US2544600A - Multiple tube gas heating furnace - Google Patents

Multiple tube gas heating furnace Download PDF

Info

Publication number
US2544600A
US2544600A US59011A US5901148A US2544600A US 2544600 A US2544600 A US 2544600A US 59011 A US59011 A US 59011A US 5901148 A US5901148 A US 5901148A US 2544600 A US2544600 A US 2544600A
Authority
US
United States
Prior art keywords
chamber
heating
heater
tubular
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US59011A
Other languages
English (en)
Inventor
Keller Curt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aktiengesellschaft fuer Technische Studien
Original Assignee
Aktiengesellschaft fuer Technische Studien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aktiengesellschaft fuer Technische Studien filed Critical Aktiengesellschaft fuer Technische Studien
Application granted granted Critical
Publication of US2544600A publication Critical patent/US2544600A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers

Definitions

  • This invention relates to a'tu'bular gasheaiterr more especially to .a heater of this kind for, in-
  • One object of the said invention is to provide of construction for a tubular heater which is suitable for heating air used as the working medium in a thermal power plant of the well known kind in which such .Working medium operates in a tubular gas heater in which the heating tubes though arranged in as 'com'pacta system as possible, are yet easily accessible.
  • This last-named .feature is particularly valuable when the tubular .gas heater is incorporated in aga turbine plant with an indirect supply of heat to the working medium, as, in such caseqthe heater tubes are subjected to severe stresses, on account of 'the high temperatures attained; thus it is important to be able, when necessary, to repair thetu'b'es or to change them andto clean any 'foul'ed tubes.
  • Another "object-of this invention is toprovide a tubular gas heater in which flue walls and dei'iiector walls -'(which do not participate directly in the heat exchange but only cause pressure losses a closed circuit.
  • Fig. 2 is a plan view of the heater shown in Fig. 1, while the left hand .half of Fig. '2 is a sectionta'ken in the horizontal planes whose positions are indicated b theIineII-JI in Fig. '1.
  • Fig. 3 is a view similar to Fig. .1 showing another (form of construction for a tubular heater adapted to serve the same purpose as that menon the heating gas side of the heat exchange system 'arereduced to 'a minimum.
  • ffurther object of the invention is to provide a tubular 'gas f'h'eatermeeding comparatively :litt-l'e headroom "for dismantling and having the smallest diameter.
  • 1a tubul'a'r “gas heater according to the present invention is provided with a removable combustion "cham- 'ber, which is .co-axial with the: longitudinal axis of said heater, and is in direct communication,
  • the heating gases issuing iirom the said combus- -tion chamber.
  • a distributing chamber .-for the gas to be heated may surround, within a double-walled structural member, .a collecting chamber for the gas brought to the temperature and the pressure needed, I or .in stance, .attheinlet .tora first .expansionstage-
  • the r distributing chamber and 'the coljlecting chamber may, likewise, be coaxial with the longitudinal axis of the heater.
  • Fig.4 is a plan view, half .in section, oi'the heater of Fig. 3., the section being taken on 'line IVIV of Fig.3. g
  • Figs. 1 and 2 which show an oil-fired tubu- '1ar heater, suitable for heating air, as aforesaid, the reference I denotes a casing element whichis coaxial with the'longitudinal axis of the heater .and is insulated internally.
  • This casing element embodies and contains a co-axial combustion chamber 3 and also carries 'the'burner 2 which work in the said combustion chamber.
  • Reference 4 denotes a second or lower casing element, which is likewise insulated internally and arranged co-axially with .respect 'to the longitudinal axis of theheater.
  • the casing element l' is connected detachably .(but in gastight fashion) to the'cas'in'g element 4 which latter surrounds a itubul'arfheating system 5 comprising a number of lengths of tubing arranged as compactly as possible, with the avoidance, so far as this isjposs'ib'le, of dead spaces and bypasses for the heating gases.
  • This heatingsystem 5 also arranged cpaxial'ly with 'respe'ct to the longitudinal axis 'of the heater, is provided immediately beyond the combustion chamber '3 so that its tube nests are system 5 and given up heatto the tubes, escape fromthe heaterthrough a'branch B of the-casing element 4.
  • .Reference .1 denotes a double-walled structural member provided at the lower part ofthe heater and, again, co-axial with the'lon- .gitudinal axis of the latter.
  • This-member "I is 'cletachabl connected at the seating 4 to the casing element '4.
  • Reference 1 denote a distributing chamber provided 'in the member 1 for the air which *isfto be ,Fheated and which flows branch 8.
  • This air may, for instance, come from the heat exchanger of a thermal power plant, in which air, serving as the working medium, flows in a closed circuit.
  • These guide plates l1 and [8 are disposed convergently, in such a Way that they impart the desired velocity to the fire gases and waste gases flowing between them through the heating system 5. For instance, the velocity of these gases may be kept constant.
  • the heater may be supported in any convenient manner, for instance, on stanchions as at I9 r If the casing element be detached from the 65 casing element 4 it will bring with it the burners 2 and the partition wall l4 surrounding the combustion chamber 3 so exposing the tube nests of the system 5, and rendering them easily accessible from inside for such purposes as cleaning, overhauling or replacing.
  • the whole of the tube system 5 together with the structural part 1 and the plate 18 and Wall 19 can be lifted bodily out of the casing element 4, the headroom needed for this dismantling operation being substantially less than in the case of tubular gas heaters of the longitudinal flow type in which the wall surrounding the combustion chamberextends far deeper into the heating chamber.
