US20230332227A1 - Spatial assays with perturbed cells - Google Patents

Spatial assays with perturbed cells Download PDF

Info

Publication number
US20230332227A1
US20230332227A1 US18/340,531 US202318340531A US2023332227A1 US 20230332227 A1 US20230332227 A1 US 20230332227A1 US 202318340531 A US202318340531 A US 202318340531A US 2023332227 A1 US2023332227 A1 US 2023332227A1
Authority
US
United States
Prior art keywords
cell
capture
analyte
sequence
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/340,531
Inventor
Eswar Prasad Ramachandran Iyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
10X Genomics Inc
Original Assignee
10X Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 10X Genomics Inc filed Critical 10X Genomics Inc
Priority to US18/340,531 priority Critical patent/US20230332227A1/en
Assigned to 10X GENOMICS, INC. reassignment 10X GENOMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAMACHANDRAN IYER, ESWAR PRASAD
Publication of US20230332227A1 publication Critical patent/US20230332227A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation

Definitions

  • Cells within a tissue of a subject have differences in cell morphology and/or function due to varied analyte levels (e.g., gene and/or protein expression) within the different cells.
  • the specific position of a cell within a tissue e.g., the cell's position relative to neighboring cells or the cell's position relative to the tissue microenvironment
  • This disclosure relates to methods for spatial profiling at least one biological analyte present in a cell comprising a small molecule.
  • a method for spatial profiling a biological analyte in a cell comprising: (a) contacting the cell with a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality comprises a first barcode and a capture domain, and wherein the cell comprises a small molecule and a second barcode; (b) releasing the biological analyte from the cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; (c) detecting the biological analyte bound by the capture probe; and (e) correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • the small molecule and second barcode are introduced into the cell using a particle.
  • a method for determining the presence or abundance of a moiety in a cell comprising: (a) contacting the cell with an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises: (i) a spatial barcode and (ii) a capture domain, wherein the cell comprises the moiety and wherein the moiety comprises a moiety sequence; (b) hybridizing a moiety sequence to the capture domain; and (c) determining (i) all or a part of the sequence of the moiety sequence bound to the capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the presence or abundance of the moiety in the cell.
  • Also provided herein is a method for spatial profiling a biological analyte in a cell comprising: (a) contacting a plurality of cells with a plurality of particles, wherein a particle of the plurality of particles comprises a small molecule and a second barcode, and wherein the cell uptakes the small molecule and the second barcode; (b) contacting the cell with a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality comprises a first barcode and a capture domain; (c) releasing the biological analyte from the cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; (d) detecting the biological analyte bound by the capture probe; and (e) correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • the method further comprises: (a) hybridizing an analyte to a second capture domain of a second probe, wherein the second probe comprises a second spatial barcode and the second capture domain, and wherein the second capture probe is in proximity to the capture probe that is hybridized to the moiety sequence; and (b) determining (i) all or a part of a sequence of an analyte bound to the second capture domain, or a complement thereof, and (ii) all or a part of the sequence of the second spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the abundance of the analyte in the cell.
  • the moiety sequence is substantially complementary to the capture domain, optionally wherein the moiety sequence is a polyadenylated sequence.
  • the moiety further comprises a particle introduced into the cell, wherein the particle comprises a small molecule and the moiety sequence.
  • the cell is from a plurality of cells, and wherein the plurality of cells is contacted with a plurality of particles, and wherein the cell uptakes the particle.
  • the particle is a nanoparticle.
  • the particle comprises gold, silica, polyethylene glycol (PEG)-poly(lactide), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PE 2000 , silver, cadmium-selenide, poly(methylacrylic) acid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-cholesterol-1,2-distearoyl-sn-glycero-3-phosphocholine (POPG), poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol, or a combination thereof.
  • PEG polyethylene glycol
  • DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine
  • POPG poly(lactic-co-glycolic acid)
  • PLGA poly(lactic-co-glycolic acid)-polyethylene glycol, or a combination thereof.
  • the particle comprises a surface modification.
  • the surface modification comprises cysteine-cyan5, a cationic monolayer, a nucleic acid, poly(isobutylene-alt-maleic anhydride), a coating with fetal bovine serum (FBS), citrate, 5-aminovaleric acid, L-DOPA, melatonin, serotonin-HCl, MUS/OT, glutathione/glucose, polyethyleneimine, or a combination thereof.
  • the small molecule binds to a biological target.
  • the biological target is a protein or a nucleic acid.
  • the protein is a kinase, a receptor, a channel, an enzyme, or a combination thereof.
  • the protein is a G protein-coupled receptor, a kinase, a protease, an esterase, a phosphatase, ligand-gated ion channel, a voltage-gated ion channel, or a nuclear receptor.
  • the small molecule inhibits the biological target. In some embodiments, the small molecule activates the biological target. In some embodiments, the cell is a mammalian cell.
  • a method for spatial profiling a biological analyte present in a genetically-perturbed cell comprising: (a) contacting the genetically-perturbed cell with a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality comprises a first barcode and a capture domain; (b) releasing the biological analyte from the genetically-perturbed cell, wherein the biological analyte is bound by a capture probe at a distinct spatial position of the substrate; (c) detecting the biological analyte bound by the capture probe; and (e) correlating the biological analyte with the first barcode from the capture probe at the distinct spatial position of the substrate; thus profiling the biological analyte as present in the genetically-perturbed cell at the distinct spatial position.
  • the genetically-perturbed cell comprises a clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic perturbation. In some embodiments, the genetically-perturbed cell comprises a second barcode that identifies the genetic perturbation of the cell.
  • CRISPR clustered regularly interspaced short palindromic repeats
  • the step of correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate further comprises correlating the genetic perturbation of the cell to a distinct spatial position of the substrate using the second barcode that identifies the genetic perturbation of the cell.
  • the genetically-perturbed cell comprises a polyadenylated nucleotide sequence that identifies the genetic perturbation.
  • the step of correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate further comprises correlating the genetic perturbation of the cell to a distinct spatial position of the substrate using the polyadenylated nucleotide sequence.
  • Also provided herein is a method for spatial profiling a biological analyte present in a genetically-perturbed cell comprising: (a) transducing a cell with a vector to form the genetically-perturbed cell; (b) contacting the genetically-perturbed cell with a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a first barcode and a capture domain; (c) releasing the biological analyte from the genetically-perturbed cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; (e) detecting the biological analyte bound by the capture probe; and (f) correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the genetically-perturbed cell at the distinct spatial position.
  • the vector is a lentiviral vector.
  • the lentiviral vector is a CRISPR lentiviral vector.
  • the CRISPR lentiviral vector comprises a guide RNA (gRNA).
  • the CRISPR lentiviral vector comprises a second barcode identifying the gRNA.
  • the gRNA is a single guide RNA (sgRNA).
  • the step of correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate further comprises correlating the genetic perturbation to a distinct spatial position of the substrate using a second barcode that identifies the genetic perturbation.
  • the vector comprises a polyadenylated or an oligo (dT) nucleotide sequence.
  • correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate further comprises correlating the genetic perturbation to the distinct spatial position of the substrate using the polyadenylated or the oligo (dT) nucleotide sequence.
  • the genetically-perturbed cell is a mammalian cell.
  • the step of releasing the biological analyte comprises permeabilizing the cell.
  • the method further comprises fixing the cell prior to the permeabilizing the cell.
  • the method further comprises staining the cell prior to the permeabilizing the cell.
  • the cell is stained after the fixing the cell.
  • the cell is fixed and permeabilized prior to releasing the biological analyte from the biological sample.
  • the permeabilizing the cell comprises electrophoresis.
  • the permeabilizing the cell comprises administering a permeabilization reagent.
  • the step of releasing the biological analyte comprises permeabilizing the genetically-perturbed cell.
  • the method further comprises fixing the genetically-perturbed cell prior to permeabilizing the genetically-perturbed cell.
  • the method further comprises staining the genetically-perturbed cell prior to permeabilizing the genetically-perturbed cell.
  • the genetically-perturbed cell is stained after the genetically-perturbed cell is fixed.
  • the genetically-perturbed cell is fixed and permeabilized prior to the step of releasing the biological analyte from the biological sample.
  • the step of permeabilizing comprises electrophoresis. In some embodiments, the step of permeabilizing comprises administering a permeabilization reagent. In some embodiments, the method further comprises imaging the genetically-perturbed cell. In some embodiments, the imaging is performed prior to releasing the biological analyte from the genetically-perturbed cell. In some embodiments, the imaging is performed after releasing the biological analyte from the genetically-perturbed cell. In some embodiments, the imaging is used to determine the morphology of the genetically-perturbed cell.
  • the cell is a mammalian cell. In some instances, the cell is permeabilized prior to hybridizing the analyte to the capture domain. In some instances, the methods further include staining the cell prior to permeabilizing the cell.
  • the method further comprises imaging the cell. In some embodiments, the imaging is performed prior to releasing the biological analyte from the cell. In some embodiments, the imaging is performed after releasing the biological analyte from the cell. In some embodiments, the imaging is used to determine the morphology of the cell.
  • the capture probe comprises a unique molecular identifier. In some embodiments, the capture probe comprises a cleavage domain. In some embodiments, the capture probe comprises a functional domain. In some embodiments, the functional domain is a primer sequence. In some embodiments, the capture probe comprises a capture domain. In some embodiments, the capture domain comprises a poly-dT sequence. In some embodiments, the capture domain is configured to hybridize to a poly-A tail of an mRNA.
  • each when used in reference to a collection of items, is intended to identify an individual item in the collection but does not necessarily refer to every item in the collection, unless expressly stated otherwise, or unless the context of the usage clearly indicates otherwise.
  • a cell includes one or more cells, comprising mixtures thereof “A and/or B” is used herein to include all of the following alternatives: “A”, “B”, “A or B”, and “A and B”.
  • FIG. 1 is a schematic diagram showing an example of a barcoded capture probe, as described herein.
  • FIG. 2 is a schematic illustrating a cleavable capture probe, wherein the cleaved capture probe can enter into a non-permeabilized cell and bind to target analytes within the sample.
  • FIG. 3 is a schematic diagram of an exemplary multiplexed spatially-barcoded feature.
  • FIG. 4 is a schematic diagram of an exemplary analyte capture agent.
  • FIG. 5 is a schematic diagram depicting an exemplary interaction between a feature-immobilized capture probe 524 and an analyte capture agent 526 .
  • FIGS. 6 A, 6 B, and 6 C are schematics illustrating how streptavidin cell tags can be utilized in an array-based system to produce a spatially-barcoded cells or cellular contents.
  • FIG. 7 is a schematic showing the arrangement of barcoded features within an array.
  • FIG. 8 shows an example of a microfluidic channel structure 800 for partitioning dissociated sample (e.g., biological particles or individual cells from a sample).
  • dissociated sample e.g., biological particles or individual cells from a sample.
  • FIGS. 9 A-C shows 9 A) an example of a microfluidic channel structure 900 for delivering spatial barcode carrying beads to droplets, 9 B) shows a cross-section view of another example of a microfluidic channel structure 950 with a geometric feature for controlled partitioning, and 9 C) shows an example of a workflow schematic.
  • FIG. 10 is a schematic depicting the generation of barcoded small molecule libraries.
  • FIG. 11 is a schematic depicting multiplexed alteration of mammalian cells with a small molecule library.
  • FIG. 12 is a schematic depicting programmable capture sequences that enable targeted or unbiased capture of sequences from cells comprising a small molecule.
  • FIG. 13 is a schematic depicting multiplexed alteration of mammalian cells.
  • FIG. 14 is a schematic depicting programmable capture sequences that enable targeted or unbiased capture of sequences from genetically-perturbed cells.
  • pooled screens have the potential to exponentially improve throughput and reduce overall costs dramatically due to the massive parallelization achieved through pooling.
  • most pooling strategies to date have primarily focused on pooled screens involving nucleic acids (e.g., gRNA or plasmids).
  • nucleic acids e.g., gRNA or plasmids.
  • methods to perform pooled genetic perturbation screens with morphometric phenotypic readouts combining spatial information with sequencing do not exist.
  • a pooled screening approach with morphometric readout and spatial analysis using barcoded arrays offers a significant improvement in overall throughput and cost of performing pooled small molecule perturbation screens as well as pooled genetic perturbation screens.
  • a biological analyte e.g., any of the analytes described herein
  • a cell including a moiety e.g., a small molecule and/or a genetic perturbation introduced into the cell.
  • methods for determining the abundance of a moiety e.g., any of the moieties described herein, in a cell.
  • methods for determining the location of a biological analyte e.g., any of the analytes as described herein, and/or a moiety, e.g., any of the moieties described herein, in a biological sample.
  • Spatial analysis methodologies and compositions described herein can provide a vast amount of analyte and/or expression data for a variety of analytes within a biological sample at high spatial resolution, while retaining native spatial context.
  • Spatial analysis methods and compositions can include, e.g., the use of a capture probe including a spatial barcode (e.g., a nucleic acid sequence that provides information as to the location or position of an analyte within a cell or a tissue sample (e.g., mammalian cell or a mammalian tissue sample) and a capture domain that is capable of binding to an analyte (e.g., a protein and/or a nucleic acid) produced by and/or present in a cell.
  • a spatial barcode e.g., a nucleic acid sequence that provides information as to the location or position of an analyte within a cell or a tissue sample
  • a capture domain that is capable of binding to an analyte (
  • Spatial analysis methods and compositions can also include the use of a capture probe having a capture domain that captures an intermediate agent for indirect detection of an analyte.
  • the intermediate agent can include a nucleic acid sequence (e.g., a barcode) associated with the intermediate agent. Detection of the intermediate agent is therefore indicative of the analyte in the cell or tissue sample.
  • a “barcode” is a label, or identifier, that conveys or is capable of conveying information (e.g., information about an analyte in a sample, a bead, and/or a capture probe).
  • a barcode can be part of an analyte, or independent of an analyte.
  • a barcode can be attached to an analyte.
  • a particular barcode can be unique relative to other barcodes.
  • an “analyte” can include any biological substance, structure, moiety, or component to be analyzed.
  • target can similarly refer to an analyte of interest.
  • Analytes can be broadly classified into one of two groups: nucleic acid analytes, and non-nucleic acid analytes.
  • non-nucleic acid analytes include, but are not limited to, lipids, carbohydrates, peptides, proteins, glycoproteins (N-linked or O-linked), lipoproteins, phosphoproteins, specific phosphorylated or acetylated variants of proteins, amidation variants of proteins, hydroxylation variants of proteins, methylation variants of proteins, ubiquitylation variants of proteins, sulfation variants of proteins, viral proteins (e.g., viral capsid, viral envelope, viral coat, viral accessory, viral glycoproteins, viral spike, etc.), extracellular and intracellular proteins, antibodies, and antigen binding fragments.
  • viral proteins e.g., viral capsid, viral envelope, viral coat, viral accessory, viral glycoproteins, viral spike, etc.
  • the analyte(s) can be localized to subcellular location(s), including, for example, organelles, e.g., mitochondria, Golgi apparatus, endoplasmic reticulum, chloroplasts, endocytic vesicles, exocytic vesicles, vacuoles, lysosomes, etc.
  • organelles e.g., mitochondria, Golgi apparatus, endoplasmic reticulum, chloroplasts, endocytic vesicles, exocytic vesicles, vacuoles, lysosomes, etc.
  • analyte(s) can be peptides or proteins, including without limitation antibodies and enzymes. Additional examples of analytes can be found in Section (I)(c) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • an analyte can be detected indirectly, such as through detection of an intermediate agent, for example, a ligation product or an analyte capture agent (e.g., an oligonucleotide-conjugated antibody), such as those described herein.
  • an intermediate agent for example, a ligation product or an analyte capture agent (e.g., an oligonucleotide-conjugated antibody), such as those described herein.
  • a “biological sample” is typically obtained from the subject for analysis using any of a variety of techniques including, but not limited to, biopsy, surgery, and laser capture microscopy (LCM), and generally includes cells and/or other biological material from the subject.
  • a biological sample can be a tissue section.
  • a biological sample can be a fixed and/or stained biological sample (e.g., a fixed and/or stained tissue section).
  • stains include histological stains (e.g., hematoxylin and/or eosin) and immunological stains (e.g., fluorescent stains).
  • a biological sample e.g., a fixed and/or stained biological sample
  • Biological samples are also described in Section (I)(d) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • a biological sample is permeabilized with one or more permeabilization reagents.
  • permeabilization of a biological sample can facilitate analyte capture.
  • Exemplary permeabilization agents and conditions are described in Section (I)(d)(ii)(13) or the Exemplary Embodiments Section of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Array-based spatial analysis methods involve the transfer of one or more analytes from a biological sample to an array of features on a substrate, where each feature is associated with a unique spatial location on the array. Subsequent analysis of the transferred analytes includes determining the identity of the analytes and the spatial location of the analytes within the biological sample. The spatial location of an analyte within the biological sample is determined based on the feature to which the analyte is bound (e.g., directly or indirectly) on the array, and the feature's relative spatial location within the array.
  • a “capture probe” refers to any molecule capable of capturing (directly or indirectly) and/or labelling an analyte (e.g., an analyte of interest) in a biological sample.
  • the capture probe is a nucleic acid or a polypeptide.
  • the capture probe includes a barcode (e.g., a spatial barcode and/or a unique molecular identifier (UMI)) and a capture domain).
  • UMI unique molecular identifier
  • a capture probe can include a cleavage domain and/or a functional domain (e.g., a primer-binding site, such as for next-generation sequencing (NGS)).
  • NGS next-generation sequencing
  • Section (II)(b) e.g., subsections (i)-(vi)) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Generation of capture probes can be achieved by any appropriate method, including those described in Section (II)(d)(ii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • FIG. 1 is a schematic diagram showing an exemplary capture probe, as described herein.
  • the capture probe 102 is optionally coupled to a feature 101 by a cleavage domain 103 , such as a disulfide linker.
  • the capture probe can include a functional sequence 104 that are useful for subsequent processing.
  • the functional sequence 104 can include all or a part of sequencer specific flow cell attachment sequence (e.g., a P5 or P7 sequence), all or a part of a sequencing primer sequence, (e.g., a R1 primer binding site, a R2 primer binding site), or combinations thereof.
  • the capture probe can also include a spatial barcode 105 .
  • the capture probe can also include a unique molecular identifier (UMI) sequence 106 .
  • UMI unique molecular identifier
  • FIG. 1 shows the spatial barcode 105 as being located upstream (5′) of UMI sequence 106
  • capture probes wherein UMI sequence 106 is located upstream (5′) of the spatial barcode 105 is also suitable for use in any of the methods described herein.
  • the capture probe can also include a capture domain 107 to facilitate capture of a target analyte.
  • the capture probe comprises an additional functional sequence that can be located, e.g., between spatial barcode 105 and UMI sequence 106 , between UMI sequence 106 and capture domain 107 , or following capture domain 107 .
  • the capture domain can have a sequence complementary to a sequence of a nucleic acid analyte.
  • the capture domain can have a sequence complementary to a connected probe described herein.
  • the capture domain can have a sequence complementary to a capture handle sequence present in an analyte capture agent.
  • the capture domain can have a sequence complementary to a splint oligonucleotide.
  • Such splint oligonucleotide in addition to having a sequence complementary to a capture domain of a capture probe, can have a sequence of a nucleic acid analyte, a sequence complementary to a portion of a connected probe described herein, and/or a capture handle sequence described herein.
  • the functional sequences can generally be selected for compatibility with any of a variety of different sequencing systems, e.g., Ion Torrent Proton or PGM, Illumina sequencing instruments, PacBio, Oxford Nanopore, etc., and the requirements thereof.
  • functional sequences can be selected for compatibility with non-commercialized sequencing systems. Examples of such sequencing systems and techniques, for which suitable functional sequences can be used, include (but are not limited to) Ion Torrent Proton or PGM sequencing, Illumina sequencing, PacBio SMRT sequencing, and Oxford Nanopore sequencing.
  • functional sequences can be selected for compatibility with other sequencing systems, including non-commercialized sequencing systems.
  • the spatial barcode 105 and functional sequences 104 is common to all of the probes attached to a given feature.
  • the UMI sequence 106 of a capture probe attached to a given feature is different from the UMI sequence of a different capture probe attached to the given feature.
  • FIG. 2 is a schematic illustrating a cleavable capture probe, wherein the cleaved capture probe can enter into a non-permeabilized cell and bind to analytes within the sample.
  • the capture probe 201 contains a cleavage domain 202 , a cell penetrating peptide 203 , a reporter molecule 204 , and a disulfide bond (—S—S—).
  • 205 represents all other parts of a capture probe, for example a spatial barcode and a capture domain.
  • FIG. 3 is a schematic diagram of an exemplary multiplexed spatially-barcoded feature.
  • the feature 301 can be coupled to spatially-barcoded capture probes, wherein the spatially-barcoded probes of a particular feature can possess the same spatial barcode, but have different capture domains designed to associate the spatial barcode of the feature with more than one target analyte.
  • a feature may be coupled to four different types of spatially-barcoded capture probes, each type of spatially-barcoded capture probe possessing the spatial barcode 302 .
  • One type of capture probe associated with the feature includes the spatial barcode 302 in combination with a poly(T) capture domain 303 , designed to capture mRNA target analytes.
  • a second type of capture probe associated with the feature includes the spatial barcode 302 in combination with a random N-mer capture domain 304 for gDNA analysis.
  • a third type of capture probe associated with the feature includes the spatial barcode 302 in combination with a capture domain complementary to a capture handle sequence of an analyte capture agent of interest 305 .
  • a fourth type of capture probe associated with the feature includes the spatial barcode 302 in combination with a capture domain that can specifically bind a nucleic acid molecule 306 that can function in a CRISPR assay (e.g., CRISPR/Cas9). While only four different capture probe-barcoded constructs are shown in FIG.
  • capture-probe barcoded constructs can be tailored for analyses of any given analyte associated with a nucleic acid and capable of binding with such a construct.
  • the schemes shown in FIG. 3 can also be used for concurrent analysis of other analytes disclosed herein, including, but not limited to: (a) mRNA, a lineage tracing construct, cell surface or intracellular proteins and metabolites, and gDNA; (b) mRNA, accessible chromatin (e.g., ATAC-seq, DNase-seq, and/or MNase-seq) cell surface or intracellular proteins and metabolites, and a perturbation agent (e.g., a CRISPR crRNA/sgRNA, TALEN, zinc finger nuclease, and/or antisense oligonucleotide as described herein); (c) mRNA, cell surface or intracellular proteins and/or metabolites, a barcoded labelling agent (e.g., the MHC multimers
  • a perturbation agent can be a small molecule, an antibody, a drug, an aptamer, a miRNA, a physical environmental (e.g., temperature change), or any other known perturbation agents. See, e.g., Section (II)(b) (e.g., subsections (i)-(vi)) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Generation of capture probes can be achieved by any appropriate method, including those described in Section (II)(d)(ii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • more than one analyte type e.g., nucleic acids and proteins
  • a biological sample can be detected (e.g., simultaneously or sequentially) using any appropriate multiplexing technique, such as those described in Section (IV) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • an analyte capture agent refers to an agent that interacts with an analyte (e.g., an analyte in a biological sample) and with a capture probe (e.g., a capture probe attached to a substrate or a feature) to identify the analyte.
  • the analyte capture agent includes: (i) an analyte binding moiety (e.g., that binds to an analyte), for example, an antibody or antigen-binding fragment thereof; (ii) analyte binding moiety barcode; and (iii) an analyte capture sequence.
  • analyte binding moiety barcode refers to a barcode that is associated with or otherwise identifies the analyte binding moiety.
  • the term “analyte capture sequence” refers to a region or moiety configured to hybridize to, bind to, couple to, or otherwise interact with a capture domain of a capture probe.
  • an analyte binding moiety barcode (or portion thereof) may be able to be removed (e.g., cleaved) from the analyte capture agent.
  • FIG. 4 is a schematic diagram of an exemplary analyte capture agent 402 comprised of an analyte-binding moiety 404 and an analyte-binding moiety barcode domain 408 .
  • the exemplary analyte-binding moiety 404 is a molecule capable of binding to an analyte 406 and the analyte capture agent is capable of interacting with a spatially-barcoded capture probe.
  • the analyte-binding moiety can bind to the analyte 406 with high affinity and/or with high specificity.
  • the analyte capture agent can include an analyte-binding moiety barcode domain 408 , a nucleotide sequence (e.g., an oligonucleotide), which can hybridize to at least a portion or an entirety of a capture domain of a capture probe.
  • the analyte-binding moiety barcode domain 408 can comprise an analyte binding moiety barcode and a capture handle sequence described herein.
  • the analyte-binding moiety 404 can include a polypeptide and/or an aptamer.
  • the analyte-binding moiety 404 can include an antibody or antibody fragment (e.g., an antigen-binding fragment).
  • FIG. 5 is a schematic diagram depicting an exemplary interaction between a feature-immobilized capture probe 524 and an analyte capture agent 526 .
  • the feature-immobilized capture probe 524 can include a spatial barcode 508 as well as functional sequences 506 and UMI 510 , as described elsewhere herein.
  • the capture probe can also include a capture domain 512 that is capable of binding to an analyte capture agent 526 .
  • the analyte capture agent 526 can include a functional sequence 518 , analyte binding moiety barcode 516 , and a capture handle sequence 514 that is capable of binding to the capture domain 512 of the capture probe 524 .
  • the analyte capture agent can also include a linker 520 that allows the capture agent barcode domain 516 to couple to the analyte binding moiety 522 .
  • FIGS. 6 A, 6 B, and 6 C are schematics illustrating how streptavidin cell tags can be utilized in an array-based system to produce a spatially-barcoded cell or cellular contents.
  • peptide-bound major histocompatibility complex MHC
  • biotin ⁇ 2m
  • streptavidin moiety comprises multiple pMHC moieties.
  • Each of these moieties can bind to a TCR such that the streptavidin binds to a target T-cell via multiple MCH/TCR binding interactions. Multiple interactions synergize and can substantially improve binding affinity.
  • a capture agent barcode domain 601 can be modified with streptavidin 602 and contacted with multiple molecules of biotinylated MHC 603 such that the biotinylated MHC 603 molecules are coupled with the streptavidin conjugated capture agent barcode domain 601 .
  • the result is a barcoded MHC multimer complex 1105 .
  • the capture agent barcode domain sequence 601 can identify the MHC as its associated label and also includes optional functional sequences such as sequences for hybridization with other oligonucleotides. As shown in FIG.
  • one example oligonucleotide is capture probe 606 that comprises a complementary sequence (e.g., rGrGrG corresponding to C C C), a barcode sequence and other functional sequences, such as, for example, a UMI, an adapter sequence (e.g., comprising a sequencing primer sequence (e.g., R1 or a partial R1 (“pR1”), R2), a flow cell attachment sequence (e.g., P5 or P7 or partial sequences thereof)), etc.
  • capture probe 606 may at first be associated with a feature (e.g., a gel bead) and released from the feature.
  • capture probe 606 can hybridize with a capture agent barcode domain 601 of the MHC-oligonucleotide complex 605 .
  • the hybridized oligonucleotides (Spacer C C C and Spacer rGrGrG) can then be extended in primer extension reactions such that constructs comprising sequences that correspond to each of the two spatial barcode sequences (the spatial barcode associated with the capture probe, and the barcode associated with the MHC-oligonucleotide complex) are generated.
  • one or both of these corresponding sequences may be a complement of the original sequence in capture probe 606 or capture agent barcode domain 601 .
  • the capture probe and the capture agent barcode domain are ligated together.
  • the resulting constructs can be optionally further processed (e.g., to add any additional sequences and/or for clean-up) and subjected to sequencing.
  • a sequence derived from the capture probe 606 spatial barcode sequence may be used to identify a feature and the sequence derived from spatial barcode sequence on the capture agent barcode domain 601 may be used to identify the particular peptide MHC complex 604 bound on the surface of the cell (e.g., when using MHC-peptide libraries for screening immune cells or immune cell populations).
  • a spatial barcode with one or more neighboring cells, such that the spatial barcode identifies the one or more cells, and/or contents of the one or more cells, as associated with a particular spatial location.
  • One method is to promote analytes or analyte proxies (e.g., intermediate agents) out of a cell and towards a spatially-barcoded array (e.g., including spatially-barcoded capture probes).
  • Another method is to cleave spatially-barcoded capture probes from an array and promote the spatially-barcoded capture probes towards and/or into or onto the biological sample.
  • FIG. 7 depicts an exemplary arrangement of barcoded features within an array. From left to right, FIG. 7 shows (left) a slide including six spatially-barcoded arrays, (center) an enlarged schematic of one of the six spatially-barcoded arrays, showing a grid of barcoded features in relation to a biological sample, and (right) an enlarged schematic of one section of an array, showing the specific identification of multiple features within the array (labelled as ID578, ID579, ID560, etc.).
  • capture probes may be configured to prime, replicate, and consequently yield optionally barcoded extension products from a template (e.g., a DNA or RNA template, such as an analyte or an intermediate agent (e.g., a ligation product or an analyte capture agent), or a portion thereof), or derivatives thereof (see, e.g., Section (II)(b)(vii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663 regarding extended capture probes).
  • a template e.g., a DNA or RNA template, such as an analyte or an intermediate agent (e.g., a ligation product or an analyte capture agent), or a portion thereof), or derivatives thereof (see, e.g., Section (II)(b)(vii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663 regarding extended capture probes).
  • capture probes may be configured to form ligation products with a template (e.g., a DNA or RNA template, such as an analyte or an intermediate agent, or portion thereof), thereby creating ligations products that serve as proxies for a template.
  • a template e.g., a DNA or RNA template, such as an analyte or an intermediate agent, or portion thereof
  • an “extended capture probe” refers to a capture probe having additional nucleotides added to the terminus (e.g., 3′ or 5′ end) of the capture probe thereby extending the overall length of the capture probe.
  • an “extended 3′ end” indicates additional nucleotides were added to the most 3′ nucleotide of the capture probe to extend the length of the capture probe, for example, by polymerization reactions used to extend nucleic acid molecules including templated polymerization catalyzed by a polymerase (e.g., a DNA polymerase or a reverse transcriptase).
  • a polymerase e.g., a DNA polymerase or a reverse transcriptase
  • extending the capture probe includes adding to a 3′ end of a capture probe a nucleic acid sequence that is complementary to a nucleic acid sequence of an analyte or intermediate agent specifically bound to the capture domain of the capture probe.
  • the capture probe is extended using reverse transcription.
  • the capture probe is extended using one or more DNA polymerases. The extended capture probes include the sequence of the capture probe and the sequence of the spatial barcode of the capture probe.
  • extended capture probes are amplified (e.g., in bulk solution or on the array) to yield quantities that are sufficient for downstream analysis, e.g., via DNA sequencing.
  • extended capture probes e.g., DNA molecules
  • act as templates for an amplification reaction e.g., a polymerase chain reaction.
  • Analysis of captured analytes (and/or intermediate agents or portions thereof), for example, including sample removal, extension of capture probes, sequencing (e.g., of a cleaved extended capture probe and/or a cDNA molecule complementary to an extended capture probe), sequencing on the array (e.g., using, for example, in situ hybridization or in situ ligation approaches), temporal analysis, and/or proximity capture is described in Section (II)(g) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Some quality control measures are described in Section (II)(h) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Spatial information can provide information of biological and/or medical importance.
  • the methods and compositions described herein can allow for: identification of one or more biomarkers (e.g., diagnostic, prognostic, and/or for determination of efficacy of a treatment) of a disease or disorder; identification of a candidate drug target for treatment of a disease or disorder; identification (e.g., diagnosis) of a subject as having a disease or disorder; identification of stage and/or prognosis of a disease or disorder in a subject; identification of a subject as having an increased likelihood of developing a disease or disorder; monitoring of progression of a disease or disorder in a subject; determination of efficacy of a treatment of a disease or disorder in a subject; identification of a patient subpopulation for which a treatment is effective for a disease or disorder; modification of a treatment of a subject with a disease or disorder; selection of a subject for participation in a clinical trial; and/or selection of a treatment for a subject with a disease or disorder.
  • Spatial information can provide information of biological importance.
  • the methods and compositions described herein can allow for: identification of transcriptome and/or proteome expression profiles (e.g., in healthy and/or diseased tissue); identification of multiple analyte types in close proximity (e.g., nearest neighbor analysis); determination of up- and/or down-regulated genes and/or proteins in diseased tissue; characterization of tumor microenvironments; characterization of tumor immune responses; characterization of cells types and their co-localization in tissue; and identification of genetic variants within tissues (e.g., based on gene and/or protein expression profiles associated with specific disease or disorder biomarkers).
  • a substrate functions as a support for direct or indirect attachment of capture probes to features of the array.
  • a “feature” is an entity that acts as a support or repository for various molecular entities used in spatial analysis.
  • some or all of the features in an array are functionalized for analyte capture.
  • Exemplary substrates are described in Section (II)(c) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Exemplary features and geometric attributes of an array can be found in Sections (II)(d)(i), (II)(d)(iii), and (II)(d)(iv) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • analytes and/or intermediate agents can be captured when contacting a biological sample with a substrate including capture probes (e.g., a substrate with capture probes embedded, spotted, printed, fabricated on the substrate, or a substrate with features (e.g., beads, wells) comprising capture probes).
  • capture probes e.g., a substrate with capture probes embedded, spotted, printed, fabricated on the substrate, or a substrate with features (e.g., beads, wells) comprising capture probes.
  • contact contacted
  • contacting a biological sample with a substrate refers to any contact (e.g., direct or indirect) such that capture probes can interact (e.g., bind covalently or non-covalently (e.g., hybridize)) with analytes from the biological sample.
  • Capture can be achieved actively (e.g., using electrophoresis) or passively (e.g., using diffusion). Analyte capture is further described in Section (II)(e) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • spatial analysis can be performed by attaching and/or introducing a molecule (e.g., a peptide, a lipid, or a nucleic acid molecule) having a barcode (e.g., a spatial barcode) to a biological sample (e.g., to a cell in a biological sample).
  • a plurality of molecules e.g., a plurality of nucleic acid molecules
  • a plurality of barcodes e.g., a plurality of spatial barcodes
  • a biological sample e.g., to a plurality of cells in a biological sample for use in spatial analysis.
  • the biological sample after attaching and/or introducing a molecule having a barcode to a biological sample, the biological sample can be physically separated (e.g., dissociated) into single cells or cell groups for analysis.
  • Some such methods of spatial analysis are described in Section (III) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • spatial analysis can be performed by detecting multiple oligonucleotides that hybridize to an analyte.
  • spatial analysis can be performed using RNA-templated ligation (RTL).
  • RTL RNA-templated ligation
  • Methods of RTL have been described previously. See, e.g., Credle et al., Nucleic Acids Res. 2017 Aug. 21; 45(14):e128.
  • RTL includes hybridization of two oligonucleotides to adjacent sequences on an analyte (e.g., an RNA molecule, such as an mRNA molecule).
  • the oligonucleotides are DNA molecules.
  • one of the oligonucleotides includes at least two ribonucleic acid bases at the 3′ end and/or the other oligonucleotide includes a phosphorylated nucleotide at the 5′ end.
  • one of the two oligonucleotides includes a capture domain (e.g., a poly(A) sequence, a non-homopolymeric sequence).
  • a ligase e.g., SplintR ligase
  • the two oligonucleotides hybridize to sequences that are not adjacent to one another.
  • hybridization of the two oligonucleotides creates a gap between the hybridized oligonucleotides.
  • a polymerase e.g., a DNA polymerase
  • the ligation product is released from the analyte.
  • the ligation product is released using an endonuclease (e.g., RNAse H).
  • the released ligation product can then be captured by capture probes (e.g., instead of direct capture of an analyte) on an array, optionally amplified, and sequenced, thus determining the location and optionally the abundance of the analyte in the biological sample.
  • capture probes e.g., instead of direct capture of an analyte
  • sequence information for a spatial barcode associated with an analyte is obtained, and the sequence information can be used to provide information about the spatial distribution of the analyte in the biological sample.
  • Various methods can be used to obtain the spatial information.
  • specific capture probes and the analytes they capture are associated with specific locations in an array of features on a substrate.
  • specific spatial barcodes can be associated with specific array locations prior to array fabrication, and the sequences of the spatial barcodes can be stored (e.g., in a database) along with specific array location information, so that each spatial barcode uniquely maps to a particular array location.
  • specific spatial barcodes can be deposited at predetermined locations in an array of features during fabrication such that at each location, only one type of spatial barcode is present so that spatial barcodes are uniquely associated with a single feature of the array.
  • the arrays can be decoded using any of the methods described herein so that spatial barcodes are uniquely associated with array feature locations, and this mapping can be stored as described above.
  • each array feature location represents a position relative to a coordinate reference point (e.g., an array location, a fiducial marker) for the array. Accordingly, each feature location has an “address” or location in the coordinate space of the array.
  • Some exemplary spatial analysis workflows are described in the Exemplary Embodiments section of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. See, for example, the Exemplary embodiment starting with “In some non-limiting examples of the workflows described herein, the sample can be immersed . . . ” of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. See also, e.g., the Visium Spatial Gene Expression Reagent Kits User Guide (e.g., Rev C, dated June 2020), and/or the Visium Spatial Tissue Optimization Reagent Kits User Guide (e.g., Rev C, dated July 2020).
  • the Visium Spatial Gene Expression Reagent Kits User Guide e.g., Rev C, dated June 2020
  • the Visium Spatial Tissue Optimization Reagent Kits User Guide e.g., Rev C, dated July 2020.
  • spatial analysis can be performed using dedicated hardware and/or software, such as any of the systems described in Sections (II)(e)(ii) and/or (V) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663, or any of one or more of the devices or methods described in Sections Control Slide for Imaging, Methods of Using Control Slides and Substrates for, Systems of Using Control Slides and Substrates for Imaging, and/or Sample and Array Alignment Devices and Methods, Informational labels of WO 2020/123320.
  • Suitable systems for performing spatial analysis can include components such as a chamber (e.g., a flow cell or sealable, fluid-tight chamber) for containing a biological sample.
  • the biological sample can be mounted for example, in a biological sample holder.
  • One or more fluid chambers can be connected to the chamber and/or the sample holder via fluid conduits, and fluids can be delivered into the chamber and/or sample holder via fluidic pumps, vacuum sources, or other devices coupled to the fluid conduits that create a pressure gradient to drive fluid flow.
  • One or more valves can also be connected to fluid conduits to regulate the flow of reagents from reservoirs to the chamber and/or sample holder.
  • the systems can optionally include a control unit that includes one or more electronic processors, an input interface, an output interface (such as a display), and a storage unit (e.g., a solid state storage medium such as, but not limited to, a magnetic, optical, or other solid state, persistent, writeable and/or re-writeable storage medium).
  • the control unit can optionally be connected to one or more remote devices via a network.
  • the control unit (and components thereof) can generally perform any of the steps and functions described herein. Where the system is connected to a remote device, the remote device (or devices) can perform any of the steps or features described herein.
  • the systems can optionally include one or more detectors (e.g., CCD, CMOS) used to capture images.
  • the systems can also optionally include one or more light sources (e.g., LED-based, diode-based, lasers) for illuminating a sample, a substrate with features, analytes from a biological sample captured on a substrate, and various control and calibration media.
  • one or more light sources e.g., LED-based, diode-based, lasers
  • the systems can optionally include software instructions encoded and/or implemented in one or more of tangible storage media and hardware components such as application specific integrated circuits.
  • the software instructions when executed by a control unit (and in particular, an electronic processor) or an integrated circuit, can cause the control unit, integrated circuit, or other component executing the software instructions to perform any of the method steps or functions described herein.
  • the systems described herein can detect (e.g., register an image) the biological sample on the array.
  • Exemplary methods to detect the biological sample on an array are described in PCT Application No. 2020/061064 and/or U.S. patent application Ser. No. 16/951,854.
  • the biological sample Prior to transferring analytes from the biological sample to the array of features on the substrate, the biological sample can be aligned with the array. Alignment of a biological sample and an array of features including capture probes can facilitate spatial analysis, which can be used to detect differences in analyte presence and/or level within different positions in the biological sample, for example, to generate a three-dimensional map of the analyte presence and/or level. Exemplary methods to generate a two- and/or three-dimensional map of the analyte presence and/or level are described in PCT Application No. 2020/053655 and spatial analysis methods are generally described in WO 2020/061108 and/or U.S. patent application Ser. No. 16/951,864.
  • a map of analyte presence and/or level can be aligned to an image of a biological sample using one or more fiducial markers, e.g., objects placed in the field of view of an imaging system which appear in the image produced, as described in the Substrate Attributes Section, Control Slide for Imaging Section of WO 2020/123320, PCT Application No. 2020/061066, and/or U.S. patent application Ser. No. 16/951,843.
  • fiducial markers e.g., objects placed in the field of view of an imaging system which appear in the image produced, as described in the Substrate Attributes Section, Control Slide for Imaging Section of WO 2020/123320, PCT Application No. 2020/061066, and/or U.S. patent application Ser. No. 16/951,843.
  • Fiducial markers can be used as a point of reference or measurement scale for alignment (e.g., to align a sample and an array, to align two substrates, to determine a location of a sample or array on a substrate relative to a fiducial marker) and/or for quantitative measurements of sizes and/or distances.
  • a pooled screening approach that utilizes a morphometric readout and spatial analysis offers significant improvements for pooled perturbation screens.
  • a biological sample or a cell e.g., a cell in a biological sample, can be perturbed by a perturbation agent.
  • a “perturbation agent” or “perturbation reagent” or “moiety” can be a small molecule, an antibody, a drug, an aptamer, a nucleic acid (e.g., miRNA), a CRISPR crRNA/sgRNA, TALEN, zinc finger nuclease, antisense oligonucleotide a physical environmental (e.g., temperature change), and/or any other known perturbation agents where the agent alters equilibrium or homeostasis.
  • a nucleic acid e.g., miRNA
  • CRISPR crRNA/sgRNA CRISPR crRNA/sgRNA
  • TALEN zinc finger nuclease
  • antisense oligonucleotide e.g., temperature change
  • the biological sample or cell comprising a moiety can be (i) imaged; and/or (ii) contacted with a spatial array to allow for profiling a biological analyte and/or determining the identity of the moiety in a cell at a distinct location within a biological sample.
  • Such methods can be useful for determining the abundance of a biological analyte in a cell comprising a moiety at a distinct spatial position on a substrate.
  • a perturbation e.g., a change in a biological analyte such as a change in the amount of the biological analyte
  • a cell comprising a moiety e.g., a small molecule or genetic perturbation
  • a capture probe of the plurality of capture probes comprises: (i) a spatial barcode and (ii) a capture domain, wherein the cell comprises the moiety and wherein the moiety comprises a moiety sequence; (b) hybridizing a moiety sequence to the capture domain; and (c) determining (i) all or a part of the sequence of the moiety sequence bound to the capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the abundance of the moiety in the cell.
  • the method further includes determining (i) all or a part of a sequence of an analyte bound to a capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the abundance of the analyte in the cell.
  • a capture probe of the plurality of capture probes comprises: (i) a spatial barcode and (ii) a capture domain; wherein the cell comprises the moiety and wherein the moiety comprises a moiety sequence; (b) hybridizing the analyte or the moiety sequence to the capture domain; and (c) determining (i) all or a part of the sequence of the analyte or the moiety sequence bound to the capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the abundance of the analyte or the moiety in the cell.
  • a “moiety sequence” as used herein refers to a sequence that can be used to identify a moiety
  • the methods provided herein include profiling a biological analyte, e.g., any of the analytes as described herein, in a cell including a moiety (e.g., a small molecule and/or genetic perturbation introduced into the cell). Also provided herein are methods for determining the abundance of a moiety, e.g., any of the moieties described herein, in a cell.
  • the cell is a member of a plurality of cells, e.g., the cell is in a biological sample.
  • the methods provided herein include determining the location of a biological analyte, e.g., any of the analytes as described herein, and/or a moiety, e.g., any of the moieties described herein, in a biological sample. In some instances, both the abundance and the location of a biological analyte and/or a moiety are determined.
  • the methods described herein can include releasing a biological analyte from a cell including a small molecule (e.g., a small molecule introduced into the cell).
  • the released biological analyte can be bound by a capture probe as described herein at a distinct spatial position on a substrate and detected.
  • the bound biological analyte can then be correlated with a barcode of the capture probe at a distinct spatial position of the substrate.
  • Also provided herein is a method for spatial profiling a biological analyte in a cell including: contacting a plurality of cells with a plurality of particles, wherein a particle of the plurality of particles includes a small molecule and a second barcode, and wherein the cell uptakes the small molecule and the second barcode; contacting the cell with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain; releasing the biological analyte from the cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; detecting the biological analyte bound by the capture probe; and correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • a method for spatial profiling a biological analyte in a cell includes: contacting the cell with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain, and wherein the cell includes a small molecule and a second barcode; releasing the biological analyte from the cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; detecting the biological analyte bound by the capture probe; and correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • the methods described herein can include releasing a biological analyte from a genetically-perturbed cell.
  • the released biological analyte can be bound by a capture probe as described herein at a distinct spatial position on a substrate and detected.
  • the bound biological analyte can then be correlated with a barcode of the capture probe at a distinct spatial position of the substrate.
  • Such methods can be useful for correlating a genetic perturbation of a cell to a biological analyte at a distinct spatial position on a substrate.
  • Also provided herein are methods for spatial profiling a biological analyte present in a genetically-perturbed cell that include transducing a cell with a vector to form the genetically-perturbed cell; contacting the genetically-perturbed cell with a substrate including a plurality of capture probes, wherein a capture probe of the plurality of capture probes includes a first barcode and a capture domain; releasing the biological analyte from the genetically-perturbed cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; detecting the biological analyte bound by the capture probe; and correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the genetically-perturbed cell at the distinct spatial position.
  • a method for spatially profiling a biological analyte present in a genetically-perturbed cell includes contacting the genetically-perturbed cell with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain; releasing the biological analyte from the genetically-perturbed cell, wherein the biological analyte is bound by a capture probe at a distinct spatial position of the substrate; detecting the biological analyte bound by the capture probe; and correlating the biological analyte with the first barcode from the capture probe at the distinct spatial position of the substrate; thus profiling the biological analyte as present in the genetically-perturbed cell at the distinct spatial position.
  • a small molecule library In some embodiments, disclosed herein are methods of generating a small molecule library. Methods of generating a small molecule library have been described, for example, in U.S. Pat. Nos. 8,951,728; 6,677,160; Dandapani et al. Curr Protoc Chem Biol. 4:177-191, 2012; Hajduk et al. Nature. 470:42-43, 2011; Paricharak et al. Briefings in Bioinformatics. 19(2):277-285, 2018; and Harris et al. Comb Chem High Throughput Screen. 14(6):521-531, 2011; each of which is incorporated herein by reference in its entirety.
  • Generating a barcoded small molecule library can include loading a plurality of particles with a plurality of small molecules and a plurality of moiety sequences (e.g., a second barcode).
  • a moiety sequence e.g., a second barcode
  • a second barcode is affixed to each small molecule.
  • a moiety as described herein further comprises a particle introduced into the cell.
  • the particle is taken up by the cell through diffusion, electroporation, receptor-mediated endocytosis, or a combination thereof. See, e.g., Behzadi et al., Chem Soc Rev.
  • the cell is from a plurality of cells, and the plurality of cells is contacted with a plurality of particles, and a cell uptakes the particle.
  • the particle includes a moiety sequence.
  • the moiety sequence is substantially complementary to the capture domain.
  • the moiety sequence is a polyadenylated sequence.
  • the small molecule library includes small molecules with validated biological and pharmacological activities with particular solubility, purity, and stability of the compounds.
  • the library is fully randomized, with no sequence preferences or constants at any position. In another embodiment, the library is biased.
  • the small molecule binds to a biological target.
  • the biological target is a protein or a nucleic acid.
  • the protein is a kinase, a receptor, a channel, an enzyme, or a combination thereof.
  • the protein is a G protein-coupled receptor, a kinase, a protease, an esterase, a phosphatase, ligand-gated ion channel, a voltage-gated ion channel, or a nuclear receptor.
  • the small molecule interacts with a known cellular molecule or known classes of cellular molecules.
  • the small molecules include but are not limited to inhibitors, antagonists, and agonists of various cellular pathways, including for example, pathways involving DNA damage/DNA repair, cell cycle/checkpoints, JAK/STAT signaling, MAPK signaling, GPCR/G protein, angiogenesis, immunology and inflammation, endocrinology and hormones, cancer, metabolism, and stem cells.
  • the small molecule inhibits the biological target.
  • the small molecule activates the biological target.
  • correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • one or more small molecules are encapsulated into one or more particles.
  • one or more small molecules and one or more moiety sequences are encapsulated into one or more particles.
  • one or more small molecules are loaded onto one or more particles. Any particle that can introduce a small molecule into a cell can be used.
  • Such particles can include, for example, gold, silica, polyethylene glycol (PEG)-poly(lactide), silver, cadmium-selenide, poly(methylacrylic) acid, a lipid (e.g., 2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-cholesterol-1,2-distearoyl-sn-glycero-3-phosphocholine (POPG) and poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol), polystyrene, carboxylated polystyrene, NH 2 -labeled polystyrene, polystyrene latex, fullerene, alginate-chitosan, a polymer-lipid hybrid (e.g., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PE2000), a quantum dot, and any combination thereof.
  • PEG polyethylene glycol
  • a particle described herein can be spherical or disc-shaped.
  • the diameter of the particle is about 1 nm to about 2500 nm.
  • the diameter of the particle is about 5 nm to about 500 nm.
  • the particle is rod-shaped.
  • a “rod-shaped particle” can also refer to a rice-like particle, a worm-like particle, and a cylindrical particle.
  • the length of the particle is about 1 nm to about 2500 nm.
  • the length of the particle is about 5 nm to about 500 nm.
  • the rod-shaped particle has an aspect ratio (i.e., the ratio of length to width) of about 1 to about 8.
  • the rod-shaped particle has an aspect ratio of about 1, about 1.5, about 2, about 2.5, about 3, about 3.5, about 4, about 4.5, about 5, about 5.5, about 6, about 6.5, about 7, or about 7.5.
  • the particle is hydrophilic. In some embodiments, the particle is hydrophobic. In some embodiment, the particle is cationic. In some embodiments, the particle has a surface charge of about 1 to about 40 mV. In some embodiments, the particle is anionic. In some embodiments, the particle has a surface charge of about ⁇ 1 to about ⁇ 70 mV.
  • the particle is thermo-responsive.
  • the hydrophobicity of a thermo-responsive particle can be controlled by temperature.
  • the particles can also include surface modifications.
  • Non-limiting examples of such surface modifications include cysteine-cyan5, a cationic monolayer, a nucleic acid, poly(isobutylene-alt-maleic anhydride), a coating with fetal bovine serum (FBS), citrate, 5-aminovaleric acid, L-DOPA, melatonin, serotonin-HCl, MUS/OT, glutathione/glucose, polyethyleneimine, or a combination thereof. See, e.g., Donahue. Adv Drug Deliv Rev. 143:68-96, 2019, which is incorporated herein by reference in its entirety.
  • the small molecule can include a moiety sequence (e.g., a second barcode) (e.g., an oligonucleotide).
  • the moiety sequence e.g., a second barcode
  • the moiety sequence comprises a sequence that is unique to the small molecule (e.g., a unique molecular identifier (UMI) for the small molecule).
  • UMI unique molecular identifier
  • this UMI can be used to identify the presence of the small molecule in a biological sample (i.e., a cell).
  • the moiety sequence e.g., a second barcode
  • the moiety sequence further comprises a sequence that can hybridize to at least a portion or an entirety of a capture domain of a capture probe.
  • the small molecule includes a moiety sequence (e.g., a second barcode) that is conjugated or otherwise attached to the small molecule.
  • the moiety sequence e.g., a second barcode
  • the moiety sequence is covalently-linked to the small molecule.
  • a moiety sequence e.g., a second barcode
  • moiety sequence refers to a barcode that is associated with or otherwise identifies the small molecule.
  • analyte to which the small molecule binds can also be identified.
  • a moiety sequence can be a nucleic acid sequence of a given length and/or sequence that is associated with the small molecule.
  • a moiety sequence can generally include any of the variety of aspects of barcodes described herein.
  • the moiety sequence comprises a region or moiety configured to hybridize to, bind to, couple to, or otherwise interact with a capture domain of a capture probe.
  • a moiety sequence includes a nucleic acid sequence that is complementary to or substantially complementary to the capture domain of a capture probe such that the moiety sequence hybridizes to the capture domain of the capture probe.
  • a moiety sequence comprises a poly(A) nucleic acid sequence that hybridizes to a capture domain that comprises a poly(T) nucleic acid sequence.
  • a moiety sequence comprises a poly(T) nucleic acid sequence that hybridizes to a capture domain that comprises a poly(A) nucleic acid sequence.
  • a moiety sequence comprises a non-homopolymeric nucleic acid sequence that hybridizes to a capture domain that comprises a non-homopolymeric nucleic acid sequence that is complementary (or substantially complementary) to the non-homopolymeric nucleic acid sequence of the moiety sequence.
  • the moiety sequence can be directly coupled to the small molecule, or it can be attached to a bead, molecular lattice, e.g., a linear, globular, cross-slinked, or other polymer, or other framework that is attached or otherwise associated with the small molecule, which allows attachment of multiple moiety sequences to a single small molecule.
  • Attachment (coupling) of the moiety sequences to the small molecule can be achieved through any of a variety of direct or indirect, covalent or non-covalent associations or attachments.
  • such a moiety sequence can be covalently attached to a portion of the antibody or antigen-binding fragment using chemical conjugation techniques (e.g., Lightning-Link® antibody labelling kits available from Innova Biosciences).
  • chemical conjugation techniques e.g., Lightning-Link® antibody labelling kits available from Innova Biosciences.
  • a moiety sequence can be coupled to an antibody or antigen-binding fragment using non-covalent attachment mechanisms (e.g., using biotinylated antibodies and oligonucleotides or beads that include one or more biotinylated linker(s), coupled to oligonucleotides with an avidin or streptavidin linker.)
  • non-covalent attachment mechanisms e.g., using biotinylated antibodies and oligonucleotides or beads that include one or more biotinylated linker(s), coupled to oligonucleotides with an avidin or streptavidin linker.
  • Antibody and oligonucleotide biotinylation techniques can be used, and are described for example in Fang et al., Nucleic Acids Res. (2003), 31(2): 708-715, the entire contents of which is incorporated by reference herein.
  • protein and peptide biotinylation techniques have been developed and can be used, and are described for example
  • click reaction chemistry such as a methyltetrazine-PEG5-NHS ester reaction, a TCO-PEG4-NHS ester reaction, or the like, can be used to couple moiety sequences to small molecules.
  • the reactive moiety on the small molecule can also include amine for targeting aldehydes, amine for targeting maleimide (e.g., free thiols), azide for targeting click chemistry compounds (e.g., alkynes), biotin for targeting streptavidin, phosphates for targeting EDC, which in turn targets active ester (e.g., NH2).
  • Exemplary strategies to conjugate the small molecule to the moiety sequence include the use of commercial kits (e.g., Solulink, Thunder link), conjugation of mild reduction of hinge region and maleimide labelling, stain-promoted click chemistry reaction to labeled amides (e.g., copper-free), and conjugation of periodate oxidation of sugar chain and amine conjugation.
  • commercial kits e.g., Solulink, Thunder link
  • conjugation of mild reduction of hinge region and maleimide labelling e.g., stain-promoted click chemistry reaction to labeled amides (e.g., copper-free)
  • conjugation of periodate oxidation of sugar chain and amine conjugation e.g., copper-free
  • the moiety sequence coupled to a small molecule can include modifications that render it non-extendable by a polymerase.
  • the moiety sequence when binding to a capture domain of a capture probe or nucleic acid in a sample for a primer extension reaction, can serve as a template, not a primer.
  • the moiety sequence can include a random N-mer sequence that is capped with modifications that render it non-extendable by a polymerase.
  • the composition of the random N-mer sequence can be designed to maximize the binding efficiency to free, unbarcoded ssDNA molecules.
  • the design can include a random sequence composition with a higher GC content, a partial random sequence with fixed G or C at specific positions, the use of guanosines, the use of locked nucleic acids, or any combination thereof.
  • a modification for blocking primer extension by a polymerase can be a carbon spacer group of different lengths or a dideoxynucleotide.
  • the modification can be an abasic site that has an apurine or apyrimidine structure, a base analog, or an analogue of a phosphate backbone, such as a backbone of N-(2-aminoethyl)-glycine linked by amide bonds, tetrahydrofuran, or 1′, 2′-Dideoxyribose.
  • the modification can also be a uracil base, 2′OMe modified RNA, C3-18 spacers (e.g., structures with 3-18 consecutive carbon atoms, such as C3 spacer), ethylene glycol multimer spacers (e.g., spacer 18 (hexa-ethyleneglycol spacer), biotin, di-deoxynucleotide triphosphate, ethylene glycol, amine, or phosphate.
  • C3-18 spacers e.g., structures with 3-18 consecutive carbon atoms, such as C3 spacer
  • ethylene glycol multimer spacers e.g., spacer 18 (hexa-ethyleneglycol spacer)
  • biotin di-deoxynucleotide triphosphate
  • ethylene glycol, amine, or phosphate e.g., hexa-ethyleneglycol spacer
  • the moiety sequence includes a cleavable domain.
  • the cleavable domain of the moiety sequence includes a U-excising element that allows the species to release from the bead.
  • the U-excising element can include a single-stranded DNA (ssDNA) sequence that contains at least one uracil. The species can be attached to a bead via the ssDNA sequence.
  • the species can be released by a combination of uracil-DNA glycosylase (e.g., to remove the uracil) and an endonuclease (e.g., to induce an ssDNA break). If the endonuclease generates a 5′ phosphate group from the cleavage, then additional enzyme treatment can be included in downstream processing to eliminate the phosphate group, e.g., prior to ligation of additional sequencing handle elements, e.g., Illumina full P5 sequence, partial P5 sequence, full R1 sequence, and/or partial R1 sequence.
  • additional enzyme treatment can be included in downstream processing to eliminate the phosphate group, e.g., prior to ligation of additional sequencing handle elements, e.g., Illumina full P5 sequence, partial P5 sequence, full R1 sequence, and/or partial R1 sequence.
  • multiple different species of analytes from the biological sample can be subsequently associated with the one or more physical properties of the biological sample.
  • the multiple different species of analytes can be associated with locations of the analytes in the biological sample.
  • Such information e.g., proteomic information when the small molecule(s) recognizes a polypeptide(s)
  • can be used in association with other spatial information e.g., genetic information from the biological sample, such as DNA sequence information, transcriptome information (i.e., sequences of transcripts), or both).
  • a cell surface protein of a cell can be associated with one or more physical properties of the cell (e.g., a shape, size, activity, or a type of the cell). The one or more physical properties can be characterized by imaging the cell.
  • a genetically-perturbed cell can refer to any cell that has one or more genetic mutations including, but not limited to, a nucleotide deletion, insertion, or substitution.
  • a cell comprising a moiety can be a genetically-perturbed cell.
  • a genetically-perturbed cell i.e., a cell comprising a moiety
  • Methods of introducing a genetic perturbation into a cell and methods for generating a library of genetically-perturbed cells are known to one of skill in art. Such methods have been described in, for example, Liberali et al. Nat Rev Genet. 2015; and 16(1):18-32; and Boutros and Ahringer. Nat Rev Genet. 2008; 9(7):554-66.
  • a cell comprising a moiety has been transduced with a vector, e.g., any of the vectors described herein.
  • a “genetically-perturbed cell” refers to a cell that has been transduced with a vector.
  • methods of introducing a genetic perturbation or moiety into a cell and/or methods for generating a library of genetically-perturbed cells include using a vector.
  • the vector is not integrated into the host cell's genome. In some embodiments, the vector is integrated into the host cell's genome.
