US20210159369A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
US20210159369A1
US20210159369A1 US17/164,725 US202117164725A US2021159369A1 US 20210159369 A1 US20210159369 A1 US 20210159369A1 US 202117164725 A US202117164725 A US 202117164725A US 2021159369 A1 US2021159369 A1 US 2021159369A1
Authority
US
United States
Prior art keywords
light emitting
layer
emitting device
wavelength conversion
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/164,725
Inventor
Cheng-Wei HUNG
Chin-Hua Hung
Long-Chi Du
Jui-Fu Chang
Po-Tsun Kuo
Hao-Chung Lee
Yu-Feng Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis Photonics Inc
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/711,798 external-priority patent/US20150333227A1/en
Priority claimed from CN201610293182.5A external-priority patent/CN106129231B/en
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to US17/164,725 priority Critical patent/US20210159369A1/en
Publication of US20210159369A1 publication Critical patent/US20210159369A1/en
Priority to US17/848,408 priority patent/US20230006109A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68331Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding of passive members, e.g. die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32104Disposition relative to the bonding area, e.g. bond pad
    • H01L2224/32105Disposition relative to the bonding area, e.g. bond pad the layer connector connecting bonding areas being not aligned with respect to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32104Disposition relative to the bonding area, e.g. bond pad
    • H01L2224/32106Disposition relative to the bonding area, e.g. bond pad the layer connector connecting one bonding area to at least two respective bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/8392Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material

Definitions

  • the invention relates to a light emitting device, and relates particularly to a light emitting device utilizing a light emitting diode as a light source.
  • a light emitting diode (LED) chip is disposed on a carrying base formed in a concave cup shape from ceramic material or metal material, to fix and support the LED diode chip. Then, encapsulation adhesive is used to encapsulate the LED chip, and complete the manufacturing of the LED package structure.
  • an electrode of the LED chip is located above the carrying base and located in the concave cup.
  • the carrying base of the concave cup shape has a particular thickness, such that a thickness of the LED package structure may not be reduced efficiently, therefore causing the LED package structure to be unable to meet modern needs of miniaturization.
  • the invention provides a light emitting device, which does not require a conventional carrying support, and may have a thinner package thickness and meet miniaturization requirements.
  • the invention provides a manufacturing method for manufacturing the abovementioned light emitting device.
  • a light emitting device of the invention includes a wavelength conversion layer, at least one light emitting unit and a reflective protecting element.
  • the wavelength conversion layer has an upper surface and a lower surface opposite to each other.
  • the light emitting unit has two electrode pads located on the same side of the light emitting unit.
  • the light emitting unit is disposed on the upper surface of the wavelength conversion layer and exposes the two electrode pads.
  • the reflective protecting element encapsulates at least a portion of the light emitting unit and a portion of the wavelength conversion layer, and exposes the two electrode pads of the light emitting unit.
  • the abovementioned light emitting device further includes an adhesive layer disposed on the wavelength conversion layer and located between the light emitting unit and the reflective protecting element.
  • the abovementioned adhesive layer is further disposed between the wavelength conversion layer and the light emitting unit.
  • the abovementioned reflective protecting element further includes a reflective surface in contact with the light emitting unit.
  • the abovementioned reflective surface of the reflective protecting element is a flat surface or a curved surface.
  • the abovementioned reflective protecting element further completely encapsulates a side surface of the wavelength conversion layer.
  • a bottom surface of the abovementioned reflective protecting element and the lower surface of the wavelength conversion layer form a plane.
  • the abovementioned reflective protecting element further at least encapsulates a portion of a side surface of the wavelength conversion layer.
  • the abovementioned side surface of a portion of the wavelength conversion layer which is not encapsulated by the reflective protecting element and a side surface of the reflective protecting element form a side plane of the light emitting device.
  • the abovementioned wavelength conversion layer further includes a first exposed side portion and a second exposed side portion which are not encapsulated by the reflective protecting element.
  • the first exposed side portion is not parallel to the second exposed side portion, and a thickness of the wavelength conversion layer at the first exposed side portion is different from a thickness of the wavelength conversion layer at the second exposed side portion.
  • the abovementioned wavelength conversion layer further includes a low concentration fluorescent layer and a high concentration fluorescent layer, the high concentration fluorescent layer is between the low concentration fluorescent layer and the light emitting unit.
  • the abovementioned reflective protecting element fills in a gap between the two electrode pads.
  • the abovementioned reflective protecting element completely fills the gap between the two electrode pads, and a surface of the reflective protecting element is aligned with a surface of the two electrode pads.
  • the abovementioned at least one light emitting unit is a plurality of light emitting units
  • the wavelength conversion layer has at least one trench located between two of the light emitting units.
  • the manufacturing method of a light emitting device of the invention includes the following steps. providing a wavelength conversion layer; disposing a plurality of light emitting units arranged at intervals on the wavelength conversion layer, and exposing two electrode pads of each light emitting unit; forming a plurality of trenches on the wavelength conversion layer, wherein the trenches are located between the light emitting units; forming a reflective protecting element on the wavelength conversion layer and between the light emitting units, and filling the reflective protecting element in the trenches, wherein the reflective protecting element exposes the electrode pads of the light emitting units; and performing a cutting process along the trenches to form a plurality of light emitting devices.
  • a depth of each abovementioned trench is at least a half of a thickness of the wavelength conversion layer.
  • the abovementioned manufacturing method of the light emitting device further includes: forming an adhesive layer on the wavelength conversion layer after disposing the light emitting units arranged at intervals on the wavelength conversion layer.
  • the abovementioned manufacturing method of the light emitting device further includes: forming an adhesive layer on the wavelength conversion layer before disposing the light emitting units arranged at intervals on the wavelength conversion layer.
  • the abovementioned reflective protecting element further includes a reflective surface in contact with the light emitting unit.
  • the abovementioned reflective surface of the reflective protecting element is a flat surface or a curved surface.
  • the abovementioned wavelength conversion layer further includes a low concentration fluorescent layer and a high concentration fluorescent layer, the light emitting unit is disposed on the high concentration fluorescent layer.
  • the reflective protecting element of the invention encapsulates a side surface of the light emitting device, and a bottom surface of the reflective protecting element is aligned with a first bottom surface of the first electrode pad and a second bottom surface of the second electrode pad of the light emitting unit, therefore the light emitting device of the invention does not require a conventional carrying support to support and fix the light emitting unit, and may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit can also be effectively increased.
  • FIG. 1 is a schematic diagram illustrating a light emitting device according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 3 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 4 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 5 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 6 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 7 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 8 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 9 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 10A to FIG. 10D are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to an embodiment of the invention.
  • FIG. 11A to FIG. 11C are schematic cross-sectional views illustrating partial steps of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 12A to FIG. 12E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 13A to FIG. 13D are schematic cross-sectional views illustrating partial steps of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 14A to FIG. 14E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 14F to FIG. 14G are schematic cross-sectional views illustrating a part of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 15A to FIG. 15E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 16A to FIG. 16C are schematic cross-sectional views illustrating a light emitting device according to a plurality of embodiments of the invention.
  • FIG. 17A to FIG. 17E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 18A to FIG. 18B are schematic cross-sectional views illustrating two light emitting devices according to two embodiments of the invention.
