US3094388A - Method of producing gallium or aluminum arsenides and phosphides - Google Patents
Method of producing gallium or aluminum arsenides and phosphides Download PDFInfo
- Publication number
- US3094388A US3094388A US859060A US85906059A US3094388A US 3094388 A US3094388 A US 3094388A US 859060 A US859060 A US 859060A US 85906059 A US85906059 A US 85906059A US 3094388 A US3094388 A US 3094388A
- Authority
- US
- United States
- Prior art keywords
- gallium
- halide
- arsenic
- hydrogen
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052733 gallium Inorganic materials 0.000 title claims description 32
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 21
- 229910052782 aluminium Inorganic materials 0.000 title description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title description 15
- 150000004820 halides Chemical class 0.000 claims description 31
- 239000001257 hydrogen Substances 0.000 claims description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 23
- 229910052785 arsenic Inorganic materials 0.000 claims description 20
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 20
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 18
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 15
- 239000000376 reactant Substances 0.000 claims description 12
- 239000012808 vapor phase Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 235000010210 aluminium Nutrition 0.000 description 14
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 description 8
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910017009 AsCl3 Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000005494 condensation Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- IHGSAQHSAGRWNI-UHFFFAOYSA-N 1-(4-bromophenyl)-2,2,2-trifluoroethanone Chemical compound FC(F)(F)C(=O)C1=CC=C(Br)C=C1 IHGSAQHSAGRWNI-UHFFFAOYSA-N 0.000 description 2
- 229910005267 GaCl3 Inorganic materials 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- -1 gallium halide Chemical class 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/007—Preparing arsenides or antimonides, especially of the III-VI-compound type, e.g. aluminium or gallium arsenide
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT OF FLOUR OR DOUGH FOR BAKING, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS
- A21D2/00—Treatment of flour or dough by adding materials thereto before or during baking
- A21D2/08—Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
- A21D2/14—Organic oxygen compounds
- A21D2/16—Fatty acid esters
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/06—Hydrogen phosphides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/02—Boron; Borides
- C01B35/04—Metal borides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/049—Equivalence and options
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/056—Gallium arsenide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/065—Gp III-V generic compounds-processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S420/00—Alloys or metallic compositions
- Y10S420/903—Semiconductive
Definitions
- This invention relates to a new method of producing compound semiconductors and in particular to the production of gallium arsenide.
- gallium arsenide is customarily produced by reacting liquid gallium with arsenic in the vapor stage at a tempera-ture at least as high as the melting point of gallium arsenide.
- this method has the disadvantage of requiring a relatively high temperature which increases the susceptibil-ity toward contamination.
- this method i-s not readily adaptable as la continuous production process.
- gallium arsenide be prepared by reducing gallium oxide with a gaseous stream of heated hydrogen and arsenic vapors.
- Another suggested technique has been to volatilize gallium and arsenic ⁇ and thereafter codeposit on a relatively cooled surface to form the gallium arsenide.
- the object of the instant invention is to provide an improved process for production of compound semiconductors and especially gallium arsenide.
- FIGURES 1 to 3 schematically illustrate the best modes for performing the method tof the invention.
- the instant invention involves the process of simultaneous reduction of a halide of a group III element and a halide of a groupy V element.
- the invention involves producing the compound semi-conductor by the vapor phase reduction of karsenic halide by hydrogen in the presence of gallium halide or metallic gallium under conditions whereby the gallium arsenide is stoichiometrically produced.
- a mixture of arsenic trichloride and gallium trichloride is introduced into a stream of hydrogen in excess of that required for complete reduction ⁇ of the chlorides. 'Ihe gaseous mixture is then passed through -a hot reaction zone, at for example about 1,000 C. It is theorized that in the hot reaction zone the hydrogen reduces the arsenic trichloride to free arsenic. The combination of high temperatures and low partial pressure keep the arsenic in the vapor phase. It is thought that the gallium trichloride reacts with the hydrogen to form gallium dichloride. An important feature of this invention is that free gallium is not formed in the hot reaction zone.
- Any free gallium produced immediately reacts with the various chlorides present 'to form a chloride of gallium which is reduced to the more stable gallium dichloride. There is no gallium arsenide deposited because under these conditions, any gallium arsenide produced would be unstable.