  • the tubular heater shown in Figs. 3 and 4 is intended for a hot air turbine plant in which the expanding air is re-heated at least once.
  • surrounds the system 20 for the greater part of the length of the latter.
  • the high pressure air to be heated flows through a branch 22 into a distributing chamber 23 in a double-walled struc- --tural member 23, which is arranged co-axially inrelation to the longitudinal axis of the heater, and the inlet ends of the tube nests comprised in the system 2
  • the upper casing element30 of the heater is detachably mounted on'a lower casing element 33 to which also the structural member 23 is detachably secured.
  • a hood 34, which contains the burners 6o 35 and surrounds a combustion chamber 36 is detachably connected tothe casing element 30.
  • are'also in direct communication with the combustion chamber 36.
  • and the structural 55 member 23 are all arranged in co-axial relation to the longitudinal axis of the heater.
  • are, as aforesaid, traversed,'in the main, transversely from the inside to the outside bythe fire gases and waste gases, the latter passing out through a branch 31.
  • the second heating tub'e system 2i and, with it, the "structuralpart "23 may "alsobedrawn out'upward's. The' headr'oom necessary for the removal of these various pafts is comparatively small.
  • furnaces for other fuels such "for example, as Ipulverised coal or gases maybe used.
  • waste gases which escape from the heating chambers of the beater. may be returned to the combustion chamberin order to help to support combustion.
  • waste gases will bein- "troduced'through”thebranch i l, while preheated fresh air can be introduced through the branch I5.
  • the partition wall bounding the combustion -chamber,-it is possible to produce, in the heat ng chamber, which is always indirect communication with the combustion chamber, such a temperature that the radiant heat emanating from the said heating chamber shall not be dangerous to the tube nests of the heating system or heating systems.
  • a heater of this kind is particularly well suited for cases in which the heating chamber is supercharged, that is to say, where a pressure higher than atmospheric pressure is maintained in this chamber. Under such working conditions it is important to be able to operate with low pressure losses in the heating chamber, because the output of the turbine which drives the supercharging compressor and is itself driven by the waste gases from the heating chamber will be greater the greater the residual pressure of the waste gases.
  • a heater intended for heating gases and comprising in combination a generally cylindrical casing, closed at its ends and divided transversely into first and second normally connected but separable parts, the first of said casing parts having a ported, open-ended, tubular projection extending inward from its closed end and dividing a combustion chamber within said tubular projection from an annular combustionair chamber which encircles the same, and the second of said casing parts enclosing a heating chamber into an unobstructed axial portion of which combustion products may flow in an axial direction from said combustion chamber; com bustion burners arranged to operate in said combustion chamber; a connection for supplying air 6 to *said annurar chamber; tubular 'he'alt transfer units arranged within-said heating*charnb'er anrl surrounding said unobstructed axial portion;
  • tubular heat transfer units, and the second baffle are constructed as a unit with and are supported by a manifold arranged to serve as the connections for leading the gas to be heated to and from the tubular units, the unit structure so formed being removably mounted in the second of said casing parts and the first baffie is retained in the joint between the two separable casing parts so as to be freed for removal upon separation of said parts.
  • connections for leading gas to be heated to and from the tubular heat transfer units comprise a double walled unit affording two manifold spaces, one enveloping the other, to which spaces the tubular heat transfer units are connected in parallel.
  • connections for leading gas to be heated to and from the tubular heat transfer units comprise a double walled unit affording two manifold spaces, one enveloping the other, to which spaces the tubular heat transfer units are connected in parallel, said double walled unit serving as the sole support for said tubular units and being bodily removable from the casing therewith,
  • a heater intended for heating gases and comprising in combination a generally cylindrical casing, closed at its ends and constructed in separable parts, one end part being formed with a ported open-ended tubular projection ex- -tending inward from its closed end and dividing a combustion chamber within said tubular projection from an annular combustion-air chamber which encircles the same, and the other end part enclosing a heating chamber into the unobstructed axial portion of which combustion products may flow in an axial direction from said combustion chamber; combustion burners arranged to operate in said combustion chamber;
  • connections for leading gas to be heated to and from the tubular heat transfer units comprise a double walled unit affording two manifold spaces, one enveloping the other,
  • said double walled unit serving to support said tubular units and being bodily removable from the casing therewith, said casing comprising two end parts and an intermediate part and the joints between said parts being so located that separation of the parts frees for removal said supply and collection manifolds with the looped heat exchange tube passes connecting them and also said first baflle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US59011A 1947-11-21 1948-11-08 Multiple tube gas heating furnace Expired - Lifetime US2544600A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH647327X 1947-11-21