  • FIG. 19A to FIG. 19E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 20A is schematic stereoscopic view illustrating the light emitting device in FIG. 19E .
  • FIG. 20B is a schematic sectional view along the line X-X of FIG. 20A .
  • FIG. 21A is schematic stereoscopic view illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 21B and FIG. 21C are schematic sectional views along the line X′-X′ and the Y′-Y′ of FIG. 21A respectively.
  • FIG. 1 is a schematic diagram illustrating a light emitting device according to an embodiment of the invention.
  • a light emitting device 100 a includes a light emitting unit 110 a and a protecting element 120 .
  • the light emitting unit 110 a has an upper surface 112 a and a lower surface 114 a opposite to each other, a side surface 116 a connecting the upper surface 112 a and the lower surface 114 a and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114 a and separated from each other.
  • the protecting element 120 encapsulates the side surface 116 a of the light emitting unit 110 a and exposes the upper surface 112 a , a first bottom surface 113 a of the first electrode pad 113 and a second bottom surface 115 a of the second electrode pad 115 .
  • the upper surface 112 a of the light emitting unit 110 a of the present embodiment is aligned with a top surface 122 of the protecting element 120
  • a bottom surface 124 of the protecting element 120 is aligned with the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode 115
  • the protecting element 120 also can encapsulate or expose the lower surface 114 a of the light emitting unit 110 a located between the first electrode pad 113 and the second electrode pad 115 .
  • the side surface 116 a of the light emitting unit 110 a is perpendicular to the upper surface 112 a and the lower surface 114 a , however the invention is not limited thereto, and the light emitting unit 110 a , for example, is an LED with a light emitting wavelength (including but not limited thereto) in a range of 315 nanometers to 780 nanometers, and the LED includes but not limited thereto an ultraviolet light LED, a blue light LED, a green light LED, a yellow light LED, an orange light LED or a red light LED.
  • the reflection rate of the protecting element 120 is at least greater than 90%, that is to say, the protecting element 120 of the present embodiment has high reflectivity characteristic, wherein a material of the protecting element 120 is a polymer material doped with high reflective particles, the reflective particle, for example but not limited thereto, titanium dioxide (TiO 2 ), and the polymer material, for example but not limited thereto, epoxy or silicone.
  • a material of the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 a of the present embodiment is a metal material or a metal alloy, for example, gold, aluminium, tin, silver, bismuth, indium or a combination thereof, however the invention is not limited thereto.
  • the protecting element 120 of the present embodiment encapsulates the side surface 116 a of the light emitting unit 110 a , and exposes the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode pad 115 of the light emitting unit 110 a , therefore the light emitting device 100 a of the present embodiment not only does not require a conventional carrying support to support and fix the light emitting unit 110 a , may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit 110 a can also be effectively increased by the reflective protecting element 120 having high reflectivity.
  • FIG. 2 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • a light emitting device 100 b of the present embodiment and the light emitting device 100 a of FIG. 1 are similar.
  • the main difference between the two lies in: a side surface 116 b of the light emitting device 110 b of the present embodiment is not perpendicular to an upper surface 112 b and a lower surface 114 b , a surface area of the upper surface 112 b of the light emitting device 110 b is larger than a surface area of the lower surface 114 b .
  • An angle of incidence of the side surface 116 b and the lower surface 114 b is, for example, between 95 degrees to 150 degree.
  • a contour shape defined by the upper surface 112 b , the side surface 116 b and the lower surface 114 b of the light emitting device 110 b of the present embodiment renders a trapezoid, therefore the edge light emitted from the light emitting device 110 b occurring may be lowered and the protecting element 120 of high reflectivity may further increase the forward light emitting efficiency of the light emitting device 110 b effectively.
  • FIG. 3 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • a light emitting device 100 c of the present embodiment and the light emitting device 100 a of FIG. 1 are similar.
  • the main difference between the two lies in: the light emitting device 100 c of the present embodiment further includes a first extension electrode 130 c and a second extension electrode 140 c .
  • the first extension electrode 130 c is disposed on the bottom surface 124 of the protecting element 120 and electrically connected to the first electrode pad 113 .
  • the second extension electrode 140 c is disposed on the bottom surface 124 of the protecting element 120 and directly electrically connected to the second electrode pad 115 .
  • the first extension electrode 130 c and the second extension electrode 140 c are separated from each other and cover a part of the bottom surface 124 of the protecting element 120 .
  • a design of the first extension electrode 130 c and the second extension electrode 140 c of the present embodiment completely overlaps the first electrode pad 113 and the second electrode pad 115 , and extends towards an edge of the protecting element 120 .
  • a design of the first extension electrode and the second extension electrode may also partially overlap the first electrode pad and the second electrode pad, and only a design in which the first extension electrode and the second extension electrode are connected electrically to the first electrode pad and the second electrode pad is the scope namely desired to be protected by the present embodiment.
  • the first extension electrode 130 c and the second extension electrode 140 c of the present embodiment are exposed from a part of the bottom surface 124 of the protecting element 120 .
  • a material of the first extension electrode 130 c and the second extension electrode 140 c may be respectively the same or different with the first pad electrode 113 and the second electrode pad 115 of the light emitting unit 110 a .
  • a seamless connection may be made between the first extension electrode 130 c and the first electrode pad 113 , namely an integrally formed structure, and a seamless connection may be made between the second extension electrode 140 c and the second electrode pad 115 , namely an integrally formed structure.
  • the material of the first extension electrode 130 c and the second extension electrode 140 c may, for example, be silver, gold, bismuth, tin, indium or an alloy thereof of the above materials.
  • the light emitting device 100 c of the present embodiment has the first extension electrode 130 c and the second extension electrode 140 c respectively connected electrically with the first pad electrode 113 and the second electrode pad 115 of the light emitting unit 110 a , therefore an electrode contact area of the light emitting device 100 c may be effectively increased, to facilitate performing the subsequent assembly of the light emitting device 100 c with other outside circuits, and may increase the alignment accuracy and the assembly efficiency.
  • an area of the first extension electrode 130 c is larger than an area of the first electrode pad 113 and an area of the second extension electrode 140 c is larger than an area of the second electrode pad 115 .
  • FIG. 4 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • a light emitting device 100 d of the present embodiment and the light emitting device 100 c of FIG. 3 are similar.
  • the main difference between the two lies in: an edge of a first extension electrode 130 d and an edge of the second extension electrode 140 d of the present embodiment are aligned with the edge of the reflective protecting element 120 .
  • FIG. 5 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • a light emitting device 100 e of the present embodiment and the light emitting device 100 a of FIG. 1 are similar.
  • the encapsulation adhesive layer 150 may also extend onto at least portion of the upper surface 122 of the reflective protecting element 120 , such that an edge of the encapsulation adhesive layer 150 can be aligned with the edge of the protecting element 120 .
  • at least one wavelength converting material may be doped in the encapsulation adhesive layer 150 , wherein the wavelength converting material is used to convert the wavelengths of at least part of the light beam emitted by the light emitting unit 110 a into other wavelengths of light beam, and a material of the wavelength converting material includes fluorescent material, phosphorescent material, dyes, quantum dot material or a combination thereof.
  • an oxide having high scattering ability such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ) may be doped in the encapsulation adhesive layer 150 to increase the light emitting efficiency.
