US2881703A - Spark generating device - Google Patents
Spark generating device Download PDFInfo
- Publication number
- US2881703A US2881703A US384201A US38420153A US2881703A US 2881703 A US2881703 A US 2881703A US 384201 A US384201 A US 384201A US 38420153 A US38420153 A US 38420153A US 2881703 A US2881703 A US 2881703A
- Authority
- US
- United States
- Prior art keywords
- colloidal
- electrodes
- generating device
- zone
- spark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002184 metal Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002360 explosive Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/52—Sparking plugs characterised by a discharge along a surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K5/00—Light sources using charges of combustible material, e.g. illuminating flash devices
- F21K5/02—Light sources using charges of combustible material, e.g. illuminating flash devices ignited in a non-disrupting container, e.g. photo-flash bulb
- F21K5/023—Ignition devices in photo flash bulbs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C19/00—Details of fuzes
- F42C19/08—Primers; Detonators
- F42C19/12—Primers; Detonators electric
Definitions
- This invention relates to spark generating device, and more particularly to such devices adapted to be used as ignitors for explosive mixtures, such as the priming of a shell.
- the main object of the invention is to provide a spark generating device wherein, upon application of a relatively low. voltage, a spark of suflicient power is immediately generated to ignite the explosive mixture.
- a further object of the invention is to simplify the construction and reduce the size and the cost price of such devices.
- a spark generating device comprising two electrodes capable of beingconnected to the poles of a voltage source, a conductingzone disposed between the two electrodes and electrically connecting the same, said conducting zone consisting of at least one layer of a metal applied in a colloidal state to an insulating support, so that, upon application of the voltage to the electrodes, a spark immediately flashes across said conducting zone.
- the spark generating device comprises a first central rod-shaped electrode surrounded by a second cylindrical electrode and in spaced relationship therewith, and an insulating annular sleeve arranged in the space between the two electrodes, one face of this insulating annular sleeve being coated with at least one layer of colloidal metal to form a .,conducting zone between the two electrodes.
- Fig. 1 is a vertical axial sectional view of a spark generating device according to the invention
- Fig. 3 is an axial section of an embodiment of the invention particularly adapted to be used as an ignitor for the priming of a shell.
- Figs. 1 and 2 illustrate the principles of the invention.
- the spark generating device consists of two electrodes 1 and 2 which are respectively connected to the poles of a voltage source T.
- a switch I allows the voltage of source T to be applied to the electrodes 1 and 2 of the generating device, at the desired instant, to produce a spark.
- the electrodes 1 and 2 are electrically connected to each other by a conducting zone P, consisting of a layer of a metal applied in a colloidal state on an insulating support 3.
- the latter may also serve as a support for the electrodes 1 and 2, as shown.
- the voltage capable of generating this spark on the zone P is relatively low, much lower in any case than the voltage it would be necessary to provide in order to obtain a spark of the same power if, other conditions remaining constant, the metal applied to the insulating support, in-
- the electrodes 1 and 2 may be made either with ditferent metals (for example copper and zinc) or with the same metal (for example copper, iron, zinc, etc.).
- the colloidal metallic zone P may consist of copper, gold, zinc or preferably silver, the latter material being available on the market in concentrated colloidal solutions.
- the procedure to be followed in order to obtain the conducting zone P comprises thinning the concentrated colloidal solution to a diluted solution and spreading it on the insulating support 3, in the area where the zone P is desired, either with a brush or by spraying.
- the colloidal metallic layer is then dried and, if desired, the drying operation may be activated by heating.
- the insulating support 3 is now coated with a stable and dry layer of colloidal metal. If necessary, and according to the desired final thickness of the colloidal zone P and the extent of dilution of the solution, two or more layers of colloidal metal may be superimposed.
- the insulating support 3 provided with the layer of colloidal metal is subjected to a heat treatment at a temperature of a few hundred degrees centigrade, preferably within the range from 600 C. to 700 C. The purpose of this heat treatment is to obtain a perfect adhesion between the colloidal layer and the insulation support and to remove any electrostatic stress between the same.
- a spark generating device which is of particularly simple and inexpensive construction, and operates instantaneously upon application of a relatively low voltage. Moreover, since the discharge deteriorates the colloidal zone only locally, it is possible to use the spark generating device many times consecutively. For this purpose it is merely necessary to regenerate the damaged zone by applying a fresh colloidal layer in the way above described.
- the spark generating device according to the invention is adapted to be used in many applications and particularly in those associated with flashing lamps and electric ignition for explosive mixtures.
- Fig. 3 there is illustrated a particular embodiment of the spark generating device according to the invention, which is suitable to be used as an ignitor for the priming of a shell.
- the spark generating device of Fig. 3 is provided with means capable of applying the voltage of the source T to the electrodes of the generator, at the right instant. If it is desired that the explosion of the shell takes place at the very instant of the impact, the head of the shell is provided with a switch consisting of two contact elements, 4 and 5 respectively, electrically insulated between them but adapted to engage each other at the instant of the imp-act. These contact elements 4 and 5 are inserted in series in the circuit of the electrodes 1 and 2, so that under the effect of the impact, they energize the spark generating device.