  • Non-limiting examples of vectors include plasmids, transposons, cosmids, and viral vectors (e.g., any adenoviral vectors (e.g., pSV or pCMV vectors), adeno-associated virus (AAV) vectors, lentivirus vectors, and retroviral vectors), and any Gateway® vectors.
  • a vector can, for example, include sufficient cis-acting elements for expression where other elements for expression can be supplied by the host mammalian cell or in an in vitro expression system.
  • a cell comprising a moiety has been transduced with a vector from a vector library.
  • a “genetically-perturbed cell” refers to a cell that has been transduced with a vector from a vector library.
  • the vector comprises a moiety sequence (e.g., a second barcode).
  • the moiety sequence was described in part (1) of this section and the embodiments disclosed therein are incorporated herein.
  • the moiety sequence is substantially complementary to the capture domain.
  • the moiety sequence is a polyadenylated sequence.
  • the moiety sequence of the vector comprises a sequence that uniquely identifies the vector (i.e., a UMI specific to the vector).
  • the vector or library of vectors is a lentiviral vector.
  • a clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbation is introduced into a cell.
  • CRISPR lentiviral vector can be used to introduce a genetic perturbation into a cell.
  • a CRISPR lentiviral vector can include a guide RNA (gRNA).
  • gRNA guide RNA
  • sgRNA single guide RNA
  • pluralities of genetically-perturbed cells can be produced using a library of lentiviral vectors.
  • cells can be transduced with a library of lentiviral vectors to form genetically-perturbed cells, and the genetically-perturbed cells can be selected from the cells that did not receive a lentiviral vector (see, for example, FIG. 13 ).
  • the library of lentiviral vectors is a library of CRISPR lentiviral vectors. Methods of delivering genetic material, include CRISPR lentiviral vectors, are discussed in Lino et al., Drug Deliv. 2018; 25(1):1234-1257; and McDade et al. Curr Protoc Mol Biol.
  • a library of CRISPR lentiviral vectors includes at least two pluralities of CRISPR lentiviral vectors, wherein a plurality of CRISPR lentiviral vectors includes a different gRNA and/or sgRNA from another plurality of CRISPR lentiviral vectors. In some embodiments, wherein a library of CRISPR lentiviral vectors includes at least two pluralities of CRISPR lentiviral vectors, each plurality of CRISPR lentiviral vectors includes a different gRNA and/or sgRNA from each other plurality of CRISPR lentiviral vectors.
  • a clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbation is introduced into a cell.
  • a CRISPR lentiviral vector can be used to introduce a genetic perturbation into a cell.
  • a CRISPR lentiviral vector can include a guide RNA (gRNA).
  • gRNA guide RNA
  • sgRNA single guide RNA
  • the vector in the lentiviral library includes a barcode sequence.
  • the vector includes a barcode sequence.
  • a vector includes more than one unique barcode (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, about 15, about 20, about 30, about 40, or about 50 unique barcodes).
  • a vector includes multiple copies of a unique barcode (e.g., about 10 copies, about 50, about 100, about 500, about 1000 or more).
  • identification of the barcode provides information regarding the spatial location of a particular biological analyte.
  • the barcode includes a capture domain sequence as disclosed herein.
  • the capture domain sequence is a poly(dT) sequence.
  • the capture domain sequence is a degenerate sequence. In some embodiments, the capture domain sequence is particular to a target sequence of interest.
  • the barcode includes a cleavage domain as disclosed herein. In some embodiments, the barcode includes a functional domain as disclosed herein. In some embodiments, the functional domain is a primer sequence. In some embodiments, the barcode includes a spatial barcode as disclosed herein. In some embodiments, the barcode includes a unique molecular identifier (UMI) as disclosed herein.
  • UMI unique molecular identifier
  • a vector as disclosed herein expresses a gene of interest.
  • the gene of interest encodes for a protein that functions in a cellular pathway.
  • the vector encodes for an inhibitor, antagonist, or agonist of various cellular pathways, including for example, pathways involving DNA damage/DNA repair, cell cycle/checkpoints, JAK/STAT signaling, MAPK signaling, GPCR/G protein, angiogenesis, immunology and inflammation, endocrinology and hormones, cancer, metabolism, and stem cells.
  • the sample is a fresh tissue.
  • the sample is a frozen sample.
  • the sample was previously frozen.
  • the sample is a formalin-fixed, paraffin embedded (FFPE) sample.
  • Subjects from which biological samples can be obtained can be healthy or asymptomatic individuals, individuals that have or are suspected of having a disease (e.g., cancer) or a pre-disposition to a disease, and/or individuals that are in need of therapy or suspected of needing therapy.
  • the biological sample can include one or more diseased cells.
  • a diseased cell can have altered metabolic properties, gene expression, protein expression, and/or morphologic features. Examples of diseases include inflammatory disorders, metabolic disorders, nervous system disorders, and cancer.
  • the biological sample includes cancer or tumor cells. Cancer cells can be derived from solid tumors, hematological malignancies, cell lines, or obtained as circulating tumor cells.
  • the biological sample is a heterogenous sample.
  • the biological sample is a heterogenous sample that includes tumor or cancer cells and/or stromal cells,
  • the cancer is breast cancer.
  • the breast cancer is triple positive breast cancer (TPBC).
  • the breast cancer is triple negative breast cancer (TNBC).
  • the cancer is colorectal cancer. In some instances, the cancer is ovarian cancer. In certain embodiments, the cancer is squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, Hodgkin's or non-Hodgkin's lymphoma, pancreatic cancer, glioblastoma, glioma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, breast cancer, colon cancer, colorectal cancer, endometrial carcinoma, myeloma, salivary gland carcinoma, kidney cancer, basal cell carcinoma, melanoma, prostate cancer, vulval cancer, thyroid cancer, testicular cancer, esophageal cancer, or a type of head or neck cancer.
  • the cancer treated is desmoplastic melanoma, inflammatory breast cancer, thymoma, rectal cancer, anal cancer, or surgically treatable or non-surgically treatable brain stem glioma.
  • the subject is a human.
  • FFPE samples generally are heavily cross-linked and fragmented, and therefore this type of sample allows for limited RNA recovery using conventional detection techniques.
  • methods of targeted RNA capture provided herein are less affected by RNA degradation associated with FFPE fixation than other methods (e.g., methods that take advantage of oligo-dT capture and reverse transcription of mRNA).
  • methods provided herein enable sensitive measurement of specific genes of interest that otherwise might be missed with a whole transcriptomic approach.
  • FFPE samples are stained (e.g., using H&E).
  • H&E histone deacetylase
  • the methods disclosed herein are compatible with H&E will allow for morphological context overlaid with transcriptomic analysis.
  • some samples may be stained with only a nuclear stain, such as staining a sample with only hematoxylin and not eosin, when location of a cell nucleus is needed.
  • a biological sample e.g. tissue section
  • methanol stained with hematoxylin and eosin
  • fixing, staining, and imaging occurs before one or more probes are hybridized to the sample.
  • a destaining step e.g., a hematoxylin and eosin destaining step
  • destaining can be performed by performing one or more (e.g., one, two, three, four, or five) washing steps (e.g., one or more (e.g., one, two, three, four, or five) washing steps performed using a buffer including HCl).
  • the images can be used to map spatial gene expression patterns back to the biological sample.
  • a permeabilization enzyme can be used to permeabilize the biological sample directly on the slide.
  • the FFPE sample is deparaffinized, permeabilized, equilibrated, and blocked before target probe oligonucleotides are added.
  • deparaffinization includes multiple washes with xylenes.
  • deparaffinization includes multiple washes with xylenes followed by removal of xylenes using multiple rounds of graded alcohol followed by washing the sample with water.
  • the water is deionized water.
  • equilibrating and blocking includes incubating the sample in a pre-Hyb buffer.
  • the pre-Hyb buffer includes yeast tRNA.
  • permeabilizing a sample includes washing the sample with a phosphate buffer.
  • the buffer is PBS.
  • the buffer is PBST.
  • an “analyte” can include any biological substance, structure, moiety, or component to be analyzed.
  • the term “target” can similarly refer to an analyte of interest.
  • Analytes can be broadly classified into one of two groups: nucleic acid analytes, and non-nucleic acid analytes.
  • non-nucleic acid analytes include, but are not limited to, lipids, carbohydrates, peptides, proteins, glycoproteins (N-linked or O-linked), lipoproteins, phosphoproteins, specific phosphorylated or acetylated variants of proteins, amidation variants of proteins, hydroxylation variants of proteins, methylation variants of proteins, ubiquitylation variants of proteins, sulfation variants of proteins, viral proteins (e.g., viral capsid, viral envelope, viral coat, viral accessory, viral glycoproteins, viral spike, etc.), extracellular and intracellular proteins, antibodies, and antigen binding fragments.
  • analyte(s) can be peptides or proteins, including without limitation antibodies and enzymes.
  • the analyte is a protein.
  • biological samples can be stained using a wide variety of stains and staining techniques.
  • the biological sample is a section on a slide (e.g., a 10 ⁇ m section).
  • the biological sample is dried after placement onto a glass slide.
  • the biological sample is dried at 42° C. In some instances, drying occurs for about 1 hour, about 2, hours, about 3 hours, or until the sections become transparent.
  • the biological sample can be dried overnight (e.g., in a desiccator at room temperature).
  • a sample can be stained using any number of biological stains, including but not limited to, acridine orange, Bismarck brown, carmine, coomassie blue, cresyl violet, DAPI, eosin, ethidium bromide, acid fuchsine, hematoxylin, Hoechst stains, iodine, methyl green, methylene blue, neutral red, Nile blue, Nile red, osmium tetroxide, propidium iodide, rhodamine, or safranin.
  • the methods disclosed herein include imaging the biological sample. In some instances, imaging the sample occurs prior to deaminating the biological sample.
  • the sample can be stained using known staining techniques, including Can-Grunwald, Giemsa, hematoxylin and eosin (H&E), Jenner's, Leishman, Masson's trichrome, Papanicolaou, Romanowsky, silver, Sudan, Wright's, and/or Periodic Acid Schiff (PAS) staining techniques.
  • PAS staining is typically performed after formalin or acetone fixation. In some instances, the stain is an H&E stain.
  • the biological sample can be stained using a detectable label (e.g., radioisotopes, fluorophores, chemiluminescent compounds, bioluminescent compounds, and dyes) as described elsewhere herein.
  • a biological sample is stained using only one type of stain or one technique.
  • staining includes biological staining techniques such as H&E staining.
  • staining includes identifying analytes using fluorescently-conjugated antibodies.
  • a biological sample is stained using two or more different types of stains, or two or more different staining techniques.
  • a biological sample can be prepared by staining and imaging using one technique (e.g., H&E staining and brightfield imaging), followed by staining and imaging using another technique (e.g., IHC/IF staining and fluorescence microscopy) on the same biological sample.
  • one technique e.g., H&E staining and brightfield imaging
  • another technique e.g., IHC/IF staining and fluorescence microscopy
  • biological samples can be destained.
  • Methods of destaining or discoloring a biological sample are known in the art, and generally depend on the nature of the stain(s) applied to the sample.
  • H&E staining can be destained by washing the sample in HCl, or any other acid (e.g., selenic acid, sulfuric acid, hydroiodic acid, benzoic acid, carbonic acid, malic acid, phosphoric acid, oxalic acid, succinic acid, salicylic acid, tartaric acid, sulfurous acid, trichloroacetic acid, hydrobromic acid, hydrochloric acid, nitric acid, orthophosphoric acid, arsenic acid, selenous acid, chromic acid, citric acid, hydrofluoric acid, nitrous acid, isocyanic acid, formic acid, hydrogen selenide, molybdic acid, lactic acid, acetic acid, carbonic acid, hydrogen sulfide, or combinations thereof).
  • destaining can include 1, 2, 3, 4, 5, or more washes in an acid (e.g., HCl).
  • destaining can include adding HCl to a downstream solution (e.g., permeabilization solution).
  • destaining can include dissolving an enzyme used in the disclosed methods (e.g., pepsin) in an acid (e.g., HCl) solution.
  • other reagents can be added to the destaining solution to raise the pH for use in other applications. For example, SDS can be added to an acid destaining solution in order to raise the pH as compared to the acid destaining solution alone.
  • one or more immunofluorescence stains are applied to the sample via antibody coupling.
  • Such stains can be removed using techniques such as cleavage of disulfide linkages via treatment with a reducing agent and detergent washing, chaotropic salt treatment, treatment with antigen retrieval solution, and treatment with an acidic glycine buffer.
  • Methods for multiplexed staining and destaining are described, for example, in Bolognesi et al., J. Histochem. Cytochem. 2017; 65(8): 431-444, Lin et al., Nat Commun. 2015; 6:8390, Pirici et al., J. Histochem. Cytochem. 2009; 57:567-75, and Glass et al., J. Histochem. Cytochem. 2009; 57:899-905, the entire contents of each of which are incorporated herein by reference.
  • immunofluorescence or immunohistochemistry protocols can be performed as a part of, or in addition to, the exemplary spatial workflows presented herein.
  • tissue sections can be fixed according to methods described herein.
  • the biological sample can be transferred to an array (e.g., capture probe array), wherein analytes (e.g., proteins) are probed using immunofluorescence protocols.
  • analytes e.g., proteins
  • the sample can be rehydrated, blocked, and permeabilized (3 ⁇ SSC, 2% BSA, 0.1% Triton X, 1 U/ ⁇ l RNAse inhibitor for 10 minutes at 4° C.) before being stained with fluorescent primary antibodies (1:100 in 3 ⁇ SSC, 2% BSA, 0.1% Triton X, 1 U/ ⁇ l RNAse inhibitor for 30 minutes at 4° C.).
  • the biological sample can be washed, coverslipped (in glycerol+1 U/ ⁇ l RNAse inhibitor), imaged (e.g., using a confocal microscope or other apparatus capable of fluorescent detection), washed, and processed according to analyte capture or spatial workflows described herein.
  • a glycerol solution and a cover slip can be added to the sample.
  • the glycerol solution can include a counterstain (e.g., DAPI).
  • an antigen retrieval buffer can improve antibody capture in IF/IHC protocols.
  • An exemplary protocol for antigen retrieval can be preheating the antigen retrieval buffer (e.g., to 95° C.), immersing the biological sample in the heated antigen retrieval buffer for a predetermined time, and then removing the biological sample from the antigen retrieval buffer and washing the biological sample.
  • optimizing permeabilization can be useful for identifying intracellular analytes.
  • Permeabilization optimization can include selection of permeabilization agents, concentration of permeabilization agents, and permeabilization duration. Tissue permeabilization is discussed elsewhere herein.
  • blocking an array and/or a biological sample in preparation of labeling the biological sample decreases nonspecific binding of the antibodies to the array and/or biological sample (decreases background).
  • Some embodiments provide for blocking buffers/blocking solutions that can be applied before and/or during application of the label, wherein the blocking buffer can include a blocking agent, and optionally a surfactant and/or a salt solution.
  • a blocking agent can be bovine serum albumin (BSA), serum, gelatin (e.g., fish gelatin), milk (e.g., non-fat dry milk), casein, polyethylene glycol (PEG), polyvinyl alcohol (PVA), or polyvinylpyrrolidone (PVP), biotin blocking reagent, a peroxidase blocking reagent, levamisole, Carnoy's solution, glycine, lysine, sodium borohydride, pontamine sky blue, Sudan Black, trypan blue, FITC blocking agent, and/or acetic acid.
  • the blocking buffer/blocking solution can be applied to the array and/or biological sample prior to and/or during labeling (e.g., application of fluorophore-conjugated antibodies) to the biological sample.
  • the methods described herein further include imaging the cell comprising the moiety (e.g., any of the moieties described herein). Imaging can be used, for example, to determine the morphology of the cell comprising the moiety at a distinct spatial position on the substrate.
  • the morphology is correlated to a biological analyte of the cell comprising the moiety using the methods described herein.
  • the morphology is correlated to a perturbation in the cell comprising the moiety.
  • the morphology is correlated to a change in one or more biological analytes compared to a cell including a different moiety or a cell not including the moiety.
  • the biological sample is deparaffinized.
  • Deparaffinization can be achieved using any method known in the art.
  • the biological sample is treated with a series of washes that include xylene and various concentrations of ethanol.
  • methods of deparaffinization include treatment with xylene (e.g., three washes at 5 minutes each).
  • the methods further include treatment with ethanol (e.g., 100% ethanol, two washes 10 minutes each; 95% ethanol, two washes 10 minutes each; 70% ethanol, two washes 10 minutes each; 50% ethanol, two washes 10 minutes each).
  • the biological sample can be washed with deionized water (e.g., two washes for 5 minutes each). It is appreciated that one skilled in the art can adjust these methods to optimize deparaffinization.
  • the biological sample is decrosslinked.
  • the biological sample is decrosslinked in a solution containing TE buffer (comprising Tris and EDTA).
  • the TE buffer is basic (e.g., at a pH of about 9).
  • decrosslinking occurs at about 50° C. to about 80° C.
  • decrosslinking occurs at about 70° C.
  • decrosslinking occurs for about 1 hour at 70° C.
  • the biological sample can be treated with an acid (e.g., 0.1M HCl for about 1 minute). After the decrosslinking step, the biological sample can be washed (e.g., with 1 ⁇ PBST).
  • the methods of preparing a biological sample for probe application include permeabilizing the sample.
  • the biological sample is permeabilized using a phosphate buffer.
  • the phosphate buffer is PBS (e.g., 1 ⁇ PBS).
  • the phosphate buffer is PBST (e.g., 1 ⁇ PBST).
  • the permeabilization step is performed multiple times (e.g., 3 times at 5 minutes each).
  • the methods of preparing a biological sample for probe application include steps of equilibrating and blocking the biological sample.
  • equilibrating is performed using a pre-hybridization (pre-Hyb) buffer.
  • pre-Hyb buffer is RNase-free.
  • pre-Hyb buffer contains no bovine serum albumin (BSA), solutions like Denhardt's, or other potentially nuclease-contaminated biological materials.
  • BSA bovine serum albumin
  • the equilibrating step is performed multiple times (e.g., 2 times at 5 minutes each; 3 times at 5 minutes each).
  • the biological sample is blocked with a blocking buffer.
  • the blocking buffer includes a carrier such as tRNA, for example yeast tRNA such as from brewer's yeast (e.g., at a final concentration of 10-20 ⁇ g/mL). In some instances, blocking can be performed for 5, 10, 15, 20, 25, or 30 minutes.
  • any of the foregoing steps can be optimized for performance. For example, one can vary the temperature.
  • the pre-hybridization methods are performed at room temperature. In some instances, the pre-hybridization methods are performed at 4° C. (in some instances, varying the timeframes provided herein).
  • a moiety sequence (e.g., a second barcode) can be introduced into the cell using a particle (e.g., the particle includes the small molecule).
  • the particle further includes a moiety sequence.
  • the particle includes more than one unique moiety sequence (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, about 15, about 20, about 30, about 40, about 50, about 75, or about 100 unique moiety sequences).
  • the particle includes multiple copies of a unique moiety sequence (e.g., about 10, about 50, about 100, about 500, about 1000 or more).
  • the moiety sequence is a nucleotide sequence that identifies the small molecule. In some embodiments, identification of the moiety sequence provides information regarding the spatial location of a particular biological analyte.
  • the moiety sequence includes a capture domain sequence as disclosed herein. In some embodiments, the capture domain sequence is a poly(dT) sequence. In some embodiments, the capture domain sequence is a degenerate sequence. In some embodiments, the capture domain sequence is particular to a target sequence of interest. In some embodiment, the moiety sequence includes a cleavage domain as disclosed herein. In some embodiments, the moiety sequence includes a functional domain as disclosed herein. In some embodiments, the functional domain is a primer sequence. In some embodiment, the moiety sequence includes a spatial barcode as disclosed herein. In some embodiment, the moiety sequence includes a unique molecular identifier (UMI) as disclosed herein.
  • UMI unique molecular identifier
  • Determining the identity of the moiety sequence (e.g., second barcode) that was introduced into the cell can be used to identify the small molecule introduced into the cell.
  • the moiety sequence can be part of a polyadenylated sequence. Introducing a polyadenylated moiety sequence into the cell can allow the moiety sequence to be sequenced and identified using the methods described herein. See also, for example, Adamson et al. Cell. 167(7):1867-1882.e21, 2016; Datlinger et al. Nat Methods. 14(3):297-301, 2017; Jaitin et al. Cell. 167(7):1883-1896.e15, 2016; and Dixit et al. Cell.
  • correlating a biological analyte from a cell including a small molecule with a first barcode of a capture probe at a distinct spatial position of a substrate can further include correlating the small molecule of the cell to a distinct spatial position of the substrate using the moiety sequence that identifies the small molecule of the cell.
  • the methods described herein can include profiling biological analytes from a cell (or a group of cells) that includes one or more small molecules (or a library of small molecules that are all identical or that are different).
  • the methods described herein can include one or more pluralities of cells including one or more small molecules (e.g., a library of cells including small molecules).
  • the methods described herein can be useful in detecting one or more biological analytes in cells perturbed by a library of small molecules, e.g., methods using one or more pools of small molecules. Pooling schemes are known to those in the art, see, e.g., Kainkaryam. Curr Opin Drug Discov Devel. 2009 May; 12(3): 339-350, which is incorporated herein by reference in its entirety.
  • a method to spatially profile one or more biological analytes present in a library of cells including a small molecule can include contacting the library of cells including a small molecule with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain; releasing the one or more biological analytes from members of the library of cells including a small molecule, wherein the one or more biological analytes are bound by capture probes at distinct spatial positions of the substrate; detecting the one or more biological analytes bound by capture probes; and correlating each biological analyte with the first barcode from the capture probe it was bound to at the distinct spatial position of the substrate; thus profiling the one or more biological analytes as present in the library of cells including a small molecule at one or more distinct spatial positions.
  • one biological analyte is bound to one capture probe.
  • the methods described herein can include profiling biological analytes from a cell that includes multiple, identical small molecules. In some embodiments, the methods described herein can include profiling biological analytes from a cell that includes multiple, unique (i.e., different) small molecules. In some embodiments, the methods described herein can include profiling biological analytes from a group of cells that each include a single small molecule. In some embodiments, the methods described herein can include profiling biological analytes from a group of cells, each of which includes multiple copies of the same small molecule. In some embodiments, the methods described herein can include profiling biological analytes from a group of cells that each include multiple copies of different small molecules.
  • the methods disclosed herein also include a wash step.
  • the wash step removes any unbound probes. Wash steps could be performed between any of the steps in the methods disclosed herein.
  • a wash step can be performed after adding probes to the biological sample. As such, free/unbound probes are washed away, leaving only probes that have hybridized to an analyte.
  • multiple (i.e., at least 2, 3, 4, 5, or more) wash steps occur between the methods disclosed herein. Wash steps can be performed at times (e.g., 1, 2, 3, 4, or 5 minutes) and temperatures (e.g., room temperature) known in the art and determined by a person of skill in the art.
  • wash steps are performed using a wash buffer.
  • the wash buffer includes SSC (e.g., 1 ⁇ SSC).
  • the wash buffer includes PBS (e.g., 1 ⁇ PBS).
  • the wash buffer includes PBST (e.g., 1 ⁇ PBST).
  • the wash buffer can also include formamide or be formamide free.
  • a biological sample can optionally be separated into single cells, cell groups, or other fragments/pieces that are smaller than the original, unfragmented sample. Each of these smaller portions of the sample can be analyzed to obtain spatially-resolved analyte information for the sample.
  • one method for analyzing the fragments involves separating the fragments into individual partitions (e.g., fluid droplets), and then analyzing the contents of the partitions.
  • each partition maintains separation of its own contents from the contents of other partitions.
  • the partition can be a droplet in an emulsion, for example.
  • Microfluidic channel networks (e.g., on a chip) can be utilized to generate partitions.
  • Alternative mechanisms can also be employed in the partitioning of individual biological particles, including porous membranes through which aqueous mixtures of cells are extruded into non-aqueous fluids.
  • a microfluidical channel structure can be used for partitioning individual analytes (e.g., cells) into discrete partitions.
  • a first aqueous fluid that includes suspended biological particles (or cells) may be transported along a channel segment into a junction, while a second fluid that is immiscible with the first aqueous fluid is delivered to the junction from each of the channel segments to create discrete droplets of the first aqueous fluid flowing into a channel segment, and flowing away from the junction.
  • the channel segment may be fluidically coupled to an outlet reservoir where the discrete droplets can be stored and/or harvested.
  • a discrete droplet generated may include an individual biological particle.
  • a discrete droplet generated may include more than one individual biological particle.
  • a discrete droplet may contain no biological particle.
  • Each discrete partition may maintain separation of its own contents (e.g., individual biological particle) from the contents of other partitions.
  • one or more barcodes can be introduced into a partition as part of the analyte.
  • barcodes can be bound to the analyte directly, or can form part of a capture probe or analyte capture agent that is hybridized to, conjugated to, or otherwise associated with an analyte, such that when the analyte is introduced into the partition, the barcode(s) are introduced as well.
  • FIG. 8 shows an example of a microfluidic channel structure for partitioning individual analytes (e.g., cells) into discrete partitions.
  • the channel structure can include channel segments 801 , 802 , 803 , and 804 communicating at a channel junction 805 .
  • a first aqueous fluid 806 that includes suspended biological particles (or cells) 807 may be transported along channel segment 801 into junction 805
  • a second fluid 808 that is immiscible with the aqueous fluid 806 is delivered to the junction 805 from each of channel segments 802 and 803 to create discrete droplets 809 , 810 of the first aqueous fluid 806 flowing into channel segment 804 , and flowing away from junction 805 .
  • the channel segment 804 may be fluidically coupled to an outlet reservoir where the discrete droplets can be stored and/or harvested.
  • a discrete droplet generated may include an individual biological particle 807 (such as droplets 809 ).
  • a discrete droplet generated may include more than one individual biological particle 807 .
  • a discrete droplet may contain no biological particle 807 (such as droplet 810 ).
  • Each discrete partition may maintain separation of its own contents (e.g., individual biological particle 807 ) from the contents of other partitions.
  • FIG. 9 A shows another example of a microfluidic channel structure 900 for delivering beads to droplets.
  • the channel structure includes channel segments 901 , 902 , 903 , 904 , and 905 communicating at a channel junction 906 .
  • the channel segment 901 can transport an aqueous fluid 907 that includes a plurality of beads 908 along the channel segment 901 into junction 906 .
  • the plurality of beads 908 can be sourced from a suspension of beads.
  • the channel segment 901 can be connected to a reservoir that includes an aqueous suspension of beads 908 .
  • the channel segment 902 can transport the aqueous fluid 907 that includes a plurality of particles 909 (e.g., cells) along the channel segment 902 into junction 906 .
  • the aqueous fluid 907 in either the first channel segment 901 or the second channel segment 902 , or in both segments, can include one or more reagents, as further described below.
  • a second fluid 910 that is immiscible with the aqueous fluid 907 can be delivered to the junction 906 from each of channel segments 903 and 904 .
  • the aqueous fluid 907 can be partitioned as discrete droplets 911 in the second fluid 910 and flow away from the junction 906 along channel segment 905 .
  • the channel segment 905 can deliver the discrete droplets to an outlet reservoir fluidly coupled to the channel segment 905 , where they can be harvested.
  • the channel segments 901 and 902 can meet at another junction upstream of the junction 906 .
  • beads and biological particles can form a mixture that is directed along another channel to the junction 906 to yield droplets 911 .
  • the mixture can provide the beads and biological particles in an alternating fashion, such that, for example, a droplet includes a single bead and a single biological particle.
  • the second fluid 910 can include an oil, such as a fluorinated oil, that includes a fluorosurfactant for stabilizing the resulting droplets, for example, inhibiting subsequent coalescence of the resulting droplets 911 .
  • an oil such as a fluorinated oil, that includes a fluorosurfactant for stabilizing the resulting droplets, for example, inhibiting subsequent coalescence of the resulting droplets 911 .
  • the partitions described herein can include small volumes, for example, less than about 10 microliters (TL), 5 TL, 1 TL, 900 picoliters (pL), 800 pL, 700 pL, 600 pL, 500 pL, 400 pL, 300 pL, 200 pL, 100 pL, 50 pL, 20 pL, 10 pL, 1 pL, 500 nanoliters (nL), 100 nL, 50 nL, or less.
  • droplets with beads were formed at the junction of different fluid streams.
  • droplets can be formed by gravity-based partitioning methods.
  • FIG. 9 B shows a cross-section view of another example of a microfluidic channel structure 950 with a geometric feature for controlled partitioning.
  • a channel structure 950 can include a channel segment 952 communicating at a channel junction 958 (or intersection) with a reservoir 954 .
  • the channel structure 950 and one or more of its components can correspond to the channel structure 900 and one or more of its components.
  • An aqueous fluid 960 comprising a plurality of particles 956 may be transported along the channel segment 952 into the junction 958 to meet a second fluid 962 (e.g., oil, etc.) that is immiscible with the aqueous fluid 960 in the reservoir 954 to create droplets 964 of the aqueous fluid 960 flowing into the reservoir 954 .
  • a second fluid 962 e.g., oil, etc.
  • droplets can form based on factors such as the hydrodynamic forces at the junction 958 , relative flow rates of the two fluids 960 , 962 , fluid properties, and certain geometric parameters (e.g., ⁇ h, etc.) of the channel structure 950 .
  • a plurality of droplets can be collected in the reservoir 954 by continuously injecting the aqueous fluid 960 from the channel segment 952 at the junction 958 .
  • a discrete droplet generated may comprise one or more particles of the plurality of particles 956 .
  • a particle may be any particle, such as a bead, cell bead, gel bead, biological particle, macromolecular constituents of biological particle, or other particles.
  • a discrete droplet generated may not include any particles.
  • the aqueous fluid 960 can have a substantially uniform concentration or frequency of particles 956 .
  • the particles 956 e.g., beads
  • the frequency of particles 956 in the channel segment 952 may be controlled by controlling the frequency in which the particles 956 are introduced into the channel segment 952 and/or the relative flow rates of the fluids in the channel segment 952 and the separate channel.
  • the particles 956 can be introduced into the channel segment 952 from a plurality of different channels, and the frequency controlled accordingly.
  • different particles may be introduced via separate channels.
  • a first separate channel can introduce beads and a second separate channel can introduce biological particles into the channel segment 952 .
  • the first separate channel introducing the beads may be upstream or downstream of the second separate channel introducing the biological particles.
  • the second fluid 962 may not be subjected to and/or directed to any flow in or out of the reservoir 954 .
  • the second fluid 962 may be substantially stationary in the reservoir 954 .
  • the second fluid 962 may be subjected to flow within the reservoir 954 , but not in or out of the reservoir 954 , such as via application of pressure to the reservoir 954 and/or as affected by the incoming flow of the aqueous fluid 960 at the junction 958 .
  • the second fluid 962 may be subjected and/or directed to flow in or out of the reservoir 954 .
  • the reservoir 954 can be a channel directing the second fluid 962 from upstream to downstream, transporting the generated droplets.
  • the channel structure 950 at or near the junction 958 may have certain geometric features that at least partly determine the volumes and/or shapes of the droplets formed by the channel structure 950 .
  • the channel segment 952 can have a first cross-section height, h1, and the reservoir 954 can have a second cross-section height, h2.
  • the first cross-section height, h1, and the second cross-section height, h2, may be different, such that at the junction 958 , there is a height difference of ⁇ h.
  • the second cross-section height, h2 may be greater than the first cross-section height, h1.
  • the reservoir may thereafter gradually increase in cross-section height, for example, the more distant it is from the junction 958 .
  • the cross-section height of the reservoir may increase in accordance with expansion angle, ⁇ , at or near the junction 958 .
  • the height difference, ⁇ h, and/or expansion angle, ⁇ can allow the tongue (portion of the aqueous fluid 960 leaving channel segment 952 at junction 958 and entering the reservoir 954 before droplet formation) to increase in depth and facilitate decrease in curvature of the intermediately formed droplet.
  • droplet volume may decrease with increasing height difference and/or increasing expansion angle.
  • the height difference, ⁇ h can be at least about 1 ⁇ m.
  • the height difference can be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 ⁇ m or more.
  • the height difference can be at most about 500, 400, 300, 200, 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ⁇ m or less.
  • the expansion angle, 3, may be between a range of from about 0.50 to about 4°, from about 0.1° to about 10°, or from about 0° to about 90°.
  • the expansion angle can be at least about 0.01°, 0.1°, 0.2°, 0.3°, 0.4°, 0.5°, 0.6°, 0.7°, 0.8°, 0.9°, 10, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, or higher.
  • the expansion angle can be at most about 89°, 88°, 87°, 86°, 85°, 84°, 83°, 82°, 81°, 80°, 75° 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15°, 10°, 9°, 8°, 7°, 6°, 5°, 4°, 3°, 2°, 1°, 0.1°, 0.01°, or less.
  • the flow rate of the aqueous fluid 960 entering the junction 958 can be between about 0.04 microliters ( ⁇ L)/minute (min) and about 40 ⁇ L/min. In some instances, the flow rate of the aqueous fluid 960 entering the junction 958 can be between about 0.01 microliters ( ⁇ L)/minute (min) and about 100 ⁇ L/min. Alternatively, the flow rate of the aqueous fluid 960 entering the junction 958 can be less than about 0.01 ⁇ L/min.
  • the flow rate of the aqueous fluid 960 entering the junction 958 can be greater than about 40 ⁇ L/min, such as 45 ⁇ L/min, 50 ⁇ L/min, 55 ⁇ L/min, 60 ⁇ L/min, 65 ⁇ L/min, 70 ⁇ L/min, 75 ⁇ L/min, 80 ⁇ L/min, 85 ⁇ L/min, 90 ⁇ L/min, 95 ⁇ L/min, 100 ⁇ L/min, 110 ⁇ L/min, 120 ⁇ L/min, 130 ⁇ L/min, 140 ⁇ L/min, 150 ⁇ L/min, or greater.
  • the droplet radius may not be dependent on the flow rate of the aqueous fluid 960 entering the junction 958 .
  • the second fluid 962 may be stationary, or substantially stationary, in the reservoir 954 .
  • the second fluid 962 may be flowing, such as at the above flow rates described for the aqueous fluid 960 .
  • FIG. 9 B illustrates the height difference, ⁇ h, being abrupt at the junction 958 (e.g., a step increase)
  • the height difference may increase gradually (e.g., from about 0 ⁇ m to a maximum height difference).
  • the height difference may decrease gradually (e.g., taper) from a maximum height difference.
  • a gradual increase or decrease in height difference may refer to a continuous incremental increase or decrease in height difference, wherein an angle between any one differential segment of a height profile and an immediately adjacent differential segment of the height profile is greater than 90°.
  • a bottom wall of the channel and a bottom wall of the reservoir can meet at an angle greater than 90°.
  • a top wall (e.g., ceiling) of the channel and a top wall (e.g., ceiling) of the reservoir can meet an angle greater than 90°.
  • a gradual increase or decrease may be linear or non-linear (e.g., exponential, sinusoidal, etc.).
  • the height difference may variably increase and/or decrease linearly or non-linearly.
  • FIG. 9 B illustrates the expanding reservoir cross-section height as linear (e.g., constant expansion angle, ⁇ )
  • the cross-section height may expand non-linearly.
  • the reservoir may be defined at least partially by a dome-like (e.g., hemispherical) shape having variable expansion angles.
  • the cross-section height may expand in any shape.
  • FIG. 9 C depicts a workflow wherein cells are partitioned into droplets along with barcode-bearing beads 970 . See FIG. 9 A .
  • the droplet forms an isolated reaction chamber wherein the cells can be lysed 971 and target analytes within the cells can then be captured 972 and amplified 973 , 974 according to previously described methods.
  • sequence library preparation clean-up 975 the material is sequenced and/or quantified 976 according to methods described herein.
  • the workflow shown in FIG. 9 C can be used with a biological sample on an array, where the features of the array have been delivered to the substrate via a droplet manipulation system.
  • capture probes on the features can specifically bind analytes present in the biological sample.
  • the features can be removed from the substrate (e.g., removed by any method described herein) and partitioned into droplets with barcode-bearing beads for further analysis according to methods described herein.
  • the poly(T) segment of one of the released nucleic acid molecules can hybridize to the poly(A) tail of an mRNA molecule.
  • Reverse transcription can result in a cDNA transcript of the mRNA, which transcript includes each of the sequence segments of the nucleic acid molecule. If the nucleic acid molecule includes an anchoring sequence, it will more likely hybridize to and prime reverse transcription at the sequence end of the poly(A) tail of the mRNA.
  • the methods include introducing the pooled nucleic acid library into a cell or plurality of cells.
  • introducing includes delivery of a vector or pooled library to a cell or cells. Such introducing may take place in vivo, in vitro, or ex vivo.
  • a vector for expression of a gene product may be introduced into a cell by transfection, which typically means insertion of heterologous DNA into a cell by physical means (e.g., calcium phosphate transfection, electroporation, microinjection, or lipofection); infection, which typically refers to introduction by way of an infectious agent, i.e. a virus; or transduction, which typically means stable infection of a cell with a virus or the transfer of genetic material from one microorganism to another by way of a viral agent (e.g., a bacteriophage).
  • a viral agent e.g., a bacteriophage
  • the methods can include determining the presence of a genetic moiety (i.e., a nucleic acid (e.g., gRNA and/or sgRNA)) that was introduced into a cell.
  • a genetic moiety i.e., a nucleic acid (e.g., gRNA and/or sgRNA)
  • a moiety sequence e.g., a second barcode
  • identifies the genetic moiety in the cell e.g., identifies the gRNA introduced into the cell
  • a polyadenylated nucleotide sequence such as a polyadenylated gRNA sequence
  • the moiety sequence can be part of a polyadenylated sequence.
  • the CRISPR lentiviral vector can further include the moiety sequence identifying the gRNA and/or a polyadenylated or an oligo (dT) nucleotide sequence (e.g., a polyadenylated gRNA sequence).
  • correlating a biological analyte from a genetically-perturbed cell with a first barcode of a capture probe at a distinct spatial position of a substrate can further include correlating the genetic perturbation of the cell to a distinct spatial position of the substrate using the moiety sequence that identifies the genetic perturbation of the cell and/or the polyadenylated nucleotide sequence.
  • methods of selecting a cell that includes the genetic perturbation are also disclosed herein.
  • the methods described herein can include profiling biological analytes from one or more pluralities of genetically-perturbed cells (e.g., a library of genetically-perturbed cells).
  • a method to spatially profile one or more biological analytes present in a library of genetically-perturbed cells can include contacting the library of genetically-perturbed cells with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain; releasing the one or more biological analytes from members of the library of genetically-perturbed cells, wherein the one or more biological analytes are bound by capture probes at distinct spatial positions of the substrate; detecting the one or more biological analytes bound by capture probes; and correlating each biological analyte with the first barcode from the capture probe it was bound to at the distinct spatial position of the substrate; thus profiling the one or more biological analytes as present in the library of genetically-perturbed cells
  • a plurality of genetically-perturbed cells includes a different genetic perturbation from another plurality of genetically-perturbed cells. In some embodiments, each plurality of genetically-perturbed cells includes a different genetic perturbation from each other plurality of genetically-perturbed cells.
  • a plurality of genetically-perturbed cells with a different genetic perturbation from another plurality of genetically-perturbed cells also has a different polyadenylated barcode sequence and/or a polyadenylated gRNA sequence from the other plurality of genetically-perturbed cells (e.g., the polyadenylated barcode sequence and/or a polyadenylated gRNA sequence can identify the genetic perturbation of the cell).
  • each plurality of genetically-perturbed cells that has a different genetic perturbation from each other plurality of genetically-perturbed cells also has a different polyadenylated barcode sequence and/or a polyadenylated gRNA sequence from each other plurality of genetically-perturbed cells (e.g., the polyadenylated barcode sequence and/or a polyadenylated gRNA sequence can identify the genetic perturbation of the cell).
  • the methods disclosed herein also include a wash step.
  • the wash step removes any unbound probes. Wash steps could be performed between any of the steps in the methods disclosed herein.
  • a wash step can be performed after adding probes to the biological sample. As such, free/unbound probes are washed away, leaving only probes that have hybridized to an analyte.
  • multiple (i.e., at least 2, 3, 4, 5, or more) wash steps occur between the methods disclosed herein. Wash steps can be performed at times (e.g., 1, 2, 3, 4, or 5 minutes) and temperatures (e.g., room temperature) known in the art and determined by a person of skill in the art.
  • wash steps are performed using a wash buffer.
  • the wash buffer includes SSC (e.g., 1 ⁇ SSC).
  • the wash buffer includes PBS (e.g., 1 ⁇ PBS).
  • the wash buffer includes PBST (e.g., 1 ⁇ PBST).
  • the wash buffer can also include formamide or be formamide free.
  • a biological sample can optionally be separated into single cells, cell groups, or other fragments/pieces that are smaller than the original, unfragmented sample. Each of these smaller portions of the sample can be analyzed to obtain spatially-resolved analyte information for the sample.
  • one method for analyzing the fragments involves separating the fragments into individual partitions (e.g., fluid droplets), and then analyzing the contents of the partitions.
  • each partition maintains separation of its own contents from the contents of other partitions.
  • the partition can be a droplet in an emulsion, for example.
  • Microfluidic channel networks (e.g., on a chip) can be utilized to generate partitions.
  • Alternative mechanisms can also be employed in the partitioning of individual biological particles, including porous membranes through which aqueous mixtures of cells are extruded into non-aqueous fluids.
  • a microfluidical channel structure can be used for partitioning individual analytes (e.g., cells) into discrete partitions.
  • a first aqueous fluid that includes suspended biological particles (or cells) may be transported along a channel segment into a junction, while a second fluid that is immiscible with the first aqueous fluid is delivered to the junction from each of the channel segments to create discrete droplets of the first aqueous fluid flowing into a channel segment, and flowing away from the junction.
  • the channel segment may be fluidically coupled to an outlet reservoir where the discrete droplets can be stored and/or harvested.
  • a discrete droplet generated may include an individual biological particle.
  • a discrete droplet generated may include more than one individual biological particle.
  • a discrete droplet may contain no biological particle.
  • Each discrete partition may maintain separation of its own contents (e.g., individual biological particle) from the contents of other partitions.
  • Microfluidic systems have been described in part (1) of this section and is incorporated herein.
  • an analyte and/or moiety from the cell e.g., a cell in a biological sample
  • a capture probe e.g., a cell in a biological sample
  • a removal step can optionally be performed to remove all or a portion of the biological sample from the substrate.
  • the removal step includes enzymatic and/or chemical degradation of cells of the biological sample.
  • the removal step can include treating the biological sample with an enzyme (e.g., a proteinase, e.g., proteinase K) to remove at least a portion of the biological sample from the substrate.
  • the removal step can include ablation of the tissue (e.g., laser ablation).
  • analyte e.g., detecting the location of an analyte, e.g., a biological analyte
  • a biological sample e.g., present in a biological sample
  • the method comprising: (a) optionally staining and/or imaging a biological sample on a substrate; (b) permeabilizing (e.g., providing a solution comprising a permeabilization reagent to) the biological sample on the substrate; (c) contacting the biological sample with an array comprising a plurality of capture probes, wherein a capture probe of the plurality captures the biological analyte; and (d) analyzing the captured biological analyte, thereby spatially detecting the biological analyte; wherein the biological sample is fully or partially removed from the substrate.
  • a biological sample is not removed from the substrate.
  • the biological sample is not removed from the substrate prior to releasing a capture probe (e.g., a capture probe bound to an analyte) from the substrate.
  • a capture probe e.g., a capture probe bound to an analyte
  • such releasing comprises cleavage of the capture probe from the substrate (e.g., via a cleavage domain).
  • such releasing does not comprise releasing the capture probe from the substrate (e.g., a copy of the capture probe bound to an analyte can be made and the copy can be released from the substrate, e.g., via denaturation).
  • the biological sample is not removed from the substrate prior to analysis of an analyte bound to a capture probe after it is released from the substrate. In some embodiments, the biological sample remains on the substrate during removal of a capture probe from the substrate and/or analysis of an analyte bound to the capture probe after it is released from the substrate. In some embodiments, the biological sample remains on the substrate during removal (e.g., via denaturation) of a copy of the capture probe (e.g., complement).
  • a copy of the capture probe e.g., complement
  • analysis of an analyte bound to a capture probe from the substrate can be performed without subjecting the biological sample to enzymatic and/or chemical degradation of the cells (e.g., permeabilized cells) or ablation of the tissue (e.g., laser ablation).
  • the biological sample e.g., permeabilized cells
  • ablation of the tissue e.g., laser ablation
  • At least a portion of the biological sample is not removed from the substrate.
  • a portion of the biological sample can remain on the substrate prior to releasing a capture probe (e.g., a capture prove bound to an analyte) from the substrate and/or analyzing an analyte bound to a capture probe released from the substrate.
  • at least a portion of the biological sample is not subjected to enzymatic and/or chemical degradation of the cells (e.g., permeabilized cells) or ablation of the tissue (e.g., laser ablation) prior to analysis of an analyte bound to a capture probe from the substrate.
  • analyte e.g., detecting the location of an analyte, e.g., a biological analyte
  • a biological sample e.g., present in a biological sample
  • permeabilizing e.g., providing a solution comprising a permeabilization reagent to
  • the biological sample on the substrate
  • contacting the biological sample with an array comprising a plurality of capture probes wherein a capture probe of the plurality captures the biological analyte
  • analyzing the captured biological analyte thereby spatially detecting the biological analyte; where the biological sample is not removed from the substrate.
  • methods for spatially detecting a biological analyte of interest from a biological sample that include: (a) staining and imaging a biological sample on a substrate; (b) providing a solution comprising a permeabilization reagent to the biological sample on the substrate; (c) contacting the biological sample with an array on a substrate, wherein the array comprises one or more capture probe pluralities thereby allowing the one or more pluralities of capture probes to capture the biological analyte of interest; and (d) analyzing the captured biological analyte, thereby spatially detecting the biological analyte of interest; where the biological sample is not removed from the substrate.
  • the method further includes subjecting a region of interest in the biological sample to spatial transcriptomic analysis.
  • one or more of the capture probes includes a capture domain.
  • one or more of the capture probes comprises a unique molecular identifier (UMI).
  • UMI unique molecular identifier
  • one or more of the capture probes comprises a cleavage domain.
  • the cleavage domain comprises a sequence recognized and cleaved by uracil-DNA glycosylase, apurinic/apyrimidinic (AP) endonuclease (APE1), uracil-specific excision reagent (USER), and/or an endonuclease VIII.
  • one or more capture probes do not comprise a cleavage domain and is not cleaved from the array.
  • a capture probe can be extended (an “extended capture probe,” e.g., as described herein).
  • extending a capture probe can include generating cDNA from a captured (hybridized) RNA. This process involves synthesis of a complementary strand of the hybridized nucleic acid, e.g., generating cDNA based on the captured RNA template (the RNA hybridized to the capture domain of the capture probe).
  • the captured (hybridized) nucleic acid e.g., RNA
  • acts as a template for the extension e.g., reverse transcription, step.
  • the capture probe is extended using reverse transcription.
  • reverse transcription includes synthesizing cDNA (complementary or copy DNA) from RNA, e.g., (messenger RNA), using a reverse transcriptase.
  • reverse transcription is performed while the tissue is still in place, generating an analyte library, where the analyte library includes the spatial barcodes from the adjacent capture probes.
  • the capture probe is extended using one or more DNA polymerases.
  • a capture domain of a capture probe includes a primer for producing the complementary strand of a nucleic acid hybridized to the capture probe, e.g., a primer for DNA polymerase and/or reverse transcription.
  • the nucleic acid, e.g., DNA and/or cDNA, molecules generated by the extension reaction incorporate the sequence of the capture probe.
  • the extension of the capture probe e.g., a DNA polymerase and/or reverse transcription reaction, can be performed using a variety of suitable enzymes and protocols.
  • a full-length DNA (e.g., cDNA) molecule is generated.
  • a “full-length” DNA molecule refers to the whole of the captured nucleic acid molecule. However, if a nucleic acid (e.g., RNA) was partially degraded in the tissue sample, then the captured nucleic acid molecules will not be the same length as the initial RNA in the tissue sample.
  • the 3′ end of the extended probes e.g., first strand cDNA molecules, is modified. For example, a linker or adaptor can be ligated to the 3′ end of the extended probes.
  • RNA ligase a single stranded ligation enzyme
  • CircligaseTM available from Lucigen, Middleton, WI.
  • template switching oligonucleotides are used to extend cDNA in order to generate a full-length cDNA (or as close to a full-length cDNA as possible).
  • a second strand synthesis helper probe (a partially double stranded DNA molecule capable of hybridizing to the 3′ end of the extended capture probe), can be ligated to the 3′ end of the extended probe, e.g., first strand cDNA, molecule using a double stranded ligation enzyme such as T4 DNA ligase.
  • a polynucleotide tail e.g., a poly(A) tail, is incorporated at the 3′ end of the extended probe molecules. In some embodiments, the polynucleotide tail is incorporated using a terminal transferase active enzyme.
  • double-stranded extended capture probes are treated to remove any unextended capture probes prior to amplification and/or analysis, e.g., sequence analysis. This can be achieved by a variety of methods, e.g., using an enzyme to degrade the unextended probes, such as an exonuclease enzyme, or purification columns.
  • extended capture probes are amplified to yield quantities that are sufficient for analysis, e.g., via DNA sequencing.
  • the first strand of the extended capture probes e.g., DNA and/or cDNA molecules
  • acts as a template for the amplification reaction e.g., a polymerase chain reaction.
  • the amplification reaction incorporates an affinity group onto the extended capture probe (e.g., RNA-cDNA hybrid) using a primer including the affinity group.
  • the primer includes an affinity group and the extended capture probes includes the affinity group.
  • the affinity group can correspond to any of the affinity groups described previously.
  • the extended capture probes including the affinity group can be coupled to a substrate specific for the affinity group.
  • the substrate can include an antibody or antibody fragment.
  • the substrate includes avidin or streptavidin and the affinity group includes biotin.
  • the substrate includes maltose and the affinity group includes maltose-binding protein.
  • the substrate includes maltose-binding protein and the affinity group includes maltose.
  • amplifying the extended capture probes can function to release the extended probes from the surface of the substrate, insofar as copies of the extended probes are not immobilized on the substrate.
  • the extended capture probe or complement or amplicon thereof is released.
  • the step of releasing the extended capture probe or complement or amplicon thereof from the surface of the substrate can be achieved in a number of ways.
  • an extended capture probe or a complement thereof is released from the array by nucleic acid cleavage and/or by denaturation (e.g., by heating to denature a double-stranded molecule).
  • the extended capture probe or complement or amplicon thereof is released from the surface of the substrate (e.g., array) by physical means.
  • the extended capture probe is indirectly immobilized on the array substrate, e.g., via hybridization to a surface probe, it can be sufficient to disrupt the interaction between the extended capture probe and the surface probe.
  • Methods for disrupting the interaction between nucleic acid molecules include denaturing double stranded nucleic acid molecules are known in the art.
  • a straightforward method for releasing the DNA molecules i.e., of stripping the array of extended probes is to use a solution that interferes with the hydrogen bonds of the double stranded molecules.
  • the extended capture probe is released by an applying heated solution, such as water or buffer, of at least 85° C., e.g., at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99° C.
  • a solution including salts, surfactants, etc. that can further destabilize the interaction between the nucleic acid molecules is added to release the extended capture probe from the substrate.
  • the extended capture probe is released from the surface of the substrate by cleavage.
  • the cleavage domain of the extended capture probe can be cleaved by any of the methods described herein.
  • the extended capture probe is released from the surface of the substrate, e.g., via cleavage of a cleavage domain in the extended capture probe, prior to the step of amplifying the extended capture probe.
  • probes complementary to the extended capture probe can be contacted with the substrate.
  • the biological sample can be in contact with the substrate when the probes are contacted with the substrate.
  • the biological sample can be removed from the substrate prior to contacting the substrate with probes.
  • the probes can be labeled with a detectable label (e.g., any of the detectable labels described herein).
  • probes that do not specially bind (e.g., hybridize) to an extended capture probe can be washed away.
  • probes complementary to the extended capture probe can be detected on the substrate (e.g., imaging, any of the detection methods described herein).
  • probes complementary to an extended capture probe can be about 4 nucleotides to about 100 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 10 nucleotides to about 90 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 20 nucleotides to about 80 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 30 nucleotides to about 60 nucleotides long.
  • probes (e.g., detectable probes) complementary to an extended capture probe can be about 40 nucleotides to about 50 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 41, about 42, about 43, about 44, about 45, about 46, about 47, about 48, about 49, about 50, about 51, about 52, about 53, about 54, about 55, about 56, about 57, about 58, about 59, about 60, about 61, about 62, about 63, about 64, about 65, about 66, about 67, about 68, about 69, about 70, about 71, about
  • about 1 to about 100 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe.
  • about 1 to about 10 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe.
  • about 10 to about 100 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe.
  • about 20 to about 90 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe.
  • about 30 to about 80 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe.
  • about 40 to about 70 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe.
  • about 50 to about 60 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe.
  • the probes can be complementary to a single analyte (e.g., a single gene). In some embodiments, the probes can be complementary to one or more analytes (e.g., analytes in a family of genes). In some embodiments, the probes (e.g., detectable probes) can be for a panel of genes associated with a disease (e.g., cancer, Alzheimer's disease, Parkinson's disease).
  • a disease e.g., cancer, Alzheimer's disease, Parkinson's disease.
  • the ligated probe and capture probe can be amplified or copied, creating a plurality of cDNA molecules.
  • cDNA can be denatured from the capture probe template and transferred (e.g., to a clean tube) for amplification, and/or library construction.
  • the spatially-barcoded cDNA can be amplified via PCR prior to library construction.
  • the cDNA can then be enzymatically fragmented and size-selected in order to optimize for cDNA amplicon size.
  • P5 and P7 sequences directed to capturing the amplicons on a sequencing flowcell can be appended to the amplicons, i7, and i5 can be used as sample indexes, and TruSeq Read 2 can be added via End Repair, A-tailing, Adaptor Ligation, and PCR.
  • the cDNA fragments can then be sequenced using paired-end sequencing using TruSeq Read 1 and TruSeq Read 2 as sequencing primer sites.
  • a skilled artisan will understand that additional or alternative sequences used by other sequencing instruments or technologies are also equally applicable for use in the aforementioned methods as the current methods are not limited to any a particular sequencing platform.
  • sequencing can be performed on the intact sample.
  • sequenced polynucleotides can be, for example, nucleic acid molecules such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), including variants or derivatives thereof (e.g., single stranded DNA or DNA/RNA hybrids, and nucleic acid molecules with a nucleotide analog).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • variants or derivatives thereof e.g., single stranded DNA or DNA/RNA hybrids, and nucleic acid molecules with a nucleotide analog
  • Sequencing of polynucleotides can be performed by various systems. More generally, sequencing can be performed using nucleic acid amplification, polymerase chain reaction (PCR) (e.g., digital PCR and droplet digital PCR (ddPCR), quantitative PCR, real time PCR, multiplex PCR, PCR-based single plex methods, emulsion PCR), and/or isothermal amplification.
  • PCR polymerase chain reaction
  • ddPCR digital PCR and droplet digital PCR
  • quantitative PCR quantitative PCR
  • real time PCR real time PCR
  • multiplex PCR multiplex PCR
  • PCR-based single plex methods emulsion PCR
  • a capture probe capture domain is blocked prior to adding a second probe oligonucleotide to a cell, e.g., a cell in a biological sample. This prevents the capture probe capture domain from prematurely hybridizing to the capture domain.
  • a blocking probe is used to block or modify the free 3′ end of the capture probe capture domain.
  • a blocking probe can be hybridized to the capture probe capture domain of the second probe to mask the free 3′ end of the capture probe capture domain.
  • a blocking probe can be a hairpin probe or partially double stranded probe.
  • the free 3′ end of the capture probe capture domain of the second probe can be blocked by chemical modification, e.g., addition of an azidomethyl group as a chemically reversible capping moiety such that the capture probes do not include a free 3′ end.
  • a blocking probe can be referred to as a capture probe capture domain blocking moiety.
  • the blocking probes can be reversibly removed.
  • blocking probes can be applied to block the free 3′ end of either or both the capture probe capture domain and/or the capture probes. Blocking interaction between the capture probe capture domain and the capture probe on the substrate can reduce non-specific capture to the capture probes.
  • the blocking probes can be removed from the 3′ end of the capture probe capture domain and/or the capture probe, and the ligation product can migrate to and become bound by the capture probes on the substrate.
  • the removal includes denaturing the blocking probe from capture probe capture domain and/or capture probe. In some embodiments, the removal includes removing a chemically reversible capping moiety. In some embodiments, the removal includes digesting the blocking probe with an RNase (e.g., RNase H).
  • RNase e.g., RNase H
  • the blocking probes are oligo (dT) blocking probes.
  • the oligo (dT) blocking probes can have a length of 15-30 nucleotides.
  • the oligo (dT) blocking probes can have a length of 10-50 nucleotides, e.g., 10-50, 10-45, 10-40, 10-35, 10-30, 10-25, 10-20, 10-15, 15-50, 15-45, 15-40, 15-35, 15-30, 15-25, 15-20, 20-50, 20-45, 20-40, 20-35, 20-30, 20-25, 25-50, 25-45, 25-40, 25-35, 25-30, 30-50, 30-45, 30-40, 30-35, 35-50, 35-45, 35-40, 40-50, 40-45, or 45-50 nucleotides.
  • the analyte capture agents can be blocked at different temperatures (e.g., 4° C. and 37° C.).
  • kits and compositions that include one or more reagents to detect one or more analytes and/or one or more moieties described herein.
  • the kit includes a substrate comprising a plurality of capture probes comprising a spatial barcode and the capture domain.
  • the kit includes a plurality of probes (e.g., a first probe, a second probe, one or more spanning probes, and/or a third oligonucleotide).
  • a non-limiting example of a kit used to perform any of the methods described herein includes: (a) a substrate comprising a plurality of capture probes comprising a spatial barcode and a capture domain; (b) a system comprising: a plurality of first probes and second probes, wherein a first probe and a second probe each comprises sequences that are substantially complementary to an analyte, and wherein the second probe comprises a capture binding domain; and (c) instructions for performing the method of any one of the preceding claims.
  • kit used to perform any of the methods described herein includes: (a) an array comprising a plurality of capture probes; (b) a plurality of probes comprising a first probe and a second, wherein the first probe and the second probe are substantially complementary to adjacent sequences of an analyte, wherein the second probe comprises (i) a capture probe binding domain that is capable of binding to a capture domain of the capture probe and (ii) a linker sequence; (c) a plurality of enzymes comprising a ribonuclease and a ligase; and (d) instructions for performing the method of any one of the preceding claims.
  • kit used to perform any of the methods described herein includes: (a) an array comprising a plurality of capture probes; (b) a plurality of probes comprising a first probe and a second probe, wherein the first probe and the second probe are substantially complementary to adjacent sequences of an analyte, wherein the first probe includes a linker sequence, wherein the second probe comprises a capture probe binding domain that is capable of binding to a capture domain of the capture probe; (c) a plurality of enzymes comprising a ribonuclease and a ligase; and (d) instructions for performing the method of any one of the preceding claims.
  • a library of small molecules with particular targets is selected.
  • the small molecules are loaded into a 96-well plate, and particles that encapsulate the small molecules are added to each well.
  • Particles are barcoded with a nucleic acid barcode (e.g., a moiety sequence) such that there is a predetermined 1:1 mapping between the small molecule and the barcode sequence (e.g., moiety sequence) present in each particle.
  • a nucleic acid barcoded small molecule library is generated. See FIG. 10 , for example.
  • a small molecule library of Example 1 is incubated with a cell line, allowing the small molecule to penetrate the cell. See FIG. 11 , for example.
  • Cells that uptake the small molecule are selected for, and cells including small molecules then are contacted with an array as described herein.
  • the cells are permeabilized, allowing access to biological analytes within a cell.
  • a biological analyte from the cell is then bound to a capture probe on the array at a distinct spatial position.
  • the cells are removed from the array, and the bound probe is reverse transcribed.
  • the capture probes, analytes, and sequence(s) identifying the small molecule of the cell are analyzed, and the biological analyte with a molecular barcode of the capture probe and sequence(s) identifying the small molecule of the cell are correlated with the distinct spatial position of the array, thus profiling the biological analyte as having been present in the cell including a small molecule. See FIG. 12 , for example.
  • Example 3 Method for Determining the Presence or Abundance of a Moiety in a Cell Comprising a Small Molecule
  • a small molecule library of Example 1 is incubated with a cell line, allowing the small molecule to penetrate the cell. See FIG. 11 , for example.
  • Cells that uptake the small molecule are selected for, and cells including small molecules then are contacted with an array as described herein.
  • the cells can then be imaged.
  • the cells are permeabilized, allowing access to the moiety sequence within a cell.
  • a moiety sequence from the cell is then bound to a capture probe on the array at a distinct spatial position.
  • the cells are removed from the array, and the bound probe is reverse transcribed.
  • the capture probes and sequence(s) identifying the small molecule of the cell are analyzed and the identity of the small molecule of the cell is correlated with the distinct spatial position on the array, thus profiling the biological analyte as having been present in the cell including a small molecule. See FIG. 12 , for example.
  • Example 4 Method for Profiling a Biological Analyte in a Genetically Perturbed Cell
  • a lentiviral library is selected.
  • the lentiviral library is transduced into cells, generating a genetically-perturbed cells. See FIG. 13 , for example.
  • genetically-perturbed cells are disposed on an array as described herein.
  • the cells are permeabilized, and biological analytes are released and bound to capture probes on the array at distinct spatial positions.
  • the cells are removed from the array, and reverse transcription/barcoding can be performed on the array.
  • the capture probes, analytes, and sequence(s) identifying the genetic perturbation of the cell are analyzed, and the biological analyte with a molecular barcode of the capture probe and sequence(s) identifying the genetic perturbation of the cell are correlated with the distinct spatial position of the substrate, thus profiling the biological analyte as having been present in the genetically-perturbed cell. See FIG. 14 , for example.
  • the second barcode e.g., moiety sequence

