US2885514A - Air-blast switch with auxiliary point of interruption for shunt resistances - Google Patents

Air-blast switch with auxiliary point of interruption for shunt resistances Download PDF

Info

Publication number
US2885514A
US2885514A US577283A US57728356A US2885514A US 2885514 A US2885514 A US 2885514A US 577283 A US577283 A US 577283A US 57728356 A US57728356 A US 57728356A US 2885514 A US2885514 A US 2885514A
Authority
US
United States
Prior art keywords
interruption
circuit breaker
contacts
plate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US577283A
Other languages
English (en)
Inventor
Hans Thommen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
BBC Brown Boveri AG Germany
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Application granted granted Critical
Publication of US2885514A publication Critical patent/US2885514A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts

Definitions

  • This invention relates to electric circuit breakers for interrupting considerable high electrical power usually at considerably high voltage, and in particular to those of the so-called air blast type which include one or more series arranged sets of contacts, at least one contact of each set being movable relative to the other in the direction of flow of the compressed gas, usually air, to separate the contacts, and at least one contact of each set being a hollow contact, so that the compressed gas, by flowing into the hollow contact, causes the are formed initially upon separation of the contacts to be bathed on all sides thus facilitating its extinction and a rapid opening of the electrical circuit.
  • two advantages result. In the first place, it becomes impossible to disconnect the paralleling resistance at the auxiliary point of interruption until the current ceases to flow through the circuit breaker main contacts, and secondly the auxiliary point of interruption functions immediately upon termination of the current. That is, there is no delay period involved.
  • the advantages stem from a new inventive concept, namely in the use of a magnetic action controlled directly by flow of the power current to the circuit breaker to be interrupted for operating the aux iliary point of interruption to disconnect the resistance. As long as current flows through the main contacts of the circuit breaker, the magnetic action derived from it prevents disconnection of the paralleling resistance. As soon as the magnetic action ceases, which occurs when the circuit breaker current ceases, the paralleling resistance becomes disconnected.
  • the pressure air available for actuating the main conatcts of the breaker is also utilized in a secondary manner for disconnecting the paralleling resistance at the auxiliary point of interruption, the magnetic action while it is etfective during current flow through the circuit breaker, acting as a block or lock to prevent the pressure air from being applied to the auxiliary point of interruption.
  • One embodiment of the invention to be described comprises a simple iron circuit in the form of a ring placed around the conductor carrying the current to the circuit breaker main contacts.
  • a portion of this iron ring is interrupted by an armature section, and the force exerted magnetically on this armature section during the time that current flows in the conductor is applied via lever action and an auxiliary spring-derived force to a blocking device at the auxiliary point of interruption which prevents a counterforce derived from the pressure air from disconnecting the paralleling resistance.
  • a modified embodiment also to be described, utilizes the magnetic force exerted on the armature section of the iron ring to maintain a release latch in position. When the current ceases to flow in the conductor leading to the circuit breaker, the magnetically derived force also ceases thus releasing the latch and permitting the force present in the pressure air to separate the contacts at the auxiliary point of interruption by overcoming a counteracting spring derived force.
  • the arrangement according to the invention is such that it will be caused to function from a specific amplitude of load current since in the disconnection of small current potentials the shunt resistances are, in general, not required so that an opening of the auxiliary point of interruption is not allowed before the disconnection is completed.
  • the apparatus according to the invention can be adjusted to function at the minimum operating current. However, it can be made to operate at higher or lower values of such current, and the necessary adjustment can be efifected by Variation in the amount of spring-derived force utilized to supplement the force derived magnetically and/ or by adjustment in the position of the armature section of the magnetic unit itself.
  • FIG. 1 is a view in vertical section through a typical form of gas blast circuit breaker having one set of main contacts, a paralleling resistance being situated in a housing located to the side of the housing containing the main circuit breaker contacts, and the magnetically derived force being established by lever action and a supplementing spring action which, so long as the lever action maintains, prevents the paralleling resistance from being disconnected.
  • Fig. 2 is a view similar to Fig. 1 but eliminating the circuit breaker itself for simplification, and illustrating an arrangement wherein the magnetically derived force working through lever action is used to maintain a release latch in its locked position.
  • the circuit breaker unit is of generally conventional construction, including a hollow column 1 of insulating material within which is located a fixed pin contact member 2 upstanding centrally within the column, being supported by webs 3 of electrically conductive material connected to an annular plate member-4 also of electrically conductive material and to which plate is connected one of the main conductors 5, the current flow through which is controlled by the circuit breaker assembly.