- the spark generating device con sists of a first central rod-shaped electrode 1 surrounded by a second cylindrical electrode 2 in spaced'relationship therewith.
- An insulating annular sleeve 3 is arranged in the space between the two electrodes 1 and 2, and a face of the insulating sleeve 3 is coated with a colloidal metallic layer in the manner described above, to form the conducting zone P.
- An electrical discharge device particularly for use as an igniter for explosives, said device comprising spaced electrodes, an insulating support having a surface extending between said electrodes, a thin layer of colloidal metal covering an area of said surface extending from one of said electrodes to the other and consisting of 'a deposit of colloidal particles of metal produced by coating said surface area of said insulating support with a colloidal suspension of said metal and thereafter subjecting the coated support to heat, said layer forming an electrically conductive zone and being in electrical connection with said electrodes, at least one of said electrodes having an extended line of contact with said layer and said area covered by said layer having substantial width in a direction transverse to a line connecting said electrodes and means for applying a voltage differential of the order of 200 volts or less to said electrodes to produce instanta neously localized ionization of said colloidal metal to greatly increase the conductivity of said zone and cause an instantaneous discharge of explosive nature between said electrodes, said zone providing a multiplicity of electrical discharge paths between said electrodes to permit repeated
- Electrodes comprise a central electrodev and an annular electrode surrounding said central electrode.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Spark Plugs (AREA)
- Laminated Bodies (AREA)
- Coating By Spraying Or Casting (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH735609X | 1952-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2881703A true US2881703A (en) | 1959-04-14 |
Family
ID=4532699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US384201A Expired - Lifetime US2881703A (en) | 1952-10-06 | 1953-10-05 | Spark generating device |
Country Status (7)
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3059576A (en) * | 1958-09-26 | 1962-10-23 | Conax Corp | Electrically fired detonator |
US3082691A (en) * | 1959-12-03 | 1963-03-26 | Olin Mathieson | Electric bridge |
US3418372A (en) * | 1960-01-29 | 1968-12-24 | Navy Usa | Preparation of 2,2',4,4',6,6'-hexanitrodiphenylamine |
US3429260A (en) * | 1967-02-13 | 1969-02-25 | Sidney A Corren | Miniature initiator for electroexploding device |
US3462633A (en) * | 1967-01-03 | 1969-08-19 | Marcus A Mccoy | Energy burst generating element |
US3608492A (en) * | 1969-10-02 | 1971-09-28 | Gen Electric | Ammunition high-voltage electrical ignition system |
US3683811A (en) * | 1970-06-22 | 1972-08-15 | Hercules Inc | Electric initiators for high energy firing currents |
US3795195A (en) * | 1970-01-21 | 1974-03-05 | J Silva | Electrical initiator |
US3815507A (en) * | 1970-01-21 | 1974-06-11 | Olin Corp | Electrical initiator |
US4393779A (en) * | 1977-10-20 | 1983-07-19 | Dynamit Nobel Aktiengesellschaft | Electric detonator element |
US4525140A (en) * | 1980-12-29 | 1985-06-25 | Office National D'etudes Et De Recherches Aerospatiales Dit O.N.E.R.A. | Ignition method and igniter device for igniting carburated gaseous mixtures |
FR2599136A1 (fr) * | 1986-05-22 | 1987-11-27 | Detonix Close Corp | Element de mise a feu de detonateur |
US4976199A (en) * | 1988-09-01 | 1990-12-11 | Expert Explosives (Proprietary) Limited | Blasting system and its method of control |
FR2720494A1 (fr) * | 1994-05-24 | 1995-12-01 | Thomson Brandt Armements | Amorce détonateur à éclateur intégré. |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU35358A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1957-08-07 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US39542A (en) * | 1863-08-18 | Improvement in f | ||
US319628A (en) * | 1885-06-09 | samuel eussell | ||
AT122501B (de) * | 1928-08-22 | 1931-04-25 | Schaffler & Co | Elektrischer Glühzünder. |
US2424583A (en) * | 1941-11-03 | 1947-07-29 | Gunnar Edward Ferdinand Palm | Plated article and method of manufacturing same |
US2694016A (en) * | 1950-06-01 | 1954-11-09 | Du Pont | Method of producing coated ceramic capacitor |
US2719386A (en) * | 1952-04-30 | 1955-10-04 | Pittsburgh Plate Glass Co | Method of electrically heating and welding glass elements |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE214705C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | ||||
DE216619C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | ||||
DE136746C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | ||||
DE377191C (de) * | 1919-07-15 | 1923-06-11 | Wilhelm Buschhueter | Verfahren zur Darstellung von Initialzuendmasse fuer Spaltgluehzuender |