Abstract

This disclosure relates to methods for spatial profiling of analytes present in a biological sample. Also provided are methods for using spatially barcoded arrays to detect a biological analyte in a cell comprising a small molecule or exogenous analytes, including nucleic acids such as DNA or RNA and protein. Compostions using the methods also are disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 17/153,384, filed Jan. 20, 2021, which claims priority to U.S. Provisional Patent Application No. 62/963,897, filed Jan. 21, 2020; and U.S. Provisional Patent Application No. 62/963,879, filed Jan. 21, 2020. The contents of each of these applications are incorporated herein by reference in their entireties.
  • BACKGROUND
  • Cells within a tissue of a subject have differences in cell morphology and/or function due to varied analyte levels (e.g., gene and/or protein expression) within the different cells. The specific position of a cell within a tissue (e.g., the cell's position relative to neighboring cells or the cell's position relative to the tissue microenvironment) can affect, e.g., the cell's morphology, differentiation, fate, viability, proliferation, behavior, and signaling and cross-talk with other cells in the tissue.
  • Spatial heterogeneity has been previously studied using techniques that only provide data for a small handful of analytes in the context of an intact tissue or a portion of a tissue, or provide a lot of analyte data for single cells, but fail to provide information regarding the position of the single cell in a parent biological sample (e.g., tissue sample).
  • Genetic material, and related gene and protein expression, influences cellular fate and behavior. Screens such as those based on CRISPR can help elucidate gene function. However, current methods have inherent limitations, and it remains difficult to assay complex phenotypes including transcriptional profiles.
  • SUMMARY
  • This disclosure relates to methods for spatial profiling at least one biological analyte present in a cell comprising a small molecule.
  • In one aspect provided herein is a method for spatial profiling a biological analyte in a cell comprising: (a) contacting the cell with a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality comprises a first barcode and a capture domain, and wherein the cell comprises a small molecule and a second barcode; (b) releasing the biological analyte from the cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; (c) detecting the biological analyte bound by the capture probe; and (e) correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position. In some embodiments, the small molecule and second barcode are introduced into the cell using a particle.
  • In some instances, disclosed herein is a method for determining the presence or abundance of a moiety in a cell comprising: (a) contacting the cell with an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises: (i) a spatial barcode and (ii) a capture domain, wherein the cell comprises the moiety and wherein the moiety comprises a moiety sequence; (b) hybridizing a moiety sequence to the capture domain; and (c) determining (i) all or a part of the sequence of the moiety sequence bound to the capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the presence or abundance of the moiety in the cell.
  • Also provided herein is a method for spatial profiling a biological analyte in a cell comprising: (a) contacting a plurality of cells with a plurality of particles, wherein a particle of the plurality of particles comprises a small molecule and a second barcode, and wherein the cell uptakes the small molecule and the second barcode; (b) contacting the cell with a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality comprises a first barcode and a capture domain; (c) releasing the biological analyte from the cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; (d) detecting the biological analyte bound by the capture probe; and (e) correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • In some instances, the method further comprises: (a) hybridizing an analyte to a second capture domain of a second probe, wherein the second probe comprises a second spatial barcode and the second capture domain, and wherein the second capture probe is in proximity to the capture probe that is hybridized to the moiety sequence; and (b) determining (i) all or a part of a sequence of an analyte bound to the second capture domain, or a complement thereof, and (ii) all or a part of the sequence of the second spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the abundance of the analyte in the cell.
  • In some instances, the moiety sequence is substantially complementary to the capture domain, optionally wherein the moiety sequence is a polyadenylated sequence. In some instances, the moiety further comprises a particle introduced into the cell, wherein the particle comprises a small molecule and the moiety sequence. In some instances, the cell is from a plurality of cells, and wherein the plurality of cells is contacted with a plurality of particles, and wherein the cell uptakes the particle.
  • In some embodiments, the particle is a nanoparticle. In some embodiments, the particle comprises gold, silica, polyethylene glycol (PEG)-poly(lactide), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PE2000, silver, cadmium-selenide, poly(methylacrylic) acid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-cholesterol-1,2-distearoyl-sn-glycero-3-phosphocholine (POPG), poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol, or a combination thereof.
  • In some embodiments, the particle comprises a surface modification. In some embodiments, the surface modification comprises cysteine-cyan5, a cationic monolayer, a nucleic acid, poly(isobutylene-alt-maleic anhydride), a coating with fetal bovine serum (FBS), citrate, 5-aminovaleric acid, L-DOPA, melatonin, serotonin-HCl, MUS/OT, glutathione/glucose, polyethyleneimine, or a combination thereof.
  • In some embodiments, the small molecule binds to a biological target. In some embodiments, the biological target is a protein or a nucleic acid. In some embodiments, the protein is a kinase, a receptor, a channel, an enzyme, or a combination thereof. In some embodiments, the protein is a G protein-coupled receptor, a kinase, a protease, an esterase, a phosphatase, ligand-gated ion channel, a voltage-gated ion channel, or a nuclear receptor.
  • In some embodiments, the small molecule inhibits the biological target. In some embodiments, the small molecule activates the biological target. In some embodiments, the cell is a mammalian cell.
  • In one aspect, provided herein is a method for spatial profiling a biological analyte present in a genetically-perturbed cell comprising: (a) contacting the genetically-perturbed cell with a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality comprises a first barcode and a capture domain; (b) releasing the biological analyte from the genetically-perturbed cell, wherein the biological analyte is bound by a capture probe at a distinct spatial position of the substrate; (c) detecting the biological analyte bound by the capture probe; and (e) correlating the biological analyte with the first barcode from the capture probe at the distinct spatial position of the substrate; thus profiling the biological analyte as present in the genetically-perturbed cell at the distinct spatial position.
  • In some embodiments, the genetically-perturbed cell comprises a clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic perturbation. In some embodiments, the genetically-perturbed cell comprises a second barcode that identifies the genetic perturbation of the cell.
  • In some embodiments, the step of correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate further comprises correlating the genetic perturbation of the cell to a distinct spatial position of the substrate using the second barcode that identifies the genetic perturbation of the cell.
  • In some embodiments, the genetically-perturbed cell comprises a polyadenylated nucleotide sequence that identifies the genetic perturbation. In some embodiments, the step of correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate further comprises correlating the genetic perturbation of the cell to a distinct spatial position of the substrate using the polyadenylated nucleotide sequence.
  • Also provided herein is a method for spatial profiling a biological analyte present in a genetically-perturbed cell comprising: (a) transducing a cell with a vector to form the genetically-perturbed cell; (b) contacting the genetically-perturbed cell with a substrate comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a first barcode and a capture domain; (c) releasing the biological analyte from the genetically-perturbed cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; (e) detecting the biological analyte bound by the capture probe; and (f) correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the genetically-perturbed cell at the distinct spatial position.
  • In some embodiments, the vector is a lentiviral vector. In some embodiments, the lentiviral vector is a CRISPR lentiviral vector. In some embodiments, the CRISPR lentiviral vector comprises a guide RNA (gRNA).
  • In some embodiments, the CRISPR lentiviral vector comprises a second barcode identifying the gRNA. In some embodiments, the gRNA is a single guide RNA (sgRNA). In some embodiments, the step of correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate further comprises correlating the genetic perturbation to a distinct spatial position of the substrate using a second barcode that identifies the genetic perturbation.
  • In some embodiments, the vector comprises a polyadenylated or an oligo (dT) nucleotide sequence. In some embodiments, correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate further comprises correlating the genetic perturbation to the distinct spatial position of the substrate using the polyadenylated or the oligo (dT) nucleotide sequence. In some embodiments, the genetically-perturbed cell is a mammalian cell.
  • In some embodiments, the step of releasing the biological analyte comprises permeabilizing the cell. In some embodiments, the method further comprises fixing the cell prior to the permeabilizing the cell. In some embodiments, the method further comprises staining the cell prior to the permeabilizing the cell. In some embodiments, the cell is stained after the fixing the cell. In some embodiments, the cell is fixed and permeabilized prior to releasing the biological analyte from the biological sample. In some embodiments, the permeabilizing the cell comprises electrophoresis. In some embodiments, the permeabilizing the cell comprises administering a permeabilization reagent.
  • In some embodiments, the step of releasing the biological analyte comprises permeabilizing the genetically-perturbed cell. In some embodiments, the method further comprises fixing the genetically-perturbed cell prior to permeabilizing the genetically-perturbed cell. In some embodiments, the method further comprises staining the genetically-perturbed cell prior to permeabilizing the genetically-perturbed cell. In some embodiments, the genetically-perturbed cell is stained after the genetically-perturbed cell is fixed. In some embodiments, the genetically-perturbed cell is fixed and permeabilized prior to the step of releasing the biological analyte from the biological sample.
  • In some embodiments, the step of permeabilizing comprises electrophoresis. In some embodiments, the step of permeabilizing comprises administering a permeabilization reagent. In some embodiments, the method further comprises imaging the genetically-perturbed cell. In some embodiments, the imaging is performed prior to releasing the biological analyte from the genetically-perturbed cell. In some embodiments, the imaging is performed after releasing the biological analyte from the genetically-perturbed cell. In some embodiments, the imaging is used to determine the morphology of the genetically-perturbed cell.
  • In some instances, the cell is a mammalian cell. In some instances, the cell is permeabilized prior to hybridizing the analyte to the capture domain. In some instances, the methods further include staining the cell prior to permeabilizing the cell.
  • In some embodiments, the method further comprises imaging the cell. In some embodiments, the imaging is performed prior to releasing the biological analyte from the cell. In some embodiments, the imaging is performed after releasing the biological analyte from the cell. In some embodiments, the imaging is used to determine the morphology of the cell.
  • In some embodiments, the capture probe comprises a unique molecular identifier. In some embodiments, the capture probe comprises a cleavage domain. In some embodiments, the capture probe comprises a functional domain. In some embodiments, the functional domain is a primer sequence. In some embodiments, the capture probe comprises a capture domain. In some embodiments, the capture domain comprises a poly-dT sequence. In some embodiments, the capture domain is configured to hybridize to a poly-A tail of an mRNA.
  • All publications, patents, patent applications, and information available on the internet and mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, patent application, or item of information was specifically and individually indicated to be incorporated by reference. To the extent publications, patents, patent applications, and items of information incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
  • Where values are described in terms of ranges, it should be understood that the description includes the disclosure of all possible sub-ranges within such ranges, as well as specific numerical values that fall within such ranges irrespective of whether a specific numerical value or specific sub-range is expressly stated.
  • The term “each,” when used in reference to a collection of items, is intended to identify an individual item in the collection but does not necessarily refer to every item in the collection, unless expressly stated otherwise, or unless the context of the usage clearly indicates otherwise.
  • The singular form “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a cell” includes one or more cells, comprising mixtures thereof “A and/or B” is used herein to include all of the following alternatives: “A”, “B”, “A or B”, and “A and B”.
  • Various embodiments of the features of this disclosure are described herein. However, it should be understood that such embodiments are provided merely by way of example, and numerous variations, changes, and substitutions can occur to those skilled in the art without departing from the scope of this disclosure. It should also be understood that various alternatives to the specific embodiments described herein are also within the scope of this disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following drawings illustrate certain embodiments of the features and advantages of this disclosure. These embodiments are not intended to limit the scope of the appended claims in any manner. Like reference symbols in the drawings indicate like elements.
  • FIG. 1 is a schematic diagram showing an example of a barcoded capture probe, as described herein.
  • FIG. 2 is a schematic illustrating a cleavable capture probe, wherein the cleaved capture probe can enter into a non-permeabilized cell and bind to target analytes within the sample.
  • FIG. 3 is a schematic diagram of an exemplary multiplexed spatially-barcoded feature.
  • FIG. 4 is a schematic diagram of an exemplary analyte capture agent.
  • FIG. 5 is a schematic diagram depicting an exemplary interaction between a feature-immobilized capture probe 524 and an analyte capture agent 526.
  • FIGS. 6A, 6B, and 6C are schematics illustrating how streptavidin cell tags can be utilized in an array-based system to produce a spatially-barcoded cells or cellular contents.
  • FIG. 7 is a schematic showing the arrangement of barcoded features within an array.
  • FIG. 8 shows an example of a microfluidic channel structure 800 for partitioning dissociated sample (e.g., biological particles or individual cells from a sample).
  • FIGS. 9A-C shows 9A) an example of a microfluidic channel structure 900 for delivering spatial barcode carrying beads to droplets, 9B) shows a cross-section view of another example of a microfluidic channel structure 950 with a geometric feature for controlled partitioning, and 9C) shows an example of a workflow schematic.
  • FIG. 10 is a schematic depicting the generation of barcoded small molecule libraries.
  • FIG. 11 is a schematic depicting multiplexed alteration of mammalian cells with a small molecule library.
  • FIG. 12 is a schematic depicting programmable capture sequences that enable targeted or unbiased capture of sequences from cells comprising a small molecule.
  • FIG. 13 is a schematic depicting multiplexed alteration of mammalian cells.
  • FIG. 14 is a schematic depicting programmable capture sequences that enable targeted or unbiased capture of sequences from genetically-perturbed cells.
  • DETAILED DESCRIPTION
  • Pooled screens have the potential to exponentially improve throughput and reduce overall costs dramatically due to the massive parallelization achieved through pooling. However, most pooling strategies to date have primarily focused on pooled screens involving nucleic acids (e.g., gRNA or plasmids). Moreover, methods to perform pooled genetic perturbation screens with morphometric phenotypic readouts combining spatial information with sequencing do not exist. A pooled screening approach with morphometric readout and spatial analysis using barcoded arrays offers a significant improvement in overall throughput and cost of performing pooled small molecule perturbation screens as well as pooled genetic perturbation screens. Thus, provided herein are methods for profiling a biological analyte, e.g., any of the analytes described herein, in a cell including a moiety (e.g., a small molecule and/or a genetic perturbation introduced into the cell). Also provided herein are methods for determining the abundance of a moiety, e.g., any of the moieties described herein, in a cell. Also provided herein are methods for determining the location of a biological analyte, e.g., any of the analytes as described herein, and/or a moiety, e.g., any of the moieties described herein, in a biological sample.
  • Spatial analysis methodologies and compositions described herein can provide a vast amount of analyte and/or expression data for a variety of analytes within a biological sample at high spatial resolution, while retaining native spatial context. Spatial analysis methods and compositions can include, e.g., the use of a capture probe including a spatial barcode (e.g., a nucleic acid sequence that provides information as to the location or position of an analyte within a cell or a tissue sample (e.g., mammalian cell or a mammalian tissue sample) and a capture domain that is capable of binding to an analyte (e.g., a protein and/or a nucleic acid) produced by and/or present in a cell. Spatial analysis methods and compositions can also include the use of a capture probe having a capture domain that captures an intermediate agent for indirect detection of an analyte. For example, the intermediate agent can include a nucleic acid sequence (e.g., a barcode) associated with the intermediate agent. Detection of the intermediate agent is therefore indicative of the analyte in the cell or tissue sample.
  • Non-limiting aspects of spatial analysis methodologies and compositions are described in U.S. Pat. Nos. 10,774,374, 10,724,078, 10,480,022, 10,059,990, 10,041,949, 10,002,316, 9,879,313, 9,783,841, 9,727,810, 9,593,365, 8,951,726, 8,604,182, 7,709,198, U.S. Patent Application Publication Nos. 2020/239946, 2020/080136, 2020/0277663, 2020/024641, 2019/330617, 2019/264268, 2020/256867, 2020/224244, 2019/194709, 2019/161796, 2019/085383, 2019/055594, 2018/216161, 2018/051322, 2018/0245142, 2017/241911, 2017/089811, 2017/067096, 2017/029875, 2017/0016053, 2016/108458, 2015/000854, 2013/171621, WO 2018/091676, WO 2020/176788, Rodriques et al., Science 363(6434):1463-1467, 2019; Lee et al., Nat. Protoc. 10(3):442-458, 2015; Trejo et al., PLoS ONE 14(2):e0212031, 2019; Chen et al., Science 348(6233):aaa6090, 2015; Gao et al., BMC Biol. 15:50, 2017; and Gupta et al., Nature Biotechnol. 36:1197-1202, 2018; the Visium Spatial Gene Expression Reagent Kits User Guide (e.g., Rev C, dated June 2020), and/or the Visium Spatial Tissue Optimization Reagent Kits User Guide (e.g., Rev C, dated July 2020), both of which are available at the 10× Genomics Support Documentation website, and can be used herein in any combination. Further non-limiting aspects of spatial analysis methodologies and compositions are described herein.
  • Some general terminology that may be used in this disclosure can be found in Section (I)(b) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Typically, a “barcode” is a label, or identifier, that conveys or is capable of conveying information (e.g., information about an analyte in a sample, a bead, and/or a capture probe). A barcode can be part of an analyte, or independent of an analyte. A barcode can be attached to an analyte. A particular barcode can be unique relative to other barcodes. For the purpose of this disclosure, an “analyte” can include any biological substance, structure, moiety, or component to be analyzed. The term “target” can similarly refer to an analyte of interest.
  • Analytes can be broadly classified into one of two groups: nucleic acid analytes, and non-nucleic acid analytes. Examples of non-nucleic acid analytes include, but are not limited to, lipids, carbohydrates, peptides, proteins, glycoproteins (N-linked or O-linked), lipoproteins, phosphoproteins, specific phosphorylated or acetylated variants of proteins, amidation variants of proteins, hydroxylation variants of proteins, methylation variants of proteins, ubiquitylation variants of proteins, sulfation variants of proteins, viral proteins (e.g., viral capsid, viral envelope, viral coat, viral accessory, viral glycoproteins, viral spike, etc.), extracellular and intracellular proteins, antibodies, and antigen binding fragments. In some embodiments, the analyte(s) can be localized to subcellular location(s), including, for example, organelles, e.g., mitochondria, Golgi apparatus, endoplasmic reticulum, chloroplasts, endocytic vesicles, exocytic vesicles, vacuoles, lysosomes, etc. In some embodiments, analyte(s) can be peptides or proteins, including without limitation antibodies and enzymes. Additional examples of analytes can be found in Section (I)(c) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. In some embodiments, an analyte can be detected indirectly, such as through detection of an intermediate agent, for example, a ligation product or an analyte capture agent (e.g., an oligonucleotide-conjugated antibody), such as those described herein.
  • A “biological sample” is typically obtained from the subject for analysis using any of a variety of techniques including, but not limited to, biopsy, surgery, and laser capture microscopy (LCM), and generally includes cells and/or other biological material from the subject. In some embodiments, a biological sample can be a tissue section. In some embodiments, a biological sample can be a fixed and/or stained biological sample (e.g., a fixed and/or stained tissue section). Non-limiting examples of stains include histological stains (e.g., hematoxylin and/or eosin) and immunological stains (e.g., fluorescent stains). In some embodiments, a biological sample (e.g., a fixed and/or stained biological sample) can be imaged. Biological samples are also described in Section (I)(d) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • In some embodiments, a biological sample is permeabilized with one or more permeabilization reagents. For example, permeabilization of a biological sample can facilitate analyte capture. Exemplary permeabilization agents and conditions are described in Section (I)(d)(ii)(13) or the Exemplary Embodiments Section of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Array-based spatial analysis methods involve the transfer of one or more analytes from a biological sample to an array of features on a substrate, where each feature is associated with a unique spatial location on the array. Subsequent analysis of the transferred analytes includes determining the identity of the analytes and the spatial location of the analytes within the biological sample. The spatial location of an analyte within the biological sample is determined based on the feature to which the analyte is bound (e.g., directly or indirectly) on the array, and the feature's relative spatial location within the array.
  • A “capture probe” refers to any molecule capable of capturing (directly or indirectly) and/or labelling an analyte (e.g., an analyte of interest) in a biological sample. In some embodiments, the capture probe is a nucleic acid or a polypeptide. In some embodiments, the capture probe includes a barcode (e.g., a spatial barcode and/or a unique molecular identifier (UMI)) and a capture domain). In some embodiments, a capture probe can include a cleavage domain and/or a functional domain (e.g., a primer-binding site, such as for next-generation sequencing (NGS)). See, e.g., Section (II)(b) (e.g., subsections (i)-(vi)) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Generation of capture probes can be achieved by any appropriate method, including those described in Section (II)(d)(ii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • FIG. 1 is a schematic diagram showing an exemplary capture probe, as described herein. As shown, the capture probe 102 is optionally coupled to a feature 101 by a cleavage domain 103, such as a disulfide linker. The capture probe can include a functional sequence 104 that are useful for subsequent processing. The functional sequence 104 can include all or a part of sequencer specific flow cell attachment sequence (e.g., a P5 or P7 sequence), all or a part of a sequencing primer sequence, (e.g., a R1 primer binding site, a R2 primer binding site), or combinations thereof. The capture probe can also include a spatial barcode 105. The capture probe can also include a unique molecular identifier (UMI) sequence 106. While FIG. 1 shows the spatial barcode 105 as being located upstream (5′) of UMI sequence 106, it is to be understood that capture probes wherein UMI sequence 106 is located upstream (5′) of the spatial barcode 105 is also suitable for use in any of the methods described herein. The capture probe can also include a capture domain 107 to facilitate capture of a target analyte. In some embodiments, the capture probe comprises an additional functional sequence that can be located, e.g., between spatial barcode 105 and UMI sequence 106, between UMI sequence 106 and capture domain 107, or following capture domain 107. The capture domain can have a sequence complementary to a sequence of a nucleic acid analyte. The capture domain can have a sequence complementary to a connected probe described herein. The capture domain can have a sequence complementary to a capture handle sequence present in an analyte capture agent. The capture domain can have a sequence complementary to a splint oligonucleotide. Such splint oligonucleotide, in addition to having a sequence complementary to a capture domain of a capture probe, can have a sequence of a nucleic acid analyte, a sequence complementary to a portion of a connected probe described herein, and/or a capture handle sequence described herein.
  • The functional sequences can generally be selected for compatibility with any of a variety of different sequencing systems, e.g., Ion Torrent Proton or PGM, Illumina sequencing instruments, PacBio, Oxford Nanopore, etc., and the requirements thereof. In some embodiments, functional sequences can be selected for compatibility with non-commercialized sequencing systems. Examples of such sequencing systems and techniques, for which suitable functional sequences can be used, include (but are not limited to) Ion Torrent Proton or PGM sequencing, Illumina sequencing, PacBio SMRT sequencing, and Oxford Nanopore sequencing. Further, in some embodiments, functional sequences can be selected for compatibility with other sequencing systems, including non-commercialized sequencing systems.
  • In some embodiments, the spatial barcode 105 and functional sequences 104 is common to all of the probes attached to a given feature. In some embodiments, the UMI sequence 106 of a capture probe attached to a given feature is different from the UMI sequence of a different capture probe attached to the given feature.
  • FIG. 2 is a schematic illustrating a cleavable capture probe, wherein the cleaved capture probe can enter into a non-permeabilized cell and bind to analytes within the sample. The capture probe 201 contains a cleavage domain 202, a cell penetrating peptide 203, a reporter molecule 204, and a disulfide bond (—S—S—). 205 represents all other parts of a capture probe, for example a spatial barcode and a capture domain.
  • FIG. 3 is a schematic diagram of an exemplary multiplexed spatially-barcoded feature. In FIG. 3 , the feature 301 can be coupled to spatially-barcoded capture probes, wherein the spatially-barcoded probes of a particular feature can possess the same spatial barcode, but have different capture domains designed to associate the spatial barcode of the feature with more than one target analyte. For example, a feature may be coupled to four different types of spatially-barcoded capture probes, each type of spatially-barcoded capture probe possessing the spatial barcode 302. One type of capture probe associated with the feature includes the spatial barcode 302 in combination with a poly(T) capture domain 303, designed to capture mRNA target analytes. A second type of capture probe associated with the feature includes the spatial barcode 302 in combination with a random N-mer capture domain 304 for gDNA analysis. A third type of capture probe associated with the feature includes the spatial barcode 302 in combination with a capture domain complementary to a capture handle sequence of an analyte capture agent of interest 305. A fourth type of capture probe associated with the feature includes the spatial barcode 302 in combination with a capture domain that can specifically bind a nucleic acid molecule 306 that can function in a CRISPR assay (e.g., CRISPR/Cas9). While only four different capture probe-barcoded constructs are shown in FIG. 3 , capture-probe barcoded constructs can be tailored for analyses of any given analyte associated with a nucleic acid and capable of binding with such a construct. For example, the schemes shown in FIG. 3 can also be used for concurrent analysis of other analytes disclosed herein, including, but not limited to: (a) mRNA, a lineage tracing construct, cell surface or intracellular proteins and metabolites, and gDNA; (b) mRNA, accessible chromatin (e.g., ATAC-seq, DNase-seq, and/or MNase-seq) cell surface or intracellular proteins and metabolites, and a perturbation agent (e.g., a CRISPR crRNA/sgRNA, TALEN, zinc finger nuclease, and/or antisense oligonucleotide as described herein); (c) mRNA, cell surface or intracellular proteins and/or metabolites, a barcoded labelling agent (e.g., the MHC multimers described herein), and a V(D)J sequence of an immune cell receptor (e.g., T-cell receptor). In some embodiments, a perturbation agent can be a small molecule, an antibody, a drug, an aptamer, a miRNA, a physical environmental (e.g., temperature change), or any other known perturbation agents. See, e.g., Section (II)(b) (e.g., subsections (i)-(vi)) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Generation of capture probes can be achieved by any appropriate method, including those described in Section (II)(d)(ii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • In some embodiments, more than one analyte type (e.g., nucleic acids and proteins) from a biological sample can be detected (e.g., simultaneously or sequentially) using any appropriate multiplexing technique, such as those described in Section (IV) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • In some embodiments, detection of one or more analytes (e.g., protein analytes) can be performed using one or more analyte capture agents. As used herein, an “analyte capture agent” refers to an agent that interacts with an analyte (e.g., an analyte in a biological sample) and with a capture probe (e.g., a capture probe attached to a substrate or a feature) to identify the analyte. In some embodiments, the analyte capture agent includes: (i) an analyte binding moiety (e.g., that binds to an analyte), for example, an antibody or antigen-binding fragment thereof; (ii) analyte binding moiety barcode; and (iii) an analyte capture sequence. As used herein, the term “analyte binding moiety barcode” refers to a barcode that is associated with or otherwise identifies the analyte binding moiety. As used herein, the term “analyte capture sequence” refers to a region or moiety configured to hybridize to, bind to, couple to, or otherwise interact with a capture domain of a capture probe. In some cases, an analyte binding moiety barcode (or portion thereof) may be able to be removed (e.g., cleaved) from the analyte capture agent.
  • FIG. 4 is a schematic diagram of an exemplary analyte capture agent 402 comprised of an analyte-binding moiety 404 and an analyte-binding moiety barcode domain 408. The exemplary analyte-binding moiety 404 is a molecule capable of binding to an analyte 406 and the analyte capture agent is capable of interacting with a spatially-barcoded capture probe. The analyte-binding moiety can bind to the analyte 406 with high affinity and/or with high specificity. The analyte capture agent can include an analyte-binding moiety barcode domain 408, a nucleotide sequence (e.g., an oligonucleotide), which can hybridize to at least a portion or an entirety of a capture domain of a capture probe. The analyte-binding moiety barcode domain 408 can comprise an analyte binding moiety barcode and a capture handle sequence described herein. The analyte-binding moiety 404 can include a polypeptide and/or an aptamer. The analyte-binding moiety 404 can include an antibody or antibody fragment (e.g., an antigen-binding fragment).
  • FIG. 5 is a schematic diagram depicting an exemplary interaction between a feature-immobilized capture probe 524 and an analyte capture agent 526. The feature-immobilized capture probe 524 can include a spatial barcode 508 as well as functional sequences 506 and UMI 510, as described elsewhere herein. The capture probe can also include a capture domain 512 that is capable of binding to an analyte capture agent 526. The analyte capture agent 526 can include a functional sequence 518, analyte binding moiety barcode 516, and a capture handle sequence 514 that is capable of binding to the capture domain 512 of the capture probe 524. The analyte capture agent can also include a linker 520 that allows the capture agent barcode domain 516 to couple to the analyte binding moiety 522.
  • FIGS. 6A, 6B, and 6C are schematics illustrating how streptavidin cell tags can be utilized in an array-based system to produce a spatially-barcoded cell or cellular contents. For example, as shown in FIG. 6A, peptide-bound major histocompatibility complex (MHC) can be individually associated with biotin (β2m) and bound to a streptavidin moiety such that the streptavidin moiety comprises multiple pMHC moieties. Each of these moieties can bind to a TCR such that the streptavidin binds to a target T-cell via multiple MCH/TCR binding interactions. Multiple interactions synergize and can substantially improve binding affinity. Such improved affinity can improve labelling of T-cells and also reduce the likelihood that labels will dissociate from T-cell surfaces. As shown in FIG. 6B, a capture agent barcode domain 601 can be modified with streptavidin 602 and contacted with multiple molecules of biotinylated MHC 603 such that the biotinylated MHC 603 molecules are coupled with the streptavidin conjugated capture agent barcode domain 601. The result is a barcoded MHC multimer complex 1105. As shown in FIG. 6B, the capture agent barcode domain sequence 601 can identify the MHC as its associated label and also includes optional functional sequences such as sequences for hybridization with other oligonucleotides. As shown in FIG. 6C, one example oligonucleotide is capture probe 606 that comprises a complementary sequence (e.g., rGrGrG corresponding to C C C), a barcode sequence and other functional sequences, such as, for example, a UMI, an adapter sequence (e.g., comprising a sequencing primer sequence (e.g., R1 or a partial R1 (“pR1”), R2), a flow cell attachment sequence (e.g., P5 or P7 or partial sequences thereof)), etc. In some cases, capture probe 606 may at first be associated with a feature (e.g., a gel bead) and released from the feature. In other embodiments, capture probe 606 can hybridize with a capture agent barcode domain 601 of the MHC-oligonucleotide complex 605. The hybridized oligonucleotides (Spacer C C C and Spacer rGrGrG) can then be extended in primer extension reactions such that constructs comprising sequences that correspond to each of the two spatial barcode sequences (the spatial barcode associated with the capture probe, and the barcode associated with the MHC-oligonucleotide complex) are generated. In some cases, one or both of these corresponding sequences may be a complement of the original sequence in capture probe 606 or capture agent barcode domain 601. In other embodiments, the capture probe and the capture agent barcode domain are ligated together. The resulting constructs can be optionally further processed (e.g., to add any additional sequences and/or for clean-up) and subjected to sequencing. As described elsewhere herein, a sequence derived from the capture probe 606 spatial barcode sequence may be used to identify a feature and the sequence derived from spatial barcode sequence on the capture agent barcode domain 601 may be used to identify the particular peptide MHC complex 604 bound on the surface of the cell (e.g., when using MHC-peptide libraries for screening immune cells or immune cell populations).
  • Additional description of analyte capture agents can be found in Section (II)(b)(ix) of WO 2020/176788 and/or Section (II)(b)(viii) U.S. Patent Application Publication No. 2020/0277663.
  • There are at least two methods to associate a spatial barcode with one or more neighboring cells, such that the spatial barcode identifies the one or more cells, and/or contents of the one or more cells, as associated with a particular spatial location. One method is to promote analytes or analyte proxies (e.g., intermediate agents) out of a cell and towards a spatially-barcoded array (e.g., including spatially-barcoded capture probes). Another method is to cleave spatially-barcoded capture probes from an array and promote the spatially-barcoded capture probes towards and/or into or onto the biological sample.
  • FIG. 7 depicts an exemplary arrangement of barcoded features within an array. From left to right, FIG. 7 shows (left) a slide including six spatially-barcoded arrays, (center) an enlarged schematic of one of the six spatially-barcoded arrays, showing a grid of barcoded features in relation to a biological sample, and (right) an enlarged schematic of one section of an array, showing the specific identification of multiple features within the array (labelled as ID578, ID579, ID560, etc.).
  • In some cases, capture probes may be configured to prime, replicate, and consequently yield optionally barcoded extension products from a template (e.g., a DNA or RNA template, such as an analyte or an intermediate agent (e.g., a ligation product or an analyte capture agent), or a portion thereof), or derivatives thereof (see, e.g., Section (II)(b)(vii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663 regarding extended capture probes). In some cases, capture probes may be configured to form ligation products with a template (e.g., a DNA or RNA template, such as an analyte or an intermediate agent, or portion thereof), thereby creating ligations products that serve as proxies for a template.
  • As used herein, an “extended capture probe” refers to a capture probe having additional nucleotides added to the terminus (e.g., 3′ or 5′ end) of the capture probe thereby extending the overall length of the capture probe. For example, an “extended 3′ end” indicates additional nucleotides were added to the most 3′ nucleotide of the capture probe to extend the length of the capture probe, for example, by polymerization reactions used to extend nucleic acid molecules including templated polymerization catalyzed by a polymerase (e.g., a DNA polymerase or a reverse transcriptase). In some embodiments, extending the capture probe includes adding to a 3′ end of a capture probe a nucleic acid sequence that is complementary to a nucleic acid sequence of an analyte or intermediate agent specifically bound to the capture domain of the capture probe. In some embodiments, the capture probe is extended using reverse transcription. In some embodiments, the capture probe is extended using one or more DNA polymerases. The extended capture probes include the sequence of the capture probe and the sequence of the spatial barcode of the capture probe.
  • In some embodiments, extended capture probes are amplified (e.g., in bulk solution or on the array) to yield quantities that are sufficient for downstream analysis, e.g., via DNA sequencing. In some embodiments, extended capture probes (e.g., DNA molecules) act as templates for an amplification reaction (e.g., a polymerase chain reaction).
  • Additional variants of spatial analysis methods, including in some embodiments, an imaging step, are described in Section (II)(a) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Analysis of captured analytes (and/or intermediate agents or portions thereof), for example, including sample removal, extension of capture probes, sequencing (e.g., of a cleaved extended capture probe and/or a cDNA molecule complementary to an extended capture probe), sequencing on the array (e.g., using, for example, in situ hybridization or in situ ligation approaches), temporal analysis, and/or proximity capture, is described in Section (II)(g) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Some quality control measures are described in Section (II)(h) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Spatial information can provide information of biological and/or medical importance. For example, the methods and compositions described herein can allow for: identification of one or more biomarkers (e.g., diagnostic, prognostic, and/or for determination of efficacy of a treatment) of a disease or disorder; identification of a candidate drug target for treatment of a disease or disorder; identification (e.g., diagnosis) of a subject as having a disease or disorder; identification of stage and/or prognosis of a disease or disorder in a subject; identification of a subject as having an increased likelihood of developing a disease or disorder; monitoring of progression of a disease or disorder in a subject; determination of efficacy of a treatment of a disease or disorder in a subject; identification of a patient subpopulation for which a treatment is effective for a disease or disorder; modification of a treatment of a subject with a disease or disorder; selection of a subject for participation in a clinical trial; and/or selection of a treatment for a subject with a disease or disorder.
  • Spatial information can provide information of biological importance. For example, the methods and compositions described herein can allow for: identification of transcriptome and/or proteome expression profiles (e.g., in healthy and/or diseased tissue); identification of multiple analyte types in close proximity (e.g., nearest neighbor analysis); determination of up- and/or down-regulated genes and/or proteins in diseased tissue; characterization of tumor microenvironments; characterization of tumor immune responses; characterization of cells types and their co-localization in tissue; and identification of genetic variants within tissues (e.g., based on gene and/or protein expression profiles associated with specific disease or disorder biomarkers).
  • Typically, for spatial array-based methods, a substrate functions as a support for direct or indirect attachment of capture probes to features of the array. A “feature” is an entity that acts as a support or repository for various molecular entities used in spatial analysis. In some embodiments, some or all of the features in an array are functionalized for analyte capture. Exemplary substrates are described in Section (II)(c) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Exemplary features and geometric attributes of an array can be found in Sections (II)(d)(i), (II)(d)(iii), and (II)(d)(iv) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • Generally, analytes and/or intermediate agents (or portions thereof) can be captured when contacting a biological sample with a substrate including capture probes (e.g., a substrate with capture probes embedded, spotted, printed, fabricated on the substrate, or a substrate with features (e.g., beads, wells) comprising capture probes). As used herein, “contact,” “contacted,” and/or “contacting,” a biological sample with a substrate refers to any contact (e.g., direct or indirect) such that capture probes can interact (e.g., bind covalently or non-covalently (e.g., hybridize)) with analytes from the biological sample. Capture can be achieved actively (e.g., using electrophoresis) or passively (e.g., using diffusion). Analyte capture is further described in Section (II)(e) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • In some cases, spatial analysis can be performed by attaching and/or introducing a molecule (e.g., a peptide, a lipid, or a nucleic acid molecule) having a barcode (e.g., a spatial barcode) to a biological sample (e.g., to a cell in a biological sample). In some embodiments, a plurality of molecules (e.g., a plurality of nucleic acid molecules) having a plurality of barcodes (e.g., a plurality of spatial barcodes) are introduced to a biological sample (e.g., to a plurality of cells in a biological sample) for use in spatial analysis. In some embodiments, after attaching and/or introducing a molecule having a barcode to a biological sample, the biological sample can be physically separated (e.g., dissociated) into single cells or cell groups for analysis. Some such methods of spatial analysis are described in Section (III) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.
  • In some cases, spatial analysis can be performed by detecting multiple oligonucleotides that hybridize to an analyte. In some instances, for example, spatial analysis can be performed using RNA-templated ligation (RTL). Methods of RTL have been described previously. See, e.g., Credle et al., Nucleic Acids Res. 2017 Aug. 21; 45(14):e128. Typically, RTL includes hybridization of two oligonucleotides to adjacent sequences on an analyte (e.g., an RNA molecule, such as an mRNA molecule). In some instances, the oligonucleotides are DNA molecules. In some instances, one of the oligonucleotides includes at least two ribonucleic acid bases at the 3′ end and/or the other oligonucleotide includes a phosphorylated nucleotide at the 5′ end. In some instances, one of the two oligonucleotides includes a capture domain (e.g., a poly(A) sequence, a non-homopolymeric sequence). After hybridization to the analyte, a ligase (e.g., SplintR ligase) ligates the two oligonucleotides together, creating a ligation product. In some instances, the two oligonucleotides hybridize to sequences that are not adjacent to one another. For example, hybridization of the two oligonucleotides creates a gap between the hybridized oligonucleotides. In some instances, a polymerase (e.g., a DNA polymerase) can extend one of the oligonucleotides prior to ligation. After ligation, the ligation product is released from the analyte. In some instances, the ligation product is released using an endonuclease (e.g., RNAse H). The released ligation product can then be captured by capture probes (e.g., instead of direct capture of an analyte) on an array, optionally amplified, and sequenced, thus determining the location and optionally the abundance of the analyte in the biological sample.
  • During analysis of spatial information, sequence information for a spatial barcode associated with an analyte is obtained, and the sequence information can be used to provide information about the spatial distribution of the analyte in the biological sample. Various methods can be used to obtain the spatial information. In some embodiments, specific capture probes and the analytes they capture are associated with specific locations in an array of features on a substrate. For example, specific spatial barcodes can be associated with specific array locations prior to array fabrication, and the sequences of the spatial barcodes can be stored (e.g., in a database) along with specific array location information, so that each spatial barcode uniquely maps to a particular array location.
  • Alternatively, specific spatial barcodes can be deposited at predetermined locations in an array of features during fabrication such that at each location, only one type of spatial barcode is present so that spatial barcodes are uniquely associated with a single feature of the array. Where necessary, the arrays can be decoded using any of the methods described herein so that spatial barcodes are uniquely associated with array feature locations, and this mapping can be stored as described above.
  • When sequence information is obtained for capture probes and/or analytes during analysis of spatial information, the locations of the capture probes and/or analytes can be determined by referring to the stored information that uniquely associates each spatial barcode with an array feature location. In this manner, specific capture probes and captured analytes are associated with specific locations in the array of features. Each array feature location represents a position relative to a coordinate reference point (e.g., an array location, a fiducial marker) for the array. Accordingly, each feature location has an “address” or location in the coordinate space of the array.
  • Some exemplary spatial analysis workflows are described in the Exemplary Embodiments section of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. See, for example, the Exemplary embodiment starting with “In some non-limiting examples of the workflows described herein, the sample can be immersed . . . ” of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. See also, e.g., the Visium Spatial Gene Expression Reagent Kits User Guide (e.g., Rev C, dated June 2020), and/or the Visium Spatial Tissue Optimization Reagent Kits User Guide (e.g., Rev C, dated July 2020).
  • In some embodiments, spatial analysis can be performed using dedicated hardware and/or software, such as any of the systems described in Sections (II)(e)(ii) and/or (V) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663, or any of one or more of the devices or methods described in Sections Control Slide for Imaging, Methods of Using Control Slides and Substrates for, Systems of Using Control Slides and Substrates for Imaging, and/or Sample and Array Alignment Devices and Methods, Informational labels of WO 2020/123320.
  • Suitable systems for performing spatial analysis can include components such as a chamber (e.g., a flow cell or sealable, fluid-tight chamber) for containing a biological sample. The biological sample can be mounted for example, in a biological sample holder. One or more fluid chambers can be connected to the chamber and/or the sample holder via fluid conduits, and fluids can be delivered into the chamber and/or sample holder via fluidic pumps, vacuum sources, or other devices coupled to the fluid conduits that create a pressure gradient to drive fluid flow. One or more valves can also be connected to fluid conduits to regulate the flow of reagents from reservoirs to the chamber and/or sample holder.
  • The systems can optionally include a control unit that includes one or more electronic processors, an input interface, an output interface (such as a display), and a storage unit (e.g., a solid state storage medium such as, but not limited to, a magnetic, optical, or other solid state, persistent, writeable and/or re-writeable storage medium). The control unit can optionally be connected to one or more remote devices via a network. The control unit (and components thereof) can generally perform any of the steps and functions described herein. Where the system is connected to a remote device, the remote device (or devices) can perform any of the steps or features described herein. The systems can optionally include one or more detectors (e.g., CCD, CMOS) used to capture images. The systems can also optionally include one or more light sources (e.g., LED-based, diode-based, lasers) for illuminating a sample, a substrate with features, analytes from a biological sample captured on a substrate, and various control and calibration media.
  • The systems can optionally include software instructions encoded and/or implemented in one or more of tangible storage media and hardware components such as application specific integrated circuits. The software instructions, when executed by a control unit (and in particular, an electronic processor) or an integrated circuit, can cause the control unit, integrated circuit, or other component executing the software instructions to perform any of the method steps or functions described herein.
  • In some cases, the systems described herein can detect (e.g., register an image) the biological sample on the array. Exemplary methods to detect the biological sample on an array are described in PCT Application No. 2020/061064 and/or U.S. patent application Ser. No. 16/951,854.
  • Prior to transferring analytes from the biological sample to the array of features on the substrate, the biological sample can be aligned with the array. Alignment of a biological sample and an array of features including capture probes can facilitate spatial analysis, which can be used to detect differences in analyte presence and/or level within different positions in the biological sample, for example, to generate a three-dimensional map of the analyte presence and/or level. Exemplary methods to generate a two- and/or three-dimensional map of the analyte presence and/or level are described in PCT Application No. 2020/053655 and spatial analysis methods are generally described in WO 2020/061108 and/or U.S. patent application Ser. No. 16/951,864.
  • In some cases, a map of analyte presence and/or level can be aligned to an image of a biological sample using one or more fiducial markers, e.g., objects placed in the field of view of an imaging system which appear in the image produced, as described in the Substrate Attributes Section, Control Slide for Imaging Section of WO 2020/123320, PCT Application No. 2020/061066, and/or U.S. patent application Ser. No. 16/951,843. Fiducial markers can be used as a point of reference or measurement scale for alignment (e.g., to align a sample and an array, to align two substrates, to determine a location of a sample or array on a substrate relative to a fiducial marker) and/or for quantitative measurements of sizes and/or distances.
  • I. Spatial Analytical Methodology and Perturbation of Cells
  • (a) Introduction