  • the hollow contact element of the circuit breaker consists of an assembly which includes a stationary annular member 6 of electrically conductive material supported upon insulating column 1, a stationary electrically conductive sleeve 7 depending centrally from tubular member 6 into the interior of column 1, a movable electrically conductive sleeve 8 arranged telescopically upon sleeve 7, the sleeve 8 including also a peripheral flange portion 9 making a sliding fit with the wall of hollow column 1, and a central aperture 10 into which extends the nose end 2a of pin contact member 2.
  • a helical spring 11 surrounding the telescoped sleeves 7 and 8 and bearing downwardly against the flange 9 loads the hollow contact assembly into engagement with the nose of pin contact member 2.
  • This view shows the hollow contact assembly engaged with the pin contact member and hence represents the positions of the components when current is flowing through the circuit breaker contacts from line conductor to line conductor 12 connected to the tubular member 6.
  • the resistance element arranged for parallel connection with the main contact members of the circuit breaker is represented by an annular winding 13 of resistance material arranged within a casing 14 of insulating material that is supported in part at the side of column 1 by means of a laterally extending bracket 15.
  • the lower end of resistance winding 13 is connected electrically to conductor 5 by means illustrated schematically as a lead wire 16 and the upper end of winding 13 is connected electrically by lead wire 17 to a transverse plate 18 of electrically conductive material located in the upper end of casing 14.
  • the pin 19 and plate 22 constitute a set of auxiliary contacts by which the resistance winding 13 is connected or disconnected from its parallel relationship with the set of main contacts 2, 8.
  • Cylinder 23 includes one or more outlet ports 24 for the escape of pressure air as the piston plate 22 is raised.
  • Piston plate .32 is biased in the downward position, that is in the direction of contact pin 19, by a helical loading spring 25 located within cylinder 23 the spring 25 being under compression, having one end bearing against plate 22 and the opposite end bearing against the top end closure wall of cylinder 23.
  • Working within the spring 25 and bearing against plate 22 is a depending shaft portion 26 of a lever 27 connected pivotally at 28 at one end to the upper end closure wall of cylinder 23.
  • the opposite, free end of lever 27 is connected to an armature element 29 in the form of a bar of magnetic material which extends across but spaced from the ends of the legs of a U-shaped laminated assembly 30 of magnetic material surrounding the conductor.
  • Pin 32 is loaded by a compression spring 33 surrounding the same in such direction as to cause its withdrawal from the interior of cylinder 23 thus releasing the plate piston 22' for movement in the upper direction, but the pin 32 is prevented from moving outwardly from the cylinder 23' by means of one arm 34 of a lever pivotally mounted at 35 on the cylinder 23', the arm 34 bearing against the head of pin 32 by reason of a connection of the other arm 36 of this lever to one end of another lever 37 pivotally mounted at its opposite end at 38 on the conductor 12', the armature section 29 of the magnetic ring being attached to the lever 37 at a point intermediate the ends thereof.
  • the magnetic force in the ring assembly 30 functions to draw the armature section 29' downwardly and hence also move the lever 37 downwardly thus rocking the lever arm 34 clockwise so as to press the pin 32 inwardly to the position shown in Fig. 2.
  • the magnetic action likewise ceases and hence also the downward pull on lever 37 with the result that the biasing spring 33 is then able to shift pin 32 to the right by such a distance as will withdraw the end of the pin within the wall of cylinder 23'.
  • a gas blast circuit breaker comprising a hollow insulating column containing a set of normally closed main contacts and which are actuated to open position by application of pressure gas thereto, a conductor connected to one of said main contacts and adapted to carry the load current controlled by the circuit breaker, a casing of insulating material disposed adjacent said column, a resistance element and a set of normally closed auxiliary contacts actuatable to open position by pressure gas arranged in series and located within said casing, said series connected resistance element and set of auxiliary contacts being arranged in parallel to said set of main contacts, said set of auxiliary contacts when closed preventing any flow of pressure gas through said casing, means for introducing pressure gas into said column and casing and means deriving a force from the current flowing in said conductor and applying the same to maintain said set of auxiliary contacts closed and in counteraction to an opening force applied thereto by said pressure gas until after said main contacts have been opened by said pressure gas.
  • one of said auxiliary contacts is constituted by a plate member slidable in a cylinder and loaded into engagement with the other auxiliary contact by a spring, said plate member being actuatable by the pressure gas and serving also as a valve to permit flow of pressure gas through said casing upon separation of said auxiliary contacts, and said force derived from the current flowing in said conductor is applied to said plate member to prevent any movement thereof in a direction away from the other auxiliary contact.
  • a gas blast circuit breaker as defined in claim 2 wherein said means deriving said force from the current flowing in said conductor is constituted by a magnetizable iron circuit surrounding said conductor, said iron circuit including an air gap and an armature movable in said air gap, and means transmitting said force through said armature to said plate member.
  • a gas blast circuit breaker as defined in claim 3 wherein said means transmitting said force through said armature to said plate member is constituted by a pivotally mounted lever applying pressure directly to said plate member.
  • a gas blast circuit breaker as defined in claim 3 wherein said means transmitting said force through said armature to said plate member is constituted by a latch member adapted to engage and be disengaged from said plate member.