  • the light emitting device includes but not limited thereto a ultraviolet light emitting device, a blue light emitting device, a green light emitting device a yellow light emitting device, an orange light emitting device or a red light emitting device
  • the wavelength converting material includes but not limited thereto a red wavelength converting material, an orange wavelength converting material, an orange-yellow wavelength converting material, a yellow wavelength converting material, a yellow-green wavelength converting material, a green wavelength converting material or a combination thereof, and is used to convert the wavelengths of part or all of the light beam emitted by the light emitting device.
  • Wavelength converted light and unconverted light wavelength light after mixing the light emitting device emits a light with a dominant wavelength at a specific wavelength range, its light color such as, but not limited to red, orange, orange-yellow, amber, yellow, yellow-green or green, or a white light with a specific correlated color temperature, the correlated color temperature range, for example, between 2500K to 7000K, but not limited thereto.
  • FIG. 6 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • a light emitting device 100 f of the present embodiment and the light emitting device 100 d of FIG. 4 are similar.
  • the encapsulation adhesive layer 150 may also extend onto at least portion of the upper surface 122 of the protecting element 120 , and the edge of the encapsulation adhesive layer 150 can be aligned with the edge of the reflective protecting element 120 .
  • at least one wavelength converting material may be doped in the encapsulation adhesive layer 150 , wherein the wavelength converting material is used to convert the wavelengths of at least part of the light beam emitted by the light emitting unit 110 a into other wavelengths of light beam, and a material of the wavelength converting material includes fluorescent material, phosphorescent material, dyes, quantum dot material or a combination thereof.
  • an oxide having high scattering ability such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ) may be doped in the encapsulation adhesive layer 150 to increase the light emitting efficiency.
  • the edge of the first extension electrode 130 d and the edge of the second extension electrode 140 d are aligned with the edge of the reflective protecting element 120 .
  • This type of design not only may expand a contact area of the electrode, but in the manufacturing process, the reflective protecting element 120 may encapsulate a plurality of light emitting devices 110 a arranged at intervals at the same time, and after forming a patterned metal layer so as to respectively form the first extension electrode 130 d and the second extension electrode 140 d at the same time, then cutting is performed such that the edge of the first extension electrode 130 d and the edge of the second extension electrode 140 d of each light emitting device 100 f are aligned with the edge of the reflective protecting element 120 . In this way, manufacturing time may be saved.
  • FIG. 7 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • a light emitting device 100 g of the present embodiment is similar to the light emitting device 100 e of FIG. 5 , and a main difference is that: the light emitting device 100 g of the present embodiment further includes a light transmissible layer 160 disposed on the encapsulation adhesive layer 150 , wherein a transmittance of the light transmissible layer 160 , for example, is greater than 50%.
  • a material of the light transmissible layer 160 is glass, ceramics, resins, acrylic, silicone or etc., for example, for guiding the light generated by the light emitting unit 110 a to the outside to effectively increase a light flux and a light extraction rate of the light emitting device 100 g and for effectively protecting the light emitting unit 110 a from influence of external moisture and oxygen.
  • FIG. 8 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • a light emitting device 100 h of the present embodiment is similar to the light emitting device 100 g of FIG. 7 , and a main difference is that: a light transmissible layer 160 ′ of the light emitting device 100 h of the present embodiment is disposed between the light emitting unit 110 a and the encapsulation adhesive layer 150 .
  • FIG. 9 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • a light emitting device 100 i of the present embodiment is similar to the light emitting device 100 f of FIG. 6 , and a main difference is that: the light emitting device 100 i of the present embodiment further includes a light transmissible layer 160 disposed on the encapsulation adhesive layer 150 , wherein a transmittance of the light transmissible layer 160 , for example, is greater than 50%.
  • a material of the light transmissible layer 160 is glass, ceramics, resins, acrylic, silicone or etc., for example, for guiding the light generated by the light emitting unit 110 a to the outside to effectively increase a light flux and a light extraction rate of the light emitting device 100 i and for effectively protecting the light emitting unit 110 a from influence of external moisture and oxygen.
  • the light emitting devices 100 a , 100 g , 100 d , and 100 i of the invention are taken as examples for specifically describing a manufacturing method of the light emitting device of the invention respectively with reference to FIG. 10A to FIG. 10D , FIG. 11A to FIG. 11C , FIG. 12A to FIG. 12E , and
  • FIG. 13A to FIG. 13D are identical to FIG. 13A to FIG. 13D .
  • FIG. 10A to FIG. 10D are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to an embodiment of the invention.
  • a plurality of light emitting devices 110 a are disposed on a substrate 10 , wherein each light emitting unit 110 a has an upper surface 112 a and a lower surface 114 a opposite to each other, a side surface 116 a connecting the upper surface 112 a and the lower surface 114 a , and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114 a and separated from each other.
  • the first electrode pad 113 and the second electrode pad 115 of each light emitting unit 110 a are disposed on the substrate 10 .
  • a light emitting surface of the light emitting unit 110 a i.e. the upper surface 112 a
  • a material of the rigid substrate 10 is stainless steel, ceramics, or other non-conductive materials, for example.
  • the light emitting unit 110 a is an LED with a light emitting wavelength (including but not limited thereto) in a range of 315 nanometers to 780 nanometers, and the LED includes but not limited thereto an ultraviolet light LED, a blue light LED, a green light LED, a yellow light LED, an orange light LED or a red light LED.
  • a protecting element 120 ′ is formed on the substrate 10 , wherein the protecting element 120 ′ encapsulates each light emitting unit 110 a .
  • the reflective protecting element 120 ′ completely and directly covers the upper surface 112 a , the lower surface 114 a , and the side surface 116 a of the light emitting unit 110 a and fills a gap between the first electrode pad 113 and the second electrode pad 115 .
  • a reflection rate of the protecting element 120 ′ is at least greater than 90%.
  • the protecting element 120 ′ of the present embodiment has a high reflectivity characteristic, wherein a material of the protecting element 120 ′ is a polymer material doped with high reflective particles, the reflective particle, for example but not limited thereto, titanium dioxide (TiO 2 ), and the polymer material, for example but not limited thereto, epoxy or silicone.
  • a material of the protecting element 120 ′ is a polymer material doped with high reflective particles, the reflective particle, for example but not limited thereto, titanium dioxide (TiO 2 ), and the polymer material, for example but not limited thereto, epoxy or silicone.
  • a part of the reflective protecting element 120 ′ is removed to form a reflective protecting element 120 , wherein the reflective protecting element 120 exposes the upper surface 112 a of each light emitting unit 110 a .
  • the upper surface 112 a of each light emitting unit 110 a can be aligned with a top surface 122 of the reflective protecting element 120 .
  • a method of removing a part of the reflective protecting element 120 ′ is a grinding method or a polishing method, for example.
  • each light emitting device 100 a includes at least one light emitting unit 110 a and the reflective protecting element 120 encapsulating the side surface 116 a of the light emitting unit 110 a and exposing the upper surface 112 a.
  • the substrate 10 is removed to expose a bottom surface 124 of the reflective protecting element 120 of each light emitting device 100 a , a first bottom surface 113 a of the first electrode pad 113 and a second bottom surface 115 a of the second electrode pad 115 .
