * | 1963-07-05 | 1966-09-27 | Fiber Industries Inc | Process for preparing thick and thin novelty yarns |
US3503836A (en) * | 1963-08-10 | 1970-03-31 | Rasmussen O B | Split fibrous sheet and method for making the same |
US3439085A (en) * | 1963-10-25 | 1969-04-15 | Freudenberg Carl Kg | Process for the production of non-woven elastic polyurethane fabric |
US3368934A (en) * | 1964-05-13 | 1968-02-13 | Du Pont | Nonwoven fabric of crimped continuous polyethylene terephthalate fibers |
US3459627A (en) * | 1964-06-12 | 1969-08-05 | Du Pont | Nonwoven fabric with columnar bonds |
US3272687A (en) * | 1964-07-22 | 1966-09-13 | Eastman Kodak Co | Vapor permeable non-woven fibrous element |
DE1635583C2 (de) * | 1964-08-17 | 1982-06-09 | E.I. du Pont de Nemours and Co., 19898 Wilmington, Del. | Tufting-Grundmaterial |
US3441468A (en) * | 1964-12-24 | 1969-04-29 | Glanzstoff Ag | Process for the production of non-woven webs |
US3438844A (en) * | 1965-06-04 | 1969-04-15 | Kendall & Co | Spot-bonded nonwoven fabrics and their preparation |
US3272898A (en) * | 1965-06-11 | 1966-09-13 | Du Pont | Process for producing a nonwoven web |
US3459631A (en) * | 1965-11-24 | 1969-08-05 | Kem Wove Ind Inc | Bendable,high loft,bonded,non-woven,textile fabric |
US3413179A (en) * | 1966-12-28 | 1968-11-26 | Dunlop Rubber Co | Flexible sheet material and method for making same |
US3991250A (en) * | 1974-02-09 | 1976-11-09 | Lutravil Spinnvlies Gmbh & Co. | Spunbonded fabrics of nylon-6 filaments |
DE2406321A1 (de) * | 1974-02-09 | 1975-08-21 | Lutravil Spinnvlies | Spinnvlies aus endlosen faeden aus polyamid-6 |
US4050977A (en) * | 1974-09-19 | 1977-09-27 | Fiberlok, Inc. | Composite batt and method for producing same |
US4092194A (en) * | 1975-04-09 | 1978-05-30 | E. I. Du Pont De Nemours And Company | Process for making ceramic refractory oxide fiber-reinforced ceramic tube |
US4047991A (en) * | 1975-09-12 | 1977-09-13 | Fiberlok, Inc. | Polyester batt and method for producing such |
US4051294A (en) * | 1975-09-12 | 1977-09-27 | Fiberlok, Inc. | Fiberous batt and method for producing such |
US4053673A (en) * | 1975-09-12 | 1977-10-11 | Fiberlok, Inc. | Glow-resistant batt and process for producing such |
US4053674A (en) * | 1975-09-12 | 1977-10-11 | Fiberlok, Inc. | Glow-resistant batt and process for producing such |
US4146417A (en) * | 1976-05-04 | 1979-03-27 | Johnson & Johnson | Method for producing bonded nonwoven fabrics using ionizing radiation |
US4340558A (en) * | 1976-05-05 | 1982-07-20 | Colgate-Palmolive Company | Scrim reinforced plastic film |
US4256524A (en) * | 1976-11-26 | 1981-03-17 | Monsanto Company | Process for solvent bonding blended nonwoven fabrics and fabric produced therefrom |
US4199388A (en) * | 1978-05-15 | 1980-04-22 | Geonautics, Inc. | Method for making a multi-ply continuous filament ballistic helmet |
US4296163A (en) * | 1978-08-01 | 1981-10-20 | Teijin Limited | Fibrous composite having elasticity |
US4324421A (en) * | 1978-12-30 | 1982-04-13 | Hoechst Aktiengesellschaft | Identity card with incorporated fibrids |
US4376675A (en) * | 1979-05-24 | 1983-03-15 | Whatman Reeve Angel Limited | Method of manufacturing an inorganic fiber filter tube and product |
US4486485A (en) * | 1983-08-24 | 1984-12-04 | Burlington Industries, Inc. | Nonwoven textile structures with reversible stretch |
US5134016A (en) * | 1990-10-31 | 1992-07-28 | E. I. Du Pont De Nemours And Company | Fiber reinforced porous sheets |
US5194106A (en) * | 1990-10-31 | 1993-03-16 | E. I. Du Pont De Nemours And Company | Method of making fiber reinforced porous sheets |
US5470639A (en) * | 1992-02-03 | 1995-11-28 | Fiberweb North America, Inc. | Elastic nonwoven webs and method of making same |
US5997989A (en) * | 1992-02-03 | 1999-12-07 | Bba Nonwovens Simpsonville, Inc. | Elastic nonwoven webs and method of making same |
US6171433B1 (en) | 1996-07-17 | 2001-01-09 | Iowa State University Research Foundation, Inc. | Method of making polymer powders and whiskers as well as particulate products of the method and atomizing apparatus |
US6533563B1 (en) | 1996-07-17 | 2003-03-18 | Iowa State University Research Foundation, Inc. | Atomizing apparatus for making polymer and metal powders and whiskers |
US20030098529A1 (en) * | 2000-07-21 | 2003-05-29 | Robert Drumm | Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same |