  • A pooled screening approach that utilizes a morphometric readout and spatial analysis offers significant improvements for pooled perturbation screens. In such screens, a biological sample or a cell, e.g., a cell in a biological sample, can be perturbed by a perturbation agent. As described herein, a “perturbation agent” or “perturbation reagent” or “moiety” can be a small molecule, an antibody, a drug, an aptamer, a nucleic acid (e.g., miRNA), a CRISPR crRNA/sgRNA, TALEN, zinc finger nuclease, antisense oligonucleotide a physical environmental (e.g., temperature change), and/or any other known perturbation agents where the agent alters equilibrium or homeostasis. After perturbation of the biological sample or cell, e.g., a cell in a biological sample, the biological sample or cell comprising a moiety can be (i) imaged; and/or (ii) contacted with a spatial array to allow for profiling a biological analyte and/or determining the identity of the moiety in a cell at a distinct location within a biological sample. Such methods can be useful for determining the abundance of a biological analyte in a cell comprising a moiety at a distinct spatial position on a substrate. These methods can also be useful, for example, for detecting a perturbation (e.g., a change in a biological analyte such as a change in the amount of the biological analyte) in a cell comprising a moiety (e.g., a small molecule or genetic perturbation) compared to a cell comprising a different moiety or a cell not comprising a moiety.
  • Accordingly, provided herein are methods for determining the presence or abundance of a moiety in a cell comprising: (a) contacting the cell with an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises: (i) a spatial barcode and (ii) a capture domain, wherein the cell comprises the moiety and wherein the moiety comprises a moiety sequence; (b) hybridizing a moiety sequence to the capture domain; and (c) determining (i) all or a part of the sequence of the moiety sequence bound to the capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the abundance of the moiety in the cell. In some embodiments, the method further includes determining (i) all or a part of a sequence of an analyte bound to a capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the abundance of the analyte in the cell.
  • In some embodiments, provided herein are methods for determining an abundance of an analyte or moiety in a cell comprising: (a) contacting the cell with an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises: (i) a spatial barcode and (ii) a capture domain; wherein the cell comprises the moiety and wherein the moiety comprises a moiety sequence; (b) hybridizing the analyte or the moiety sequence to the capture domain; and (c) determining (i) all or a part of the sequence of the analyte or the moiety sequence bound to the capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the abundance of the analyte or the moiety in the cell. A “moiety sequence” as used herein refers to a sequence that can be used to identify a moiety. For example, a moiety sequence can be unique to each moiety (e.g., each small molecule or each genetic perturbation).
  • In some embodiments, the methods provided herein include profiling a biological analyte, e.g., any of the analytes as described herein, in a cell including a moiety (e.g., a small molecule and/or genetic perturbation introduced into the cell). Also provided herein are methods for determining the abundance of a moiety, e.g., any of the moieties described herein, in a cell. In some embodiments, the cell is a member of a plurality of cells, e.g., the cell is in a biological sample. In some embodiments, the methods provided herein include determining the location of a biological analyte, e.g., any of the analytes as described herein, and/or a moiety, e.g., any of the moieties described herein, in a biological sample. In some instances, both the abundance and the location of a biological analyte and/or a moiety are determined.
  • Also provided herein are methods for profiling a biological analyte, e.g., any of the analytes as described herein, in a cell including a small molecule (e.g., a small molecule introduced into the cell). In some embodiments, the methods described herein can include releasing a biological analyte from a cell including a small molecule (e.g., a small molecule introduced into the cell). The released biological analyte can be bound by a capture probe as described herein at a distinct spatial position on a substrate and detected. The bound biological analyte can then be correlated with a barcode of the capture probe at a distinct spatial position of the substrate.
  • Also provided herein is a method for spatial profiling a biological analyte in a cell including: contacting a plurality of cells with a plurality of particles, wherein a particle of the plurality of particles includes a small molecule and a second barcode, and wherein the cell uptakes the small molecule and the second barcode; contacting the cell with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain; releasing the biological analyte from the cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; detecting the biological analyte bound by the capture probe; and correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • In some embodiments, a method for spatial profiling a biological analyte in a cell includes: contacting the cell with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain, and wherein the cell includes a small molecule and a second barcode; releasing the biological analyte from the cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; detecting the biological analyte bound by the capture probe; and correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • In some embodiments, the methods described herein can include releasing a biological analyte from a genetically-perturbed cell. The released biological analyte can be bound by a capture probe as described herein at a distinct spatial position on a substrate and detected. The bound biological analyte can then be correlated with a barcode of the capture probe at a distinct spatial position of the substrate. Such methods can be useful for correlating a genetic perturbation of a cell to a biological analyte at a distinct spatial position on a substrate.
  • Also provided herein are methods for spatial profiling a biological analyte present in a genetically-perturbed cell that include transducing a cell with a vector to form the genetically-perturbed cell; contacting the genetically-perturbed cell with a substrate including a plurality of capture probes, wherein a capture probe of the plurality of capture probes includes a first barcode and a capture domain; releasing the biological analyte from the genetically-perturbed cell, wherein the biological analyte is bound by the capture probe at a distinct spatial position of the substrate; detecting the biological analyte bound by the capture probe; and correlating the biological analyte with the first barcode of the capture probe at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the genetically-perturbed cell at the distinct spatial position.
  • In some embodiments, a method for spatially profiling a biological analyte present in a genetically-perturbed cell includes contacting the genetically-perturbed cell with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain; releasing the biological analyte from the genetically-perturbed cell, wherein the biological analyte is bound by a capture probe at a distinct spatial position of the substrate; detecting the biological analyte bound by the capture probe; and correlating the biological analyte with the first barcode from the capture probe at the distinct spatial position of the substrate; thus profiling the biological analyte as present in the genetically-perturbed cell at the distinct spatial position.
  • (b) Generation of Libraries
  • 1. Generating Pooled Small Molecule Libraries
  • In some embodiments, disclosed herein are methods of generating a small molecule library. Methods of generating a small molecule library have been described, for example, in U.S. Pat. Nos. 8,951,728; 6,677,160; Dandapani et al. Curr Protoc Chem Biol. 4:177-191, 2012; Hajduk et al. Nature. 470:42-43, 2011; Paricharak et al. Briefings in Bioinformatics. 19(2):277-285, 2018; and Harris et al. Comb Chem High Throughput Screen. 14(6):521-531, 2011; each of which is incorporated herein by reference in its entirety. Generating a barcoded small molecule library can include loading a plurality of particles with a plurality of small molecules and a plurality of moiety sequences (e.g., a second barcode). In some embodiments, a moiety sequence (e.g., a second barcode) is affixed to each small molecule.
  • Methods of introducing a small molecule into a cell are known to one of skill in art. Such methods include using particles (e.g., nanoparticles) to introduce the small molecule into the cell. Accordingly, in some embodiments, a moiety as described herein further comprises a particle introduced into the cell. In some embodiments, the particle is taken up by the cell through diffusion, electroporation, receptor-mediated endocytosis, or a combination thereof. See, e.g., Behzadi et al., Chem Soc Rev. 46(14): 4218-4244, 2017; Mosquera et al., Acc Chem Res, 51(9):2305-2313, 2018; Jahangirian et al., Int J Nanomedicine, 14:1633-1657, 2019; and Zhao, Scientific Reports. 7:4131, 2017; each of which is incorporated herein by reference in its entirety. In some embodiments, the cell is from a plurality of cells, and the plurality of cells is contacted with a plurality of particles, and a cell uptakes the particle. In some embodiments, the particle includes a moiety sequence. In some embodiments, the moiety sequence is substantially complementary to the capture domain. In some embodiments, the moiety sequence is a polyadenylated sequence.
  • In some embodiments, the small molecule library includes small molecules with validated biological and pharmacological activities with particular solubility, purity, and stability of the compounds. In some embodiments, the library is fully randomized, with no sequence preferences or constants at any position. In another embodiment, the library is biased.
  • In some embodiments, the small molecule binds to a biological target. In some embodiments, the biological target is a protein or a nucleic acid. In some embodiments, the protein is a kinase, a receptor, a channel, an enzyme, or a combination thereof. In some embodiments, the protein is a G protein-coupled receptor, a kinase, a protease, an esterase, a phosphatase, ligand-gated ion channel, a voltage-gated ion channel, or a nuclear receptor. In some embodiments, the small molecule interacts with a known cellular molecule or known classes of cellular molecules. In some embodiments, the small molecules include but are not limited to inhibitors, antagonists, and agonists of various cellular pathways, including for example, pathways involving DNA damage/DNA repair, cell cycle/checkpoints, JAK/STAT signaling, MAPK signaling, GPCR/G protein, angiogenesis, immunology and inflammation, endocrinology and hormones, cancer, metabolism, and stem cells. In some embodiments, the small molecule inhibits the biological target. In some embodiments, the small molecule activates the biological target. In some embodiments, correlating the biological analyte with the first barcode and the second barcode at the distinct spatial position of the substrate, thus profiling the biological analyte as present in the cell at the distinct spatial position.
  • In some embodiments, one or more small molecules are encapsulated into one or more particles. In some embodiments, one or more small molecules and one or more moiety sequences (e.g., second barcodes) are encapsulated into one or more particles. In some embodiments, one or more small molecules are loaded onto one or more particles. Any particle that can introduce a small molecule into a cell can be used. Such particles can include, for example, gold, silica, polyethylene glycol (PEG)-poly(lactide), silver, cadmium-selenide, poly(methylacrylic) acid, a lipid (e.g., 2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-cholesterol-1,2-distearoyl-sn-glycero-3-phosphocholine (POPG) and poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol), polystyrene, carboxylated polystyrene, NH2-labeled polystyrene, polystyrene latex, fullerene, alginate-chitosan, a polymer-lipid hybrid (e.g., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PE2000), a quantum dot, and any combination thereof.
  • In some embodiments, a particle described herein can be spherical or disc-shaped. In some embodiments, the diameter of the particle is about 1 nm to about 2500 nm. For example, about 1 nm to about 200 nm, about 1 nm to about 400 nm, about 1 nm to about 600 nm, about 1 nm to about 800 nm, about 1 nm to about 1000 nm, about 1 nm to about 1200 nm, about 1 nm to about 1400 nm, about 1 nm to about 1600 nm, about 1 nm to about 1800 nm, about 1 nm to about 2000 nm, about 1 nm to about 2200 nm, about 1 nm to about 2400 nm, about 2300 nm to about 2500 nm, about 2100 nm to about 2500 nm, about 1900 nm to about 2500 nm, about 1700 nm to about 2500 nm, about 1500 nm to about 2500 nm, about 1300 nm to about 2500 nm, about 1100 nm to about 2500 nm, about 900 nm to about 2500 nm, about 700 nm to about 2500 nm, about 500 nm to about 2500 nm, about 300 nm to about 2500 nm, or about 100 nm to about 2500 nm. In some embodiments, the diameter of the particle is about 5 nm to about 500 nm. For example, about 5 nm to about 50 nm, about 5 nm to about 100 nm, about 5 nm to about 150 nm, about 5 nm to about 200 nm, about 5 nm to about 250 nm, about 5 nm to about 300 nm, about 5 nm to about 350 nm, about 5 nm to about 400 nm, about 5 nm to about 450 nm, about 450 nm to about 500 nm, about 400 nm to about 500 nm, about 350 nm to about 500 nm, about 300 nm to about 500 nm, about 250 nm to about 500 nm, about 200 nm to about 500, about 150 nm to about 500 nm, about 100 nm to about 500 nm, or about 50 nm to about 500 nm. For example, about 5 nm to about 25 nm, about 25 nm to about 50 nm, about 40 nm to about 60 nm, about 50 to about 75 nm, or about 75 nm to about 100 nm.
  • In some embodiments, the particle is rod-shaped. As used herein, a “rod-shaped particle” can also refer to a rice-like particle, a worm-like particle, and a cylindrical particle. In some embodiments, the length of the particle is about 1 nm to about 2500 nm. For example, about 1 nm to about 200 nm, about 1 nm to about 400 nm, about 1 nm to about 600 nm, about 1 nm to about 800 nm, about 1 nm to about 1000 nm, about 1 nm to about 1200 nm, about 1 nm to about 1400 nm, about 1 nm to about 1600 nm, about 1 nm to about 1800 nm, about 1 nm to about 2000 nm, about 1 nm to about 2200 nm, about 1 nm to about 2400 nm, about 2300 nm to about 2500 nm, about 2100 nm to about 2500 nm, about 1900 nm to about 2500 nm, about 1700 nm to about 2500 nm, about 1500 nm to about 2500 nm, about 1300 nm to about 2500 nm, about 1100 nm to about 2500 nm, about 900 nm to about 2500 nm, about 700 nm to about 2500 nm, about 500 nm to about 2500 nm, about 300 nm to about 2500 nm, or about 100 nm to about 2500 nm. In some embodiments, the length of the particle is about 5 nm to about 500 nm. For example, about 5 nm to about 50 nm, about 5 nm to about 100 nm, about 5 nm to about 150 nm, about 5 nm to about 200 nm, about 5 nm to about 250 nm, about 5 nm to about 300 nm, about 5 nm to about 350 nm, about 5 nm to about 400 nm, about 5 nm to about 450 nm, about 450 nm to about 500 nm, about 400 nm to about 500 nm, about 350 nm to about 500 nm, about 300 nm to about 500 nm, about 250 nm to about 500 nm, about 200 nm to about 500, about 150 nm to about 500 nm, about 100 nm to about 500 nm, or about 50 nm to about 500 nm. For example, about 5 nm to about 25 nm, about 25 nm to about 50 nm, about 40 nm to about 60 nm, about 50 to about 75 nm, or about 75 nm to about 100 nm. In some embodiments, the rod-shaped particle has an aspect ratio (i.e., the ratio of length to width) of about 1 to about 8. For example an aspect ratio of about 1 to about 2, about 1 to about 3, about 1 to about 4, about 1 to about 5, about 1 to about 6, about 1 to about 7, about 7 to about 8, about 6 to about 8, about 5 to about 8, about 4 to about 8, about 3 to about 8, or about 2 to about 8. In some embodiments, the rod-shaped particle has an aspect ratio of about 1, about 1.5, about 2, about 2.5, about 3, about 3.5, about 4, about 4.5, about 5, about 5.5, about 6, about 6.5, about 7, or about 7.5.
  • In some embodiments, the particle is hydrophilic. In some embodiments, the particle is hydrophobic. In some embodiment, the particle is cationic. In some embodiments, the particle has a surface charge of about 1 to about 40 mV. In some embodiments, the particle is anionic. In some embodiments, the particle has a surface charge of about −1 to about −70 mV.
  • In some embodiments, the particle is thermo-responsive. For example, the hydrophobicity of a thermo-responsive particle can be controlled by temperature.
  • The particles can also include surface modifications. Non-limiting examples of such surface modifications include cysteine-cyan5, a cationic monolayer, a nucleic acid, poly(isobutylene-alt-maleic anhydride), a coating with fetal bovine serum (FBS), citrate, 5-aminovaleric acid, L-DOPA, melatonin, serotonin-HCl, MUS/OT, glutathione/glucose, polyethyleneimine, or a combination thereof. See, e.g., Donahue. Adv Drug Deliv Rev. 143:68-96, 2019, which is incorporated herein by reference in its entirety.
  • In some instances, the small molecule can include a moiety sequence (e.g., a second barcode) (e.g., an oligonucleotide). In some instances, the moiety sequence (e.g., a second barcode) comprises a sequence that is unique to the small molecule (e.g., a unique molecular identifier (UMI) for the small molecule). In some instances, this UMI can be used to identify the presence of the small molecule in a biological sample (i.e., a cell). In some instances, the moiety sequence (e.g., a second barcode) further comprises a sequence that can hybridize to at least a portion or an entirety of a capture domain of a capture probe. In some embodiments, the small molecule includes a moiety sequence (e.g., a second barcode) that is conjugated or otherwise attached to the small molecule. In some embodiments, the moiety sequence (e.g., a second barcode) is covalently-linked to the small molecule. In some embodiments, a moiety sequence (e.g., a second barcode) is a nucleic acid sequence.
  • As used herein, the term “moiety sequence” (or “second barcode”) refers to a barcode that is associated with or otherwise identifies the small molecule. In some embodiments, by identifying a small molecule and its associated moiety sequence, the analyte to which the small molecule binds can also be identified. A moiety sequence can be a nucleic acid sequence of a given length and/or sequence that is associated with the small molecule. A moiety sequence can generally include any of the variety of aspects of barcodes described herein.
  • In some embodiments, the moiety sequence comprises a region or moiety configured to hybridize to, bind to, couple to, or otherwise interact with a capture domain of a capture probe. In some embodiments, a moiety sequence includes a nucleic acid sequence that is complementary to or substantially complementary to the capture domain of a capture probe such that the moiety sequence hybridizes to the capture domain of the capture probe. In some embodiments, a moiety sequence comprises a poly(A) nucleic acid sequence that hybridizes to a capture domain that comprises a poly(T) nucleic acid sequence. In some embodiments, a moiety sequence comprises a poly(T) nucleic acid sequence that hybridizes to a capture domain that comprises a poly(A) nucleic acid sequence. In some embodiments, a moiety sequence comprises a non-homopolymeric nucleic acid sequence that hybridizes to a capture domain that comprises a non-homopolymeric nucleic acid sequence that is complementary (or substantially complementary) to the non-homopolymeric nucleic acid sequence of the moiety sequence.
  • In some embodiments of any of the spatial analysis methods described herein, the moiety sequence can be directly coupled to the small molecule, or it can be attached to a bead, molecular lattice, e.g., a linear, globular, cross-slinked, or other polymer, or other framework that is attached or otherwise associated with the small molecule, which allows attachment of multiple moiety sequences to a single small molecule. Attachment (coupling) of the moiety sequences to the small molecule can be achieved through any of a variety of direct or indirect, covalent or non-covalent associations or attachments. For example, in the case of a moiety sequence coupled to a small molecule that includes an antibody or antigen-binding fragment, such a moiety sequence can be covalently attached to a portion of the antibody or antigen-binding fragment using chemical conjugation techniques (e.g., Lightning-Link® antibody labelling kits available from Innova Biosciences). In some embodiments, a moiety sequence can be coupled to an antibody or antigen-binding fragment using non-covalent attachment mechanisms (e.g., using biotinylated antibodies and oligonucleotides or beads that include one or more biotinylated linker(s), coupled to oligonucleotides with an avidin or streptavidin linker.) Antibody and oligonucleotide biotinylation techniques can be used, and are described for example in Fang et al., Nucleic Acids Res. (2003), 31(2): 708-715, the entire contents of which is incorporated by reference herein. Likewise, protein and peptide biotinylation techniques have been developed and can be used, and are described for example in U.S. Pat. No. 6,265,552, the entire contents of which is incorporated by reference herein. Furthermore, click reaction chemistry such as a methyltetrazine-PEG5-NHS ester reaction, a TCO-PEG4-NHS ester reaction, or the like, can be used to couple moiety sequences to small molecules. The reactive moiety on the small molecule can also include amine for targeting aldehydes, amine for targeting maleimide (e.g., free thiols), azide for targeting click chemistry compounds (e.g., alkynes), biotin for targeting streptavidin, phosphates for targeting EDC, which in turn targets active ester (e.g., NH2). Exemplary strategies to conjugate the small molecule to the moiety sequence include the use of commercial kits (e.g., Solulink, Thunder link), conjugation of mild reduction of hinge region and maleimide labelling, stain-promoted click chemistry reaction to labeled amides (e.g., copper-free), and conjugation of periodate oxidation of sugar chain and amine conjugation.
  • In some embodiments of any of the spatial profiling methods described herein, the moiety sequence coupled to a small molecule can include modifications that render it non-extendable by a polymerase. In some embodiments, when binding to a capture domain of a capture probe or nucleic acid in a sample for a primer extension reaction, the moiety sequence can serve as a template, not a primer. In some embodiments, the moiety sequence can include a random N-mer sequence that is capped with modifications that render it non-extendable by a polymerase. In some cases, the composition of the random N-mer sequence can be designed to maximize the binding efficiency to free, unbarcoded ssDNA molecules. The design can include a random sequence composition with a higher GC content, a partial random sequence with fixed G or C at specific positions, the use of guanosines, the use of locked nucleic acids, or any combination thereof.
  • A modification for blocking primer extension by a polymerase can be a carbon spacer group of different lengths or a dideoxynucleotide. In some embodiments, the modification can be an abasic site that has an apurine or apyrimidine structure, a base analog, or an analogue of a phosphate backbone, such as a backbone of N-(2-aminoethyl)-glycine linked by amide bonds, tetrahydrofuran, or 1′, 2′-Dideoxyribose. The modification can also be a uracil base, 2′OMe modified RNA, C3-18 spacers (e.g., structures with 3-18 consecutive carbon atoms, such as C3 spacer), ethylene glycol multimer spacers (e.g., spacer 18 (hexa-ethyleneglycol spacer), biotin, di-deoxynucleotide triphosphate, ethylene glycol, amine, or phosphate.
  • In some embodiments of any of the spatial profiling methods described herein, the moiety sequence includes a cleavable domain. For example, after the small molecule binds to an analyte (e.g., a cell surface analyte), the moiety sequence can be cleaved and collected for downstream analysis according to the methods as described herein. In some embodiments, the cleavable domain of the moiety sequence includes a U-excising element that allows the species to release from the bead. In some embodiments, the U-excising element can include a single-stranded DNA (ssDNA) sequence that contains at least one uracil. The species can be attached to a bead via the ssDNA sequence. The species can be released by a combination of uracil-DNA glycosylase (e.g., to remove the uracil) and an endonuclease (e.g., to induce an ssDNA break). If the endonuclease generates a 5′ phosphate group from the cleavage, then additional enzyme treatment can be included in downstream processing to eliminate the phosphate group, e.g., prior to ligation of additional sequencing handle elements, e.g., Illumina full P5 sequence, partial P5 sequence, full R1 sequence, and/or partial R1 sequence.
  • In some embodiments, multiple different species of analytes (e.g., polypeptides) from the biological sample can be subsequently associated with the one or more physical properties of the biological sample. For example, the multiple different species of analytes can be associated with locations of the analytes in the biological sample. Such information (e.g., proteomic information when the small molecule(s) recognizes a polypeptide(s)) can be used in association with other spatial information (e.g., genetic information from the biological sample, such as DNA sequence information, transcriptome information (i.e., sequences of transcripts), or both). For example, a cell surface protein of a cell can be associated with one or more physical properties of the cell (e.g., a shape, size, activity, or a type of the cell). The one or more physical properties can be characterized by imaging the cell.
  • 2. Generating Pooled Nucleic Acid Libraries
  • Also provided herein are methods of generating a library of genetically-perturbed cells. A genetically-perturbed cell can refer to any cell that has one or more genetic mutations including, but not limited to, a nucleotide deletion, insertion, or substitution. A cell comprising a moiety can be a genetically-perturbed cell. In some embodiments, a genetically-perturbed cell (i.e., a cell comprising a moiety) can refer to a cell that has a gene knockout and/or a gene knockdown. Methods of introducing a genetic perturbation into a cell and methods for generating a library of genetically-perturbed cells are known to one of skill in art. Such methods have been described in, for example, Liberali et al. Nat Rev Genet. 2015; and 16(1):18-32; and Boutros and Ahringer. Nat Rev Genet. 2008; 9(7):554-66.
  • In some embodiments, a cell comprising a moiety has been transduced with a vector, e.g., any of the vectors described herein. In some embodiments, a “genetically-perturbed cell” refers to a cell that has been transduced with a vector. In some embodiments, methods of introducing a genetic perturbation or moiety into a cell and/or methods for generating a library of genetically-perturbed cells include using a vector. In some embodiments, the vector is not integrated into the host cell's genome. In some embodiments, the vector is integrated into the host cell's genome.
  • Non-limiting examples of vectors include plasmids, transposons, cosmids, and viral vectors (e.g., any adenoviral vectors (e.g., pSV or pCMV vectors), adeno-associated virus (AAV) vectors, lentivirus vectors, and retroviral vectors), and any Gateway® vectors. A vector can, for example, include sufficient cis-acting elements for expression where other elements for expression can be supplied by the host mammalian cell or in an in vitro expression system. In some embodiments, a cell comprising a moiety has been transduced with a vector from a vector library. In some embodiments, a “genetically-perturbed cell” refers to a cell that has been transduced with a vector from a vector library.
  • In some embodiments, the vector comprises a moiety sequence (e.g., a second barcode). The moiety sequence was described in part (1) of this section and the embodiments disclosed therein are incorporated herein. For instance, in some embodiments, the moiety sequence is substantially complementary to the capture domain. In some embodiments, the moiety sequence is a polyadenylated sequence. In some instances, the moiety sequence of the vector comprises a sequence that uniquely identifies the vector (i.e., a UMI specific to the vector).
  • In some embodiments, the vector or library of vectors is a lentiviral vector. In some embodiments, a clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbation is introduced into a cell. For example, a CRISPR lentiviral vector can be used to introduce a genetic perturbation into a cell. In some embodiments, a CRISPR lentiviral vector can include a guide RNA (gRNA). In some embodiments, a CRISPR lentiviral vector can include a single guide RNA (sgRNA).
  • In some embodiments, pluralities of genetically-perturbed cells can be produced using a library of lentiviral vectors. In some embodiments, cells can be transduced with a library of lentiviral vectors to form genetically-perturbed cells, and the genetically-perturbed cells can be selected from the cells that did not receive a lentiviral vector (see, for example, FIG. 13 ). In some embodiments, the library of lentiviral vectors is a library of CRISPR lentiviral vectors. Methods of delivering genetic material, include CRISPR lentiviral vectors, are discussed in Lino et al., Drug Deliv. 2018; 25(1):1234-1257; and McDade et al. Curr Protoc Mol Biol. 2016; 115:31.5.1-31.5.13, each of which is herein incorporated by reference in its entirety. In some embodiments, a library of CRISPR lentiviral vectors includes at least two pluralities of CRISPR lentiviral vectors, wherein a plurality of CRISPR lentiviral vectors includes a different gRNA and/or sgRNA from another plurality of CRISPR lentiviral vectors. In some embodiments, wherein a library of CRISPR lentiviral vectors includes at least two pluralities of CRISPR lentiviral vectors, each plurality of CRISPR lentiviral vectors includes a different gRNA and/or sgRNA from each other plurality of CRISPR lentiviral vectors.
  • In some embodiments a clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbation is introduced into a cell. For example, a CRISPR lentiviral vector can be used to introduce a genetic perturbation into a cell. In some embodiments, a CRISPR lentiviral vector can include a guide RNA (gRNA). In some embodiments, a CRISPR lentiviral vector can include a single guide RNA (sgRNA).
  • In some embodiments, the vector in the lentiviral library includes a barcode sequence. In some embodiments, the vector includes a barcode sequence. In some embodiments, a vector includes more than one unique barcode (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, about 15, about 20, about 30, about 40, or about 50 unique barcodes). In some embodiments, a vector includes multiple copies of a unique barcode (e.g., about 10 copies, about 50, about 100, about 500, about 1000 or more). In some embodiments, identification of the barcode provides information regarding the spatial location of a particular biological analyte. In some embodiments, the barcode includes a capture domain sequence as disclosed herein. In some embodiments, the capture domain sequence is a poly(dT) sequence. In some embodiments, the capture domain sequence is a degenerate sequence. In some embodiments, the capture domain sequence is particular to a target sequence of interest. In some embodiments, the barcode includes a cleavage domain as disclosed herein. In some embodiments, the barcode includes a functional domain as disclosed herein. In some embodiments, the functional domain is a primer sequence. In some embodiments, the barcode includes a spatial barcode as disclosed herein. In some embodiments, the barcode includes a unique molecular identifier (UMI) as disclosed herein.
  • In some embodiments, a vector as disclosed herein expresses a gene of interest. In some embodiments, the gene of interest encodes for a protein that functions in a cellular pathway. For example, in some embodiments, the vector encodes for an inhibitor, antagonist, or agonist of various cellular pathways, including for example, pathways involving DNA damage/DNA repair, cell cycle/checkpoints, JAK/STAT signaling, MAPK signaling, GPCR/G protein, angiogenesis, immunology and inflammation, endocrinology and hormones, cancer, metabolism, and stem cells.
  • (c) Biological Samples
  • Methods disclosed herein can be performed on any type of sample. In some embodiments, the sample is a fresh tissue. In some embodiments, the sample is a frozen sample. In some embodiments, the sample was previously frozen. In some embodiments, the sample is a formalin-fixed, paraffin embedded (FFPE) sample.
  • Subjects from which biological samples can be obtained can be healthy or asymptomatic individuals, individuals that have or are suspected of having a disease (e.g., cancer) or a pre-disposition to a disease, and/or individuals that are in need of therapy or suspected of needing therapy. In some instances, the biological sample can include one or more diseased cells. A diseased cell can have altered metabolic properties, gene expression, protein expression, and/or morphologic features. Examples of diseases include inflammatory disorders, metabolic disorders, nervous system disorders, and cancer. In some instances, the biological sample includes cancer or tumor cells. Cancer cells can be derived from solid tumors, hematological malignancies, cell lines, or obtained as circulating tumor cells. In some instances, the biological sample is a heterogenous sample. In some instances, the biological sample is a heterogenous sample that includes tumor or cancer cells and/or stromal cells,
  • In some instances, the cancer is breast cancer. In some instances, the breast cancer is triple positive breast cancer (TPBC). In some instances, the breast cancer is triple negative breast cancer (TNBC).
  • In some instances, the cancer is colorectal cancer. In some instances, the cancer is ovarian cancer. In certain embodiments, the cancer is squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, Hodgkin's or non-Hodgkin's lymphoma, pancreatic cancer, glioblastoma, glioma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, breast cancer, colon cancer, colorectal cancer, endometrial carcinoma, myeloma, salivary gland carcinoma, kidney cancer, basal cell carcinoma, melanoma, prostate cancer, vulval cancer, thyroid cancer, testicular cancer, esophageal cancer, or a type of head or neck cancer. In certain embodiments, the cancer treated is desmoplastic melanoma, inflammatory breast cancer, thymoma, rectal cancer, anal cancer, or surgically treatable or non-surgically treatable brain stem glioma. In some embodiments, the subject is a human.
  • FFPE samples generally are heavily cross-linked and fragmented, and therefore this type of sample allows for limited RNA recovery using conventional detection techniques. In certain embodiments, methods of targeted RNA capture provided herein are less affected by RNA degradation associated with FFPE fixation than other methods (e.g., methods that take advantage of oligo-dT capture and reverse transcription of mRNA). In certain embodiments, methods provided herein enable sensitive measurement of specific genes of interest that otherwise might be missed with a whole transcriptomic approach.
  • In some instances, FFPE samples are stained (e.g., using H&E). The methods disclosed herein are compatible with H&E will allow for morphological context overlaid with transcriptomic analysis. However, depending on the need some samples may be stained with only a nuclear stain, such as staining a sample with only hematoxylin and not eosin, when location of a cell nucleus is needed.
  • In some embodiments, a biological sample (e.g. tissue section) can be fixed with methanol, stained with hematoxylin and eosin, and imaged. In some embodiments, fixing, staining, and imaging occurs before one or more probes are hybridized to the sample. Some embodiments of any of the workflows described herein can further include a destaining step (e.g., a hematoxylin and eosin destaining step), after imaging of the sample and prior to permeabilizing the sample. For example, destaining can be performed by performing one or more (e.g., one, two, three, four, or five) washing steps (e.g., one or more (e.g., one, two, three, four, or five) washing steps performed using a buffer including HCl). The images can be used to map spatial gene expression patterns back to the biological sample. A permeabilization enzyme can be used to permeabilize the biological sample directly on the slide.
  • In some embodiments, the FFPE sample is deparaffinized, permeabilized, equilibrated, and blocked before target probe oligonucleotides are added. In some embodiments, deparaffinization using xylenes. In some embodiments, deparaffinization includes multiple washes with xylenes. In some embodiments, deparaffinization includes multiple washes with xylenes followed by removal of xylenes using multiple rounds of graded alcohol followed by washing the sample with water. In some aspects, the water is deionized water. In some embodiments, equilibrating and blocking includes incubating the sample in a pre-Hyb buffer. In some embodiments, the pre-Hyb buffer includes yeast tRNA. In some embodiments, permeabilizing a sample includes washing the sample with a phosphate buffer. In some embodiments, the buffer is PBS. In some embodiments, the buffer is PBST.
  • For the purpose of this disclosure, an “analyte” can include any biological substance, structure, moiety, or component to be analyzed. The term “target” can similarly refer to an analyte of interest. Analytes can be broadly classified into one of two groups: nucleic acid analytes, and non-nucleic acid analytes. Examples of non-nucleic acid analytes include, but are not limited to, lipids, carbohydrates, peptides, proteins, glycoproteins (N-linked or O-linked), lipoproteins, phosphoproteins, specific phosphorylated or acetylated variants of proteins, amidation variants of proteins, hydroxylation variants of proteins, methylation variants of proteins, ubiquitylation variants of proteins, sulfation variants of proteins, viral proteins (e.g., viral capsid, viral envelope, viral coat, viral accessory, viral glycoproteins, viral spike, etc.), extracellular and intracellular proteins, antibodies, and antigen binding fragments. In some embodiments, analyte(s) can be peptides or proteins, including without limitation antibodies and enzymes. In some embodiments, the analyte is a protein.
  • (d) Imaging and Preparation of Biological a Sample
  • (i) Imaging and Staining
  • Prior to addition of the probes, in some instances, biological samples can be stained using a wide variety of stains and staining techniques. In some instances, the biological sample is a section on a slide (e.g., a 10 μm section). In some instances, the biological sample is dried after placement onto a glass slide. In some instances, the biological sample is dried at 42° C. In some instances, drying occurs for about 1 hour, about 2, hours, about 3 hours, or until the sections become transparent. In some instances, the biological sample can be dried overnight (e.g., in a desiccator at room temperature).
  • In some embodiments, a sample can be stained using any number of biological stains, including but not limited to, acridine orange, Bismarck brown, carmine, coomassie blue, cresyl violet, DAPI, eosin, ethidium bromide, acid fuchsine, hematoxylin, Hoechst stains, iodine, methyl green, methylene blue, neutral red, Nile blue, Nile red, osmium tetroxide, propidium iodide, rhodamine, or safranin. In some instances, the methods disclosed herein include imaging the biological sample. In some instances, imaging the sample occurs prior to deaminating the biological sample. In some instances, the sample can be stained using known staining techniques, including Can-Grunwald, Giemsa, hematoxylin and eosin (H&E), Jenner's, Leishman, Masson's trichrome, Papanicolaou, Romanowsky, silver, Sudan, Wright's, and/or Periodic Acid Schiff (PAS) staining techniques. PAS staining is typically performed after formalin or acetone fixation. In some instances, the stain is an H&E stain.
  • In some embodiments, the biological sample can be stained using a detectable label (e.g., radioisotopes, fluorophores, chemiluminescent compounds, bioluminescent compounds, and dyes) as described elsewhere herein. In some embodiments, a biological sample is stained using only one type of stain or one technique. In some embodiments, staining includes biological staining techniques such as H&E staining. In some embodiments, staining includes identifying analytes using fluorescently-conjugated antibodies. In some embodiments, a biological sample is stained using two or more different types of stains, or two or more different staining techniques. For example, a biological sample can be prepared by staining and imaging using one technique (e.g., H&E staining and brightfield imaging), followed by staining and imaging using another technique (e.g., IHC/IF staining and fluorescence microscopy) on the same biological sample.
  • In some embodiments, biological samples can be destained. Methods of destaining or discoloring a biological sample are known in the art, and generally depend on the nature of the stain(s) applied to the sample. For example, H&E staining can be destained by washing the sample in HCl, or any other acid (e.g., selenic acid, sulfuric acid, hydroiodic acid, benzoic acid, carbonic acid, malic acid, phosphoric acid, oxalic acid, succinic acid, salicylic acid, tartaric acid, sulfurous acid, trichloroacetic acid, hydrobromic acid, hydrochloric acid, nitric acid, orthophosphoric acid, arsenic acid, selenous acid, chromic acid, citric acid, hydrofluoric acid, nitrous acid, isocyanic acid, formic acid, hydrogen selenide, molybdic acid, lactic acid, acetic acid, carbonic acid, hydrogen sulfide, or combinations thereof). In some embodiments, destaining can include 1, 2, 3, 4, 5, or more washes in an acid (e.g., HCl). In some embodiments, destaining can include adding HCl to a downstream solution (e.g., permeabilization solution). In some embodiments, destaining can include dissolving an enzyme used in the disclosed methods (e.g., pepsin) in an acid (e.g., HCl) solution. In some embodiments, after destaining hematoxylin with an acid, other reagents can be added to the destaining solution to raise the pH for use in other applications. For example, SDS can be added to an acid destaining solution in order to raise the pH as compared to the acid destaining solution alone. As another example, in some embodiments, one or more immunofluorescence stains are applied to the sample via antibody coupling. Such stains can be removed using techniques such as cleavage of disulfide linkages via treatment with a reducing agent and detergent washing, chaotropic salt treatment, treatment with antigen retrieval solution, and treatment with an acidic glycine buffer. Methods for multiplexed staining and destaining are described, for example, in Bolognesi et al., J. Histochem. Cytochem. 2017; 65(8): 431-444, Lin et al., Nat Commun. 2015; 6:8390, Pirici et al., J. Histochem. Cytochem. 2009; 57:567-75, and Glass et al., J. Histochem. Cytochem. 2009; 57:899-905, the entire contents of each of which are incorporated herein by reference.
  • In some embodiments, immunofluorescence or immunohistochemistry protocols (direct and indirect staining techniques) can be performed as a part of, or in addition to, the exemplary spatial workflows presented herein. For example, tissue sections can be fixed according to methods described herein. The biological sample can be transferred to an array (e.g., capture probe array), wherein analytes (e.g., proteins) are probed using immunofluorescence protocols. For example, the sample can be rehydrated, blocked, and permeabilized (3×SSC, 2% BSA, 0.1% Triton X, 1 U/μl RNAse inhibitor for 10 minutes at 4° C.) before being stained with fluorescent primary antibodies (1:100 in 3×SSC, 2% BSA, 0.1% Triton X, 1 U/μl RNAse inhibitor for 30 minutes at 4° C.). The biological sample can be washed, coverslipped (in glycerol+1 U/μl RNAse inhibitor), imaged (e.g., using a confocal microscope or other apparatus capable of fluorescent detection), washed, and processed according to analyte capture or spatial workflows described herein.
  • In some instances, a glycerol solution and a cover slip can be added to the sample. In some instances, the glycerol solution can include a counterstain (e.g., DAPI).
  • As used herein, an antigen retrieval buffer can improve antibody capture in IF/IHC protocols. An exemplary protocol for antigen retrieval can be preheating the antigen retrieval buffer (e.g., to 95° C.), immersing the biological sample in the heated antigen retrieval buffer for a predetermined time, and then removing the biological sample from the antigen retrieval buffer and washing the biological sample.
  • In some embodiments, optimizing permeabilization can be useful for identifying intracellular analytes. Permeabilization optimization can include selection of permeabilization agents, concentration of permeabilization agents, and permeabilization duration. Tissue permeabilization is discussed elsewhere herein.
  • In some embodiments, blocking an array and/or a biological sample in preparation of labeling the biological sample decreases nonspecific binding of the antibodies to the array and/or biological sample (decreases background). Some embodiments provide for blocking buffers/blocking solutions that can be applied before and/or during application of the label, wherein the blocking buffer can include a blocking agent, and optionally a surfactant and/or a salt solution. In some embodiments, a blocking agent can be bovine serum albumin (BSA), serum, gelatin (e.g., fish gelatin), milk (e.g., non-fat dry milk), casein, polyethylene glycol (PEG), polyvinyl alcohol (PVA), or polyvinylpyrrolidone (PVP), biotin blocking reagent, a peroxidase blocking reagent, levamisole, Carnoy's solution, glycine, lysine, sodium borohydride, pontamine sky blue, Sudan Black, trypan blue, FITC blocking agent, and/or acetic acid. The blocking buffer/blocking solution can be applied to the array and/or biological sample prior to and/or during labeling (e.g., application of fluorophore-conjugated antibodies) to the biological sample.
  • In some embodiments, the methods described herein further include imaging the cell comprising the moiety (e.g., any of the moieties described herein). Imaging can be used, for example, to determine the morphology of the cell comprising the moiety at a distinct spatial position on the substrate. In some embodiments, the morphology is correlated to a biological analyte of the cell comprising the moiety using the methods described herein. In some embodiments, the morphology is correlated to a perturbation in the cell comprising the moiety. For example, the morphology is correlated to a change in one or more biological analytes compared to a cell including a different moiety or a cell not including the moiety.
  • (ii) Preparation of Samples for Application of Pooled Libraries
  • In some instances, the biological sample is deparaffinized. Deparaffinization can be achieved using any method known in the art. For example, in some instances, the biological sample is treated with a series of washes that include xylene and various concentrations of ethanol. In some instances, methods of deparaffinization include treatment with xylene (e.g., three washes at 5 minutes each). In some instances, the methods further include treatment with ethanol (e.g., 100% ethanol, two washes 10 minutes each; 95% ethanol, two washes 10 minutes each; 70% ethanol, two washes 10 minutes each; 50% ethanol, two washes 10 minutes each). In some instances, after ethanol washes, the biological sample can be washed with deionized water (e.g., two washes for 5 minutes each). It is appreciated that one skilled in the art can adjust these methods to optimize deparaffinization.
  • In some instances, the biological sample is decrosslinked. In some instances, the biological sample is decrosslinked in a solution containing TE buffer (comprising Tris and EDTA). In some instances, the TE buffer is basic (e.g., at a pH of about 9). In some instances, decrosslinking occurs at about 50° C. to about 80° C. In some instances, decrosslinking occurs at about 70° C. In some instances, decrosslinking occurs for about 1 hour at 70° C. Just prior to decrosslinking, the biological sample can be treated with an acid (e.g., 0.1M HCl for about 1 minute). After the decrosslinking step, the biological sample can be washed (e.g., with 1×PBST).
  • In some instances, the methods of preparing a biological sample for probe application include permeabilizing the sample. In some instances, the biological sample is permeabilized using a phosphate buffer. In some instances, the phosphate buffer is PBS (e.g., 1×PBS). In some instances, the phosphate buffer is PBST (e.g., 1×PBST). In some instances, the permeabilization step is performed multiple times (e.g., 3 times at 5 minutes each).
  • In some instances, the methods of preparing a biological sample for probe application include steps of equilibrating and blocking the biological sample. In some instances, equilibrating is performed using a pre-hybridization (pre-Hyb) buffer. In some instances, the pre-Hyb buffer is RNase-free. In some instances, the pre-Hyb buffer contains no bovine serum albumin (BSA), solutions like Denhardt's, or other potentially nuclease-contaminated biological materials.
  • In some instances, the equilibrating step is performed multiple times (e.g., 2 times at 5 minutes each; 3 times at 5 minutes each). In some instances, the biological sample is blocked with a blocking buffer. In some instances, the blocking buffer includes a carrier such as tRNA, for example yeast tRNA such as from brewer's yeast (e.g., at a final concentration of 10-20 μg/mL). In some instances, blocking can be performed for 5, 10, 15, 20, 25, or 30 minutes.
  • Any of the foregoing steps can be optimized for performance. For example, one can vary the temperature. In some instances, the pre-hybridization methods are performed at room temperature. In some instances, the pre-hybridization methods are performed at 4° C. (in some instances, varying the timeframes provided herein).
  • (e) Manipulation of Biological Samples Using Pooled Libraries
  • (i) Manipulation of Biological Samples Using a Pooled Small Molecule Library
  • Methods of identifying the small molecule introduced into the cell are also known to one of skill in the art. For example, in some embodiments, a moiety sequence (e.g., a second barcode) can be introduced into the cell using a particle (e.g., the particle includes the small molecule). In some embodiments, the particle further includes a moiety sequence. In some embodiments, the particle includes more than one unique moiety sequence (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, about 15, about 20, about 30, about 40, about 50, about 75, or about 100 unique moiety sequences). In some embodiments, the particle includes multiple copies of a unique moiety sequence (e.g., about 10, about 50, about 100, about 500, about 1000 or more). In some embodiments, the moiety sequence is a nucleotide sequence that identifies the small molecule. In some embodiments, identification of the moiety sequence provides information regarding the spatial location of a particular biological analyte. In some embodiments, the moiety sequence includes a capture domain sequence as disclosed herein. In some embodiments, the capture domain sequence is a poly(dT) sequence. In some embodiments, the capture domain sequence is a degenerate sequence. In some embodiments, the capture domain sequence is particular to a target sequence of interest. In some embodiment, the moiety sequence includes a cleavage domain as disclosed herein. In some embodiments, the moiety sequence includes a functional domain as disclosed herein. In some embodiments, the functional domain is a primer sequence. In some embodiment, the moiety sequence includes a spatial barcode as disclosed herein. In some embodiment, the moiety sequence includes a unique molecular identifier (UMI) as disclosed herein.
  • Determining the identity of the moiety sequence (e.g., second barcode) that was introduced into the cell can be used to identify the small molecule introduced into the cell. In some embodiments, the moiety sequence can be part of a polyadenylated sequence. Introducing a polyadenylated moiety sequence into the cell can allow the moiety sequence to be sequenced and identified using the methods described herein. See also, for example, Adamson et al. Cell. 167(7):1867-1882.e21, 2016; Datlinger et al. Nat Methods. 14(3):297-301, 2017; Jaitin et al. Cell. 167(7):1883-1896.e15, 2016; and Dixit et al. Cell. 167(7):1853-1866.e17, 2016, all of which are incorporated by reference herein in their entireties. As such, correlating a biological analyte from a cell including a small molecule with a first barcode of a capture probe at a distinct spatial position of a substrate can further include correlating the small molecule of the cell to a distinct spatial position of the substrate using the moiety sequence that identifies the small molecule of the cell.
  • In some embodiments, the methods described herein can include profiling biological analytes from a cell (or a group of cells) that includes one or more small molecules (or a library of small molecules that are all identical or that are different).
  • In some embodiments, the methods described herein can include one or more pluralities of cells including one or more small molecules (e.g., a library of cells including small molecules). For example, the methods described herein can be useful in detecting one or more biological analytes in cells perturbed by a library of small molecules, e.g., methods using one or more pools of small molecules. Pooling schemes are known to those in the art, see, e.g., Kainkaryam. Curr Opin Drug Discov Devel. 2009 May; 12(3): 339-350, which is incorporated herein by reference in its entirety. Accordingly, in some embodiments, a method to spatially profile one or more biological analytes present in a library of cells including a small molecule can include contacting the library of cells including a small molecule with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain; releasing the one or more biological analytes from members of the library of cells including a small molecule, wherein the one or more biological analytes are bound by capture probes at distinct spatial positions of the substrate; detecting the one or more biological analytes bound by capture probes; and correlating each biological analyte with the first barcode from the capture probe it was bound to at the distinct spatial position of the substrate; thus profiling the one or more biological analytes as present in the library of cells including a small molecule at one or more distinct spatial positions. In some embodiments, one biological analyte is bound to one capture probe.