  • FIG. 11A to FIG. 11C are schematic cross-sectional views illustrating partial steps of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • the manufacturing method of the light emitting device of the present embodiment is similar to the manufacturing method of the light emitting device of FIG. 10A to FIG. 10D , and a main difference is that: between the steps of FIG. 10C and FIG. 10D , namely, after removing a part of the reflective protecting element 120 ′ and before performing the cutting process, with reference to FIG. 11A , an encapsulation adhesive layer 150 is formed on the light emitting unit 110 a and the reflective protecting element 120 to increase the light extraction rate and improve the light pattern.
  • the encapsulation adhesive layer 150 covers the upper surface 112 a of the light emitting unit 110 a and the top surface 122 of the reflective protecting element 120 , and at least one wavelength converting material can be doped in the encapsulation adhesive layer 150 .
  • the relevant illustration of the wavelength converting material can be referred to the aforementioned embodiments.
  • an oxide having high scattering ability such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ) may be doped in the encapsulation adhesive layer 150 to increase the light emitting efficiency.
  • a light transmissible layer 160 is formed on the light emitting unit 110 a and the reflective protecting element 120 , wherein the light transmissible layer 160 is located on the encapsulation adhesive layer 150 and covers the encapsulation adhesive layer 150 .
  • a transmittance of the light transmissible layer 160 is greater than 50%.
  • a material of the light transmissible layer 160 is glass, ceramics, resins, acrylic, silicone or etc., for example, for guiding the light generated by the light emitting unit 110 a to the outside to effectively increase a light flux and a light extraction rate of the light emitting device 100 g formed in the subsequent process and for effectively protecting the light emitting unit 110 a from influence of external moisture and oxygen.
  • a cutting process is performed to cut the light transmissible layer 160 , the encapsulation adhesive layer 150 , and the reflective protecting element 120 along a cutting line L so as to form a plurality of light emitting devices 100 g separated from each other.
  • the substrate 10 is removed to expose a bottom surface 124 of the reflective protecting element 120 of each light emitting device 100 g , wherein the bottom surface 124 of the reflective protecting element 120 of each light emitting device 100 g exposes to a first bottom surface 113 a of the first electrode pad 113 and a second bottom surface 115 a of the second electrode pad 115 .
  • the cutting process can be performed after removing the another substrate 10 .
  • FIG. 12A to FIG. 12E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • the manufacturing method of the light emitting device of the present embodiment is similar to the manufacturing method of the light emitting device of FIG. 10A to FIG. 10D , and a main difference is that: with reference to FIG. 12A , the light emitting unit 110 a of the present embodiment is not contact with the substrate 10 through the first electrode pad 113 and the second electrode pad 115 , but through the upper surface 112 a.
  • a reflective protecting element 120 ′ is formed on the substrate 10 , wherein the protecting element encapsulates each light emitting unit 110 a.
  • a part of the reflective protecting element 120 ′ is removed to form a reflective protecting element 120 , wherein the reflective protecting element 120 exposes a first bottom surface 113 a of the first electrode pad 113 and a second bottom surface 115 a of the second electrode pad 115 of each light emitting unit 110 a.
  • a patterned metal layer is formed as an extension electrode layer E which is located on the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode pad 115 of each light emitting unit 110 a .
  • a method of forming the extension electrode layer E is a vapor deposition method, a sputtering method, a plating method, a chemical plating method or a mask etching method, for example.
  • each light emitting device 100 d includes at least one light emitting unit 110 a , the reflective protecting element 120 at least encapsulating the side surface 116 a of the light emitting unit 110 a , a first extension electrode 130 d in direct contact with the first electrode pad 113 , and a second extension electrode 140 d in direct contact with the second electrode pad 115 .
  • the first extension electrode 130 d and the second extension electrode 140 d are separated from each other and expose a part of the bottom surface 124 of the reflective protecting element 120 .
  • the area of the first extension electrode 130 d can be larger than the area of the first electrode pad 113 and the area of the second extension electrode 140 d is larger than the area of the second electrode pad 115 .
  • An edge of the first extension electrode 130 d and an edge of the second extension electrode 140 d are aligned with an edge of the reflective protecting element 120 .
  • the substrate 10 is removed to expose the top surface 122 of the reflective protecting element 120 and the upper surface 112 a of the light emitting unit 110 a of each light emitting device 100 d , wherein the top surface 122 of the reflective protecting element 120 of each light emitting device 100 d is aligned with the upper surface 112 a of the light emitting unit 110 a .
  • the cutting process can be performed after removing the another substrate 10 .
  • FIG. 13A to FIG. 13D are schematic cross-sectional views illustrating partial steps of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • the manufacturing method of the light emitting device of the present embodiment is similar to the manufacturing method of the light emitting device of FIG. 12A to FIG. 12E , and a main difference is that: between the steps of FIG. 12D and FIG. 12E , namely, after forming the extension electrode layer E and before performing the cutting process, with reference to FIG. 13A , another substrate 20 is provided and disposed on extension electrode layer E.
  • a material of the another substrate 20 is stainless steel, ceramics, or other non-conductive materials, for example.
  • the substrate 10 is removed to expose the top surface 122 of the reflective protecting element 120 and the upper surface 112 a of the light emitting unit 110 a , wherein the upper surface 112 a of each light emitting unit 110 a is aligned with the top surface 122 of the reflective protecting element 120 .
  • an encapsulation adhesive layer 150 is formed on the light emitting unit 110 a and the reflective protecting element 120 to increase the light extraction rate and improve the light pattern.
  • the encapsulation adhesive layer 150 covers the upper surface 112 a of the light emitting unit 110 a and the top surface 122 of the reflective protecting element 120 , and at least one wavelength converting material can be doped in the encapsulation adhesive layer 150 .
  • the relevant illustration of the wavelength converting material can be referred to the aforementioned embodiments.
  • an oxide having high scattering ability such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ) may be doped in the encapsulation adhesive layer 150 to increase the light emitting efficiency.
  • a light transmissible layer 160 is formed on the light emitting unit 110 a and the reflective protecting element 120 , wherein the light transmissible layer 160 is located on the encapsulation adhesive layer 150 and covers the encapsulation adhesive layer 150 .
  • a transmittance of the light transmissible layer 160 is greater than 50%.
  • a material of the light transmissible layer 160 is glass, ceramics, resins acrylic, silicone or etc, for example, for guiding the light generated by the light emitting unit 110 a to the outside to effectively increase a light flux and a light extraction rate of the light emitting device 100 i formed in the subsequent process and for effectively protecting the light emitting unit 110 a from influence of external moisture and oxygen.
  • a cutting process is performed to cut the light transmissible layer 160 , the encapsulation adhesive layer 150 , the reflective protecting element 120 and extension electrode layer E along a cutting line L so as to form a plurality of light emitting devices 100 i separated from each other.
  • the another rigid substrate 20 is removed to expose the first extension electrode 130 d and the second extension electrode 140 d of each light emitting device 100 .
  • the cutting process can be performed after removing the another substrate 20 .
  • FIG. 14A to FIG. 14E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • a wavelength conversion layer 170 is provided, wherein the wavelength conversion layer 170 includes a low concentration fluorescent layer 174 and a high concentration fluorescent layer 172 located on the low concentration fluorescent layer 174 .
  • the steps of forming the wavelength conversion layer 170 is, for example, forming the wavelength conversion resin layer 170 by ways of mixing dopant and resin (i.e.
