US3053184A - Gas ejecting nozzle and projectile stabilizing fins for a self-propelled projectile - Google Patents
Gas ejecting nozzle and projectile stabilizing fins for a self-propelled projectile Download PDFInfo
- Publication number
- US3053184A US3053184A US12129A US1212960A US3053184A US 3053184 A US3053184 A US 3053184A US 12129 A US12129 A US 12129A US 1212960 A US1212960 A US 1212960A US 3053184 A US3053184 A US 3053184A
- Authority
- US
- United States
- Prior art keywords
- projectile
- nozzle
- fins
- self
- propelled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/58—Prestressed concrete piles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/02—Stabilising arrangements
- F42B10/14—Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
- F42B10/20—Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel deployed by combustion gas pressure, or by pneumatic or hydraulic forces
Definitions
- the present invention relates to self-propelled projectiles or rockets and more particularly to an improved gas ejecting and projectile stabilizing device for this type of projectile, said device being of an extremely light and sturdy construction and highly reliable in operation.
- An object of the invention is to provide an improved nozzle arrangement and to this end there is contemplated a device in which a single axial nozzle for ejection of the propelling gases is longitudinally movable in a support adapted to be secured to the rear portion of lthe missile body.
- this support Around this nozzle, this support has mounted thereon a stabilizing iin arrangement, the ns of which are pivoted about transversely located pins, said nozzle and said fins having conjugated Contact surfaces such that a displacement of the nozzle in the support under the action of propelling gases from a forward inoperative position to a rear operative position, automatically causes said lin arrangement to be expanded.
- springs which are in general rather fragile and difficult to be operated, and which are conventionally used in known devices to cause the fin arrangement to be expanded, can be completely omitted.
- the invention also includes within its scope a self-propelled projectile provided with the aforesaid device.
- FIG. 1 is a longitudinal cross-sectional view showing a device embodying the invention, in its rest position with the associated nozzle being partly shown as an outer view and partly in longitudinal section;
- FIG. 2 is the corresponding rear View
- FIG. 3 is a longitudinal half-sectional view of the device in operative position, the fins being unfolded and the nozzle being shown as an outer view;
- FIG. 4 is the corresponding end elevation seen from the rear
- FIG. 5 is a diametral axial-sectional view of the support forming a part of the device.
- FIG. 6 is a cross-sectional view taken through line 6 6 of FIG. 5.
- This support has axially formed therein a cylindrical aperture 3. From the rear sectional end thereof, it further comprises a plurality of radial slots 4, evenly distributed about the entire periphery thereof, as will be clearly seen in FIG. 6 of the drawings.
- This support has additionally formed therein a plurality of blind holes 5, one such hole corresponding to each slot 4 and crossing the latter at right angle.
- the axial aperture 3 is provided with a stepped counter-bore 6-7 (FIG. l).
- the aperture or bore 3 has sliding therein a forward portion having an outer cylindrical surface 8 of a nozzle member T.
- a seal 9 located in the portion 6 of the counter-bore provides a sealing engagement between the cylindrical portion 8 of nozzle T and the support l.
- a ring formed of heat-insulating material In the portion 7 of the counter-bore is located at 10 a ring formed of heat-insulating material and adapted to shield the bottom of the counter-bore from heat and to support the cake of propelling powder D.
- the nozzle T has longitudinally extended therethrough the usual jet duct for the gases produced in the body C of the missile by the combustion of the self-propelling charge D.
- This duct or channel from its upstream to its downstream end, converges from a to b, is cylindrical from b to c to form the neck portion of the nozzle, and finally diverges from c to d.
- the open rear end of the nozzle is preferably provided, as known per se, with an annular insert member l1 having small internal vanes 12 adapted to impart to the rocket a certain rotational motion about the longitudinal axis X-X thereof.
- each radial slit 4 of the support 1 has located therein a stabilizing iin A.
- Each vane A is pivotally mounted in the slit 4 by means of a pin 13 extending into the corresponding blind hole 5.