- the gases are passed into contact with a relatively cool surface maintained at la .temperature of from about 200 to 900 C.
- the gallium dichloride disproportionates and the gallium combines with the free arsenic to form gallium arsenide which deposits in solid form.
- the deposition temperature is still high enough to maintain the other components of the gas stream in Vapor phase, namely, hydrogen and hydrogen chloride which are gaseous even at room temperature, and unreacted gallium and arsenic chlorides as well.
- pure gallium arsenide is deposited.
- the temperature of the crystals is maintained high enough to also keep any excess arsenic from depositing on the crystal product.
- gallium trichloride as van initial constituent presents problems in thatrgallium trichloride readily hydrolyzes with moisture and is very corrosive.
- problems are minimized by forming the galliumtrichloride in the reaction chamber.
- the gaseous stream which contains only the hydrogen and ⁇ arsenic trichloride is passed into Contact with liquid gallium heated to 900- 11t00 C.
- the arsenic trichloride is reduced by the hydrogen to elemental arsenic vapors yand HCl.
- the HC1 produced when the AsCl3 is reduced reacts with the liquid gallium to produce gallium trichloride. This reaction continues until all of' the galtliumlium is converted to gallium trichloride. Gallium arsenide is then produced by the same mechanism described in the rst embodiment of the invention.
- Example I Apparatus as shown in FIGURE 1 is used.
- the apparatus consists of a quartz tube 10 (25 mm. OD.; 22 mm. LD.) having an inlet 11 connected to a suitable hydrogen supply and lan exhaust Outlet 12. Heaters 14 and 15 are provided to maintain the temperatures noted in the legend.
- a flask 18 terminating in a dripper 20 is positioned in a branch tube 22 adjacent one end of tube 10.
- hydrogen is admitted through inlet "11 at about 100 cc./ min. (0.0045 mole/min.).
- the flask 18 contains a mixture of GaCl3 and AsCl3 in the weight ratio of 37.5 to
- the dripper 20 is controlled to give ⁇ a drip rate of about 0.2 ze/min. corresponding to about 0.44 g./min. (average specific gravity 2.2) and about 0.00244 mole/ min., ⁇ assuming an average molecular weight of 180. This gives a mole ratio in the reaction zone of where x equals GaCl3 and AsC13. Galliutn arsenide is deposited in the region of tube within heater 15.
- Example III Apparatus las shown in FIGUR-E 3 is used.
- a tube 40 like tubes 10 and A30 is employed.
- a flask 42 is attached at one end of tube 40 and contains AsC13.
- a boat 44 of liquid gallium is located in tube 40.
- Hydro gen is bubbled through the AsCl3 and Yalsoadmitted to the vvend of tube 40.
- Hydrogen llow is about l liter/min.
- the mole ratio of H2 to AsCl3 is about 76 to l.
- Gallium arsenide is deposited at the right end of tube 40.
- the present ⁇ invention has been shown and phase mixture of hydrogen, halide of aluminum and phosphorus into a high temperature zone maintained at a temperature in the range of from about 900 C. to about 1l00 C. to cause the hydrogen to react with the halide producing a reactant stream vcomprising the halide of aluminum as a lower order halide and phosphorus in the elemental state, passing the reactant stream produced into contact with a relatively cool surface maintained at a temperature of from ⁇ about 200 C. to 900 C.
- a method of producing the compound semiconductor gallium phosphide which comprises passing a vapor phase mixture of hydrogen, halide of gallium-and phosphorus in a high temperature Zone maintained at a ternperature in the range of .from about 900 .C.to about 1l00 C. to cause the hydrogen to react with the halide producing a .reactant stream comprising the halide of gallium as -a lower order halide ⁇ and phosphorus in the elemental state, passing the reactant stream produced into contact with a relatively cool surface maintained at a temperature of from about 200 C. to 900 C.