  • the wavelength conversion material is, for example, fluorescent powder but not limited thereto) first, then placing the wavelength conversion resin layer 170 for a period of time, for example, 24 hours for sedimentation, and the high concentration fluorescent resin layer 172 and the low concentration fluorescent resin layer 174 which are separated in a form of upper and lower layers. That is, the wavelength conversion resin layer 170 is taking two-layered resin layer for example. Then two-layered wavelength conversion layer 170 of present embodiment is formed after curing.
  • a wavelength conversion layer 170 ′ is provided, wherein the wavelength conversion layer 170 ′ is a single layer.
  • each light emitting unit 110 c has an upper surface 112 c and a lower surface 114 c opposite to each other, a side surface 116 c connecting the upper surface 112 c and the lower surface 114 c , and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114 c and separated from each other, and the upper surface 112 c of the light emitting unit 110 c is located on the high concentration fluorescent layer 172 of the wavelength conversion layer 170 .
  • a plurality of adhesive layers 150 c having a material containing transparent resin are formed on the wavelength conversion layer 170 and extending on a side surface 116 c of the light emitting unit 110 c , wherein the adhesive layers 150 c are not completely covered the side surface 116 c of the light emitting units 110 c , but as shown in FIG. 14B , the adhesive layer 150 c has a inclined surface having a curvature, and the closer to the light emitting unit 110 c , the thicker of the adhesive layer 150 c .
  • the purpose of setting the adhesive layers 150 c is fixing the position of the light emitting units 110 c.
  • an uncured adhesive layer 150 c ′ having a material containing transparent resin may be also formed on the wavelength conversion layer 170 before disposing the light emitting units 110 c arranged at intervals on the wavelength conversion layer 170 .
  • the adhesive layer 150 c ′ may extends to be disposed between the light emitting unit 110 c and the high concentration fluorescent layer 172 after disposing the light emitting units 110 c arranged at intervals on the wavelength conversion layer 170 .
  • a first cutting process is performed to cut the wavelength conversion layer 170 so as to form a plurality of units 101 separated from each other after curing the adhesive layers 150 c , wherein each unit 101 includes at least one light emitting unit 110 c and the wavelength conversion layer 170 disposed on the upper surface 112 c of the light emitting unit 110 c , and a side surface 171 of the wavelength conversion layer 170 of each unit 101 extends outside the side surface 116 c of the light emitting unit 110 c . Then, with reference to FIG. 14C , the units 101 arranged at intervals are disposed on a substrate 10 .
  • a material of the rigid substrate 10 is stainless steel, ceramics, or other non-conductive materials but not limited thereto.
  • a first cutting process cutting the wavelength conversion layer 170 is performed before disposing the light emitting units 110 c on the wavelength conversion layer 170 .
  • a patterned wavelength conversion layer 170 is formed after cutting process, and the light emitting units 110 c are disposed on the patterned wavelength conversion layer 170 .
  • a reflective protecting element 120 c is formed on the substrate 10 , and the reflective protecting element 120 c encapsulates the side surface 116 c of the light emitting unit 110 c of each unit 101 and the side surface 171 of the wavelength conversion layer 170 .
  • the way of forming the reflective protecting element 120 c is, for example, performing by dripping, wherein the reflective protecting element 120 c directly encapsulates adhesive layer 150 c and extends to encapsulate the side surface 171 of the wavelength conversion layer 170 along the adhesive layer 150 c .
  • the reflective protecting element 120 c is not over the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 c .
  • the reflective protecting element 120 c is, for example, a white resin layer.
  • a second cutting process is performed to cut the reflective protecting element 120 c and remove the substrate 10 so as to form a plurality of light emitting devices 100 j separated from each other.
  • Each light emitting device 100 j includes at least one light emitting unit 110 c and the reflective protecting element 120 c encapsulating the side surface 116 c of the light emitting unit 110 c and the side surface 171 of the wavelength conversion layer 170 .
  • a top surface 122 c of the reflective protecting element 120 c of each light emitting device 100 j and a top surface 173 of the wavelength conversion layer 170 are exposed after removing the substrate 10 .
  • the cutting process may be performed after removing the substrate 10 . So far, the light emitting device 100 j is completely manufactured.
  • the light emitting device 100 j of the present embodiment includes the light emitting unit 110 c , the reflective protecting element 120 c , the adhesive layer 150 c and the wavelength conversion layer 170 .
  • the wavelength conversion layer 170 is disposed on the upper surface 112 c of the light emitting unit 110 c , wherein the wavelength conversion layer 170 includes the low concentration fluorescent layer 174 and the high concentration fluorescent layer 172 , the high concentration fluorescent layer 172 is located between the low concentration fluorescent layer 174 and the light emitting unit 110 c , and the side surface 171 of the wavelength conversion layer 170 extends outside the side surface 116 c of the light emitting unit 110 c .
  • the low concentration fluorescent layer 174 can be used for a transparent protective layer so as to increase paths for water vapor transmission and effectively prevent the infiltration of water vapor.
  • the adhesive layer 150 c is disposed between the side surface 116 c of the light emitting unit 110 c and the reflective protecting element 120 c so as to fix the position of the light emitting unit 110 c .
  • the reflective protecting element 120 c encapsulates along the adhesive layer 150 c of the side surface 116 c of the light emitting unit 110 c , and further encapsulates the side surface 171 of the wavelength conversion layer 170 , therefore, the light emitting device 100 j of the present embodiment not only does not require a conventional carrying support to support and fix the light emitting unit 110 c , may effectively lower the thickness and manufacturing cost of the package.
  • the forward light emitting efficiency of the light emitting unit 110 c may also be effectively increased through the reflective protecting element 120 having high reflectivity.
  • the top surface 122 c of the reflective protecting element 120 c is aligned with the top surface 173 of the wavelength conversion layer 170 .
  • FIG. 14F to FIG. 14G are schematic cross-sectional views illustrating a part of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • the manufacturing method of the light emitting device includes, for example, a part of the manufacturing method of the light emitting device illustrated in FIG. 14A to FIG. 14C .
  • a reflective protecting element 120 c ′ is formed on the substrate 10 , and the reflective protecting element 120 c ′ encapsulates the side surface 116 c of the light emitting unit 110 c of each unit 101 and the side surface 171 of the wavelength conversion layer 170 to form a device similar with that in FIG. 14E .
  • the difference of the reflective protecting element 120 c ′ and the reflective protecting element 120 c is that a surface of the reflective protecting element 120 c ′ away from the substrate 10 has a recess with respect to the lower surface 114 c of the light emitting unit 110 c .
  • a surface of the reflective protecting element 120 c ′ away from the substrate 10 has a recess with respect to the lower surface 114 c of the light emitting unit 110 c .
  • a second cutting process is performed to cut the reflective protecting element 120 c ′ and remove the substrate 10 so as to form a plurality of light emitting devices 100 j ′ separated from each other. the reflective protecting element 120 c ′ of the light emitting devices 100 j ′.
  • the reflective protecting element 120 c ′ is not easy to being overflowed to cover the lower surface 114 c and affect the contact of the first electrode pad 113 and the second electrode pad 115 .