- each n is capable of oscillating about a transverse axis orthogonally disposed in relation to the longitudinal axis X-X of the device, between the folded position shown in FIGS. 1 and 2 and the unfolded position illustrated in FIGS. 3 and 4.
- the fins can be held in the folded position shown in FIGS. l and 2 by known means, e.g. a removable belt B which is removed when the projectile is introduced into the launching tube or any other type of launching device.
- Each iin A preferably comprises on the longitudinal edge thereof which is due to be directed forward when the fins are in their unfolded position (FIGS. 3 and 4), a double bevel 14.
- the nozzle T and each of the fins A are designed so as to comprise conjugated locking surfaces.
- the nozzle T is provided from front to rear and from cylindrical surface 8 which is slidable in the bore 3, a frustoconical shoulder 15 provided by the rearwardly-extending forward face of a cylindrically-bottomed groove 16 having a frustoconical forwardly-directed rear face 17; this groove is followed by a cylindrical portion 18, which is in turn followed by a transverse rearwardly extending shoulder 19 and iinally by a long frustoconical surface 20 which diverges rearwardly.
- Each lin A includes a forward section 21 adapted to cooperate with the frustoconical shoulder 15, when said iin is in its unfolded position (FIGS. 3 and 4) and an inner edge comprising from rear to front: a first portion 22 which diverges rearwardly relative to the bevel 14, -a bead or projection 23 which extends forwardly and takes a transverse position when the fin is in its folded position (FIGS. 1 and 2), a long portion 24 which offers in respect of the bevelled outer edge 14 the same amount of bias as the portion 20 of the nozzle T has in relation to the axis X-X, and finally, a rear relief portion 25.
- the operation of the device is as follows: prior to the projectile being launched, the device is in the position shown in FIGS. l and 2; tins A are immobilized by the belt B and the nozzle T is accordingly maintained in its forward inoperative position by the conjugated surfaces Tdi- 23.
- the fins A are freed of the belt B but are temporarily held in their folded position by the tube or the guiding means of the launching device.
- Nozzle T and fins A are thus truly immobilized in their operative positions which have been reached, as described, under the sole action of the propelling charge, without any interference from any auxiliary means, and in particular, without the use of any conventional springs which form a part of all known devices purported to provoke the oscillatin g of the ns.
- the device is of truly simple cbnstruction and is operated without the remotest possibility of failure, since the device is comprised by a very limited number of sturdy, fail-proof parts, which make it practically safe from any risk of fouling during the handling thereof.
- the slots 4 instead of being axial and radially directed may remain radial but be slightly offset in relation to the axis X--X, so that the un- '4 folded fins would have a slight positive incidence towards the front of the device, enabling the projectile to have a rotational motion imparted thereto, said rotation supplementing the action of the small vanes l2 provided at the rear of the nozzle T or being substituted therefor,