US1832052A (en) * | 1927-11-21 | 1931-11-17 | Schmitt Nikolaus | Electric mine firing device |
GB627607A (en) * | 1945-12-14 | 1949-08-11 | Wijtze Beije Smits | Improvements in or relating to low tension sparking plugs |
-
0
- NL NL105200D patent/NL105200C/xx active
- BE BE522534D patent/BE522534A/xx unknown
-
1952
- 1952-10-06 CH CH307005D patent/CH307005A/fr unknown
-
1953
- 1953-09-21 FR FR1083876D patent/FR1083876A/fr not_active Expired
- 1953-09-22 DE DER12598A patent/DE973070C/de not_active Expired
- 1953-09-29 GB GB26736/53A patent/GB735609A/en not_active Expired
- 1953-10-05 US US384201A patent/US2881703A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US39542A (en) * | 1863-08-18 | Improvement in f | ||
US319628A (en) * | 1885-06-09 | samuel eussell | ||
AT122501B (de) * | 1928-08-22 | 1931-04-25 | Schaffler & Co | Elektrischer Glühzünder. |
US2424583A (en) * | 1941-11-03 | 1947-07-29 | Gunnar Edward Ferdinand Palm | Plated article and method of manufacturing same |
US2694016A (en) * | 1950-06-01 | 1954-11-09 | Du Pont | Method of producing coated ceramic capacitor |
US2719386A (en) * | 1952-04-30 | 1955-10-04 | Pittsburgh Plate Glass Co | Method of electrically heating and welding glass elements |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3059576A (en) * | 1958-09-26 | 1962-10-23 | Conax Corp | Electrically fired detonator |
US3082691A (en) * | 1959-12-03 | 1963-03-26 | Olin Mathieson | Electric bridge |
US3418372A (en) * | 1960-01-29 | 1968-12-24 | Navy Usa | Preparation of 2,2',4,4',6,6'-hexanitrodiphenylamine |
US3462633A (en) * | 1967-01-03 | 1969-08-19 | Marcus A Mccoy | Energy burst generating element |
US3429260A (en) * | 1967-02-13 | 1969-02-25 | Sidney A Corren | Miniature initiator for electroexploding device |
US3608492A (en) * | 1969-10-02 | 1971-09-28 | Gen Electric | Ammunition high-voltage electrical ignition system |
US3815507A (en) * | 1970-01-21 | 1974-06-11 | Olin Corp | Electrical initiator |
US3795195A (en) * | 1970-01-21 | 1974-03-05 | J Silva | Electrical initiator |
US3683811A (en) * | 1970-06-22 | 1972-08-15 | Hercules Inc | Electric initiators for high energy firing currents |
US4393779A (en) * | 1977-10-20 | 1983-07-19 | Dynamit Nobel Aktiengesellschaft | Electric detonator element |
US4525140A (en) * | 1980-12-29 | 1985-06-25 | Office National D'etudes Et De Recherches Aerospatiales Dit O.N.E.R.A. | Ignition method and igniter device for igniting carburated gaseous mixtures |
FR2599136A1 (fr) * | 1986-05-22 | 1987-11-27 | Detonix Close Corp | Element de mise a feu de detonateur |
US4976199A (en) * | 1988-09-01 | 1990-12-11 | Expert Explosives (Proprietary) Limited | Blasting system and its method of control |
FR2720494A1 (fr) * | 1994-05-24 | 1995-12-01 | Thomson Brandt Armements | Amorce détonateur à éclateur intégré. |
Also Published As
Publication number | Publication date |
---|---|
DE973070C (de) | 1959-11-26 |
FR1083876A (fr) | 1955-01-13 |
GB735609A (en) | 1955-08-24 |
NL105200C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | |
CH307005A (fr) | 1955-05-15 |
BE522534A (fr) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2881703A (en) | Spark generating device | |
US3196041A (en) | Method of making a semiconductor gap for an initiator | |
NL7605270A (nl) | Werkwijze en inrichting voor het vormen van een electrisch geleidende verbinding tussen componen- ten en/of schakelingen van kleine afmetingen. | |
US2586864A (en) | Spark plug electrode | |
US2057431A (en) | Method of making resistance elements | |
US2795738A (en) | Short duration, high intensity spark gap arrangement | |
US3071710A (en) | Coaxial transmission line with spaced capacitance control of pulse generation | |
US3362158A (en) | Arc ignition system | |
US2605754A (en) | Low-tension ignition spark plug for condenser discharge | |
US3085176A (en) | Ultra-rapid, high intensity switch pulse generation in coaxial circuitry | |
US2376669A (en) | Glow switch for starting discharge devices | |
US2507278A (en) | Low tension sparking plug | |
US2674237A (en) | Ignition control | |
US3097330A (en) | Coaxial capacitance termination | |
GB669068A (en) | Improvements in or relating to electric discharge tubes | |
US3078386A (en) | Coaxial transmission line with sequential capacitance control of pulse generation | |
US3120182A (en) | Dielectric plug for electrical initiation of explosives | |
US2844740A (en) | Multiple spark gap switch | |
GB1241257A (en) | Improvements relating to electrically conductive heating rings | |
DE1036138B (de) | Funkenzuender | |
US3264988A (en) | Ignition assembly resistant to actuation by radio frequency and electrostatic energies | |
GB989241A (en) | Electric discharge lamps | |
GB1223006A (en) | Localised electrolytic heating and diffusion | |
CA1101922A (en) | Strobe lamp series triggering circuit | |
DE882970C (de) | Elektrisch zuendbare Sprengkapseln |