US6709623B2 (en) | 2000-12-22 | 2004-03-23 | Kimberly-Clark Worldwide, Inc. | Process of and apparatus for making a nonwoven web |
US7357888B2 (en) | 2001-12-31 | 2008-04-15 | Owens Corning Intellectual Capital, Llc | Method of producing headliners, door panels and interior trim parts |
US20030121989A1 (en) * | 2001-12-31 | 2003-07-03 | Michael Rajendran S. | Headliners, door panels and interior trim parts that are lofty, acoustical and structural |
WO2003057454A1 (en) * | 2001-12-31 | 2003-07-17 | Owens Corning | Method for producting lofty, acoustical and structural parts |
US7488441B2 (en) | 2002-06-15 | 2009-02-10 | Kimberly-Clark Worldwide, Inc. | Use of a pulsating power supply for electrostatic charging of nonwovens |
US20030233735A1 (en) * | 2002-06-15 | 2003-12-25 | Kimberly-Clark Worldwide, Inc. | Use of a pulsating power supply for electrostatic charging of nonwovens |
US20040077247A1 (en) * | 2002-10-22 | 2004-04-22 | Schmidt Richard J. | Lofty spunbond nonwoven laminate |
US20080122134A1 (en) * | 2002-12-24 | 2008-05-29 | Michael Rajendran S | Headliners, door panels and interior trim parts that are lofty, acoustical and structural |
US7504060B2 (en) | 2003-10-16 | 2009-03-17 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for the production of nonwoven web materials |
US20050087288A1 (en) * | 2003-10-27 | 2005-04-28 | Haynes Bryan D. | Method and apparatus for production of nonwoven webs |
EP1755850A1 (de) * | 2004-06-09 | 2007-02-28 | Industrial Composites Engineering Pty Ltd | Verfahren zur bildung oder härtung von polymerverbundstoffen |
US20070113953A1 (en) * | 2004-06-09 | 2007-05-24 | Haywood Alex M | Method for forming or curing polymer composites |
EP1755850A4 (de) * | 2004-06-09 | 2008-08-20 | Ind Composites Engineering Pty | Verfahren zur bildung oder härtung von polymerverbundstoffen |
AU2005251829C1 (en) * | 2004-06-09 | 2011-02-03 | Industrial Composites Engineering Pty Ltd | Method for forming or curing polymer composites |
US8088237B2 (en) | 2004-06-09 | 2012-01-03 | Industrial Composites Engineering Pty Ltd | Method for forming or curing polymer composites |
US20220194287A1 (en) * | 2020-12-21 | 2022-06-23 | Jesse Tyler Lockamy | Mountable fabric ashtray |
Also Published As
Publication number | Publication date |
---|---|
DK117763B (da) | 1970-06-01 |
NL259016A (de) | 1964-04-27 |
UST859640I4 (de) | 1900-01-01 |
AT294747B (de) | 1971-12-10 |
NL122418C (de) | |
FR1306205A (fr) | 1962-10-13 |
DE1435113A1 (de) | 1969-10-09 |
ES263194A1 (es) | 1961-07-01 |
CH446259A (de) | 1967-06-15 |
GB914714A (en) | 1963-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3117055A (en) | Non-woven fabrica | |
US3511747A (en) | Bonded textile materials | |
US5124194A (en) | Hot-melt-adhesive, micro-fiber-generating conjugate fibers and a woven or non-woven fabric using the same | |
US3595731A (en) | Bonded non-woven fibrous materials | |
US2910763A (en) | Felt-like products | |
US3067482A (en) | Sheet material and process of making same | |
US4966808A (en) | Micro-fibers-generating conjugate fibers and woven or non-woven fabric thereof | |
EP0086103B2 (de) | Verfahren zur Herstellung eines nichtgewebten Stoffes aus durch Heisschmelzen gebundenen Mehrkomponentfasern | |
JP3233661B2 (ja) | 水力でもつれさせたポリオレフインウエツブ | |
US4368227A (en) | Suede-like sheet materials of ultrafine fibers | |
US5355565A (en) | Process for the production of a non-woven cloth constituted of continuous interconnected filaments and cloth thus obtained | |
US3551271A (en) | Nonwoven fabrics containing heterofilaments | |
US3067483A (en) | Sheet material and process of making same | |
GB2198756A (en) | Carpet tufting backing made of spunbonded nonwoven | |
US4908263A (en) | Nonwoven thermal insulating stretch fabric | |
US3228790A (en) | Nonwoven fabric containing polyolefin fibers bonded together with a mixture of polyolefin and acrylic resins | |
US3752733A (en) | Bonded nonwoven fibrous product | |
US3117056A (en) | Conformable bulkable non-woven web | |
Purdy | Developments in non-woven fabrics | |
US3259539A (en) | Preparation of a conformable nonwoven web | |
US3499810A (en) | Method of making a bonded nonwoven web of staple-length filaments | |
US3126297A (en) | Treatment of nonwoven fabric with | |
US3758429A (en) | Ethylene vinyl chloride n methhylol acrylamide | |
US3647615A (en) | Ethylene/vinyl chloride/n-methylol acrylamide | |
US3158525A (en) | Resin coated unwoven fabric |