- a self propelled projectile comprising a body having leading and trailing ends and defining an internal combustion chamber, a support on and extending rearwardly from said trailing end of said body, said support defining a bore extending rearwardly from said chamber, a nozzle displaceable rearwardly in said bore in response to gas escaping from said combustion chamber, said support deiining a plurality of radial slots adjacent and opening into said bore, tins in said slots, pivots connecting said ns to said support for pivotal movement between rst and second positions in which said fins are respectively and generally aligned along and obliquely relative to said bore, each fin having leading and trailing projections respectively spaced at greater and lesser distances from the axis of said bore and facing generally forward, each trailing projection, with the associated iin in said first position, extending into said bore, said nozzle including leading and trailing shoulders facing rearwar ly, said trailing shoulder being normally engaged against the trailing projections to prevent rearward movement of the nozzle, said
- a projectile as claimed in claim l wherein, with said tins in said second position, said nozzle extends substantially to the rear of said tins.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Toys (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR788779A FR1228212A (fr) | 1959-03-09 | 1959-03-09 | Dispositif perfectionné à tuyère et empennage pour roquettes |
Publications (1)
Publication Number | Publication Date |
---|---|
US3053184A true US3053184A (en) | 1962-09-11 |
Family
ID=8712208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12129A Expired - Lifetime US3053184A (en) | 1959-03-09 | 1960-03-01 | Gas ejecting nozzle and projectile stabilizing fins for a self-propelled projectile |
Country Status (8)
Country | Link |
---|---|
US (1) | US3053184A (ja) |
BE (1) | BE587895A (ja) |
CH (1) | CH359066A (ja) |
DE (1) | DE1148160B (ja) |
ES (1) | ES256216A1 (ja) |
FR (1) | FR1228212A (ja) |
GB (1) | GB868408A (ja) |
NL (2) | NL106348C (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3234878A (en) * | 1962-10-05 | 1966-02-15 | Soc Tech De Rech Ind | Powder-fuelled rocket |
US3946638A (en) * | 1974-03-29 | 1976-03-30 | The United States Of America As Represented By The Secretary Of The Army | Low recoil anti-tank rocket launcher |
US4194706A (en) * | 1977-04-21 | 1980-03-25 | Societe Europeene De Propulsion | Device for imparting a movement of rotation to a craft when it is launched |
US4702436A (en) * | 1984-12-13 | 1987-10-27 | Affarsverket Ffv | Projectile guide mechanism |
US5685503A (en) * | 1994-06-28 | 1997-11-11 | Luchaire Defense As | Deployment device for the fin of a projectile |
US20190366362A1 (en) * | 2018-06-05 | 2019-12-05 | United Technologies Corporation | Cold spray deposition apparatus, system, and method |
US11477960B2 (en) | 2020-11-02 | 2022-10-25 | Monsanto Technology Llc | Soybean variety 01077912 |
US11547075B2 (en) | 2020-11-02 | 2023-01-10 | Monsanto Technology Llc | Soybean variety 01078822 |
US11612128B2 (en) | 2020-11-02 | 2023-03-28 | Monsanto Technology Llc | Soybean variety 01083666 |
US11653613B2 (en) | 2020-11-02 | 2023-05-23 | Monsanto Technology Llc | Soybean variety 01077829 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL266892A (ja) * | 1960-07-11 | |||
DE1199663B (de) * | 1962-09-11 | 1965-08-26 | Dynamit Nobel Ag | Duese fuer Raketen oder raketenartige Geschosse |
DE1203647B (de) * | 1962-09-11 | 1965-10-21 | Dynamit Nobel Ag | Flossenleitwerk, insbesondere fuer Raketengeschosse |
CN108007280B (zh) * | 2017-12-28 | 2023-08-15 | 北京威标至远科技发展有限公司 | 一种舵机防热结构 |
CN112729033B (zh) * | 2020-12-28 | 2024-02-23 | 安徽江南爆破工程有限公司 | 用于高温爆破的隔热装置及爆破方法 |
CN113237393A (zh) * | 2021-04-28 | 2021-08-10 | 北京星途探索科技有限公司 | 一种高精度稳定装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2801587A (en) * | 1953-02-06 | 1957-08-06 | Albert S Gould | Folding fins for rockets and missiles |
US2821924A (en) * | 1954-07-09 | 1958-02-04 | Lawrence J Hansen | Fin stabilized projectile |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR715385A (fr) * | 1931-08-10 | 1931-12-02 | Empennage repliable pour bombes d'aviation | |
FR896502A (fr) * | 1940-09-23 | 1945-02-23 | Commerciale Caproni Comp | Dispositif de commande des ailettes d'un projectile muni d'un empennage |