  • FIG. 15A to FIG. 15E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • a first release film 30 is provided, then, a wavelength conversion layer 170 a is provided on the first release film 30 , the wavelength conversion layer 170 a may be a single layer or a multi-layer, in present embodiment, the wavelength conversion layer 170 a includes a low concentration fluorescent layer 174 a and a high concentration fluorescent layer 172 a located on the low concentration fluorescent layer 174 a .
  • the steps of forming the wavelength conversion layer 170 a is, for example, forming the wavelength conversion layer 170 a by ways of mixing dopant and resin first, then placing the wavelength conversion resin layer 170 a for a period of time, for example, 24 hours, and the low concentration fluorescent resin layer 174 a and the high concentration fluorescent resin layer 172 a separated from each other are formed. Then two-layered wavelength conversion layer 170 a of present embodiment is formed after curing.
  • the first release film is, for example, a double-sided adhesive film.
  • each light emitting unit 110 c has an upper surface 112 c and a lower surface 114 c opposite to each other, a side surface 116 c connecting the upper surface 112 c and the lower surface 114 c , and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114 c and separated from each other, and the upper surface 112 c of the light emitting unit 110 c is located on the high concentration fluorescent layer 172 a of the wavelength conversion layer 170 a .
  • two adjacent light emitting units 110 c have a gap G therebetween, and the gap G is, for example, 700 micrometers.
  • a plurality of adhesive layers 150 c are formed on the side surface 116 c of the light emitting units 110 c , wherein the adhesive layers 150 c are not completely covered the side surface 116 c of the light emitting units 110 c , but as shown in FIG. 15B , the adhesive layer 150 c has an inclined surface having a curvature, and the closer to the light emitting unit 110 c , the thicker of the adhesive layer 150 c .
  • the purpose of setting the adhesive layers 150 c is fixing the position of the light emitting unit 110 c .
  • the adhesive layers 150 c may be also formed on the wavelength conversion layer 170 a before disposing the light emitting units 110 c on the wavelength conversion layer 170 a.
  • a first cutting process is performed to cut the high concentration fluorescent layer 172 a and a portion of the low concentration fluorescent layer 174 a so as to form a plurality of trenches C.
  • the wavelength conversion layer 170 a is not completely cut in the first cutting process, only the high concentration fluorescent layer 172 a is completely cut and a portion of the low concentration fluorescent layer 174 a is cut in the first cutting process.
  • a width W of the trench C is, for example, 400 micrometers
  • a depth D of the trench C is, for example, a half of a thickness T of the wavelength conversion layer 170 a .
  • the thickness T of the wavelength conversion resin layer 170 a is, for example, 140 micrometers, and the depth D of the trench C is, for example, 70 micrometers. At this time, the position of the trench C and the position of the adhesive layer 150 c do not interfere with each other.
  • a first cutting process cutting the high concentration fluorescent layer 172 a and a portion of the low concentration fluorescent layer 174 a is performed before disposing the light emitting units 110 c on the wavelength conversion layer 170 a .
  • a patterned wavelength conversion layer 170 a is formed after cutting process, and the light emitting units 110 c are disposed on the patterned wavelength conversion layer 170 a.
  • a reflective protecting element 120 d is formed on the low concentration fluorescent layer 174 a , and the reflective protecting element 120 d encapsulates the side surface 116 c of the light emitting units 110 c , wherein the reflective protecting element 120 d completely fills in the trench C and exposes the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 c .
  • the reflective protecting element 120 d is, for example, a white resin layer.
  • the first release layer 30 is removed, and a second release layer 40 is provided so that the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 c attach on the second release layer 40 .
  • the second release layer 40 is, for example, an ultraviolet adhesive or a double-sided adhesive.
  • a second cutting process is performed to cut the reflective protecting element 120 d and the low concentration fluorescent layer 174 a along an extending direction of the trench C (i.e. the extending direction of a cutting line L in FIG. 15D ) so as to form a plurality of light emitting devices 100 k separated from each other.
  • Each light emitting device 100 k includes at least one light emitting unit 110 c , the wavelength conversion layer 170 a disposing on the upper surface 112 a of the light emitting unit 110 c and the reflective protecting element 120 d encapsulating the side surface 116 c of the light emitting unit 110 c respectively.
  • the wavelength conversion layer 170 a includes the high concentration fluorescent layer 172 a and the low concentration fluorescent layer 174 a , here, the side surface 171 a of the low concentration fluorescent layer 174 a of the wavelength conversion layer 170 a is aligned with the side surface 121 of the reflective protecting element 120 d , and the reflective protecting element 120 d further encapsulates the side surface 173 a of the high concentration fluorescent layer 172 a .
  • the second release layer 40 is removed, and the light emitting device 100 k is completely manufactured.
  • the light emitting device 100 k of the present embodiment includes the light emitting unit 110 c , the reflective protecting element 120 d , the adhesive layer 150 c and the wavelength conversion layer 170 a .
  • the wavelength conversion resin layer 170 a is disposed on the upper surface 112 c of the light emitting unit 110 c , wherein the wavelength conversion layer 170 a includes the low concentration fluorescent layer 174 a and the high concentration fluorescent layer 172 a.
  • the high concentration fluorescent layer 172 a is located between the low concentration fluorescent layer 174 a and the light emitting unit 110 c , and the side surface 171 a of the wavelength conversion layer 170 a extends outside the side surface 116 c of the light emitting unit 110 c .
  • the low concentration fluorescent layer 174 may be used for a transparent protective layer so as to increase paths for water vapor transmission and effectively prevent the infiltration of water vapor.
  • the adhesive layer 150 c is disposed between the side surface 116 c of the light emitting unit 110 c and the reflective protecting element 120 d so as to fix the position of the light emitting units 110 c .
  • the reflective protecting element 120 d of the present embodiment encapsulates along the adhesive layer 150 c located on the side surface 116 c of the light emitting unit 110 c , and further encapsulates the side surface 173 a of two sides of the high concentration fluorescent layer 172 a of the wavelength conversion layer 170 a . Therefore, the light emitting device 100 k of the present embodiment not only does not require a conventional carrying support to support and fix the light emitting unit 110 c , may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit 110 c may also be effectively increased through the reflective protecting element 120 d having high reflectivity.
  • the low concentration fluorescent layer 174 a of the wavelength conversion layer 170 a of the present embodiment encapsulates a top surface 122 d of the reflective protecting element 120 d . That is, the side surface 173 a of the high concentration fluorescent layer 172 a of the wavelength conversion layer 170 a is not aligned with the side surface 171 a of the low concentration fluorescent layer 174 a.
  • the light emitting device 100 m of the present embodiment and the light emitting device 100 j in FIG. 14E are similar.
  • the main difference between the two lies in: the reflective protecting element 120 m of the present embodiment completely fills in the gap S between the first electrode pad 113 and the second electrode pad 115 and completely encapsulates a first side surface 113 b of the first electrode pad 113 and a second side surface 115 b of the second electrode pad 115 .
  • a bottom surface 124 m of the reflective protecting element 120 m is aligned with the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode pad 115 .
  • the reflective protecting element 120 m completely encapsulates the surface of two sides of the wavelength conversion layer 170 a . Furthermore, since the reflective protecting element 120 m has a great encapsulating performance and a preferred structural strength, therefore, the light emitting device 100 m of the present embodiment not only does not require a conventional carrying support to support and fix the light emitting unit 110 c , may effectively lower the thickness and manufacturing cost of the package.