  • In some embodiments, the methods described herein can include profiling biological analytes from a cell that includes multiple, identical small molecules. In some embodiments, the methods described herein can include profiling biological analytes from a cell that includes multiple, unique (i.e., different) small molecules. In some embodiments, the methods described herein can include profiling biological analytes from a group of cells that each include a single small molecule. In some embodiments, the methods described herein can include profiling biological analytes from a group of cells, each of which includes multiple copies of the same small molecule. In some embodiments, the methods described herein can include profiling biological analytes from a group of cells that each include multiple copies of different small molecules.
  • In some embodiments, the methods disclosed herein also include a wash step. The wash step removes any unbound probes. Wash steps could be performed between any of the steps in the methods disclosed herein. For example, a wash step can be performed after adding probes to the biological sample. As such, free/unbound probes are washed away, leaving only probes that have hybridized to an analyte. In some instances, multiple (i.e., at least 2, 3, 4, 5, or more) wash steps occur between the methods disclosed herein. Wash steps can be performed at times (e.g., 1, 2, 3, 4, or 5 minutes) and temperatures (e.g., room temperature) known in the art and determined by a person of skill in the art.
  • In some instances, wash steps are performed using a wash buffer. In some instances, the wash buffer includes SSC (e.g., 1×SSC). In some instances, the wash buffer includes PBS (e.g., 1×PBS). In some instances, the wash buffer includes PBST (e.g., 1×PBST). In some instances, the wash buffer can also include formamide or be formamide free.
  • In some embodiments, a biological sample can optionally be separated into single cells, cell groups, or other fragments/pieces that are smaller than the original, unfragmented sample. Each of these smaller portions of the sample can be analyzed to obtain spatially-resolved analyte information for the sample.
  • For samples that have been separated into smaller fragments—and particularly, for samples that have been disaggregated, dissociated, or otherwise separated into individual cells—one method for analyzing the fragments involves separating the fragments into individual partitions (e.g., fluid droplets), and then analyzing the contents of the partitions. In general, each partition maintains separation of its own contents from the contents of other partitions. The partition can be a droplet in an emulsion, for example.
  • Microfluidic channel networks (e.g., on a chip) can be utilized to generate partitions. Alternative mechanisms can also be employed in the partitioning of individual biological particles, including porous membranes through which aqueous mixtures of cells are extruded into non-aqueous fluids. In some embodiments, a microfluidical channel structure can be used for partitioning individual analytes (e.g., cells) into discrete partitions. For example, a first aqueous fluid that includes suspended biological particles (or cells) may be transported along a channel segment into a junction, while a second fluid that is immiscible with the first aqueous fluid is delivered to the junction from each of the channel segments to create discrete droplets of the first aqueous fluid flowing into a channel segment, and flowing away from the junction. The channel segment may be fluidically coupled to an outlet reservoir where the discrete droplets can be stored and/or harvested. A discrete droplet generated may include an individual biological particle. A discrete droplet generated may include more than one individual biological particle. A discrete droplet may contain no biological particle. Each discrete partition may maintain separation of its own contents (e.g., individual biological particle) from the contents of other partitions.
  • In some embodiments, one or more barcodes (e.g., spatial barcodes, UMIs, or a combination thereof) can be introduced into a partition as part of the analyte. As described previously, barcodes can be bound to the analyte directly, or can form part of a capture probe or analyte capture agent that is hybridized to, conjugated to, or otherwise associated with an analyte, such that when the analyte is introduced into the partition, the barcode(s) are introduced as well.
  • FIG. 8 shows an example of a microfluidic channel structure for partitioning individual analytes (e.g., cells) into discrete partitions. The channel structure can include channel segments 801, 802, 803, and 804 communicating at a channel junction 805. In operation, a first aqueous fluid 806 that includes suspended biological particles (or cells) 807 may be transported along channel segment 801 into junction 805, while a second fluid 808 that is immiscible with the aqueous fluid 806 is delivered to the junction 805 from each of channel segments 802 and 803 to create discrete droplets 809, 810 of the first aqueous fluid 806 flowing into channel segment 804, and flowing away from junction 805. The channel segment 804 may be fluidically coupled to an outlet reservoir where the discrete droplets can be stored and/or harvested. A discrete droplet generated may include an individual biological particle 807 (such as droplets 809). A discrete droplet generated may include more than one individual biological particle 807. A discrete droplet may contain no biological particle 807 (such as droplet 810). Each discrete partition may maintain separation of its own contents (e.g., individual biological particle 807) from the contents of other partitions.
  • FIG. 9A shows another example of a microfluidic channel structure 900 for delivering beads to droplets. The channel structure includes channel segments 901, 902, 903, 904, and 905 communicating at a channel junction 906. During operation, the channel segment 901 can transport an aqueous fluid 907 that includes a plurality of beads 908 along the channel segment 901 into junction 906. The plurality of beads 908 can be sourced from a suspension of beads. For example, the channel segment 901 can be connected to a reservoir that includes an aqueous suspension of beads 908. The channel segment 902 can transport the aqueous fluid 907 that includes a plurality of particles 909 (e.g., cells) along the channel segment 902 into junction 906. In some embodiments, the aqueous fluid 907 in either the first channel segment 901 or the second channel segment 902, or in both segments, can include one or more reagents, as further described below.
  • A second fluid 910 that is immiscible with the aqueous fluid 907 (e.g., oil) can be delivered to the junction 906 from each of channel segments 903 and 904. Upon meeting of the aqueous fluid 907 from each of channel segments 901 and 902 and the second fluid 910 from each of channel segments 903 and 904 at the channel junction 906, the aqueous fluid 907 can be partitioned as discrete droplets 911 in the second fluid 910 and flow away from the junction 906 along channel segment 905. The channel segment 905 can deliver the discrete droplets to an outlet reservoir fluidly coupled to the channel segment 905, where they can be harvested.
  • As an alternative, the channel segments 901 and 902 can meet at another junction upstream of the junction 906. At such junction, beads and biological particles can form a mixture that is directed along another channel to the junction 906 to yield droplets 911. The mixture can provide the beads and biological particles in an alternating fashion, such that, for example, a droplet includes a single bead and a single biological particle.
  • The second fluid 910 can include an oil, such as a fluorinated oil, that includes a fluorosurfactant for stabilizing the resulting droplets, for example, inhibiting subsequent coalescence of the resulting droplets 911.
  • The partitions described herein can include small volumes, for example, less than about 10 microliters (TL), 5 TL, 1 TL, 900 picoliters (pL), 800 pL, 700 pL, 600 pL, 500 pL, 400 pL, 300 pL, 200 pL, 100 pL, 50 pL, 20 pL, 10 pL, 1 pL, 500 nanoliters (nL), 100 nL, 50 nL, or less. In the foregoing discussion, droplets with beads were formed at the junction of different fluid streams. In some embodiments, droplets can be formed by gravity-based partitioning methods.
  • FIG. 9B shows a cross-section view of another example of a microfluidic channel structure 950 with a geometric feature for controlled partitioning. A channel structure 950 can include a channel segment 952 communicating at a channel junction 958 (or intersection) with a reservoir 954. In some instances, the channel structure 950 and one or more of its components can correspond to the channel structure 900 and one or more of its components.
  • An aqueous fluid 960 comprising a plurality of particles 956 may be transported along the channel segment 952 into the junction 958 to meet a second fluid 962 (e.g., oil, etc.) that is immiscible with the aqueous fluid 960 in the reservoir 954 to create droplets 964 of the aqueous fluid 960 flowing into the reservoir 954. At the junction 958 where the aqueous fluid 960 and the second fluid 962 meet, droplets can form based on factors such as the hydrodynamic forces at the junction 958, relative flow rates of the two fluids 960, 962, fluid properties, and certain geometric parameters (e.g., Δh, etc.) of the channel structure 950. A plurality of droplets can be collected in the reservoir 954 by continuously injecting the aqueous fluid 960 from the channel segment 952 at the junction 958.
  • A discrete droplet generated may comprise one or more particles of the plurality of particles 956. As described elsewhere herein, a particle may be any particle, such as a bead, cell bead, gel bead, biological particle, macromolecular constituents of biological particle, or other particles. Alternatively, a discrete droplet generated may not include any particles.
  • In some instances, the aqueous fluid 960 can have a substantially uniform concentration or frequency of particles 956. As described elsewhere herein, the particles 956 (e.g., beads) can be introduced into the channel segment 952 from a separate channel (not shown in FIGS. 9A-9B). The frequency of particles 956 in the channel segment 952 may be controlled by controlling the frequency in which the particles 956 are introduced into the channel segment 952 and/or the relative flow rates of the fluids in the channel segment 952 and the separate channel. In some instances, the particles 956 can be introduced into the channel segment 952 from a plurality of different channels, and the frequency controlled accordingly. In some instances, different particles may be introduced via separate channels. For example, a first separate channel can introduce beads and a second separate channel can introduce biological particles into the channel segment 952. The first separate channel introducing the beads may be upstream or downstream of the second separate channel introducing the biological particles.
  • In some instances, the second fluid 962 may not be subjected to and/or directed to any flow in or out of the reservoir 954. For example, the second fluid 962 may be substantially stationary in the reservoir 954. In some instances, the second fluid 962 may be subjected to flow within the reservoir 954, but not in or out of the reservoir 954, such as via application of pressure to the reservoir 954 and/or as affected by the incoming flow of the aqueous fluid 960 at the junction 958. Alternatively, the second fluid 962 may be subjected and/or directed to flow in or out of the reservoir 954. For example, the reservoir 954 can be a channel directing the second fluid 962 from upstream to downstream, transporting the generated droplets.
  • The channel structure 950 at or near the junction 958 may have certain geometric features that at least partly determine the volumes and/or shapes of the droplets formed by the channel structure 950. The channel segment 952 can have a first cross-section height, h1, and the reservoir 954 can have a second cross-section height, h2. The first cross-section height, h1, and the second cross-section height, h2, may be different, such that at the junction 958, there is a height difference of Δh. The second cross-section height, h2, may be greater than the first cross-section height, h1. In some instances, the reservoir may thereafter gradually increase in cross-section height, for example, the more distant it is from the junction 958. In some instances, the cross-section height of the reservoir may increase in accordance with expansion angle, β, at or near the junction 958. The height difference, Δh, and/or expansion angle, β, can allow the tongue (portion of the aqueous fluid 960 leaving channel segment 952 at junction 958 and entering the reservoir 954 before droplet formation) to increase in depth and facilitate decrease in curvature of the intermediately formed droplet. For example, droplet volume may decrease with increasing height difference and/or increasing expansion angle.
  • The height difference, Δh, can be at least about 1 μm. Alternatively, the height difference can be at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 μm or more. Alternatively, the height difference can be at most about 500, 400, 300, 200, 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 μm or less. In some instances, the expansion angle, 3, may be between a range of from about 0.50 to about 4°, from about 0.1° to about 10°, or from about 0° to about 90°. For example, the expansion angle can be at least about 0.01°, 0.1°, 0.2°, 0.3°, 0.4°, 0.5°, 0.6°, 0.7°, 0.8°, 0.9°, 10, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, or higher. In some instances, the expansion angle can be at most about 89°, 88°, 87°, 86°, 85°, 84°, 83°, 82°, 81°, 80°, 75° 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15°, 10°, 9°, 8°, 7°, 6°, 5°, 4°, 3°, 2°, 1°, 0.1°, 0.01°, or less.
  • In some instances, the flow rate of the aqueous fluid 960 entering the junction 958 can be between about 0.04 microliters (μL)/minute (min) and about 40 μL/min. In some instances, the flow rate of the aqueous fluid 960 entering the junction 958 can be between about 0.01 microliters (μL)/minute (min) and about 100 μL/min. Alternatively, the flow rate of the aqueous fluid 960 entering the junction 958 can be less than about 0.01 μL/min. alternatively, the flow rate of the aqueous fluid 960 entering the junction 958 can be greater than about 40 μL/min, such as 45 μL/min, 50 μL/min, 55 μL/min, 60 μL/min, 65 μL/min, 70 μL/min, 75 μL/min, 80 μL/min, 85 μL/min, 90 μL/min, 95 μL/min, 100 μL/min, 110 μL/min, 120 μL/min, 130 μL/min, 140 μL/min, 150 μL/min, or greater. At lower flow rates, such as flow rates of about less than or equal to 10 microliters/minute, the droplet radius may not be dependent on the flow rate of the aqueous fluid 960 entering the junction 958. The second fluid 962 may be stationary, or substantially stationary, in the reservoir 954. Alternatively, the second fluid 962 may be flowing, such as at the above flow rates described for the aqueous fluid 960.
  • While FIG. 9B illustrates the height difference, Δh, being abrupt at the junction 958 (e.g., a step increase), the height difference may increase gradually (e.g., from about 0 μm to a maximum height difference). Alternatively, the height difference may decrease gradually (e.g., taper) from a maximum height difference. A gradual increase or decrease in height difference, as used herein, may refer to a continuous incremental increase or decrease in height difference, wherein an angle between any one differential segment of a height profile and an immediately adjacent differential segment of the height profile is greater than 90°. For example, at the junction 958, a bottom wall of the channel and a bottom wall of the reservoir can meet at an angle greater than 90°. Alternatively or in addition, a top wall (e.g., ceiling) of the channel and a top wall (e.g., ceiling) of the reservoir can meet an angle greater than 90°. A gradual increase or decrease may be linear or non-linear (e.g., exponential, sinusoidal, etc.). Alternatively or in addition, the height difference may variably increase and/or decrease linearly or non-linearly. While FIG. 9B illustrates the expanding reservoir cross-section height as linear (e.g., constant expansion angle, β), the cross-section height may expand non-linearly. For example, the reservoir may be defined at least partially by a dome-like (e.g., hemispherical) shape having variable expansion angles. The cross-section height may expand in any shape.
  • FIG. 9C depicts a workflow wherein cells are partitioned into droplets along with barcode-bearing beads 970. See FIG. 9A. The droplet forms an isolated reaction chamber wherein the cells can be lysed 971 and target analytes within the cells can then be captured 972 and amplified 973, 974 according to previously described methods. After sequence library preparation clean-up 975, the material is sequenced and/or quantified 976 according to methods described herein. For example, the workflow shown in FIG. 9C can be used with a biological sample on an array, where the features of the array have been delivered to the substrate via a droplet manipulation system. In some embodiments, capture probes on the features can specifically bind analytes present in the biological sample. In some embodiments, the features can be removed from the substrate (e.g., removed by any method described herein) and partitioned into droplets with barcode-bearing beads for further analysis according to methods described herein.
  • It should be noted that while the example workflow in FIG. 9C includes steps specifically for the analysis of mRNA, analogous workflows can be implemented for a wide variety of other analytes, including any of the analytes described previously.
  • By way of example, in the context of analyzing sample RNA as shown in FIG. 9C, the poly(T) segment of one of the released nucleic acid molecules (e.g., from the bead) can hybridize to the poly(A) tail of an mRNA molecule. Reverse transcription can result in a cDNA transcript of the mRNA, which transcript includes each of the sequence segments of the nucleic acid molecule. If the nucleic acid molecule includes an anchoring sequence, it will more likely hybridize to and prime reverse transcription at the sequence end of the poly(A) tail of the mRNA.
  • (ii) Manipulation of Biological Samples Using a Pooled Nucleic Acid Library
  • Methods of identifying a genetic perturbation or genetic moiety introduced into a cell are also known to one of skill in the art. See, for example, Adamson et al. Cell. 167(7):1867-1882.e21, 2016; Datlinger et al. Nat Methods. 14(3):297-301, 2017; Jaitin et al. Cell. 167(7):1883-1896.e15, 2016; and Dixit et al. Cell. 167(7):1853-1866.e17, 2016, each of which is incorporated by reference herein in its entirety.
  • In some instances, the methods include introducing the pooled nucleic acid library into a cell or plurality of cells. The term “introducing,” as used herein, includes delivery of a vector or pooled library to a cell or cells. Such introducing may take place in vivo, in vitro, or ex vivo. A vector for expression of a gene product may be introduced into a cell by transfection, which typically means insertion of heterologous DNA into a cell by physical means (e.g., calcium phosphate transfection, electroporation, microinjection, or lipofection); infection, which typically refers to introduction by way of an infectious agent, i.e. a virus; or transduction, which typically means stable infection of a cell with a virus or the transfer of genetic material from one microorganism to another by way of a viral agent (e.g., a bacteriophage).
  • After introduction, the methods in some instances can include determining the presence of a genetic moiety (i.e., a nucleic acid (e.g., gRNA and/or sgRNA)) that was introduced into a cell. For example, a moiety sequence (e.g., a second barcode) can be introduced into the genetically-perturbed cell that identifies the genetic moiety in the cell (e.g., identifies the gRNA introduced into the cell) and/or a polyadenylated nucleotide sequence, such as a polyadenylated gRNA sequence, can be introduced into the genetically-perturbed cell. In some embodiments, the moiety sequence can be part of a polyadenylated sequence. Introducing a polyadenylated barcode sequence and/or a polyadenylated gRNA sequence into the cell can allow the second barcode and/or gRNA sequence to be sequenced and identified using the methods described herein. In some embodiments, the CRISPR lentiviral vector can further include the moiety sequence identifying the gRNA and/or a polyadenylated or an oligo (dT) nucleotide sequence (e.g., a polyadenylated gRNA sequence). As such, correlating a biological analyte from a genetically-perturbed cell with a first barcode of a capture probe at a distinct spatial position of a substrate can further include correlating the genetic perturbation of the cell to a distinct spatial position of the substrate using the moiety sequence that identifies the genetic perturbation of the cell and/or the polyadenylated nucleotide sequence. In addition, also disclosed herein are methods of selecting a cell that includes the genetic perturbation.
  • In some embodiments, the methods described herein can include profiling biological analytes from one or more pluralities of genetically-perturbed cells (e.g., a library of genetically-perturbed cells). For example, a method to spatially profile one or more biological analytes present in a library of genetically-perturbed cells can include contacting the library of genetically-perturbed cells with a substrate including a plurality of capture probes, wherein a capture probe of the plurality includes a first barcode and a capture domain; releasing the one or more biological analytes from members of the library of genetically-perturbed cells, wherein the one or more biological analytes are bound by capture probes at distinct spatial positions of the substrate; detecting the one or more biological analytes bound by capture probes; and correlating each biological analyte with the first barcode from the capture probe it was bound to at the distinct spatial position of the substrate; thus profiling the one or more biological analytes as present in the library of genetically-perturbed cells at distinct spatial positions. In some embodiments, one biological analyte is bound to one capture probe.
  • In some embodiments, a plurality of genetically-perturbed cells includes a different genetic perturbation from another plurality of genetically-perturbed cells. In some embodiments, each plurality of genetically-perturbed cells includes a different genetic perturbation from each other plurality of genetically-perturbed cells. In some embodiments, a plurality of genetically-perturbed cells with a different genetic perturbation from another plurality of genetically-perturbed cells also has a different polyadenylated barcode sequence and/or a polyadenylated gRNA sequence from the other plurality of genetically-perturbed cells (e.g., the polyadenylated barcode sequence and/or a polyadenylated gRNA sequence can identify the genetic perturbation of the cell). In some embodiments, each plurality of genetically-perturbed cells that has a different genetic perturbation from each other plurality of genetically-perturbed cells also has a different polyadenylated barcode sequence and/or a polyadenylated gRNA sequence from each other plurality of genetically-perturbed cells (e.g., the polyadenylated barcode sequence and/or a polyadenylated gRNA sequence can identify the genetic perturbation of the cell).
  • In some embodiments, the methods disclosed herein also include a wash step. The wash step removes any unbound probes. Wash steps could be performed between any of the steps in the methods disclosed herein. For example, a wash step can be performed after adding probes to the biological sample. As such, free/unbound probes are washed away, leaving only probes that have hybridized to an analyte. In some instances, multiple (i.e., at least 2, 3, 4, 5, or more) wash steps occur between the methods disclosed herein. Wash steps can be performed at times (e.g., 1, 2, 3, 4, or 5 minutes) and temperatures (e.g., room temperature) known in the art and determined by a person of skill in the art.
  • In some instances, wash steps are performed using a wash buffer. In some instances, the wash buffer includes SSC (e.g., 1×SSC). In some instances, the wash buffer includes PBS (e.g., 1×PBS). In some instances, the wash buffer includes PBST (e.g., 1×PBST). In some instances, the wash buffer can also include formamide or be formamide free.
  • In some embodiments, a biological sample can optionally be separated into single cells, cell groups, or other fragments/pieces that are smaller than the original, unfragmented sample. Each of these smaller portions of the sample can be analyzed to obtain spatially-resolved analyte information for the sample.
  • For samples that have been separated into smaller fragments—and particularly, for samples that have been disaggregated, dissociated, or otherwise separated into individual cells—one method for analyzing the fragments involves separating the fragments into individual partitions (e.g., fluid droplets), and then analyzing the contents of the partitions. In general, each partition maintains separation of its own contents from the contents of other partitions. The partition can be a droplet in an emulsion, for example.
  • Microfluidic channel networks (e.g., on a chip) can be utilized to generate partitions. Alternative mechanisms can also be employed in the partitioning of individual biological particles, including porous membranes through which aqueous mixtures of cells are extruded into non-aqueous fluids. In some embodiments, a microfluidical channel structure can be used for partitioning individual analytes (e.g., cells) into discrete partitions. For example, a first aqueous fluid that includes suspended biological particles (or cells) may be transported along a channel segment into a junction, while a second fluid that is immiscible with the first aqueous fluid is delivered to the junction from each of the channel segments to create discrete droplets of the first aqueous fluid flowing into a channel segment, and flowing away from the junction. The channel segment may be fluidically coupled to an outlet reservoir where the discrete droplets can be stored and/or harvested. A discrete droplet generated may include an individual biological particle. A discrete droplet generated may include more than one individual biological particle. A discrete droplet may contain no biological particle. Each discrete partition may maintain separation of its own contents (e.g., individual biological particle) from the contents of other partitions. Microfluidic systems have been described in part (1) of this section and is incorporated herein.
  • (e) Spatial Detection of Manipulated Cells
  • After an analyte and/or moiety from the cell, e.g., a cell in a biological sample, has hybridized or otherwise been associated with a capture probe according to any of the methods described above in connection with the general spatial cell-based analytical methodology, the barcoded constructs that result from hybridization/association are analyzed.
  • In some embodiments, after contacting a biological sample with a substrate that includes capture probes, a removal step can optionally be performed to remove all or a portion of the biological sample from the substrate. In some embodiments, the removal step includes enzymatic and/or chemical degradation of cells of the biological sample. For example, the removal step can include treating the biological sample with an enzyme (e.g., a proteinase, e.g., proteinase K) to remove at least a portion of the biological sample from the substrate. In some embodiments, the removal step can include ablation of the tissue (e.g., laser ablation).
  • In some embodiments, provided herein are methods for spatially detecting an analyte (e.g., detecting the location of an analyte, e.g., a biological analyte) from a biological sample (e.g., present in a biological sample), the method comprising: (a) optionally staining and/or imaging a biological sample on a substrate; (b) permeabilizing (e.g., providing a solution comprising a permeabilization reagent to) the biological sample on the substrate; (c) contacting the biological sample with an array comprising a plurality of capture probes, wherein a capture probe of the plurality captures the biological analyte; and (d) analyzing the captured biological analyte, thereby spatially detecting the biological analyte; wherein the biological sample is fully or partially removed from the substrate.
  • In some embodiments, a biological sample is not removed from the substrate. For example, the biological sample is not removed from the substrate prior to releasing a capture probe (e.g., a capture probe bound to an analyte) from the substrate. In some embodiments, such releasing comprises cleavage of the capture probe from the substrate (e.g., via a cleavage domain). In some embodiments, such releasing does not comprise releasing the capture probe from the substrate (e.g., a copy of the capture probe bound to an analyte can be made and the copy can be released from the substrate, e.g., via denaturation). In some embodiments, the biological sample is not removed from the substrate prior to analysis of an analyte bound to a capture probe after it is released from the substrate. In some embodiments, the biological sample remains on the substrate during removal of a capture probe from the substrate and/or analysis of an analyte bound to the capture probe after it is released from the substrate. In some embodiments, the biological sample remains on the substrate during removal (e.g., via denaturation) of a copy of the capture probe (e.g., complement). In some embodiments, analysis of an analyte bound to a capture probe from the substrate can be performed without subjecting the biological sample to enzymatic and/or chemical degradation of the cells (e.g., permeabilized cells) or ablation of the tissue (e.g., laser ablation).
  • In some embodiments, at least a portion of the biological sample is not removed from the substrate. For example, a portion of the biological sample can remain on the substrate prior to releasing a capture probe (e.g., a capture prove bound to an analyte) from the substrate and/or analyzing an analyte bound to a capture probe released from the substrate. In some embodiments, at least a portion of the biological sample is not subjected to enzymatic and/or chemical degradation of the cells (e.g., permeabilized cells) or ablation of the tissue (e.g., laser ablation) prior to analysis of an analyte bound to a capture probe from the substrate.
  • In some embodiments, provided herein are methods for spatially detecting an analyte (e.g., detecting the location of an analyte, e.g., a biological analyte) from a biological sample (e.g., present in a biological sample) that include: (a) optionally staining and/or imaging a biological sample on a substrate; (b) permeabilizing (e.g., providing a solution comprising a permeabilization reagent to) the biological sample on the substrate; (c) contacting the biological sample with an array comprising a plurality of capture probes, wherein a capture probe of the plurality captures the biological analyte; and (d) analyzing the captured biological analyte, thereby spatially detecting the biological analyte; where the biological sample is not removed from the substrate.
  • In some embodiments, provided herein are methods for spatially detecting a biological analyte of interest from a biological sample that include: (a) staining and imaging a biological sample on a substrate; (b) providing a solution comprising a permeabilization reagent to the biological sample on the substrate; (c) contacting the biological sample with an array on a substrate, wherein the array comprises one or more capture probe pluralities thereby allowing the one or more pluralities of capture probes to capture the biological analyte of interest; and (d) analyzing the captured biological analyte, thereby spatially detecting the biological analyte of interest; where the biological sample is not removed from the substrate.
  • In some embodiments, the method further includes subjecting a region of interest in the biological sample to spatial transcriptomic analysis. In some embodiments, one or more of the capture probes includes a capture domain. In some embodiments, one or more of the capture probes comprises a unique molecular identifier (UMI). In some embodiments, one or more of the capture probes comprises a cleavage domain. In some embodiments, the cleavage domain comprises a sequence recognized and cleaved by uracil-DNA glycosylase, apurinic/apyrimidinic (AP) endonuclease (APE1), uracil-specific excision reagent (USER), and/or an endonuclease VIII. In some embodiments, one or more capture probes do not comprise a cleavage domain and is not cleaved from the array.
  • In some embodiments, a capture probe can be extended (an “extended capture probe,” e.g., as described herein). For example, extending a capture probe can include generating cDNA from a captured (hybridized) RNA. This process involves synthesis of a complementary strand of the hybridized nucleic acid, e.g., generating cDNA based on the captured RNA template (the RNA hybridized to the capture domain of the capture probe). Thus, in an initial step of extending a capture probe, e.g., the cDNA generation, the captured (hybridized) nucleic acid, e.g., RNA, acts as a template for the extension, e.g., reverse transcription, step.
  • In some embodiments, the capture probe is extended using reverse transcription. For example, reverse transcription includes synthesizing cDNA (complementary or copy DNA) from RNA, e.g., (messenger RNA), using a reverse transcriptase. In some embodiments, reverse transcription is performed while the tissue is still in place, generating an analyte library, where the analyte library includes the spatial barcodes from the adjacent capture probes. In some embodiments, the capture probe is extended using one or more DNA polymerases.
  • In some embodiments, a capture domain of a capture probe includes a primer for producing the complementary strand of a nucleic acid hybridized to the capture probe, e.g., a primer for DNA polymerase and/or reverse transcription. The nucleic acid, e.g., DNA and/or cDNA, molecules generated by the extension reaction incorporate the sequence of the capture probe. The extension of the capture probe, e.g., a DNA polymerase and/or reverse transcription reaction, can be performed using a variety of suitable enzymes and protocols.
  • In some embodiments, a full-length DNA (e.g., cDNA) molecule is generated. In some embodiments, a “full-length” DNA molecule refers to the whole of the captured nucleic acid molecule. However, if a nucleic acid (e.g., RNA) was partially degraded in the tissue sample, then the captured nucleic acid molecules will not be the same length as the initial RNA in the tissue sample. In some embodiments, the 3′ end of the extended probes, e.g., first strand cDNA molecules, is modified. For example, a linker or adaptor can be ligated to the 3′ end of the extended probes. This can be achieved using single stranded ligation enzymes such as T4 RNA ligase or Circligase™ (available from Lucigen, Middleton, WI). In some embodiments, template switching oligonucleotides are used to extend cDNA in order to generate a full-length cDNA (or as close to a full-length cDNA as possible). In some embodiments, a second strand synthesis helper probe (a partially double stranded DNA molecule capable of hybridizing to the 3′ end of the extended capture probe), can be ligated to the 3′ end of the extended probe, e.g., first strand cDNA, molecule using a double stranded ligation enzyme such as T4 DNA ligase. Other enzymes appropriate for the ligation step are known in the art and include, e.g., Tth DNA ligase, Taq DNA ligase, Thermococcus sp. (strain 9°N) DNA ligase (9°N™ DNA ligase, New England Biolabs), Ampligase™ (available from Lucigen, Middleton, WI), and SplintR (available from New England Biolabs, Ipswich, MA). In some embodiments, a polynucleotide tail, e.g., a poly(A) tail, is incorporated at the 3′ end of the extended probe molecules. In some embodiments, the polynucleotide tail is incorporated using a terminal transferase active enzyme.
  • In some embodiments, double-stranded extended capture probes are treated to remove any unextended capture probes prior to amplification and/or analysis, e.g., sequence analysis. This can be achieved by a variety of methods, e.g., using an enzyme to degrade the unextended probes, such as an exonuclease enzyme, or purification columns.
  • In some embodiments, extended capture probes are amplified to yield quantities that are sufficient for analysis, e.g., via DNA sequencing. In some embodiments, the first strand of the extended capture probes (e.g., DNA and/or cDNA molecules) acts as a template for the amplification reaction (e.g., a polymerase chain reaction).
  • In some embodiments, the amplification reaction incorporates an affinity group onto the extended capture probe (e.g., RNA-cDNA hybrid) using a primer including the affinity group. In some embodiments, the primer includes an affinity group and the extended capture probes includes the affinity group. The affinity group can correspond to any of the affinity groups described previously.
  • In some embodiments, the extended capture probes including the affinity group can be coupled to a substrate specific for the affinity group. In some embodiments, the substrate can include an antibody or antibody fragment. In some embodiments, the substrate includes avidin or streptavidin and the affinity group includes biotin. In some embodiments, the substrate includes maltose and the affinity group includes maltose-binding protein. In some embodiments, the substrate includes maltose-binding protein and the affinity group includes maltose. In some embodiments, amplifying the extended capture probes can function to release the extended probes from the surface of the substrate, insofar as copies of the extended probes are not immobilized on the substrate.
  • In some embodiments, the extended capture probe or complement or amplicon thereof is released. The step of releasing the extended capture probe or complement or amplicon thereof from the surface of the substrate can be achieved in a number of ways. In some embodiments, an extended capture probe or a complement thereof is released from the array by nucleic acid cleavage and/or by denaturation (e.g., by heating to denature a double-stranded molecule).
  • In some embodiments, the extended capture probe or complement or amplicon thereof is released from the surface of the substrate (e.g., array) by physical means. For example, where the extended capture probe is indirectly immobilized on the array substrate, e.g., via hybridization to a surface probe, it can be sufficient to disrupt the interaction between the extended capture probe and the surface probe. Methods for disrupting the interaction between nucleic acid molecules include denaturing double stranded nucleic acid molecules are known in the art. A straightforward method for releasing the DNA molecules (i.e., of stripping the array of extended probes) is to use a solution that interferes with the hydrogen bonds of the double stranded molecules. In some embodiments, the extended capture probe is released by an applying heated solution, such as water or buffer, of at least 85° C., e.g., at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99° C. In some embodiments, a solution including salts, surfactants, etc. that can further destabilize the interaction between the nucleic acid molecules is added to release the extended capture probe from the substrate.
  • In some embodiments, where the extended capture probe includes a cleavage domain, the extended capture probe is released from the surface of the substrate by cleavage. For example, the cleavage domain of the extended capture probe can be cleaved by any of the methods described herein. In some embodiments, the extended capture probe is released from the surface of the substrate, e.g., via cleavage of a cleavage domain in the extended capture probe, prior to the step of amplifying the extended capture probe.
  • In some embodiments, probes complementary to the extended capture probe can be contacted with the substrate. In some embodiments, the biological sample can be in contact with the substrate when the probes are contacted with the substrate. In some embodiments, the biological sample can be removed from the substrate prior to contacting the substrate with probes. In some embodiments, the probes can be labeled with a detectable label (e.g., any of the detectable labels described herein). In some embodiments, probes that do not specially bind (e.g., hybridize) to an extended capture probe can be washed away. In some embodiments, probes complementary to the extended capture probe can be detected on the substrate (e.g., imaging, any of the detection methods described herein).
  • In some embodiments, probes complementary to an extended capture probe can be about 4 nucleotides to about 100 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 10 nucleotides to about 90 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 20 nucleotides to about 80 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 30 nucleotides to about 60 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 40 nucleotides to about 50 nucleotides long. In some embodiments, probes (e.g., detectable probes) complementary to an extended capture probe can be about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 41, about 42, about 43, about 44, about 45, about 46, about 47, about 48, about 49, about 50, about 51, about 52, about 53, about 54, about 55, about 56, about 57, about 58, about 59, about 60, about 61, about 62, about 63, about 64, about 65, about 66, about 67, about 68, about 69, about 70, about 71, about 72, about 73, about 74, about 75, about 76, about 77, about 78, about 79, about 80, about 81, about 82, about 83, about 84, about 85, about 86, about 87, about 88, about 89, about 90, about 91, about 92, about 93, about 94, about 95, about 96, about 97, about 98, and about 99 nucleotides long.
  • In some embodiments, about 1 to about 100 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe. In some embodiments, about 1 to about 10 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe. In some embodiments, about 10 to about 100 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe. In some embodiments, about 20 to about 90 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe. In some embodiments, about 30 to about 80 probes (e.g., detectable probes) can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe. In some embodiments, about 40 to about 70 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe. In some embodiments, about 50 to about 60 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe. In some embodiments, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 41, about 42, about 43, about 44, about 45, about 46, about 47, about 48, about 49, about 50, about 51, about 52, about 53, about 54, about 55, about 56, about 57, about 58, about 59, about 60, about 61, about 62, about 63, about 64, about 65, about 66, about 67, about 68, about 69, about 70, about 71, about 72, about 73, about 74, about 75, about 76, about 77, about 78, about 79, about 80, about 81, about 82, about 83, about 84, about 85, about 86, about 87, about 88, about 89, about 90, about 91, about 92, about 93, about 94, about 95, about 96, about 97, about 98, and about 99 probes can be contacted to the substrate and specifically bind (e.g., hybridize) to an extended capture probe.
  • In some embodiments, the probes can be complementary to a single analyte (e.g., a single gene). In some embodiments, the probes can be complementary to one or more analytes (e.g., analytes in a family of genes). In some embodiments, the probes (e.g., detectable probes) can be for a panel of genes associated with a disease (e.g., cancer, Alzheimer's disease, Parkinson's disease).
  • In some instances, the ligated probe and capture probe can be amplified or copied, creating a plurality of cDNA molecules. In some embodiments, cDNA can be denatured from the capture probe template and transferred (e.g., to a clean tube) for amplification, and/or library construction. The spatially-barcoded cDNA can be amplified via PCR prior to library construction. The cDNA can then be enzymatically fragmented and size-selected in order to optimize for cDNA amplicon size. P5 and P7 sequences directed to capturing the amplicons on a sequencing flowcell (e.g., Illumina sequencing instruments) can be appended to the amplicons, i7, and i5 can be used as sample indexes, and TruSeq Read 2 can be added via End Repair, A-tailing, Adaptor Ligation, and PCR. The cDNA fragments can then be sequenced using paired-end sequencing using TruSeq Read 1 and TruSeq Read 2 as sequencing primer sites. A skilled artisan will understand that additional or alternative sequences used by other sequencing instruments or technologies are also equally applicable for use in the aforementioned methods as the current methods are not limited to any a particular sequencing platform.
  • In some embodiments, where a sample is barcoded directly via hybridization with capture probes or analyte capture agents hybridized, bound, or associated with either the cell surface, or introduced into the cell, as described above, sequencing can be performed on the intact sample.
  • A wide variety of different sequencing methods can be used to analyze the barcoded analyte or moiety. In general, sequenced polynucleotides can be, for example, nucleic acid molecules such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), including variants or derivatives thereof (e.g., single stranded DNA or DNA/RNA hybrids, and nucleic acid molecules with a nucleotide analog).
  • Sequencing of polynucleotides can be performed by various systems. More generally, sequencing can be performed using nucleic acid amplification, polymerase chain reaction (PCR) (e.g., digital PCR and droplet digital PCR (ddPCR), quantitative PCR, real time PCR, multiplex PCR, PCR-based single plex methods, emulsion PCR), and/or isothermal amplification. Non-limiting examples of methods for sequencing genetic material include, but are not limited to, DNA hybridization methods (e.g., Southern blotting), restriction enzyme digestion methods, Sanger sequencing methods, next-generation sequencing methods (e.g., single-molecule real-time sequencing, nanopore sequencing, and Polony sequencing), ligation methods, and microarray methods.
  • In some embodiments, a capture probe capture domain is blocked prior to adding a second probe oligonucleotide to a cell, e.g., a cell in a biological sample. This prevents the capture probe capture domain from prematurely hybridizing to the capture domain.
  • In some embodiments, a blocking probe is used to block or modify the free 3′ end of the capture probe capture domain. In some embodiments, a blocking probe can be hybridized to the capture probe capture domain of the second probe to mask the free 3′ end of the capture probe capture domain. In some embodiments, a blocking probe can be a hairpin probe or partially double stranded probe. In some embodiments, the free 3′ end of the capture probe capture domain of the second probe can be blocked by chemical modification, e.g., addition of an azidomethyl group as a chemically reversible capping moiety such that the capture probes do not include a free 3′ end. Blocking or modifying the capture probe capture domain, particularly at the free 3′ end of the capture probe capture domain, prior to contacting second probe with the substrate, prevents hybridization of the second probe to the capture domain (e.g., prevents the capture of a poly(A) of a capture probe capture domain to a poly(T) capture domain). In some embodiments, a blocking probe can be referred to as a capture probe capture domain blocking moiety.
  • In some embodiments, the blocking probes can be reversibly removed. For example, blocking probes can be applied to block the free 3′ end of either or both the capture probe capture domain and/or the capture probes. Blocking interaction between the capture probe capture domain and the capture probe on the substrate can reduce non-specific capture to the capture probes. After the second probe hybridizes to the analyte and is ligated to a first probe, one or more spanning probes, or a third oligonucleotide, the blocking probes can be removed from the 3′ end of the capture probe capture domain and/or the capture probe, and the ligation product can migrate to and become bound by the capture probes on the substrate. In some embodiments, the removal includes denaturing the blocking probe from capture probe capture domain and/or capture probe. In some embodiments, the removal includes removing a chemically reversible capping moiety. In some embodiments, the removal includes digesting the blocking probe with an RNase (e.g., RNase H).
  • In some embodiments, the blocking probes are oligo (dT) blocking probes. In some embodiments, the oligo (dT) blocking probes can have a length of 15-30 nucleotides. In some embodiments, the oligo (dT) blocking probes can have a length of 10-50 nucleotides, e.g., 10-50, 10-45, 10-40, 10-35, 10-30, 10-25, 10-20, 10-15, 15-50, 15-45, 15-40, 15-35, 15-30, 15-25, 15-20, 20-50, 20-45, 20-40, 20-35, 20-30, 20-25, 25-50, 25-45, 25-40, 25-35, 25-30, 30-50, 30-45, 30-40, 30-35, 35-50, 35-45, 35-40, 40-50, 40-45, or 45-50 nucleotides. In some embodiments, the analyte capture agents can be blocked at different temperatures (e.g., 4° C. and 37° C.).
  • (f) Kits and Compositions
  • In some embodiments, also provided herein are kits and compositions that include one or more reagents to detect one or more analytes and/or one or more moieties described herein. In some instances, the kit includes a substrate comprising a plurality of capture probes comprising a spatial barcode and the capture domain. In some instances, the kit includes a plurality of probes (e.g., a first probe, a second probe, one or more spanning probes, and/or a third oligonucleotide).
  • A non-limiting example of a kit used to perform any of the methods described herein includes: (a) a substrate comprising a plurality of capture probes comprising a spatial barcode and a capture domain; (b) a system comprising: a plurality of first probes and second probes, wherein a first probe and a second probe each comprises sequences that are substantially complementary to an analyte, and wherein the second probe comprises a capture binding domain; and (c) instructions for performing the method of any one of the preceding claims.
  • Another non-limiting example of a kit used to perform any of the methods described herein includes: (a) an array comprising a plurality of capture probes; (b) a plurality of probes comprising a first probe and a second, wherein the first probe and the second probe are substantially complementary to adjacent sequences of an analyte, wherein the second probe comprises (i) a capture probe binding domain that is capable of binding to a capture domain of the capture probe and (ii) a linker sequence; (c) a plurality of enzymes comprising a ribonuclease and a ligase; and (d) instructions for performing the method of any one of the preceding claims.
  • Another non-limiting example of a kit used to perform any of the methods described herein includes: (a) an array comprising a plurality of capture probes; (b) a plurality of probes comprising a first probe and a second probe, wherein the first probe and the second probe are substantially complementary to adjacent sequences of an analyte, wherein the first probe includes a linker sequence, wherein the second probe comprises a capture probe binding domain that is capable of binding to a capture domain of the capture probe; (c) a plurality of enzymes comprising a ribonuclease and a ligase; and (d) instructions for performing the method of any one of the preceding claims.
  • EXAMPLES Example 1: Generation of Pooled Library of Barcoded Small Molecules
  • A library of small molecules with particular targets is selected. The small molecules are loaded into a 96-well plate, and particles that encapsulate the small molecules are added to each well. Particles are barcoded with a nucleic acid barcode (e.g., a moiety sequence) such that there is a predetermined 1:1 mapping between the small molecule and the barcode sequence (e.g., moiety sequence) present in each particle. After barcoding, a nucleic acid barcoded small molecule library is generated. See FIG. 10 , for example.
  • Example 2. Method for Profiling a Biological Analyte in a Cell Comprising a Small Molecule
  • A small molecule library of Example 1 is incubated with a cell line, allowing the small molecule to penetrate the cell. See FIG. 11 , for example. Cells that uptake the small molecule are selected for, and cells including small molecules then are contacted with an array as described herein. The cells are permeabilized, allowing access to biological analytes within a cell. A biological analyte from the cell is then bound to a capture probe on the array at a distinct spatial position. The cells are removed from the array, and the bound probe is reverse transcribed. The capture probes, analytes, and sequence(s) identifying the small molecule of the cell (e.g., the second barcode or moiety sequence) are analyzed, and the biological analyte with a molecular barcode of the capture probe and sequence(s) identifying the small molecule of the cell are correlated with the distinct spatial position of the array, thus profiling the biological analyte as having been present in the cell including a small molecule. See FIG. 12 , for example.
  • Example 3. Method for Determining the Presence or Abundance of a Moiety in a Cell Comprising a Small Molecule
  • A small molecule library of Example 1 is incubated with a cell line, allowing the small molecule to penetrate the cell. See FIG. 11 , for example. Cells that uptake the small molecule are selected for, and cells including small molecules then are contacted with an array as described herein. The cells can then be imaged. The cells are permeabilized, allowing access to the moiety sequence within a cell. A moiety sequence from the cell is then bound to a capture probe on the array at a distinct spatial position. The cells are removed from the array, and the bound probe is reverse transcribed. The capture probes and sequence(s) identifying the small molecule of the cell (e.g., moiety sequence) are analyzed and the identity of the small molecule of the cell is correlated with the distinct spatial position on the array, thus profiling the biological analyte as having been present in the cell including a small molecule. See FIG. 12 , for example.
  • Example 4. Method for Profiling a Biological Analyte in a Genetically Perturbed Cell
  • A lentiviral library is selected. The lentiviral library is transduced into cells, generating a genetically-perturbed cells. See FIG. 13 , for example. After selection of a particular cell including a lentiviral vector, genetically-perturbed cells are disposed on an array as described herein. The cells are permeabilized, and biological analytes are released and bound to capture probes on the array at distinct spatial positions. The cells are removed from the array, and reverse transcription/barcoding can be performed on the array. The capture probes, analytes, and sequence(s) identifying the genetic perturbation of the cell (e.g., the second barcode (e.g., moiety sequence) and/or polyadenylated gRNA) are analyzed, and the biological analyte with a molecular barcode of the capture probe and sequence(s) identifying the genetic perturbation of the cell are correlated with the distinct spatial position of the substrate, thus profiling the biological analyte as having been present in the genetically-perturbed cell. See FIG. 14 , for example.