-
0
- NL NL248980D patent/NL248980A/xx unknown
- NL NL106348D patent/NL106348C/xx active
-
1959
- 1959-03-09 FR FR788779A patent/FR1228212A/fr not_active Expired
-
1960
- 1960-02-22 CH CH359066D patent/CH359066A/fr unknown
- 1960-02-22 BE BE587895A patent/BE587895A/fr unknown
- 1960-02-24 ES ES0256216A patent/ES256216A1/es not_active Expired
- 1960-02-29 GB GB6984/60A patent/GB868408A/en not_active Expired
- 1960-03-01 US US12129A patent/US3053184A/en not_active Expired - Lifetime
- 1960-03-09 DE DEH38861A patent/DE1148160B/de active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2801587A (en) * | 1953-02-06 | 1957-08-06 | Albert S Gould | Folding fins for rockets and missiles |
US2821924A (en) * | 1954-07-09 | 1958-02-04 | Lawrence J Hansen | Fin stabilized projectile |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3234878A (en) * | 1962-10-05 | 1966-02-15 | Soc Tech De Rech Ind | Powder-fuelled rocket |
US3946638A (en) * | 1974-03-29 | 1976-03-30 | The United States Of America As Represented By The Secretary Of The Army | Low recoil anti-tank rocket launcher |
US4194706A (en) * | 1977-04-21 | 1980-03-25 | Societe Europeene De Propulsion | Device for imparting a movement of rotation to a craft when it is launched |
US4702436A (en) * | 1984-12-13 | 1987-10-27 | Affarsverket Ffv | Projectile guide mechanism |
US5685503A (en) * | 1994-06-28 | 1997-11-11 | Luchaire Defense As | Deployment device for the fin of a projectile |
US20190366362A1 (en) * | 2018-06-05 | 2019-12-05 | United Technologies Corporation | Cold spray deposition apparatus, system, and method |
US11477960B2 (en) | 2020-11-02 | 2022-10-25 | Monsanto Technology Llc | Soybean variety 01077912 |
US11547075B2 (en) | 2020-11-02 | 2023-01-10 | Monsanto Technology Llc | Soybean variety 01078822 |
US11612128B2 (en) | 2020-11-02 | 2023-03-28 | Monsanto Technology Llc | Soybean variety 01083666 |
US11653613B2 (en) | 2020-11-02 | 2023-05-23 | Monsanto Technology Llc | Soybean variety 01077829 |
Also Published As
Publication number | Publication date |
---|---|
NL106348C (ja) | |
ES256216A1 (es) | 1960-08-16 |
NL248980A (ja) | |
BE587895A (fr) | 1960-06-16 |
DE1148160B (de) | 1963-05-02 |
GB868408A (en) | 1961-05-17 |
FR1228212A (fr) | 1960-08-29 |
CH359066A (fr) | 1961-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3053184A (en) | Gas ejecting nozzle and projectile stabilizing fins for a self-propelled projectile | |
US2944486A (en) | Self-propelled projectile | |
US2821924A (en) | Fin stabilized projectile | |
US3098446A (en) | Openable fin arrangement | |
US2684629A (en) | Reaction-motor missile | |
NO140819B (no) | Triazolyl-0,n-acetaler med fungicide egenskaper | |
US3879942A (en) | Partition for rocket engines | |
US2924174A (en) | Combustible pre-spin turbine for spinner rockets | |
US2793591A (en) | Fin arrangement for a projectile | |
US3177809A (en) | Semi-fixed artillery round | |
US3819132A (en) | Self propelled projectile with fins | |
US2933889A (en) | Thrust cut-off apparatus for rocket motors | |
US3855931A (en) | Salvo ammunition for multiple bore open chamber gun | |
US3024729A (en) | Ram jet projectile | |
US7004425B2 (en) | Flying body for firing from a tube with over-caliber stabilizers | |
US2324346A (en) | Projectile for firearms | |
US3578796A (en) | Spinning and stabilizing system for solid propellant rocket or missiles | |
US8735789B1 (en) | Extendable stabilizer for projectile | |
US3442083A (en) | Adjustable variable thrust propulsion device | |
US3434380A (en) | Salvo-firing open chamber gun | |
US3031967A (en) | Fin arrangement for projectiles | |
US6640720B1 (en) | Translation and locking mechanism in missile | |
US3326128A (en) | Rockets and combinations of rockets and cases | |
US2960036A (en) | Hollow-charge warheads of projectiles | |
US3023704A (en) | Projectiles for mortars and like projectors |