- a method of producing the compound semiconductor gallium arsenide which comprises passing ⁇ a vapor phase mixture of hydrogen and halides of gallium and t arsenic .into a high temperature Zone maintained at a temperature in the range of from about 900 C. -to about 1100 C. to cause the hydrogen to react with the halides producing a reactant stream comprising vthe halide of galliumV as a lower 'order halide and arsenic in the elemental state, passing the reactant stream produced into contact with a relatively ⁇ cool surface maintained at a y temperature of from about 200 C. 'to about 900 C.
- a method of producing the compound semiconductor aluminum arsenide which comprises passing a vapor phase mixture of hydrogen and halides of aluminum and arsenic into a high temperature zone maintained at a temperature in the range of from about 900 C. to about 1l00 to vcause the hydrogen to react with the halide producing a reactant stream comprising the halide of aluminum as a lower order halide and arsenic in the elemental state, passing the reactant stream ⁇ produced into contact with a relatively cool surface rmaintained at a temperature of from about 200 C. to 900 C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Food Science & Technology (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL121550D NL121550C (en(2012)) | 1959-12-11 | ||
NL258863D NL258863A (en(2012)) | 1959-12-11 | ||
US859060A US3094388A (en) | 1959-12-11 | 1959-12-11 | Method of producing gallium or aluminum arsenides and phosphides |
FR846592A FR1275902A (fr) | 1959-12-11 | 1960-12-10 | Procédé de fabrication de composés semi-conducteurs |
GB42709/60A GB967185A (en) | 1959-12-11 | 1960-12-12 | Method of producing specified ó¾í¬v compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US859060A US3094388A (en) | 1959-12-11 | 1959-12-11 | Method of producing gallium or aluminum arsenides and phosphides |
Publications (1)
Publication Number | Publication Date |
---|---|
US3094388A true US3094388A (en) | 1963-06-18 |
Family
ID=25329906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US859060A Expired - Lifetime US3094388A (en) | 1959-12-11 | 1959-12-11 | Method of producing gallium or aluminum arsenides and phosphides |
Country Status (3)
Country | Link |
---|---|
US (1) | US3094388A (en(2012)) |
GB (1) | GB967185A (en(2012)) |
NL (2) | NL121550C (en(2012)) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3224911A (en) * | 1961-03-02 | 1965-12-21 | Monsanto Co | Use of hydrogen halide as carrier gas in forming iii-v compound from a crude iii-v compound |
US3249473A (en) * | 1961-08-30 | 1966-05-03 | Gen Electric | Use of metallic halide as a carrier gas in the vapor deposition of iii-v compounds |
US3269878A (en) * | 1962-03-29 | 1966-08-30 | Siemens Ag | Method of producing iii-v semiconductor compounds in crystalline form |
US3310425A (en) * | 1963-06-28 | 1967-03-21 | Rca Corp | Method of depositing epitaxial layers of gallium arsenide |
US3361530A (en) * | 1966-12-09 | 1968-01-02 | Texas Instruments Inc | Process for purifying gallium arsenide |
US3364084A (en) * | 1959-06-18 | 1968-01-16 | Monsanto Co | Production of epitaxial films |
US3391017A (en) * | 1963-08-26 | 1968-07-02 | Int Standard Electric Corp | Formation of aluminum, gallium, arsenic, and phosphorous binary conatings |
US3947549A (en) * | 1973-03-15 | 1976-03-30 | British Secretary of State for Defence | Preparation of indium phosphide |
CN107902695A (zh) * | 2017-11-21 | 2018-04-13 | 红河砷业有限责任公司 | 一种高效制备高纯砷化铝的方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2501908B2 (fr) * | 1981-03-11 | 1990-08-17 | Labo Electronique Physique | Croissance epitaxiale acceleree en phase vapeur, sous pression reduite |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2313410A (en) * | 1939-03-31 | 1943-03-09 | Bell Telephone Labor Inc | Preparation of boron compositions |