Landscapes

  • Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Magnetically Actuated Valves (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Circuit Breakers (AREA)
US577283A 1955-04-14 1956-04-10 Air-blast switch with auxiliary point of interruption for shunt resistances Expired - Lifetime US2885514A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH337908T 1955-04-14
CH352725T 1957-04-23

Publications (1)

Publication Number Publication Date
US2885514A true US2885514A (en) 1959-05-05

Family

ID=25738494

Family Applications (2)

Application Number Title Priority Date Filing Date
US577283A Expired - Lifetime US2885514A (en) 1955-04-14 1956-04-10 Air-blast switch with auxiliary point of interruption for shunt resistances
US729198A Expired - Lifetime US2892913A (en) 1955-04-14 1958-04-17 Air blast switch with auxiliary point of interruption for shunt resistance

Family Applications After (1)

Application Number Title Priority Date Filing Date
US729198A Expired - Lifetime US2892913A (en) 1955-04-14 1958-04-17 Air blast switch with auxiliary point of interruption for shunt resistance

Country Status (6)

Country Link
US (2) US2885514A (de)
BE (2) BE546900A (de)
CH (2) CH337908A (de)
DE (2) DE952193C (de)
FR (2) FR1144885A (de)
GB (2) GB803714A (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629532A (en) * 1970-02-20 1971-12-21 Sun Electric Corp Immediately responsive fluid flow operated switch with normally closed spring contact in flow channel
US3995198A (en) * 1973-05-14 1976-11-30 Licentia Patent-Verwaltungs-G.M.B.H. High voltage circuit breaker

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097131A (en) * 1963-11-16 1967-12-29 English Electric Co Ltd Improvements in or relating to circuit breakers
CH406357A (de) * 1964-03-26 1966-01-31 Sprecher & Schuh Ag Schalter für hochgespannten Gleichstrom
CH489126A (de) * 1968-10-15 1970-04-15 Bbc Brown Boveri & Cie Schalteinrichtung
CA963942A (en) * 1971-01-12 1975-03-04 Edmond Thuries Control device for auxiliary circuit breaker switches
DE2451011C2 (de) * 1974-10-26 1984-06-07 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Hochspannungs-Leistungsschalter mit Ein- und Ausschaltwiderständen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1331882A (en) * 1919-08-09 1920-02-24 Gen Electric Electromagnetic switch
GB538672A (en) * 1939-03-30 1941-08-12 Asea Ab Compressed air circuit breaker having a resistance bridging the contacts
US2453555A (en) * 1943-09-11 1948-11-09 Bbc Brown Boveri & Cie Gas blast circuit breaker

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE416391A (de) * 1935-07-13
NL73206C (de) * 1948-07-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1331882A (en) * 1919-08-09 1920-02-24 Gen Electric Electromagnetic switch
GB538672A (en) * 1939-03-30 1941-08-12 Asea Ab Compressed air circuit breaker having a resistance bridging the contacts
US2453555A (en) * 1943-09-11 1948-11-09 Bbc Brown Boveri & Cie Gas blast circuit breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629532A (en) * 1970-02-20 1971-12-21 Sun Electric Corp Immediately responsive fluid flow operated switch with normally closed spring contact in flow channel
US3995198A (en) * 1973-05-14 1976-11-30 Licentia Patent-Verwaltungs-G.M.B.H. High voltage circuit breaker

Also Published As

Publication number Publication date
CH337908A (de) 1959-04-30
DE952193C (de) 1956-11-15
FR73508E (fr) 1960-08-22
FR1144885A (fr) 1957-10-18
CH352725A (de) 1961-03-15
BE567017A (fr) 1960-08-12
BE546900A (fr) 1959-10-23
DE1033759B (de) 1958-07-10
US2892913A (en) 1959-06-30
GB866368A (en) 1961-04-26
GB803714A (en) 1958-10-29

Similar Documents

Publication Publication Date Title
US2144475A (en) Circuit breaker
US2459599A (en) Circuit interrupter
US2885514A (en) Air-blast switch with auxiliary point of interruption for shunt resistances
JP2018120861A (ja) 高電圧直流リレー
US3959753A (en) Circuit interrupter with load side short circuit
US4318065A (en) Means for actuating electro-magnetic switchgear
US1724840A (en) Circuit maker and interrupter
US1814847A (en) Circuit interrupting device
US3491315A (en) Solenoid coil drive for synchronous circuit breakers using short circuited winding portion
US2013827A (en) Circuit interrupter
US2911492A (en) Operating mechanism for a fluid blast circuit breaker
US2134565A (en) Circuit breaker
GB578422A (en) Improvements in or relating to fluid blast electric circuit interrupters
US2480553A (en) Pressure operated switch
US2590523A (en) Circuit interrupter contact pressure increasing device
US2413555A (en) Electric circuit interrupter
US3390240A (en) Circuit breaker with piston gas flow and selective synchronous operation
US2462212A (en) Protective switch
US3215797A (en) Synchronous-type circuit interrupter with holding magnet for releasing latching means
US2904660A (en) Air blast circuit breakers
US2078784A (en) Electric circuit breaker
US2470611A (en) Circuit interrupter
US2067673A (en) Circuit interrupter
US3014111A (en) Pneumatic operating means for circuit breakers
US3054876A (en) Magnetic assists for low current arcs