Publications (1)

Publication Number Publication Date
US2544600A true US2544600A (en) 1951-03-06

Family

ID=4525865

Family Applications (1)

Application Number Title Priority Date Filing Date
US59011A Expired - Lifetime US2544600A (en) 1947-11-21 1948-11-08 Multiple tube gas heating furnace

Country Status (7)

Country Link
US (1) US2544600A (ko)
BE (1) BE485634A (ko)
CH (1) CH261480A (ko)
DE (1) DE879628C (ko)
FR (1) FR974424A (ko)
GB (1) GB647327A (ko)
NL (1) NL76592C (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2725873A (en) * 1952-03-07 1955-12-06 Worthington Corp Heat exchanger utilizing products of combustion as a heating medium
US2742895A (en) * 1941-11-28 1956-04-24 Industrikemiska Ab Gas heating furnace with tubular heat exchange means
US2833269A (en) * 1958-05-06 Air heater
US2965080A (en) * 1959-01-28 1960-12-20 Yuba Cons Ind Inc Conical furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE976659C (de) * 1953-07-08 1964-01-30 Kohlenscheidungs Ges M B H Mit Brennstaub befeuerter Roehrenerhitzer zur Erhitzung gasfoermiger Arbeitsmittel
DE1140958B (de) * 1957-09-20 1962-12-13 Yuba Cons Ind Inc Vertikalerhitzer fuer Gase mit zylindrischer Brennkammer und in einer einzigen Kreisreihe angeordneten Rohren
DE1187648B (de) * 1958-05-14 1965-02-25 Black Sivalls & Bryson Inc Erhitzer fuer temperaturempfindliche Mittel mit Brennern zum Erzeugen eines Heizgasstroms von niedriger Strahlungsemission
DE1236115B (de) * 1963-11-29 1967-03-09 Hans Escher Rekuperativwaermetauscher
DE3514378A1 (de) * 1985-04-20 1986-10-23 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Einrichtung zur halterung hohen temperaturen ausgesetzter bauteile an thermisch isolierten gehaeusen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2119817A (en) * 1936-10-12 1938-06-07 Tech Studien Ag High temperature gas heater
US2224544A (en) * 1940-12-10 Temperature control foe tubular
US2409801A (en) * 1946-10-22 High-temperature gas heater
US2411294A (en) * 1943-07-17 1946-11-19 Tech Studien Ag Thermal power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2224544A (en) * 1940-12-10 Temperature control foe tubular
US2409801A (en) * 1946-10-22 High-temperature gas heater
US2119817A (en) * 1936-10-12 1938-06-07 Tech Studien Ag High temperature gas heater
US2411294A (en) * 1943-07-17 1946-11-19 Tech Studien Ag Thermal power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2833269A (en) * 1958-05-06 Air heater
US2742895A (en) * 1941-11-28 1956-04-24 Industrikemiska Ab Gas heating furnace with tubular heat exchange means
US2725873A (en) * 1952-03-07 1955-12-06 Worthington Corp Heat exchanger utilizing products of combustion as a heating medium
US2965080A (en) * 1959-01-28 1960-12-20 Yuba Cons Ind Inc Conical furnace

Also Published As

Publication number Publication date
GB647327A (en) 1950-12-13
NL76592C (ko)
FR974424A (fr) 1951-02-22
BE485634A (ko)
DE879628C (de) 1953-06-15
CH261480A (de) 1949-05-15

Similar Documents

Publication Publication Date Title
US2565843A (en) Multiple tubular combustion chamber
US2544600A (en) Multiple tube gas heating furnace
US4085708A (en) Steam boilers
US2952975A (en) Vapor generating and superheating unit
US2716330A (en) Combustion apparatus having primary air preheating ducts
US2631430A (en) Gas turbine power plant having coaxially arranged combustors and regenerator
US2617405A (en) Tubular gas heater, in particular for solid fuels
US2627720A (en) Circumferentially arranged combustion chamber with arcuate walls defining an air flow path between chambers
US10570823B2 (en) Heat recovery unit and power plant
US2752912A (en) Forced air flow air heating furnace
US2048373A (en) Steam generator
US2609040A (en) Combustion apparatus using compressed air
US2368629A (en) Superheater
US1889031A (en) Steam generation and superheating
US2495550A (en) Operating gas heater for thermal power plants
US3111939A (en) Heat generator and exchanger, and expansion joint therefor
US3986817A (en) Grid burner pilot igniter
US3539284A (en) Two-chamber fuel burner
CN110454784A (zh) 能量回收器及辐射管式加热装置
US3079754A (en) Gas turbine plants with heat exchangers
GB606773A (en) Improvement in air heaters
SU926429A1 (ru) Радиационна труба
US3677532A (en) Two chamber fuel burner
RU2168121C1 (ru) Технологический нагреватель
RU2591476C1 (ru) Водогрейный котел