Claims (1)

What is claimed is:
1. A method for determining the presence or abundance of a moiety in a cell comprising:
(a) contacting the cell with an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises: (i) a spatial barcode and (ii) a capture domain, wherein the cell comprises the moiety and wherein the moiety comprises a moiety sequence;
(b) hybridizing a moiety sequence to the capture domain; and
(c) determining (i) all or a part of the sequence of the moiety sequence bound to the capture domain, or a complement thereof, and (ii) all or a part of the sequence of the spatial barcode, or a complement thereof, and using the determined sequence of (i) and (ii) to determine the presence or abundance of the moiety in the cell.
US18/340,531 2020-01-21 2023-06-23 Spatial assays with perturbed cells Pending US20230332227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/340,531 US20230332227A1 (en) 2020-01-21 2023-06-23 Spatial assays with perturbed cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202062963879P 2020-01-21 2020-01-21
US202062963897P 2020-01-21 2020-01-21
US17/153,384 US11732299B2 (en) 2020-01-21 2021-01-20 Spatial assays with perturbed cells
US18/340,531 US20230332227A1 (en) 2020-01-21 2023-06-23 Spatial assays with perturbed cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/153,384 Continuation US11732299B2 (en) 2020-01-21 2021-01-20 Spatial assays with perturbed cells