US2798989A (en) * | 1951-03-10 | 1957-07-09 | Siemens Schuckertwerke Gmbh | Semiconductor devices and methods of their manufacture |
US2938816A (en) * | 1957-06-08 | 1960-05-31 | Siemens Ag | Vaporization method of producing thin layers of semiconducting compounds |
-
0
- NL NL258863D patent/NL258863A/xx unknown
- NL NL121550D patent/NL121550C/xx active
-
1959
- 1959-12-11 US US859060A patent/US3094388A/en not_active Expired - Lifetime
-
1960
- 1960-12-12 GB GB42709/60A patent/GB967185A/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2313410A (en) * | 1939-03-31 | 1943-03-09 | Bell Telephone Labor Inc | Preparation of boron compositions |
US2798989A (en) * | 1951-03-10 | 1957-07-09 | Siemens Schuckertwerke Gmbh | Semiconductor devices and methods of their manufacture |
US2938816A (en) * | 1957-06-08 | 1960-05-31 | Siemens Ag | Vaporization method of producing thin layers of semiconducting compounds |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3364084A (en) * | 1959-06-18 | 1968-01-16 | Monsanto Co | Production of epitaxial films |
US3224911A (en) * | 1961-03-02 | 1965-12-21 | Monsanto Co | Use of hydrogen halide as carrier gas in forming iii-v compound from a crude iii-v compound |
US3249473A (en) * | 1961-08-30 | 1966-05-03 | Gen Electric | Use of metallic halide as a carrier gas in the vapor deposition of iii-v compounds |
US3269878A (en) * | 1962-03-29 | 1966-08-30 | Siemens Ag | Method of producing iii-v semiconductor compounds in crystalline form |
US3310425A (en) * | 1963-06-28 | 1967-03-21 | Rca Corp | Method of depositing epitaxial layers of gallium arsenide |
US3391017A (en) * | 1963-08-26 | 1968-07-02 | Int Standard Electric Corp | Formation of aluminum, gallium, arsenic, and phosphorous binary conatings |
US3361530A (en) * | 1966-12-09 | 1968-01-02 | Texas Instruments Inc | Process for purifying gallium arsenide |
US3947549A (en) * | 1973-03-15 | 1976-03-30 | British Secretary of State for Defence | Preparation of indium phosphide |
CN107902695A (zh) * | 2017-11-21 | 2018-04-13 | 红河砷业有限责任公司 | 一种高效制备高纯砷化铝的方法 |
Also Published As
Publication number | Publication date |
---|---|
GB967185A (en) | 1964-08-19 |
NL121550C (en(2012)) | |
NL258863A (en(2012)) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3094388A (en) | Method of producing gallium or aluminum arsenides and phosphides | |
US3394390A (en) | Method for making compond semiconductor materials | |
US3173814A (en) | Method of controlled doping in an epitaxial vapor deposition process using a diluentgas | |
JP2505777B2 (ja) | 半導体物質のエピタキシャル層堆積法 | |
US3471324A (en) | Epitaxial gallium arsenide | |
US4170667A (en) | Process for manufacturing pure polycrystalline silicon | |
JPH02163930A (ja) | 基板上へのエピタキシャルリン化インジウム層の製造方法 | |
GB1182630A (en) | Method for Making Hyperstoichiometric Carbide Compositions and Articles Made According to such Method | |
US3773899A (en) | Manufacture of silicon carbide | |
US4054686A (en) | Method for preparing high transition temperature Nb3 Ge superconductors | |
US3342551A (en) | Method and apparatus for producing a semiconducting compound of two or more components | |
US3297403A (en) | Method for the preparation of intermetallic compounds | |
JPS58135633A (ja) | シリコン・エピタキシヤル成長方法 | |
NO844142L (no) | Tellurider | |
RU2061113C1 (ru) | Способ получения изделий из пиролитического нитрида бора | |
JP2545413B2 (ja) | セレン化亜鉛の製造方法 | |
JPS5829615B2 (ja) | コウヒテイコウカゴウブツハンドウタイ ノ キソウセイチヨウホウ | |
US3947549A (en) | Preparation of indium phosphide | |
US2856335A (en) | Process for the production of salt compositions | |
US3488712A (en) | Method of growing monocrystalline boron-doped semiconductor layers | |
US3301637A (en) | Method for the synthesis of gallium phosphide | |
JPH06184749A (ja) | 有機金属錯体を用いる薄膜の製造法 | |
JPS5858317B2 (ja) | 気相成長法 | |
US2940825A (en) | Method for producing titanium trichloride | |
US3761306A (en) | Process for manufacturing a ternary material |