  • the light emitting device 100 n of the present embodiment and the light emitting device 100 k in FIG. 16A are similar.
  • a bottom surface 124 n of the reflective protecting element 120 n and the first bottom surface 113 a of the first electrode pad 113 have a height difference H therebetween
  • the bottom surface 124 n of the reflective protecting element 120 n and the second bottom surface 115 a of the second electrode pad 115 have the same height difference H therebetween.
  • the light emitting device 100 p of the present embodiment and the light emitting device 100 n in FIG. 16B are similar.
  • the first electrode pad 113 ′ and the second electrode pad 115 ′ of the present embodiment are multilayered metal layer, for example, composed by a first metal layer M 1 and a second metal layer M 2 but not limited thereto.
  • the reflective protecting element 120 p completely encapsulates a side surface of the first metal layer M 1 of the first electrode pad 113 ′ and the second electrode pad 115 ′, but the reflective protecting element 120 p does not completely encapsulate a side surface of the second metal layer M 2 of the first electrode pad 113 ′ and the second electrode pad 115 ′.
  • the first electrode pad 113 and 113 ′ and the second electrode pad 115 and 115 ′ of the light emitting device 100 m , 100 n and 100 p may be a single layered metal layer or a multilayered metal layer but not limited thereto.
  • FIG. 17A to FIG. 17E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • a wavelength conversion layer 210 is provided, and the wavelength conversion layer 210 may be a single layer or a multi-layer.
  • the wavelength conversion layer 210 includes a low concentration fluorescent layer 212 and a high concentration fluorescent layer 214 located on the low concentration fluorescent layer 212 .
  • the steps of forming the wavelength conversion layer 210 is, for example, evenly mixing the fluorescent powder (not shown) and the resin (not shown) first.
  • wavelength conversion resin layer 210 having a low concentration fluorescent resin layer 212 and a high concentration fluorescent resin layer 214 separated from each other is formed because of the density difference between the fluorescent powder and the resin.
  • the high concentration fluorescent resin layer 214 will precipitate below the low concentration fluorescent resin layer 212 , and the color of the high concentration fluorescent resin layer 214 is, for example, yellow, the low concentration fluorescent resin layer 212 is, for example, having a transparent property.
  • wavelength conversion layer 210 of present embodiment is formed after curing.
  • a thickness of the low concentration fluorescent resin layer 212 is larger than a thickness of the high concentration fluorescent resin layer 214 , and in one embodiment, the thickness ratio may be between 1 to 200 but not limited thereto.
  • a double-sided adhesive film 10 a is provided, the low concentration fluorescent layer 212 of the wavelength conversion layer 210 is disposed on the double-sided adhesive film 10 a so as to fix the position of the wavelength conversion layer 210 through the double-sided adhesive film 10 a.
  • a first cutting process is performed from the high concentration fluorescent layer 214 to a portion of the low concentration fluorescent layer 212 so as to form a plurality of trenches C 1 .
  • a patterned wavelength conversion layer 210 is formed.
  • a depth of each trench C 1 is at least a half of a thickness of the wavelength conversion resin layer 210 .
  • the thickness of the wavelength conversion layer 10 is 240 micrometers
  • the depth of the trench C 1 is 200 micrometers.
  • the trench C 1 can distinguish the low concentration fluorescent layer 212 of the wavelength conversion layer 210 from a flat portion 212 a and a protruding portion 212 b located on the flat portion 212 a .
  • the high concentration fluorescent layer 212 is located on the protruding portion 212 b.
  • each light emitting unit 220 has an upper surface 222 and a lower surface 224 opposite to each other, a side surface 226 connecting the upper surface 222 and the lower surface 224 , and a first electrode pad 223 and a second electrode pad 225 located on the lower surface 224 and separated from each other.
  • the upper surface 222 of the light emitting unit 220 is located on the high concentration fluorescent layer 214 of the wavelength conversion layer 210 so as to increase the light extraction rate and improve the light pattern.
  • each unit A includes at least two light emitting units 220 in present embodiment (two light emitting units 220 are schematically illustrated in FIG. 17B ).
  • Each light emitting unit 220 is an LED with a light emitting wavelength in a range of 315 nanometers to 780 nanometers, and the LED includes but not limited thereto an ultraviolet light LED, a blue light LED, a green light LED, a yellow light LED, an orange light LED or a red light LED.
  • the adhesive layers 230 a is formed on the wavelength conversion layer 210 and extends to be disposed on the side surface 226 of the light emitting units 220 .
  • the adhesive layer 230 a is gradually thickening from the lower surface 224 of each light emitting unit 220 to the upper surface 222 , and the adhesive layer 230 a has a concave surface 232 with respect to the side surface 226 of the light emitting 220 but not limited thereto.
  • the purpose of setting the adhesive layers 230 a is not only fixing the position of the light emitting units 220 but also improving the light extraction effect of the side surface of the chip since the adhesive layer 230 a is a light transmissible material and the index of refraction of the adhesive layer 230 a is greater than 1.
  • the adhesive layers 230 a may be also formed on the wavelength conversion layer 210 before disposing the light emitting units 220 on the wavelength conversion layer 210 .
  • a reflective protecting element 240 is formed between the light emitting units 220 , and the reflective protecting element 240 fills in the trenches C 1 , wherein the reflective protecting element 240 is formed on the wavelength conversion layer 210 and encapsulates each unit A, and the reflective protecting element 240 fills in the trenches C 1 .
  • the reflective protecting element 240 exposes the lower surface 224 , the first electrode pad 223 and the second electrode pad 225 of each light emitting unit 220 .
  • the reflectivity of the reflective protecting element 240 is at least greater than 90%, and the reflective protecting element 240 is, for example, a white resin layer.
  • the way of forming the reflective protecting element 240 is, for example, performing by dripping, wherein the reflective protecting element 240 directly encapsulates adhesive layer 230 a and extends to encapsulate the side surface of the high concentration fluorescent resin layer 214 along the adhesive layer 230 a , and the reflective protecting element 240 fills in the trenches C 1 . At this time, the reflective protecting element 240 is not over the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220 .
  • a second cutting process is performed from the reflective protecting element 240 and along the trench C 1 , and the low concentration fluorescent layer 212 is penetrated so that a plurality of light emitting device 200 a separated from each other is formed.
  • the wavelength conversion layer 210 in contacted with two light emitting units 220 in each unit A is continuous, i.e. the light emitting units 220 have the same light emitting surface, therefore the light emitted from the light emitting units 220 can be guided through the transparent low concentration fluorescent layer 212 , so that the light emitting device 200 a has preferred luminous uniformity.
  • a reverse process is performed after performing the second cutting process.
  • An ultraviolet adhesive film 20 a on the first electrode pads 223 and the second electrode pads 225 of the light emitting units 220 is provided first so as to fix the relative position of the light emitting devices 200 a .
  • the double-sided adhesive film 10 a is removed and the low concentration fluorescent layer 212 of the wavelength conversion resin layer 210 is exposed.
  • the ultraviolet adhesive film 20 a is removed so that the first electrode pads 223 and the second electrode pads 225 of the light emitting units 220 are exposed. So far, the light emitting device 200 a is completely manufactured. It should be noted that in order to facilitate explanation, only one light emitting device 200 a is schematically illustrated in FIG. 17E .