Publications (1)

Publication Number Publication Date
US20230332227A1 true US20230332227A1 (en) 2023-10-19

Family

ID=76856740

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/153,384 Active 2041-06-26 US11732299B2 (en) 2020-01-21 2021-01-20 Spatial assays with perturbed cells
US18/340,531 Pending US20230332227A1 (en) 2020-01-21 2023-06-23 Spatial assays with perturbed cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/153,384 Active 2041-06-26 US11732299B2 (en) 2020-01-21 2021-01-20 Spatial assays with perturbed cells

Country Status (1)

Country Link
US (2) US11732299B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866770B2 (en) 2010-04-05 2024-01-09 Prognosys Biosciences, Inc. Spatially encoded biological assays
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
US11926863B1 (en) 2020-02-27 2024-03-12 10X Genomics, Inc. Solid state single cell method for analyzing fixed biological cells
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
US11952627B2 (en) 2020-07-06 2024-04-09 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
US11959076B2 (en) 2020-12-21 2024-04-16 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
US11959130B2 (en) 2020-05-22 2024-04-16 10X Genomics, Inc. Spatial analysis to detect sequence variants
US11965213B2 (en) 2019-05-30 2024-04-23 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
US11970739B2 (en) 2023-07-06 2024-04-30 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
PT2556171E (en) 2010-04-05 2015-12-21 Prognosys Biosciences Inc Spatially encoded biological assays
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
WO2014210223A1 (en) 2013-06-25 2014-12-31 Prognosys Biosciences, Inc. Spatially encoded biological assays using a microfluidic device
CN107532207B (en) 2015-04-10 2021-05-07 空间转录公司 Spatially differentiated, multiplexed nucleic acid analysis of biological samples
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
WO2020123319A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Methods of using master / copy arrays for spatial detection
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
WO2021091611A1 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
WO2021092433A2 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Enhancing specificity of analyte binding
SG11202106899SA (en) 2019-12-23 2021-09-29 10X Genomics Inc Methods for spatial analysis using rna-templated ligation
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
US11768175B1 (en) 2020-03-04 2023-09-26 10X Genomics, Inc. Electrophoretic methods for spatial analysis
EP4242325A3 (en) 2020-04-22 2023-10-04 10X Genomics, Inc. Methods for spatial analysis using targeted rna depletion
WO2021236929A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
EP4158054A1 (en) 2020-06-02 2023-04-05 10X Genomics, Inc. Spatial transcriptomics for antigen-receptors
WO2021247543A2 (en) 2020-06-02 2021-12-09 10X Genomics, Inc. Nucleic acid library methods
WO2021252499A1 (en) 2020-06-08 2021-12-16 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
WO2021252591A1 (en) 2020-06-10 2021-12-16 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
CN116034166A (en) 2020-06-25 2023-04-28 10X基因组学有限公司 Spatial analysis of DNA methylation
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
EP4301870A1 (en) 2021-03-18 2024-01-10 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
WO2023034489A1 (en) 2021-09-01 2023-03-09 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array

Family Cites Families (630)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4883867A (en) 1985-11-01 1989-11-28 Becton, Dickinson And Company Detection of reticulocytes, RNA or DNA
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5525464A (en) 1987-04-01 1996-06-11 Hyseq, Inc. Method of sequencing by hybridization of oligonucleotide probes
GB8810400D0 (en) 1988-05-03 1988-06-08 Southern E Analysing polynucleotide sequences
US4988617A (en) 1988-03-25 1991-01-29 California Institute Of Technology Method of detecting a nucleotide change in nucleic acids
US5130238A (en) 1988-06-24 1992-07-14 Cangene Corporation Enhanced nucleic acid amplification process
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US5002882A (en) 1989-04-27 1991-03-26 New England Biolabs, Inc. Method for producing the XmaI restriction endonuclease and methylase
WO1991006678A1 (en) 1989-10-26 1991-05-16 Sri International Dna sequencing
US5494810A (en) 1990-05-03 1996-02-27 Cornell Research Foundation, Inc. Thermostable ligase-mediated DNA amplifications system for the detection of genetic disease
US5455166A (en) 1991-01-31 1995-10-03 Becton, Dickinson And Company Strand displacement amplification
WO1993004199A2 (en) 1991-08-20 1993-03-04 Scientific Generics Limited Methods of detecting or quantitating nucleic acids and of producing labelled immobilised nucleic acids
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US6759226B1 (en) 2000-05-24 2004-07-06 Third Wave Technologies, Inc. Enzymes for the detection of specific nucleic acid sequences
US6872816B1 (en) 1996-01-24 2005-03-29 Third Wave Technologies, Inc. Nucleic acid detection kits
DE69219610T2 (en) 1991-09-16 1997-10-02 Molecular Probes Inc Dimeric asymmetrical cyanine dyes
US5321130A (en) 1992-02-10 1994-06-14 Molecular Probes, Inc. Unsymmetrical cyanine dyes with a cationic side chain
US5308751A (en) 1992-03-23 1994-05-03 General Atomics Method for sequencing double-stranded DNA
US5503980A (en) 1992-11-06 1996-04-02 Trustees Of Boston University Positional sequencing by hybridization
US5410030A (en) 1993-04-05 1995-04-25 Molecular Probes, Inc. Dimers of unsymmetrical cyanine dyes containing pyridinium moieties
US5436134A (en) 1993-04-13 1995-07-25 Molecular Probes, Inc. Cyclic-substituted unsymmetrical cyanine dyes
US5658751A (en) 1993-04-13 1997-08-19 Molecular Probes, Inc. Substituted unsymmetrical cyanine dyes with selected permeability
US5837832A (en) 1993-06-25 1998-11-17 Affymetrix, Inc. Arrays of nucleic acid probes on biological chips
WO1995004069A1 (en) 1993-07-30 1995-02-09 Affymax Technologies N.V. Biotinylation of proteins
US6401267B1 (en) 1993-09-27 2002-06-11 Radoje Drmanac Methods and compositions for efficient nucleic acid sequencing
SE9400522D0 (en) 1994-02-16 1994-02-16 Ulf Landegren Method and reagent for detecting specific nucleotide sequences
US5512462A (en) 1994-02-25 1996-04-30 Hoffmann-La Roche Inc. Methods and reagents for the polymerase chain reaction amplification of long DNA sequences
US5677170A (en) 1994-03-02 1997-10-14 The Johns Hopkins University In vitro transposition of artificial transposons
US6015880A (en) 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
KR100230718B1 (en) 1994-03-16 1999-11-15 다니엘 엘. 캐시앙, 헨리 엘. 노르호프 Isothermal strand displacement nucleic acid amplification
US5552278A (en) 1994-04-04 1996-09-03 Spectragen, Inc. DNA sequencing by stepwise ligation and cleavage
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5641658A (en) 1994-08-03 1997-06-24 Mosaic Technologies, Inc. Method for performing amplification of nucleic acid with two primers bound to a single solid support
CA2195562A1 (en) 1994-08-19 1996-02-29 Pe Corporation (Ny) Coupled amplification and ligation method
US5750341A (en) 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
US5648245A (en) 1995-05-09 1997-07-15 Carnegie Institution Of Washington Method for constructing an oligonucleotide concatamer library by rolling circle replication
CA2232230C (en) 1995-10-13 2005-06-28 Ralph H. Lambalot Phosphopantetheinyl transferases and uses thereof
US5763175A (en) 1995-11-17 1998-06-09 Lynx Therapeutics, Inc. Simultaneous sequencing of tagged polynucleotides
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
US6300063B1 (en) 1995-11-29 2001-10-09 Affymetrix, Inc. Polymorphism detection
EP0880598A4 (en) 1996-01-23 2005-02-23 Affymetrix Inc Nucleic acid analysis techniques
US5985557A (en) 1996-01-24 1999-11-16 Third Wave Technologies, Inc. Invasive cleavage of nucleic acids
US6875572B2 (en) 1996-01-24 2005-04-05 Third Wave Technologies, Inc. Nucleic acid detection assays
US6913881B1 (en) 1996-01-24 2005-07-05 Third Wave Technologies, Inc. Methods and compositions for detecting target sequences
US6852487B1 (en) 1996-02-09 2005-02-08 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
EP0920440B1 (en) 1996-02-09 2012-08-22 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
US6013440A (en) 1996-03-11 2000-01-11 Affymetrix, Inc. Nucleic acid affinity columns
WO1997045559A1 (en) 1996-05-29 1997-12-04 Cornell Research Foundation, Inc. Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions
US20050003431A1 (en) 1996-08-16 2005-01-06 Wucherpfennig Kai W. Monovalent, multivalent, and multimeric MHC binding domain fusion proteins and conjugates, and uses therefor
US5925545A (en) 1996-09-09 1999-07-20 Wisconsin Alumni Research Foundation System for in vitro transposition
US5965443A (en) 1996-09-09 1999-10-12 Wisconsin Alumni Research Foundation System for in vitro transposition
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
US6060240A (en) 1996-12-13 2000-05-09 Arcaris, Inc. Methods for measuring relative amounts of nucleic acids in a complex mixture and retrieval of specific sequences therefrom
US5837466A (en) 1996-12-16 1998-11-17 Vysis, Inc. Devices and methods for detecting nucleic acid analytes in samples
GB9626815D0 (en) 1996-12-23 1997-02-12 Cemu Bioteknik Ab Method of sequencing DNA
EP0968223B1 (en) 1997-01-08 2016-12-21 Sigma-Aldrich Co. LLC Bioconjugation of macromolecules
US6309824B1 (en) 1997-01-16 2001-10-30 Hyseq, Inc. Methods for analyzing a target nucleic acid using immobilized heterogeneous mixtures of oligonucleotide probes
US6327410B1 (en) 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US6023540A (en) 1997-03-14 2000-02-08 Trustees Of Tufts College Fiber optic sensor with encoded microspheres
US20020058250A1 (en) 1997-03-21 2002-05-16 Marshall, Gerstein & Borun Extraction and utilisation of vntr alleles
DE69824716D1 (en) 1997-04-01 2004-07-29 Manteia S A METHOD FOR SEQUENCING NUCLEIC ACIDS
ES2563643T3 (en) 1997-04-01 2016-03-15 Illumina Cambridge Limited Nucleic acid sequencing method
US6143496A (en) 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
WO1999005295A1 (en) 1997-07-25 1999-02-04 Thomas Jefferson University Composition and method for targeted integration into cells
CA2300940A1 (en) 1997-08-15 1999-02-25 Hyseq, Inc. Methods and compositions for detection or quantification of nucleic acid species
JP2001519538A (en) 1997-10-10 2001-10-23 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Replica amplification of nucleic acid arrays
US6054274A (en) 1997-11-12 2000-04-25 Hewlett-Packard Company Method of amplifying the signal of target nucleic acid sequence analyte
US6242246B1 (en) 1997-12-15 2001-06-05 Somalogic, Inc. Nucleic acid ligand diagnostic Biochip
AU2003200718B2 (en) 1997-12-15 2006-10-19 Somalogic, Inc. Nucleic acid ligand diagnostic biochip
US6844158B1 (en) 1997-12-22 2005-01-18 Hitachi Chemical Co., Ltd. Direct RT-PCR on oligonucleotide-immobilized PCR microplates
EP2360271A1 (en) 1998-06-24 2011-08-24 Illumina, Inc. Decoding of array sensors with microspheres
WO2000000637A2 (en) 1998-06-26 2000-01-06 Visible Genetics Inc. Method for sequencing nucleic acids with reduced errors
US6787308B2 (en) 1998-07-30 2004-09-07 Solexa Ltd. Arrayed biomolecules and their use in sequencing
US20030022207A1 (en) 1998-10-16 2003-01-30 Solexa, Ltd. Arrayed polynucleotides and their use in genome analysis
US20040106110A1 (en) 1998-07-30 2004-06-03 Solexa, Ltd. Preparation of polynucleotide arrays
DE69900949T2 (en) 1998-09-18 2002-10-02 Micromet Ag DNA AMPLIFICATION FROM SINGLE CELLS
US6159736A (en) 1998-09-23 2000-12-12 Wisconsin Alumni Research Foundation Method for making insertional mutations using a Tn5 synaptic complex
AR021833A1 (en) 1998-09-30 2002-08-07 Applied Research Systems METHODS OF AMPLIFICATION AND SEQUENCING OF NUCLEIC ACID
US6573043B1 (en) 1998-10-07 2003-06-03 Genentech, Inc. Tissue analysis and kits therefor
WO2000024940A1 (en) 1998-10-28 2000-05-04 Vysis, Inc. Cellular arrays and methods of detecting and using genetic disorder markers
AU772281B2 (en) 1998-12-14 2004-04-22 Li-Cor Inc. A system and methods for nucleic acid sequencing of single molecules by polymerase synthesis
US6830884B1 (en) 1998-12-15 2004-12-14 Molecular Staging Inc. Method of amplification
ATE440148T1 (en) 1999-01-06 2009-09-15 Callida Genomics Inc IMPROVED SEQUENCING VIA HYBRIDIZATION BY USING PROBE MIXTURES
GB9901475D0 (en) 1999-01-22 1999-03-17 Pyrosequencing Ab A method of DNA sequencing
EP1024201B1 (en) 1999-01-27 2003-11-26 Commissariat A L'energie Atomique Microassay for serial analysis of gene expression and applications thereof
US6153389A (en) 1999-02-22 2000-11-28 Haarer; Brian K. DNA additives as a mechanism for unambiguously marking biological samples
US6355431B1 (en) 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
AU4476900A (en) 1999-04-20 2000-11-02 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US20050181440A1 (en) 1999-04-20 2005-08-18 Illumina, Inc. Nucleic acid sequencing using microsphere arrays
WO2000065094A2 (en) 1999-04-22 2000-11-02 The Albert Einstein College Of Medicine Of Yeshiva University Assay of gene expression patterns by multi-fluor fish
US7276336B1 (en) 1999-07-22 2007-10-02 Agilent Technologies, Inc. Methods of fabricating an addressable array of biopolymer probes
US20010055764A1 (en) 1999-05-07 2001-12-27 Empedocles Stephen A. Microarray methods utilizing semiconductor nanocrystals
US6620584B1 (en) 1999-05-20 2003-09-16 Illumina Combinatorial decoding of random nucleic acid arrays
US6544732B1 (en) 1999-05-20 2003-04-08 Illumina, Inc. Encoding and decoding of array sensors utilizing nanocrystals
WO2001006012A1 (en) 1999-07-14 2001-01-25 Packard Bioscience Company Derivative nucleic acids and uses thereof
EP1198583A1 (en) 1999-08-02 2002-04-24 Wisconsin Alumni Research Foundation Mutant tn5 transposase enzymes and method for their use
WO2001012855A2 (en) 1999-08-13 2001-02-22 Yale University Binary encoded sequence tags
US7604996B1 (en) 1999-08-18 2009-10-20 Illumina, Inc. Compositions and methods for preparing oligonucleotide solutions
EP1212599A2 (en) 1999-08-30 2002-06-12 Illumina, Inc. Methods for improving signal detection from an array
DK1218542T3 (en) 1999-09-13 2004-08-02 Nugen Technologies Inc Methods and compositions for linear isothermal amplification of polynucleotide sequences
US6274320B1 (en) 1999-09-16 2001-08-14 Curagen Corporation Method of sequencing a nucleic acid
US6291180B1 (en) 1999-09-29 2001-09-18 American Registry Of Pathology Ultrasound-mediated high-speed biological reaction and tissue processing
WO2001023610A2 (en) 1999-09-29 2001-04-05 Solexa Ltd. Polynucleotide sequencing
US6677160B1 (en) 1999-09-29 2004-01-13 Pharmacia & Upjohn Company Methods for creating a compound library and identifying lead chemical templates and ligands for target molecules
WO2001025188A1 (en) 1999-10-04 2001-04-12 University Of Medicine And Dentistry Of New Jersey Novel carbamates and ureas
WO2001027327A2 (en) 1999-10-08 2001-04-19 Protogene Laboratories, Inc. Method and apparatus for performing large numbers of reactions using array assembly
EP1238286A1 (en) 1999-12-13 2002-09-11 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES High-throughput tissue microarray technology and applications
US6248535B1 (en) 1999-12-20 2001-06-19 University Of Southern California Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens
GB0002389D0 (en) 2000-02-02 2000-03-22 Solexa Ltd Molecular arrays
US7361488B2 (en) 2000-02-07 2008-04-22 Illumina, Inc. Nucleic acid detection methods using universal priming
US7955794B2 (en) 2000-09-21 2011-06-07 Illumina, Inc. Multiplex nucleic acid reactions
US7611869B2 (en) 2000-02-07 2009-11-03 Illumina, Inc. Multiplexed methylation detection methods
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
WO2001057268A2 (en) 2000-02-07 2001-08-09 Illumina, Inc. Nucleic acid detection methods using universal priming
US20020006617A1 (en) 2000-02-07 2002-01-17 Jian-Bing Fan Nucleic acid detection methods using universal priming
US8076063B2 (en) 2000-02-07 2011-12-13 Illumina, Inc. Multiplexed methylation detection methods
US20010026919A1 (en) 2000-02-08 2001-10-04 Alex Chenchik Nucleic acid assays employing universal arrays
US6770441B2 (en) 2000-02-10 2004-08-03 Illumina, Inc. Array compositions and methods of making same
AU3839101A (en) 2000-02-15 2001-08-27 Lynx Therapeutics, Inc. Data analysis and display system for ligation-based dna sequencing
JP2003530365A (en) 2000-04-10 2003-10-14 ザ スクリプス リサーチ インスティチュート Proteomic analysis
US6368801B1 (en) 2000-04-12 2002-04-09 Molecular Staging, Inc. Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase
US6291187B1 (en) 2000-05-12 2001-09-18 Molecular Staging, Inc. Poly-primed amplification of nucleic acid sequences
EP1290225A4 (en) 2000-05-20 2004-09-15 Univ Michigan Method of producing a dna library using positional amplification
US6511809B2 (en) 2000-06-13 2003-01-28 E. I. Du Pont De Nemours And Company Method for the detection of an analyte by means of a nucleic acid reporter
US7439016B1 (en) 2000-06-15 2008-10-21 Digene Corporation Detection of nucleic acids by type-specific hybrid capture method
US6323009B1 (en) 2000-06-28 2001-11-27 Molecular Staging, Inc. Multiply-primed amplification of nucleic acid sequences
EP1368460B1 (en) 2000-07-07 2007-10-31 Visigen Biotechnologies, Inc. Real-time sequence determination
GB0018120D0 (en) 2000-07-24 2000-09-13 Fermentas Ab Nuclease
WO2002014860A1 (en) 2000-08-15 2002-02-21 Discerna Limited Functional protein arrays
DE60134862D1 (en) 2000-08-21 2008-08-28 Apitope Technology Bristol Ltd Tolerogenic peptides
US20020168639A1 (en) 2000-09-22 2002-11-14 Muraca Patrick J. Profile array substrates
WO2002027029A2 (en) 2000-09-27 2002-04-04 Lynx Therapeutics, Inc. Method for determining relative abundance of nucleic acid sequences
EP1348034B1 (en) 2000-11-15 2016-07-20 Minerva Biotechnologies Corporation Oligonucleotide identifiers
WO2002040874A1 (en) 2000-11-16 2002-05-23 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US7211414B2 (en) 2000-12-01 2007-05-01 Visigen Biotechnologies, Inc. Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity
AR031640A1 (en) 2000-12-08 2003-09-24 Applied Research Systems ISOTHERMAL AMPLIFICATION OF NUCLEIC ACIDS IN A SOLID SUPPORT
US20030017451A1 (en) 2000-12-21 2003-01-23 Hui Wang Methods for detecting transcripts
JP4061043B2 (en) 2000-12-28 2008-03-12 株式会社ポストゲノム研究所 Method for producing peptide etc. by in vitro transcription / translation system
US7135296B2 (en) 2000-12-28 2006-11-14 Mds Inc. Elemental analysis of tagged biologically active materials
CA2434139C (en) 2001-01-23 2014-05-27 President And Fellows Of Harvard College Nucleic-acid programmable protein arrays
WO2002059355A2 (en) 2001-01-25 2002-08-01 Tm Bioscience Corporation Polynucleotides for use as tags and tag complements, manufacture and use thereof
US20030087232A1 (en) 2001-01-25 2003-05-08 Fred Christians Methods for screening polypeptides
KR20020063359A (en) 2001-01-27 2002-08-03 일렉트론 바이오 (주) nucleic hybridization assay method and device using a cleavage technique responsive to the specific sequences of the complementary double strand of nucleic acids or oligonucleotides
US6573051B2 (en) 2001-03-09 2003-06-03 Molecular Staging, Inc. Open circle probes with intramolecular stem structures
US7297518B2 (en) 2001-03-12 2007-11-20 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension
AU2002322457A1 (en) 2001-06-28 2003-03-03 Illumina, Inc. Multiplex decoding of array sensors with microspheres
US7473767B2 (en) 2001-07-03 2009-01-06 The Institute For Systems Biology Methods for detection and quantification of analytes in complex mixtures
WO2003008968A2 (en) 2001-07-19 2003-01-30 Signet Laboratories, Inc. Human tissue specific drug screening procedure
US20040091857A1 (en) 2001-07-20 2004-05-13 Nallur Girish N. Gene expression profiling
GB0118031D0 (en) 2001-07-24 2001-09-19 Oxford Glycosciences Uk Ltd Self assembled protein nucleic acid complexes and self assembled protein arrays
WO2003031591A2 (en) 2001-10-10 2003-04-17 Superarray Bioscience Corporation Detecting targets by unique identifier nucleotide tags
US6942972B2 (en) 2001-10-24 2005-09-13 Beckman Coulter, Inc. Efficient synthesis of protein-oligonucleotide conjugates
EP1451365A4 (en) 2001-11-13 2006-09-13 Rubicon Genomics Inc Dna amplification and sequencing using dna molecules generated by random fragmentation
GB0127564D0 (en) 2001-11-16 2002-01-09 Medical Res Council Emulsion compositions
US7057026B2 (en) 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
WO2003069333A1 (en) 2002-02-14 2003-08-21 Illumina, Inc. Automated information processing in randomly ordered arrays
AU2003302463A1 (en) 2002-05-09 2004-06-18 U.S. Genomics, Inc. Methods for analyzing a nucleic acid
AU2003242605A1 (en) 2002-06-03 2003-12-19 Pamgene B.V. Novel high density arrays and methods for analyte analysis
US7108976B2 (en) 2002-06-17 2006-09-19 Affymetrix, Inc. Complexity management of genomic DNA by locus specific amplification
US20050118616A1 (en) 2002-08-16 2005-06-02 Kawashima Tadashi R. Amplification of target nucleotide sequence without polymerase chain reaction
US7205128B2 (en) 2002-08-16 2007-04-17 Agilent Technologies, Inc. Method for synthesis of the second strand of cDNA
EP3002289B1 (en) 2002-08-23 2018-02-28 Illumina Cambridge Limited Modified nucleotides for polynucleotide sequencing
US7662594B2 (en) 2002-09-20 2010-02-16 New England Biolabs, Inc. Helicase-dependent amplification of RNA
WO2004027025A2 (en) 2002-09-20 2004-04-01 New England Biolabs, Inc. Helicase dependent amplification of nucleic acids
US20040259105A1 (en) 2002-10-03 2004-12-23 Jian-Bing Fan Multiplex nucleic acid analysis using archived or fixed samples
US20040067492A1 (en) 2002-10-04 2004-04-08 Allan Peng Reverse transcription on microarrays
ES2396245T3 (en) 2003-01-29 2013-02-20 454 Life Sciences Corporation Nucleic Acid Amplification and Sequencing Method
GB0302058D0 (en) 2003-01-29 2003-02-26 Univ Cranfield Replication of nucleic acid arrays
EP2365095A1 (en) 2003-02-26 2011-09-14 Callida Genomics, Inc. Random array DNA analysis by hybridization
DK2374900T3 (en) 2003-03-07 2016-10-17 Rubicon Genomics Inc Polynucleotides for amplification and analysis of the total genomic and total transcription libraries generated by a DNA polymerization
DK1601450T3 (en) 2003-03-10 2013-09-08 Expression Pathology Inc Liquid tissue preparation from histopathologically processed biological samples, tissues and cells
FR2852317B1 (en) 2003-03-13 2006-08-04 PROBE BIOPUCES AND METHODS OF USE
US7083980B2 (en) 2003-04-17 2006-08-01 Wisconsin Alumni Research Foundation Tn5 transposase mutants and the use thereof
CN1300333C (en) 2003-04-17 2007-02-14 中国人民解放军军事医学科学院放射与辐射医学研究所 Preparation of gene chip for digagnosingantrax baiuus and its application
US7666612B2 (en) 2003-05-23 2010-02-23 Epfl-Ecole Polytechnique Federale De Lausanne Methods for protein labeling based on acyl carrier protein
WO2005047543A2 (en) 2003-06-10 2005-05-26 Applera Corporation Ligation assay
US20060216775A1 (en) 2003-06-17 2006-09-28 The Regents Of The University Of Califoenia Compositions and methods for analysis and manipulation of enzymes in biosynthetic proteomes
EP1636337A4 (en) 2003-06-20 2007-07-04 Illumina Inc Methods and compositions for whole genome amplification and genotyping
US20070128656A1 (en) 2003-06-26 2007-06-07 University Of South Florida Direct Fluorescent Label Incorporation Via 1st Strand cDNA Synthesis
CA2530810A1 (en) 2003-07-03 2005-01-27 The Regents Of The University Of California Genome mapping of functional dna elements and cellular proteins
WO2005010145A2 (en) 2003-07-05 2005-02-03 The Johns Hopkins University Method and compositions for detection and enumeration of genetic variations
WO2005021794A2 (en) 2003-09-02 2005-03-10 Keygene N.V. Ola-based methods for the detection of target nucleic acid sequences
WO2005074417A2 (en) 2003-09-03 2005-08-18 Salk Institute For Biological Studies Multiple antigen detection assays and reagents
CA2536565A1 (en) 2003-09-10 2005-05-12 Althea Technologies, Inc. Expression profiling using microarrays
GB0321306D0 (en) 2003-09-11 2003-10-15 Solexa Ltd Modified polymerases for improved incorporation of nucleotide analogues
US20050266417A1 (en) 2003-09-12 2005-12-01 Francis Barany Methods for identifying target nucleic acid molecules
EP1670939B1 (en) 2003-09-18 2009-11-04 Nuevolution A/S A method for obtaining structural information concerning an encoded molecule and method for selecting compounds
US20050064435A1 (en) 2003-09-24 2005-03-24 Xing Su Programmable molecular barcodes
US20050136414A1 (en) 2003-12-23 2005-06-23 Kevin Gunderson Methods and compositions for making locus-specific arrays
US20050147976A1 (en) 2003-12-29 2005-07-07 Xing Su Methods for determining nucleotide sequence information
CA2552858A1 (en) 2004-01-23 2005-08-04 Lingvitae As Improving polynucleotide ligation reactions
US7378242B2 (en) 2004-03-18 2008-05-27 Atom Sciences, Inc. DNA sequence detection by limited primer extension
KR100624420B1 (en) 2004-04-10 2006-09-19 삼성전자주식회사 A microarray having microarray identification information stored in the form of a spot, method of producing the microarray and method of using the microarray
CA2563168A1 (en) 2004-04-14 2005-11-17 President And Fellows Of Harvard College Nucleic-acid programmable protein arrays
RU2270254C2 (en) 2004-04-30 2006-02-20 Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук Identification of transgenic dna sequences in plant material and products made of the same, oligonucleotide kit and bioarray therefor
WO2005113804A1 (en) 2004-05-20 2005-12-01 Trillion Genomics Limited Use of mass labelled probes to detect target nucleic acids using mass spectrometry
WO2006073504A2 (en) 2004-08-04 2006-07-13 President And Fellows Of Harvard College Wobble sequencing
US7608434B2 (en) 2004-08-04 2009-10-27 Wisconsin Alumni Research Foundation Mutated Tn5 transposase proteins and the use thereof
US7776547B2 (en) 2004-08-26 2010-08-17 Intel Corporation Cellular analysis using Raman surface scanning
CN100396790C (en) 2004-09-17 2008-06-25 北京大学 Solution identification and surface addressing protein chip and its preparing and detecting method
US7527970B2 (en) 2004-10-15 2009-05-05 The United States Of America As Represented By The Department Of Health And Human Services Method of identifying active chromatin domains
ES2534304T3 (en) 2004-11-12 2015-04-21 Asuragen, Inc. Procedures and compositions involving miRNA and miRNA inhibitor molecules
US7183119B2 (en) 2004-11-15 2007-02-27 Eastman Kodak Company Method for sensitive detection of multiple biological analytes
ATE420170T1 (en) 2004-11-22 2009-01-15 Peter Birk Rasmussen MATTRICE-DIRECTED SPLIT-AND-MIX SYNTHESIS OF SMALL MOLECULE LIBRARIES
US7579153B2 (en) 2005-01-25 2009-08-25 Population Genetics Technologies, Ltd. Isothermal DNA amplification
EP2239342A3 (en) 2005-02-01 2010-11-03 AB Advanced Genetic Analysis Corporation Reagents, methods and libraries for bead-based sequencing
US7407757B2 (en) 2005-02-10 2008-08-05 Population Genetics Technologies Genetic analysis by sequence-specific sorting
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
GB0504774D0 (en) 2005-03-08 2005-04-13 Lingvitae As Method
US7727721B2 (en) 2005-03-08 2010-06-01 California Institute Of Technology Hybridization chain reaction amplification for in situ imaging
US7601498B2 (en) 2005-03-17 2009-10-13 Biotium, Inc. Methods of using dyes in association with nucleic acid staining or detection and associated technology
US7776567B2 (en) 2005-03-17 2010-08-17 Biotium, Inc. Dimeric and trimeric nucleic acid dyes, and associated systems and methods
US7303880B2 (en) 2005-03-18 2007-12-04 Wisconsin Alumni Research Foundation Microdissection-based methods for determining genomic features of single chromosomes
GB0508983D0 (en) 2005-05-03 2005-06-08 Oxford Gene Tech Ip Ltd Cell analyser
JP4990886B2 (en) 2005-05-10 2012-08-01 ソレックサ リミテッド Improved polymerase
US7803541B2 (en) 2005-05-12 2010-09-28 Panomics, Inc. Multiplex branched-chain DNA assays
EP1894012A2 (en) 2005-05-18 2008-03-05 Novartis AG Methods for diagnosis and treatment of proliferative disorders mediated by cd40 signaling
US20060263789A1 (en) 2005-05-19 2006-11-23 Robert Kincaid Unique identifiers for indicating properties associated with entities to which they are attached, and methods for using
WO2007145612A1 (en) 2005-06-06 2007-12-21 454 Life Sciences Corporation Paired end sequencing
US20090264299A1 (en) 2006-02-24 2009-10-22 Complete Genomics, Inc. High throughput genome sequencing on DNA arrays
CA2611671C (en) 2005-06-15 2013-10-08 Callida Genomics, Inc. Single molecule arrays for genetic and chemical analysis
US20070087360A1 (en) 2005-06-20 2007-04-19 Boyd Victoria L Methods and compositions for detecting nucleotides
CN104673903B (en) 2005-06-20 2018-11-13 领先细胞医疗诊断有限公司 The method for detecting the nucleic acid in individual cells and identifying rare cells in heterogeneous maxicell group
ATE491045T1 (en) 2005-06-23 2010-12-15 Keygene Nv HIGH-THROUGHPUT STRATEGIES FOR IDENTIFICATION AND DETECTION OF POLYMORPHISMS
US20070026430A1 (en) 2005-06-30 2007-02-01 Applera Corporation Proximity probing of target proteins comprising restriction and/or extension
US7883848B2 (en) 2005-07-08 2011-02-08 Olink Ab Regulation analysis by cis reactivity, RACR
JP4822753B2 (en) 2005-07-11 2011-11-24 一般社団法人オンチップ・セロミクス・コンソーシアム Cell component sorting chip, cell component analysis system, and cell component analysis method using them
US20070020640A1 (en) 2005-07-21 2007-01-25 Mccloskey Megan L Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis
WO2007030373A2 (en) 2005-09-07 2007-03-15 St. Jude Children's Research Hospital Method for in situ hybridization analysis
JP2007074967A (en) 2005-09-13 2007-03-29 Canon Inc Identifier probe and method for amplifying nucleic acid by using the same
US7405281B2 (en) 2005-09-29 2008-07-29 Pacific Biosciences Of California, Inc. Fluorescent nucleotide analogs and uses therefor
JP5237099B2 (en) 2005-09-29 2013-07-17 キージーン ナムローゼ フェンノートシャップ High-throughput screening of mutated populations
WO2007041689A2 (en) 2005-10-04 2007-04-12 President And Fellows Of Harvard College Methods of site-specific labeling of molecules and molecules produced thereby
GB0522310D0 (en) 2005-11-01 2005-12-07 Solexa Ltd Methods of preparing libraries of template polynucleotides
US20070116612A1 (en) 2005-11-02 2007-05-24 Biopath Automation, L.L.C. Prefix tissue cassette
EP1951905B1 (en) 2005-11-10 2012-04-11 Affymetrix, Inc. Detection of nucleic acids through amplification of surrogate nucleic acids
WO2007120208A2 (en) 2005-11-14 2007-10-25 President And Fellows Of Harvard College Nanogrid rolling circle dna sequencing
ATE527383T1 (en) 2005-11-22 2011-10-15 Stichting Dienst Landbouwkundi MULTIPLEX NUCLEIC ACID DETECTION
WO2007060599A1 (en) 2005-11-25 2007-05-31 Koninklijke Philips Electronics N.V. Magnetic biosensor for determination of enzymic activity
WO2007100392A2 (en) 2005-11-30 2007-09-07 Biotium, Inc. Enzyme substrate comprising a functional dye and associated technology and methods
US7803751B2 (en) 2005-12-09 2010-09-28 Illumina, Inc. Compositions and methods for detecting phosphomonoester
DE102005060738A1 (en) 2005-12-16 2007-06-21 Qiagen Gmbh Method for extraction of biomolecules from fixed tissues
WO2007073165A1 (en) 2005-12-22 2007-06-28 Keygene N.V. Method for high-throughput aflp-based polymorphism detection
JP5198284B2 (en) 2005-12-22 2013-05-15 キージーン ナムローゼ フェンノートシャップ An improved strategy for transcript characterization using high-throughput sequencing techniques
WO2007076128A2 (en) 2005-12-23 2007-07-05 Nanostring Technologies, Inc. Nanoreporters and methods of manufacturing and use thereof
ES2402939T3 (en) 2005-12-23 2013-05-10 Nanostring Technologies, Inc. Compositions comprising immobilized and oriented macromolecules and methods for their preparation
CN101395281B (en) 2006-01-04 2013-05-01 骆树恩 Methods for nucleic acid mapping and identification of fine-structural-variations in nucleic acids and utilities
US7537897B2 (en) 2006-01-23 2009-05-26 Population Genetics Technologies, Ltd. Molecular counting
WO2007092538A2 (en) 2006-02-07 2007-08-16 President And Fellows Of Harvard College Methods for making nucleotide probes for sequencing and synthesis
JP5180845B2 (en) 2006-02-24 2013-04-10 カリダ・ジェノミックス・インコーポレイテッド High-throughput genomic sequencing on DNA arrays
US20080009420A1 (en) 2006-03-17 2008-01-10 Schroth Gary P Isothermal methods for creating clonal single molecule arrays
GB0605584D0 (en) 2006-03-20 2006-04-26 Olink Ab Method for analyte detection using proximity probes
ES2545264T3 (en) 2006-04-04 2015-09-09 Keygene N.V. High performance detection of molecular markers based on restriction fragments
US8383338B2 (en) 2006-04-24 2013-02-26 Roche Nimblegen, Inc. Methods and systems for uniform enrichment of genomic regions
WO2007127458A2 (en) 2006-04-28 2007-11-08 Nsabp Foundation, Inc. Methods of whole genome or microarray expression profiling using nucleic acids
EP2677039B8 (en) 2006-05-10 2022-10-05 DxTerity Diagnostics Incorporated Detection of nucleic acid targets using chemically reactive oligonucleotide probes
ES2620398T3 (en) 2006-05-22 2017-06-28 Nanostring Technologies, Inc. Systems and methods to analyze nanoindicators
US20080132429A1 (en) 2006-05-23 2008-06-05 Uchicago Argonne Biological microarrays with enhanced signal yield
US8362242B2 (en) 2006-06-30 2013-01-29 Dh Technologies Development Pte. Ltd. Analyte determination utilizing mass tagging reagents comprising a non-encoded detectable label
US7858305B2 (en) 2006-06-30 2010-12-28 The Invention Science Fund I, Llc Method of combing a nucleic acid
AT503862B1 (en) 2006-07-05 2010-11-15 Arc Austrian Res Centers Gmbh PATHOGENIC IDENTIFICATION DUE TO A 16S OR 18S RRNA MICROARRAY
CN101522915A (en) 2006-08-02 2009-09-02 加州理工学院 Methods and systems for detecting and/or sorting targets
US8568979B2 (en) 2006-10-10 2013-10-29 Illumina, Inc. Compositions and methods for representational selection of nucleic acids from complex mixtures using hybridization
WO2008051530A2 (en) 2006-10-23 2008-05-02 Pacific Biosciences Of California, Inc. Polymerase enzymes and reagents for enhanced nucleic acid sequencing
US20080108804A1 (en) 2006-11-02 2008-05-08 Kabushiki Kaisha Dnaform Method for modifying RNAS and preparing DNAS from RNAS
US20110045462A1 (en) 2006-11-14 2011-02-24 The Regents Of The University Of California Digital analysis of gene expression
US9201063B2 (en) 2006-11-16 2015-12-01 General Electric Company Sequential analysis of biological samples
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
EP2677309B9 (en) 2006-12-14 2014-11-19 Life Technologies Corporation Methods for sequencing a nucleic acid using large scale FET arrays, configured to measure a limited pH range
CN101221182A (en) 2007-01-08 2008-07-16 山东司马特生物芯片有限公司 Novel method for blood serum tumor series diagnosis by fluorescent protein chip
WO2008093098A2 (en) 2007-02-02 2008-08-07 Illumina Cambridge Limited Methods for indexing samples and sequencing multiple nucleotide templates
US20080220434A1 (en) 2007-02-07 2008-09-11 Perscitus Biosciences, Llc Detection Of Molecule Proximity
WO2008128111A1 (en) 2007-04-13 2008-10-23 Sequenom, Inc. Comparative sequence analysis processes and systems
CA2687804A1 (en) 2007-05-23 2008-12-04 Oregon Health & Science University Microarray systems and methods for identifying dna-binding proteins
CN101720359A (en) 2007-06-01 2010-06-02 454生命科学公司 System and meth0d for identification of individual samples from a multiplex mixture
WO2008151127A1 (en) 2007-06-04 2008-12-11 President And Fellows Of Harvard College Compounds and methods for chemical ligation
EP2395113A1 (en) 2007-06-29 2011-12-14 Population Genetics Technologies Ltd. Methods and compositions for isolating nucleic acid sequence variants
JP2009036694A (en) 2007-08-03 2009-02-19 Tokyo Medical & Dental Univ Method for analyzing biological substance in cell maintaining spatial distribution
WO2009032167A1 (en) 2007-08-29 2009-03-12 Illumina Cambridge Method for sequencing a polynucleotide template
US9388457B2 (en) 2007-09-14 2016-07-12 Affymetrix, Inc. Locus specific amplification using array probes
WO2009036525A2 (en) 2007-09-21 2009-03-26 Katholieke Universiteit Leuven Tools and methods for genetic tests using next generation sequencing
EP2053132A1 (en) 2007-10-23 2009-04-29 Roche Diagnostics GmbH Enrichment and sequence analysis of geomic regions
US8518640B2 (en) 2007-10-29 2013-08-27 Complete Genomics, Inc. Nucleic acid sequencing and process
US8592150B2 (en) 2007-12-05 2013-11-26 Complete Genomics, Inc. Methods and compositions for long fragment read sequencing
EP3699291A1 (en) 2008-01-17 2020-08-26 Sequenom, Inc. Single molecule nucleic acid sequence analysis processes and compositions
KR20090081260A (en) 2008-01-23 2009-07-28 삼성전자주식회사 Assay method of microarray hybridization
DE102008023438B4 (en) 2008-05-14 2011-06-30 Bruker Daltonik GmbH, 28359 Method for analyzing tissue sections
US8093064B2 (en) 2008-05-15 2012-01-10 The Regents Of The University Of California Method for using magnetic particles in droplet microfluidics
DE102008025656B4 (en) 2008-05-28 2016-07-28 Genxpro Gmbh Method for the quantitative analysis of nucleic acids, markers therefor and their use
WO2009148560A2 (en) 2008-05-30 2009-12-10 Board Of Regents, The Universtiy Of Texas System Methods and compositions for nucleic acid sequencing
US20100035249A1 (en) 2008-08-05 2010-02-11 Kabushiki Kaisha Dnaform Rna sequencing and analysis using solid support
CA2733609C (en) 2008-08-14 2018-03-06 Nanostring Technologies, Inc. Stable nanoreporters
CN102203287B (en) 2008-08-26 2017-09-19 弗卢迪格姆公司 Increase the assay method of sample and/or target flux
EP2163900A1 (en) 2008-09-04 2010-03-17 Commissariat A L'energie Atomique New method of imaging by mass spectrometry and new mass tag associated trityl derivatives
US8586310B2 (en) 2008-09-05 2013-11-19 Washington University Method for multiplexed nucleic acid patch polymerase chain reaction
US8383345B2 (en) 2008-09-12 2013-02-26 University Of Washington Sequence tag directed subassembly of short sequencing reads into long sequencing reads
US9080211B2 (en) 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
EP2356259A4 (en) 2008-10-30 2012-11-14 Sequenom Inc Products and processes for multiplex nucleic acid identification
US9394567B2 (en) 2008-11-07 2016-07-19 Adaptive Biotechnologies Corporation Detection and quantification of sample contamination in immune repertoire analysis
WO2010065775A2 (en) 2008-12-03 2010-06-10 The United States Government As Represented By The Department Of Veterans Affairs Pressure-assisted molecular recovery (pamr) of biomolecules, pressure-assisted antigen retrieval (paar), and pressure-assisted tissue histology (path)
US8790873B2 (en) 2009-01-16 2014-07-29 Affymetrix, Inc. DNA ligation on RNA template
KR101059565B1 (en) 2009-02-11 2011-08-26 어플라이드 프레시젼, 인코포레이티드 Microarrays with bright reference point labels and methods of collecting optical data therefrom
US8481698B2 (en) 2009-03-19 2013-07-09 The President And Fellows Of Harvard College Parallel proximity ligation event analysis
AU2010232439C1 (en) 2009-04-02 2017-07-13 Fluidigm Corporation Multi-primer amplification method for barcoding of target nucleic acids
WO2010115100A1 (en) 2009-04-03 2010-10-07 L&C Diagment, Inc. Multiplex nucleic acid detection methods and systems
US9085798B2 (en) 2009-04-30 2015-07-21 Prognosys Biosciences, Inc. Nucleic acid constructs and methods of use
CA2760439A1 (en) 2009-04-30 2010-11-04 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
WO2011008502A2 (en) 2009-06-29 2011-01-20 California Institute Of Technology Isolation of unknown rearranged t-cell receptors from single cells
GB0912909D0 (en) 2009-07-23 2009-08-26 Olink Genomics Ab Probes for specific analysis of nucleic acids
WO2011014811A1 (en) 2009-07-31 2011-02-03 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
JP5954876B2 (en) 2009-10-13 2016-07-20 ナノストリング テクノロジーズ, インコーポレイテッド Protein detection by nanoreporter
US9005891B2 (en) 2009-11-10 2015-04-14 Genomic Health, Inc. Methods for depleting RNA from nucleic acid samples
US20120277113A1 (en) 2009-11-18 2012-11-01 Ruo-Pan Huang Array-based proximity ligation association assays
CN106701739A (en) 2009-12-04 2017-05-24 株式会社日立制作所 Analysis device and equipment for gene expression analysis
SG10201407883PA (en) 2009-12-07 2015-01-29 Illumina Inc Multi-sample indexing for multiplex genotyping
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
WO2011075083A1 (en) 2009-12-15 2011-06-23 Agency For Science, Technology And Research Processing of amplified dna fragments for sequencing
ES2719502T3 (en) 2010-01-29 2019-07-10 Advanced Cell Diagnostics Inc Nucleic acid in situ detection methods
EP2354242A1 (en) 2010-02-03 2011-08-10 Epiontis GmbH Assay for determining the type and/or status of a cell based on the epigenetic pattern and the chromatin structure
ES2647390T3 (en) 2010-02-11 2017-12-21 Nanostring Technologies, Inc Compositions and methods for preferential detection of small RNAs by bridge hybridization and ligation
US10266876B2 (en) 2010-03-08 2019-04-23 California Institute Of Technology Multiplex detection of molecular species in cells by super-resolution imaging and combinatorial labeling
WO2011112634A2 (en) 2010-03-08 2011-09-15 California Institute Of Technology Molecular indicia of cellular constituents and resolving the same by super-resolution technologies in single cells
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
PT2556171E (en) 2010-04-05 2015-12-21 Prognosys Biosciences Inc Spatially encoded biological assays
US20110245101A1 (en) 2010-04-05 2011-10-06 Prognosys Biosciences, Inc. Co-localization affinity assays
WO2011143556A1 (en) 2010-05-13 2011-11-17 Gen9, Inc. Methods for nucleotide sequencing and high fidelity polynucleotide synthesis
US8828688B2 (en) 2010-05-27 2014-09-09 Affymetrix, Inc. Multiplex amplification methods
CN102933721B (en) 2010-06-09 2015-12-02 凯津公司 For the composite sequence barcode of high flux screening
US11203786B2 (en) 2010-08-06 2021-12-21 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
ES2595433T3 (en) 2010-09-21 2016-12-30 Population Genetics Technologies Ltd. Increased confidence in allele identifications with molecular count
CA2814049C (en) 2010-10-08 2021-07-13 President And Fellows Of Harvard College High-throughput single cell barcoding
US10669569B2 (en) 2010-10-15 2020-06-02 Navinci Diagnostics Ab Dynamic range methods
CA2815076C (en) 2010-10-22 2021-01-12 Cold Spring Harbor Laboratory Varietal counting of nucleic acids for obtaining genomic copy number information
JP5978220B2 (en) 2010-10-29 2016-08-24 プレジデント アンド フェローズ オブ ハーバード カレッジ Nucleic acid nanostructure barcode probe
US20130184184A1 (en) 2010-11-22 2013-07-18 The University Of Chicago Methods and/or Use of Oligonucleotide Conjugates Having Varied Degrees of Labeling for Assays and Detections
US20140121118A1 (en) 2010-11-23 2014-05-01 Opx Biotechnologies, Inc. Methods, systems and compositions regarding multiplex construction protein amino-acid substitutions and identification of sequence-activity relationships, to provide gene replacement such as with tagged mutant genes, such as via efficient homologous recombination
EP2652155B1 (en) 2010-12-16 2016-11-16 Gigagen, Inc. Methods for massively parallel analysis of nucleic acids in single cells
EP2675916B1 (en) 2011-02-15 2016-08-24 Leica Biosystems Newcastle Limited METHOD FOR LOCALIZED IN SITU DETECTION OF mRNA
EP2689028B1 (en) 2011-03-23 2017-08-30 Pacific Biosciences Of California, Inc. Isolation of polymerase-nucleic acid complexes and loading onto substrates
EP3150750B1 (en) 2011-04-08 2018-12-26 Prognosys Biosciences, Inc. Peptide constructs and assay systems
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
US8946389B2 (en) 2011-04-25 2015-02-03 University Of Washington Compositions and methods for multiplex biomarker profiling
AU2012251027B2 (en) 2011-05-04 2015-03-26 Htg Molecular Diagnostics, Inc. Quantitative nuclease protection Assay (qNPA) and sequencing (qNPS) improvements
EP2707507B1 (en) 2011-05-09 2017-11-01 Fluidigm Corporation Probe based nucleic acid detection
AU2012255121B2 (en) 2011-05-17 2017-03-09 Dxterity Diagnostics Incorporated Methods and compositions for detecting target nucleic acids
CA2835942C (en) 2011-05-19 2019-01-22 Sequenom, Inc. Products and processes for multiplex nucleic acid identification
US9005935B2 (en) 2011-05-23 2015-04-14 Agilent Technologies, Inc. Methods and compositions for DNA fragmentation and tagging by transposases
GB201108678D0 (en) 2011-05-24 2011-07-06 Olink Ab Multiplexed proximity ligation assay
US8728987B2 (en) 2011-08-03 2014-05-20 Bio-Rad Laboratories, Inc. Filtering small nucleic acids using permeabilized cells
US10385475B2 (en) 2011-09-12 2019-08-20 Adaptive Biotechnologies Corp. Random array sequencing of low-complexity libraries
HUE056246T2 (en) 2011-09-23 2022-02-28 Illumina Inc Compositions for nucleic acid sequencing
EP2766498B1 (en) 2011-10-14 2019-06-19 President and Fellows of Harvard College Sequencing by structure assembly
WO2013085710A2 (en) 2011-12-09 2013-06-13 Illumina, Inc. Expanded radix for polymeric tags
EP4108782B1 (en) 2011-12-22 2023-06-07 President and Fellows of Harvard College Compositions and methods for analyte detection
CA2863257C (en) 2012-02-14 2021-12-14 Cornell University Method for relative quantification of nucleic acid sequence, expression, or copy changes, using combined nuclease, ligation, and polymerase reactions
PL2814959T3 (en) 2012-02-17 2018-07-31 Fred Hutchinson Cancer Research Center Compositions and methods for accurately identifying mutations
NO2694769T3 (en) 2012-03-06 2018-03-03
WO2013138510A1 (en) 2012-03-13 2013-09-19 Patel Abhijit Ajit Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing
HUE051845T2 (en) 2012-03-20 2021-03-29 Univ Washington Through Its Center For Commercialization Methods of lowering the error rate of massively parallel dna sequencing using duplex consensus sequencing
EP2647426A1 (en) 2012-04-03 2013-10-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Replication of distributed nucleic acid molecules with preservation of their relative distribution through hybridization-based binding
US9914967B2 (en) 2012-06-05 2018-03-13 President And Fellows Of Harvard College Spatial sequencing of nucleic acids using DNA origami probes
US8895249B2 (en) 2012-06-15 2014-11-25 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
CN104508128A (en) 2012-07-30 2015-04-08 株式会社日立制作所 Tag-sequence-attached two-dimensional cDNA library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
MX364957B (en) 2012-08-14 2019-05-15 10X Genomics Inc Microcapsule compositions and methods.
WO2014044724A1 (en) 2012-09-18 2014-03-27 Qiagen Gmbh Method and kit for preparing a target rna depleted sample
US9783841B2 (en) 2012-10-04 2017-10-10 The Board Of Trustees Of The Leland Stanford Junior University Detection of target nucleic acids in a cellular sample
CA2886974C (en) 2012-10-17 2021-06-29 Spatial Transcriptomics Ab Methods and product for optimising localised or spatial detection of gene expression in a tissue sample
EP2920324B1 (en) 2012-11-14 2017-12-27 Olink Bioscience AB Localised rca-based amplification method
EP2929056A4 (en) 2012-12-10 2016-11-09 Resolution Bioscience Inc Methods for targeted genomic analysis
CA2900481A1 (en) 2013-02-08 2014-08-14 10X Genomics, Inc. Polynucleotide barcode generation
WO2014130576A1 (en) 2013-02-19 2014-08-28 Biodot, Inc. Automated fish analysis of tissue and cell samples using an isolating barrier for precise dispensing of probe and other reagents on regions of interest
US9512422B2 (en) 2013-02-26 2016-12-06 Illumina, Inc. Gel patterned surfaces
EP2971184B1 (en) 2013-03-12 2019-04-17 President and Fellows of Harvard College Method of generating a three-dimensional nucleic acid containing matrix
WO2014152397A2 (en) 2013-03-14 2014-09-25 The Broad Institute, Inc. Selective purification of rna and rna-bound molecular complexes
US9273349B2 (en) 2013-03-14 2016-03-01 Affymetrix, Inc. Detection of nucleic acids
CN114107458A (en) 2013-03-15 2022-03-01 血统生物科学公司 Method for sequencing an immune repertoire
US20160019337A1 (en) 2013-03-15 2016-01-21 Htg Molecular Diagnostics, Inc. Subtyping lung cancers
US9330295B2 (en) 2013-03-15 2016-05-03 Brown University Spatial sequencing/gene expression camera
WO2014176435A2 (en) 2013-04-25 2014-10-30 Bergo Vladislav B Microarray compositions and methods of their use
US10510435B2 (en) 2013-04-30 2019-12-17 California Institute Of Technology Error correction of multiplex imaging analysis by sequential hybridization
AU2014268710B2 (en) 2013-05-23 2018-10-18 The Board Of Trustees Of The Leland Stanford Junior University Transposition into native chromatin for personal epigenomics
WO2014210223A1 (en) 2013-06-25 2014-12-31 Prognosys Biosciences, Inc. Spatially encoded biological assays using a microfluidic device
US20150000854A1 (en) 2013-06-27 2015-01-01 The Procter & Gamble Company Sheet products bearing designs that vary among successive sheets, and apparatus and methods for producing the same
SG10201806890VA (en) 2013-08-28 2018-09-27 Cellular Res Inc Massively parallel single cell analysis
JP6546177B2 (en) 2013-09-13 2019-07-17 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Multiplexed imaging of tissue using mass tags and secondary ion mass spectrometers
JP6626830B2 (en) 2013-11-07 2019-12-25 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. Multiple transposase adapters for DNA manipulation
US9834814B2 (en) 2013-11-22 2017-12-05 Agilent Technologies, Inc. Spatial molecular barcoding of in situ nucleic acids
GB2520765A (en) 2013-12-02 2015-06-03 Vanadis Diagnostics Ab Multiplex detection of nucleic acids
GB201401885D0 (en) 2014-02-04 2014-03-19 Olink Ab Proximity assay with detection based on hybridisation chain reaction (HCR)
WO2015148606A2 (en) 2014-03-25 2015-10-01 President And Fellows Of Harvard College Barcoded protein array for multiplex single-molecule interaction profiling
AU2015243445B2 (en) 2014-04-10 2020-05-28 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
TWI682997B (en) 2014-04-15 2020-01-21 美商伊路米納有限公司 Modified transposases for improved insertion sequence bias and increased dna input tolerance
CN106460069B (en) 2014-04-18 2021-02-12 威廉马歇莱思大学 Competitive compositions for enriching nucleic acid molecules for rare allele-containing material
WO2015184386A1 (en) 2014-05-30 2015-12-03 The Regents Of The University Of California Subcellular western blotting of single cells
AU2015271324B2 (en) 2014-06-06 2019-09-12 Herlev Hospital Determining antigen recognition through barcoding of MHC multimers
US9909167B2 (en) 2014-06-23 2018-03-06 The Board Of Trustees Of The Leland Stanford Junior University On-slide staining by primer extension
EP3161152B1 (en) 2014-06-30 2018-12-26 Illumina, Inc. Methods and compositions using one-sided transposition
WO2016007839A1 (en) 2014-07-11 2016-01-14 President And Fellows Of Harvard College Methods for high-throughput labelling and detection of biological features in situ using microscopy
WO2016011429A1 (en) 2014-07-17 2016-01-21 California Institute Of Technology Multiplex analysis of molecules in single cells by image correlation
EP4273263A3 (en) 2014-07-30 2024-01-31 President and Fellows of Harvard College Systems and methods for determining nucleic acids
JP6806668B2 (en) 2014-08-19 2021-01-06 プレジデント アンド フェローズ オブ ハーバード カレッジ RNA-induced system for probing and mapping nucleic acids
US9938566B2 (en) 2014-09-08 2018-04-10 BioSpyder Technologies, Inc. Profiling expression at transcriptome scale
US9957550B2 (en) 2014-09-08 2018-05-01 BioSpyder Technologies, Inc. Attenuators
US9856521B2 (en) 2015-01-27 2018-01-02 BioSpyder Technologies, Inc. Ligation assays in liquid phase
US11091810B2 (en) 2015-01-27 2021-08-17 BioSpyder Technologies, Inc. Focal gene expression profiling of stained FFPE tissues with spatial correlation to morphology
EP3191605B1 (en) 2014-09-09 2022-07-27 The Broad Institute, Inc. A droplet-based method and apparatus for composite single-cell nucleic acid analysis
US20170283860A1 (en) 2014-09-16 2017-10-05 The Board Of Trustees Of The Leland Stanford Junio University Methods and compositions for the removal of aldehyde adducts and crosslinks from biomolecules
AU2015319825A1 (en) 2014-09-26 2017-04-27 Nooma Bio, Inc. Target sequence detection by nanopore sensing of synthetic probes
US20160108458A1 (en) 2014-10-06 2016-04-21 The Board Of Trustees Of The Leland Stanford Junior University Multiplexed detection and quantification of nucleic acids in single-cells
US20160122817A1 (en) 2014-10-29 2016-05-05 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US11198855B2 (en) 2014-11-13 2021-12-14 The Board Of Trustees Of The University Of Illinois Bio-engineered hyper-functional “super” helicases
CN107208144B (en) 2014-11-21 2021-06-08 纳米线科技公司 Enzyme-free and amplification-free sequencing
WO2016100974A1 (en) 2014-12-19 2016-06-23 The Broad Institute Inc. Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing
WO2016112073A1 (en) 2015-01-06 2016-07-14 Good Start Genetics, Inc. Screening for structural variants
CN107407691B (en) 2015-01-22 2021-07-27 贝克顿迪金森公司 Device and system for molecular barcoding of nucleic acid targets in single cells
WO2016118500A1 (en) 2015-01-23 2016-07-28 Mestek, Inc. Airfoil blade and method of assembly
CN115011670A (en) 2015-02-04 2022-09-06 加利福尼亚大学董事会 Sequencing nucleic acids by barcoding in discrete entities
EP3262189B1 (en) 2015-02-27 2021-12-08 Becton, Dickinson and Company Methods for barcoding nucleic acids for sequencing
US9727810B2 (en) 2015-02-27 2017-08-08 Cellular Research, Inc. Spatially addressable molecular barcoding
EP3277843A2 (en) 2015-03-30 2018-02-07 Cellular Research, Inc. Methods and compositions for combinatorial barcoding
CN107532207B (en) 2015-04-10 2021-05-07 空间转录公司 Spatially differentiated, multiplexed nucleic acid analysis of biological samples
US11408890B2 (en) 2015-04-14 2022-08-09 Massachusetts Institute Of Technology Iterative expansion microscopy
EP3283641B1 (en) 2015-04-14 2019-11-27 Koninklijke Philips N.V. Spatial mapping of molecular profiles of biological tissue samples
US10059990B2 (en) 2015-04-14 2018-08-28 Massachusetts Institute Of Technology In situ nucleic acid sequencing of expanded biological samples
US20180057873A1 (en) 2015-04-17 2018-03-01 Centrillion Technology Holdings Corporation Methods for performing spatial profiling of biological materials
EP3285926B1 (en) 2015-04-21 2022-03-02 General Automation Lab Technologies Inc. Kit and method for high throughput microbiology applications
WO2016187224A1 (en) 2015-05-21 2016-11-24 Becton, Dickinson And Company Methods of amplifying nucleic acids and compositions for practicing the same
SG10202107055SA (en) 2015-07-17 2021-08-30 Nanostring Technologies Inc Simultaneous quantification of a plurality of proteins in a user-defined region of a cross-sectioned tissue
CA2992492A1 (en) 2015-07-17 2017-01-26 Nanostring Technologies, Inc. Simultaneous quantification of gene expression in a user-defined region of a cross-sectioned tissue
WO2017019481A1 (en) 2015-07-24 2017-02-02 The Johns Hopkins University Compositions and methods of rna analysis
WO2017019456A2 (en) 2015-07-27 2017-02-02 Illumina, Inc. Spatial mapping of nucleic acid sequence information
WO2017027368A1 (en) 2015-08-07 2017-02-16 Massachusetts Institute Of Technology Protein retention expansion microscopy
CA2994958C (en) 2015-08-07 2024-02-13 Massachusetts Institute Of Technology Nanoscale imaging of proteins and nucleic acids via expansion microscopy
US11118216B2 (en) 2015-09-08 2021-09-14 Affymetrix, Inc. Nucleic acid analysis by joining barcoded polynucleotide probes
WO2017075293A1 (en) 2015-10-28 2017-05-04 Silicon Valley Scientific, Inc. Method and apparatus for encoding cellular spatial position information
WO2017075294A1 (en) 2015-10-28 2017-05-04 The Board Institute Inc. Assays for massively combinatorial perturbation profiling and cellular circuit reconstruction
WO2017075265A1 (en) 2015-10-28 2017-05-04 The Broad Institute, Inc. Multiplex analysis of single cell constituents
SG11201804086VA (en) 2015-12-04 2018-06-28 10X Genomics Inc Methods and compositions for nucleic acid analysis
WO2017139501A1 (en) 2016-02-10 2017-08-17 The Board Of Trustees Of The Leland Stanford Junior University Rna fixation and detection in clarity-based hydrogel tissue
US10633648B2 (en) 2016-02-12 2020-04-28 University Of Washington Combinatorial photo-controlled spatial sequencing and labeling
WO2017143155A2 (en) 2016-02-18 2017-08-24 President And Fellows Of Harvard College Multiplex alteration of cells using a pooled nucleic acid library and analysis thereof
US20170241911A1 (en) 2016-02-22 2017-08-24 Miltenyi Biotec Gmbh Automated analysis tool for biological specimens
CN108779488B (en) 2016-02-26 2022-01-21 小利兰·斯坦福大学托管委员会 Multiplex single-molecule RNA visualization using a dual-probe proximity ligation system
US11680253B2 (en) 2016-03-10 2023-06-20 The Board Of Trustees Of The Leland Stanford Junior University Transposase-mediated imaging of the accessible genome
US10844426B2 (en) 2016-03-17 2020-11-24 President And Fellows Of Harvard College Methods for detecting and identifying genomic nucleic acids
WO2017164936A1 (en) 2016-03-21 2017-09-28 The Broad Institute, Inc. Methods for determining spatial and temporal gene expression dynamics in single cells
WO2017184984A1 (en) 2016-04-21 2017-10-26 Cell Data Sciences, Inc. Biomolecule processing from fixed biological samples
CA3022290A1 (en) 2016-04-25 2017-11-02 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
DK3452591T3 (en) 2016-05-02 2023-09-18 Encodia Inc MACROMOLECULAR ANALYSIS USING NUCLEIC ACID CODING
SG11201809913PA (en) 2016-05-16 2018-12-28 Nanostring Technologies Inc Methods for detecting target nucleic acids in a sample
US10894990B2 (en) 2016-05-17 2021-01-19 Shoreline Biome, Llc High throughput method for identification and sequencing of unknown microbial and eukaryotic genomes from complex mixtures
EP3252452A1 (en) 2016-05-25 2017-12-06 The Board of Trustees of the Leland Stanford Junior University Method for imaging and analysis of a biological specimen
EP4050112A1 (en) 2016-06-21 2022-08-31 10X Genomics, Inc. Nucleic acid sequencing
ES2908919T3 (en) 2016-07-05 2022-05-04 California Inst Of Techn Fractional primer hybridization chain reaction
US10370698B2 (en) 2016-07-27 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University Highly-multiplexed fluorescent imaging
WO2018023068A1 (en) 2016-07-29 2018-02-01 New England Biolabs, Inc. Methods and compositions for preventing concatemerization during template- switching
EP3491151A4 (en) 2016-08-01 2020-07-29 California Institute of Technology Sequential probing of molecular targets based on pseudo-color barcodes with embedded error correction mechanism
US20210017587A1 (en) 2016-08-01 2021-01-21 California Institute Of Technology Sequential probing of molecular targets based on pseudo-color barcodes with embedded error correction mechanism
AU2017321492A1 (en) 2016-08-30 2019-03-14 California Institute Of Technology Immunohistochemistry via hybridization chain reaction
CN109983125A (en) 2016-08-31 2019-07-05 哈佛学院董事及会员团体 The method for generating the nucleic acid sequence library for detecting by fluorescent in situ sequencing
CN109923216A (en) 2016-08-31 2019-06-21 哈佛学院董事及会员团体 By the detection combination of biomolecule to the method for the single test using fluorescent in situ sequencing
WO2018057999A1 (en) 2016-09-22 2018-03-29 William Marsh Rice University Molecular hybridization probes for complex sequence capture and analysis
CN110114520B (en) 2016-10-01 2023-08-08 伯克利之光生命科技公司 DNA barcode compositions and methods of in situ identification in microfluidic devices
US20190262831A1 (en) 2016-10-17 2019-08-29 Lociomics Corporation High resolution spatial genomic analysis of tissues and cell aggregates
EP4026905B1 (en) 2016-10-19 2024-04-17 10X Genomics, Inc. Methods for barcoding nucleic acid molecules from individual cells or cell populations
US10515450B2 (en) 2016-10-20 2019-12-24 University Of Florida Research Foundation, Inc. Systems and methods for using a single-cell to create chromosomal spreads
EP4198140A1 (en) 2016-11-02 2023-06-21 ArcherDX, LLC Methods of nucleic acid sample preparation for immune repertoire sequencing
GB201619458D0 (en) 2016-11-17 2017-01-04 Spatial Transcriptomics Ab Method for spatial tagging and analysing nucleic acids in a biological specimen
CN110225980B (en) 2016-11-21 2023-01-06 纳米线科技公司 Chemical compositions and methods of use thereof
AU2017370751B2 (en) 2016-12-09 2023-11-09 Ultivue, Inc. Improved methods for multiplex imaging using labeled nucleic acid imaging agents
US20190177800A1 (en) 2017-12-08 2019-06-13 10X Genomics, Inc. Methods and compositions for labeling cells
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
CN110168101A (en) 2017-01-10 2019-08-23 哈佛学院院长及董事 Multiple signal amplification
US10711269B2 (en) 2017-01-18 2020-07-14 Agilent Technologies, Inc. Method for making an asymmetrically-tagged sequencing library
US10995361B2 (en) 2017-01-23 2021-05-04 Massachusetts Institute Of Technology Multiplexed signal amplified FISH via splinted ligation amplification and sequencing
EP4029939B1 (en) 2017-01-30 2023-06-28 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
GB201701691D0 (en) 2017-02-01 2017-03-15 Illumina Inc System and method with reflective fiducials
EP4324931A2 (en) 2017-02-02 2024-02-21 New York Genome Center, Inc. Methods and compositions for identifying or quantifying targets in a biological sample
JP7248368B2 (en) 2017-03-01 2023-03-29 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Highly specific circular proximity ligation assay
US20180312822A1 (en) 2017-04-26 2018-11-01 10X Genomics, Inc. Mmlv reverse transcriptase variants
CA3063283A1 (en) 2017-05-17 2018-11-22 Microbio Pty Ltd Methods and agents for identifying or classifying microbes based on polymorphisms within ribosomal rna genes
CA3059559A1 (en) 2017-06-05 2018-12-13 Becton, Dickinson And Company Sample indexing for single cells
US11180804B2 (en) 2017-07-25 2021-11-23 Massachusetts Institute Of Technology In situ ATAC sequencing
WO2019032760A1 (en) 2017-08-10 2019-02-14 Rootpath Genomics, Inc. Improved method to analyze nucleic acid contents from multiple biological particles
US10357771B2 (en) 2017-08-22 2019-07-23 10X Genomics, Inc. Method of producing emulsions
US10590244B2 (en) 2017-10-04 2020-03-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
EP3668998A1 (en) 2017-10-06 2020-06-24 Cartana AB Rna templated ligation
WO2019075091A1 (en) 2017-10-11 2019-04-18 Expansion Technologies Multiplexed in situ hybridization of tissue sections for spatially resolved transcriptomics with expansion microscopy
SG11201913654QA (en) 2017-11-15 2020-01-30 10X Genomics Inc Functionalized gel beads
EP3717661A1 (en) 2017-11-27 2020-10-07 The Trustees of Columbia University in the City of New York Rna printing and sequencing devices, methods, and systems
AU2018375160A1 (en) 2017-11-29 2020-05-28 Xgenomes Corp. Sequencing of nucleic acids by emergence
EP3720605A1 (en) 2017-12-07 2020-10-14 Massachusetts Institute Of Technology Single cell analyses
AU2018379082A1 (en) 2017-12-08 2020-06-11 California Institute Of Technology Multiplex labeling of molecules by sequential hybridization barcoding with rapid switching and rehybridzation of probes
SG11201907566TA (en) 2017-12-08 2019-09-27 10X Genomics Inc Methods and compositions for labeling cells
WO2019126313A1 (en) 2017-12-22 2019-06-27 The University Of Chicago Multiplex 5mc marker barcode counting for methylation detection in cell-free dna
JP7296969B2 (en) 2018-01-12 2023-06-23 クラレット バイオサイエンス, エルエルシー Methods and compositions for analyzing nucleic acids
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
SG11202008080RA (en) 2018-02-22 2020-09-29 10X Genomics Inc Ligation mediated analysis of nucleic acids
SG11202009889VA (en) 2018-04-06 2020-11-27 10X Genomics Inc Systems and methods for quality control in single cell processing
WO2019213254A1 (en) 2018-05-02 2019-11-07 The General Hospital Corporation High-resolution spatial macromolecule abundance assessment
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
US11414699B2 (en) 2018-05-15 2022-08-16 Mantra Bio, Inc. Barcode-free single vesicle multiplexed protein and RNA analysis
US20190360043A1 (en) 2018-05-23 2019-11-28 Pacific Biosciences Of California, Inc. Enrichment of dna comprising target sequence of interest
US20210254134A1 (en) 2018-06-12 2021-08-19 Accuragen Holdings Limited Methods and compositions for forming ligation products
CN108949924B (en) 2018-06-27 2021-10-08 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 Fluorescence detection kit and fluorescence detection method for gene deletion mutation
EP3836967A4 (en) 2018-07-30 2022-06-15 ReadCoor, LLC Methods and systems for sample processing or analysis
KR101981301B1 (en) 2018-08-10 2019-05-22 대신아이브(주) fire suspension airplane
WO2020047010A2 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Increasing spatial array resolution
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
WO2020047005A1 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Resolving spatial arrays
US20210324457A1 (en) 2018-08-28 2021-10-21 Eswar Prasad Ramachandran Iyer Methods for Generating Spatially Barcoded Arrays
TWI816881B (en) 2018-09-13 2023-10-01 大陸商恒翼生物醫藥(上海)股份有限公司 Combination therapy for the treatment of triple-negative breast cancer
US20220042090A1 (en) 2018-09-14 2022-02-10 Cold Spring Harbor Laboratory PROGRAMMABLE RNA-TEMPLATED SEQUENCING BY LIGATION (rSBL)
EP3834401B1 (en) 2018-09-17 2023-04-05 Schneider Electric Systems USA, Inc. Industrial system event detection and corresponding response
WO2020061064A1 (en) 2018-09-17 2020-03-26 Piggy Llc Systems, methods, and computer programs for providing users maximum benefit in electronic commerce
WO2020061066A1 (en) 2018-09-17 2020-03-26 Computer World Services Corp. dba LabSavvy Systems and methods for automated reporting and education for laboratory test results
EP3864173A4 (en) 2018-10-10 2022-07-20 Readcoor, LLC Surface capture of targets
WO2020077236A1 (en) 2018-10-12 2020-04-16 The Broad Institute, Inc. Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues
EP4219753A3 (en) 2018-10-19 2023-09-06 Akoya Biosciences, Inc. Detection of co-occurring receptor-coding nucleic acid segments
GB201818742D0 (en) 2018-11-16 2019-01-02 Cartana Ab Method for detection of RNA
FI3887540T3 (en) 2018-11-30 2023-09-14 Illumina Inc Analysis of multiple analytes using a single assay
JP7332694B2 (en) 2018-12-04 2023-08-23 エフ. ホフマン-ラ ロシュ アーゲー Spatial directional quantum barcoding of cellular targets
US20220049293A1 (en) 2018-12-10 2022-02-17 10X Genomics, Inc. Methods for determining a location of a biological analyte in a biological sample
US20210189475A1 (en) 2018-12-10 2021-06-24 10X Genomics, Inc. Imaging system hardware
WO2020123319A2 (en) 2018-12-10 2020-06-18 10X Genomics, Inc. Methods of using master / copy arrays for spatial detection
US10633644B1 (en) 2018-12-20 2020-04-28 New England Biolabs, Inc. Proteinases with improved properties
SG11202102710SA (en) 2018-12-21 2021-04-29 Illumina Inc Nuclease-based rna depletion
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
US20220267844A1 (en) 2019-11-27 2022-08-25 10X Genomics, Inc. Methods for determining a location of a biological analyte in a biological sample
WO2020160044A1 (en) 2019-01-28 2020-08-06 The Broad Institute, Inc. In-situ spatial transcriptomics
WO2020167862A1 (en) 2019-02-12 2020-08-20 10X Genomics, Inc. Systems and methods for transfer of reagents between droplets
WO2020176882A1 (en) 2019-02-28 2020-09-03 10X Genomics, Inc. Devices, systems, and methods for increasing droplet formation efficiency
US20230143569A1 (en) 2019-02-28 2023-05-11 10X Genomics, Inc. Profiling of biological analytes with spatially barcoded oligonucleotide arrays
WO2020176788A1 (en) 2019-02-28 2020-09-03 10X Genomics, Inc. Profiling of biological analytes with spatially barcoded oligonucleotide arrays
WO2020190509A1 (en) 2019-03-15 2020-09-24 10X Genomics, Inc. Methods for using spatial arrays for single cell sequencing
US20220145361A1 (en) 2019-03-15 2022-05-12 10X Genomics, Inc. Methods for using spatial arrays for single cell sequencing
WO2020198071A1 (en) 2019-03-22 2020-10-01 10X Genomics, Inc. Three-dimensional spatial analysis
US20220017951A1 (en) 2019-03-22 2022-01-20 10X Genomics, Inc. Three-dimensional spatial analysis
CN114174532A (en) 2019-04-05 2022-03-11 德克萨斯大学系统董事会 Method and application of cell barcode coding
WO2020219901A1 (en) 2019-04-26 2020-10-29 10X Genomics, Inc. Imaging support devices
US20200370095A1 (en) 2019-05-24 2020-11-26 Takara Bio Usa, Inc. Spatial Analysis
EP3976820A1 (en) 2019-05-30 2022-04-06 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
AU2020282024A1 (en) 2019-05-31 2021-11-11 10X Genomics, Inc. Method of detecting target nucleic acid molecules
EP3754028A1 (en) 2019-06-18 2020-12-23 Apollo Life Sciences GmbH Method of signal encoding of analytes in a sample
AU2020357801A1 (en) 2019-09-30 2022-04-14 Yale University Deterministic Barcoding for spatial omics sequencing
CN114761992B (en) 2019-10-01 2023-08-08 10X基因组学有限公司 System and method for identifying morphological patterns in tissue samples
US20210140982A1 (en) 2019-10-18 2021-05-13 10X Genomics, Inc. Identification of spatial biomarkers of brain disorders and methods of using the same
WO2021092433A2 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Enhancing specificity of analyte binding
WO2021091611A1 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
US20230002812A1 (en) 2019-11-13 2023-01-05 10X Genomics, Inc. Generating capture probes for spatial analysis
US20210150707A1 (en) 2019-11-18 2021-05-20 10X Genomics, Inc. Systems and methods for binary tissue classification
US20210155982A1 (en) 2019-11-21 2021-05-27 10X Genomics, Inc. Pipeline for spatial analysis of analytes
EP4062372A1 (en) 2019-11-22 2022-09-28 10X Genomics, Inc. Systems and methods for spatial analysis of analytes using fiducial alignment
US20210199660A1 (en) 2019-11-22 2021-07-01 10X Genomics, Inc. Biomarkers of breast cancer
EP4073241A2 (en) 2019-12-11 2022-10-19 10X Genomics, Inc. Reverse transcriptase variants
SG11202106899SA (en) 2019-12-23 2021-09-29 10X Genomics Inc Methods for spatial analysis using rna-templated ligation
US20210190770A1 (en) 2019-12-23 2021-06-24 10X Genomics, Inc. Compositions and methods for using fixed biological samples in partition-based assays
CN115135984A (en) 2019-12-23 2022-09-30 10X基因组学有限公司 Reversible immobilization reagents and methods of use
US20210198741A1 (en) 2019-12-30 2021-07-01 10X Genomics, Inc. Identification of spatial biomarkers of heart disorders and methods of using the same
EP4087945B1 (en) 2020-01-10 2024-03-06 10X Genomics, Inc. Methods for determining a location of a target nucleic acid in a biological sample
US20220348992A1 (en) 2020-01-10 2022-11-03 10X Genomics, Inc. Methods for determining a location of a target nucleic acid in a biological sample
US20210214785A1 (en) 2020-01-13 2021-07-15 Spatial Transcriptomics Ab Methods of decreasing background on a spatial array
US20210223227A1 (en) 2020-01-17 2021-07-22 Spatial Transcriptomics Ab Electrophoretic system and method for analyte capture
US20210222253A1 (en) 2020-01-21 2021-07-22 10X Genomics, Inc. Identification of biomarkers of glioblastoma and methods of using the same
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US20210230681A1 (en) 2020-01-24 2021-07-29 10X Genomics, Inc. Methods for spatial analysis using proximity ligation
US20210237022A1 (en) 2020-01-31 2021-08-05 10X Genomics, Inc. Capturing oligonucleotides in spatial transcriptomics
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
US20210238664A1 (en) 2020-02-03 2021-08-05 10X Genomics, Inc. Methods for preparing high-resolution spatial arrays
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US20230047782A1 (en) 2020-02-07 2023-02-16 10X Genomics, Inc. Quantitative and automated permeabilization performance evaluation for spatial transcriptomics
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
US20230081381A1 (en) 2020-02-20 2023-03-16 10X Genomics, Inc. METHODS TO COMBINE FIRST AND SECOND STRAND cDNA SYNTHESIS FOR SPATIAL ANALYSIS
AU2021224760A1 (en) 2020-02-21 2022-09-15 10X Genomics, Inc. Capturing genetic targets using a hybridization approach
JP2023514749A (en) 2020-02-21 2023-04-07 10エックス ジェノミクス インコーポレイテッド Methods and compositions for integrated in situ spatial assays
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
WO2021207610A1 (en) 2020-04-10 2021-10-14 10X Genomics, Inc. Cold protease treatment method for preparing biological samples
EP4242325A3 (en) 2020-04-22 2023-10-04 10X Genomics, Inc. Methods for spatial analysis using targeted rna depletion
US20230265491A1 (en) 2020-05-04 2023-08-24 10X Genomics, Inc. Spatial transcriptomic transfer modes
US20230194469A1 (en) 2020-05-19 2023-06-22 10X Genomics, Inc. Electrophoresis cassettes and instrumentation
WO2021237087A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Spatial analysis to detect sequence variants
WO2021237056A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Rna integrity analysis in a biological sample
WO2021236929A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
EP4158054A1 (en) 2020-06-02 2023-04-05 10X Genomics, Inc. Spatial transcriptomics for antigen-receptors
WO2021247543A2 (en) 2020-06-02 2021-12-09 10X Genomics, Inc. Nucleic acid library methods
WO2021252499A1 (en) 2020-06-08 2021-12-16 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
AU2021288090A1 (en) 2020-06-10 2023-01-19 10X Genomics, Inc. Fluid delivery methods
WO2021252591A1 (en) 2020-06-10 2021-12-16 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
WO2021252576A1 (en) 2020-06-10 2021-12-16 10X Genomics, Inc. Methods for spatial analysis using blocker oligonucleotides
CN116034166A (en) 2020-06-25 2023-04-28 10X基因组学有限公司 Spatial analysis of DNA methylation
WO2022025965A1 (en) 2020-07-31 2022-02-03 10X Genomics, Inc. De-crosslinking compounds and methods of use for spatial analysis
WO2022060798A1 (en) 2020-09-15 2022-03-24 10X Genomics, Inc. Methods of releasing an extended capture probe from a substrate and uses of the same
CN116507739A (en) 2020-09-16 2023-07-28 10X基因组学有限公司 Method for determining the location of an analyte in a biological sample using a plurality of wells
WO2022061152A2 (en) 2020-09-18 2022-03-24 10X Genomics, Inc. Sample handling apparatus and fluid delivery methods
AU2021366701A1 (en) 2020-10-22 2023-05-04 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification
CN116829733A (en) 2020-11-06 2023-09-29 10X基因组学有限公司 Compositions and methods for binding analytes to capture probes
EP4244379A1 (en) 2020-11-13 2023-09-20 10X Genomics, Inc. Nano-partitions (encapsulated nucleic acid processing enzymes) for cell-lysis and multiple reactions in partition-based assays
US20230407404A1 (en) 2020-11-18 2023-12-21 10X Genomics, Inc. Methods and compositions for analyzing immune infiltration in cancer stroma to predict clinical outcome
AU2021409136A1 (en) 2020-12-21 2023-06-29 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
US20240076723A1 (en) 2020-12-30 2024-03-07 10X Genomics, Inc. Cleavage of capture probes for spatial analysis
WO2022147005A1 (en) 2020-12-30 2022-07-07 10X Genomics, Inc. Methods for analyte capture determination
EP4284942A1 (en) 2021-01-29 2023-12-06 10X Genomics, Inc. Method for transposase mediated spatial tagging and analyzing genomic dna in a biological sample
EP4294571A2 (en) 2021-02-19 2023-12-27 10X Genomics, Inc. Modular assay support devices
EP4301870A1 (en) 2021-03-18 2024-01-10 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
WO2022221425A1 (en) 2021-04-14 2022-10-20 10X Genomics, Inc. Methods of measuring mislocalization of an analyte
US20220333192A1 (en) 2021-04-20 2022-10-20 10X Genomics, Inc. Methods and devices for spatial assessment of rna quality
WO2022226057A1 (en) 2021-04-20 2022-10-27 10X Genomics, Inc. Methods for assessing sample quality prior to spatial analysis using templated ligation
EP4320271A1 (en) 2021-05-06 2024-02-14 10X Genomics, Inc. Methods for increasing resolution of spatial analysis
WO2022256503A1 (en) 2021-06-03 2022-12-08 10X Genomics, Inc. Methods, compositions, kits, and systems for enhancing analyte capture for spatial analysis
WO2022271820A1 (en) 2021-06-22 2022-12-29 10X Genomics, Inc. Spatial detection of sars-cov-2 using templated ligation
WO2023287765A1 (en) 2021-07-13 2023-01-19 10X Genomics, Inc. Methods for spatial analysis using targeted probe silencing
US20230014008A1 (en) 2021-07-13 2023-01-19 10X Genomics, Inc. Methods for improving spatial performance
US20230034216A1 (en) 2021-07-28 2023-02-02 10X Genomics, Inc. Multiplexed spatial capture of analytes
US20230034039A1 (en) 2021-08-02 2023-02-02 10X Genomics, Inc. Methods of preserving a biological sample
US20230042817A1 (en) 2021-08-04 2023-02-09 10X Genomics, Inc. Analyte capture from an embedded biological sample
WO2023018799A1 (en) 2021-08-12 2023-02-16 10X Genomics, Inc. Methods, compositions and systems for identifying antigen-binding molecules
WO2023034489A1 (en) 2021-09-01 2023-03-09 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
US20230135010A1 (en) 2021-11-03 2023-05-04 10X Genomics, Inc. Sequential analyte capture
WO2023086880A1 (en) 2021-11-10 2023-05-19 10X Genomics, Inc. Methods, compositions, and kits for determining the location of an analyte in a biological sample

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866770B2 (en) 2010-04-05 2024-01-09 Prognosys Biosciences, Inc. Spatially encoded biological assays
US11965213B2 (en) 2019-05-30 2024-04-23 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11926863B1 (en) 2020-02-27 2024-03-12 10X Genomics, Inc. Solid state single cell method for analyzing fixed biological cells
US11959130B2 (en) 2020-05-22 2024-04-16 10X Genomics, Inc. Spatial analysis to detect sequence variants
US11952627B2 (en) 2020-07-06 2024-04-09 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
US11959076B2 (en) 2020-12-21 2024-04-16 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
US11970739B2 (en) 2023-07-06 2024-04-30 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample

Also Published As

Publication number Publication date
US20210222242A1 (en) 2021-07-22
US11732299B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US11732299B2 (en) Spatial assays with perturbed cells
US11898205B2 (en) Increasing capture efficiency of spatial assays
US20230081381A1 (en) METHODS TO COMBINE FIRST AND SECOND STRAND cDNA SYNTHESIS FOR SPATIAL ANALYSIS
US11732300B2 (en) Increasing efficiency of spatial analysis in a biological sample
US11959130B2 (en) Spatial analysis to detect sequence variants
US11835462B2 (en) Methods and compositions for partitioning a biological sample
US20230279477A1 (en) Methods for spatial analysis using targeted rna capture
US11795507B2 (en) Methods for spatial analysis using RNA-templated ligation
US20230042817A1 (en) Analyte capture from an embedded biological sample
US20230002812A1 (en) Generating capture probes for spatial analysis
US20230295699A1 (en) Methods, compositions, kits, and systems for enhancing analyte capture for spatial analysis
US20230332212A1 (en) Compositions and methods for binding an analyte to a capture probe
US20230034216A1 (en) Multiplexed spatial capture of analytes
US20220119869A1 (en) Methods for determining a location of an analyte in a biological sample
WO2020123316A2 (en) Methods for determining a location of a biological analyte in a biological sample
US11821035B1 (en) Compositions and methods of making gene expression libraries
WO2023215552A1 (en) Molecular barcode readers for analyte detection

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: 10X GENOMICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAMACHANDRAN IYER, ESWAR PRASAD;REEL/FRAME:064329/0188

Effective date: 20210908