  • the light emitting device 200 a includes a plurality of light emitting units 220 (two light emitting units 220 are schematically illustrated in FIG. 17E ), a wavelength conversion layer 210 and a reflective protecting element 240 .
  • Each light emitting unit 220 has an upper surface 222 and a lower surface 224 opposite to each other, a side surface 226 connecting the upper surface 222 and the lower surface 224 , and a first electrode pad 223 and a second electrode pad 225 separated from each other which are located on the lower surface 224 and.
  • the wavelength conversion layer 210 is disposed on the upper surface 222 of the light emitting unit 220 , and the wavelength conversion layer 210 includes a low concentration fluorescent layer 212 and a high concentration fluorescent layer 214 .
  • the low concentration fluorescent layer 212 has a flat portion 212 a and a protruding portion 212 b located on the flat portion 212 a .
  • the high concentration fluorescent layer 214 is disposed between the upper surface 222 and the protruding portion 212 b , wherein the high concentration fluorescent layer 214 encapsulates the protruding portion 212 b and touches the upper surface 222 of light emitting unit 200 .
  • the light emitting units 220 are arranged at intervals and expose a portion of the wavelength conversion layer 210 .
  • the reflective protecting element 240 encapsulates the side surface 226 of each light emitting unit 220 and encapsulates the wavelength conversion resin layer 210 exposed by the light emitting unit 220 .
  • the reflective protecting element 240 exposes the lower surface 224 , the first electrode pad 223 and the second electrode pad 225 of each light emitting unit 220 .
  • the side surface of the reflective protecting element 240 is aligned with the side surface of the flat portion 212 a of the low concentration fluorescent layer 212 .
  • the light emitting units 220 of the light emitting device 200 a of the present embodiment only touch one wavelength conversion layer 210 , that is, the light emitting units 220 have the same light emitting surface, and a side surface of the low concentration fluorescent layer 212 is aligned with a side surface of the reflective protecting element 240 . Therefore, the light emitted from the light emitting units 220 can be guided through the low concentration fluorescent layer 212 , so that the light emitting device 200 a of the present embodiment may have larger light emitting area and preferred luminous uniformity.
  • the reflective protecting element 240 encapsulates the side surface 226 of the light emitting unit 220 , and the reflective protecting element 240 exposes the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220 . Therefore, the light emitting device 200 a of the present invention does not require a conventional carrying support to support and fix the light emitting unit 220 , and may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit 220 can also be effectively increased.
  • the structural configuration of the adhesive layer 230 a of the present embodiment is not limited even though the adhesive layer 230 a illustrated in FIG. 17E has a concave surface 232 with respect to the side surface 226 of the light emitting 220 in particular.
  • the reflective protecting element 240 further includes a reflective surface 242 in contact with the light emitting unit 220 , and the reflective surface 242 is a curved surface in particular.
  • the light emitting device 200 b of the present embodiment and the light emitting device 200 a in FIG. 17E are similar.
  • the adhesive layer 230 b has a convex surface 234 with respect to the side surface 226 of each light emitting unit 220 , therefore edge light emitted from the light emitting unit 220 occurring may be increased, and the light emitting area of the light emitting device 200 b may be also increased with the configuration of the wavelength conversion layer 210 .
  • the reflective surface 242 a of the reflective protecting element 240 a is a curved surface in particular.
  • a light emitting device 200 c of the present embodiment and the light emitting device 200 a of FIG. 17E are similar.
  • the adhesive layer 230 c has an inclined surface 236 with respect to the side surface 226 of each light emitting unit 220 .
  • the reflective surface 242 b of the reflective protecting element 240 b is a flat surface in particular.
  • FIG. 19A to FIG. 19E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • the manufacturing method of the light emitting device 200 d of the present embodiment is similar to the manufacturing method of the light emitting device 200 a of FIG. 17A to FIG. 17E , and a main difference is that: with reference to FIG. 19A , a plurality of second trenches C 2 ′ cut from the high concentration fluorescent layer 214 ′ to a portion of the low concentration fluorescent layer 212 ′ are further formed in performing the first cutting process.
  • FIG. 19A a plurality of second trenches C 2 ′ cut from the high concentration fluorescent layer 214 ′ to a portion of the low concentration fluorescent layer 212 ′ are further formed in performing the first cutting process.
  • the position of the trenches C 1 ′ and the position of the trenches C 2 ′ are staggered arranged, wherein a depth of each trench C 1 ′ is at least a half of a thickness of the wavelength conversion layer 210 ′, and a depth of each second trench C 2 ′ is the same as the depth of each first trench C 1 ′.
  • the thickness of the wavelength conversion layer 210 ′ is 240 micrometers
  • the depth of the trench C 1 ′ and the depth of the second trench C 2 ′ are 200 micrometers but not limited thereto.
  • the flat portion 212 a ′ of the low concentration fluorescent layer 212 ′ has a thickness T, preferably, the thickness T is, for example, between 20 micrometers to 50 micrometers.
  • the second trench C 2 ′ can divide the protruding portion of the low concentration fluorescent layer 212 ′ of the wavelength conversion layer 210 ′ into two sub protruding portions 212 b ′, and the high concentration fluorescent layer 214 ′ is located on the sub protruding portions 212 b′.
  • the light emitting units 220 arranged at intervals are disposed on the wavelength conversion layer 210 ′, wherein the second trench C 2 ′ is located between two light emitting units 220 of each unit A, the light emitting units 220 are disposed on the sub protruding portions 212 b ′ respectively, and the upper surface 222 of the light emitting unit 220 directly touches the high concentration fluorescent layer 214 ′.
  • the ratio of the length of each sub protruding portion 212 b ′ and the length of the corresponding light emitting unit 220 is larger than 1 and less than 1.35, that is, a side surface of the sub protruding portion 212 b ′ of the low concentration fluorescent layer 212 ′ is outside the side surface of the light emitting unit 220 , and a side surface of the high concentration fluorescent layer 214 ′ also extends outside the side surface of the light emitting unit 220 so that the light emitting area of the light emitting unit 220 may be effectively increased.
  • an adhesive layer 230 a on the side surface 226 of the light emitting unit 220 is formed, wherein the adhesive layer 230 a is merely disposed on the side surface 226 of the light emitting unit 220 and extends on the high concentration fluorescent layer 214 ′ of the wavelength conversion layer 210 ′, the adhesive layer 230 a does not extend to be disposed on the low concentration fluorescent layer 212 ′.
  • the reflective protecting element 240 on the wavelength conversion layer 210 ′ is formed, and the reflective protecting element 240 encapsulates each unit A and fills in the trenches C 1 ′ and the trenches C 2 ′.
  • a second cutting process is performed from the reflective protecting element 240 and along the trench C 1 ′, and the low concentration fluorescent layer 212 ′ is penetrated so that a plurality of light emitting devices 200 d separated from each other are formed.
  • a reverse process is performed after performing the second cutting process.
  • An ultraviolet adhesive film 20 a on the first electrode pads 223 and the second electrode pads 225 of the light emitting units 220 is provided first so as to fix the relative position of the light emitting devices 200 a .
  • the double-sided adhesive film 10 a is removed and the low concentration fluorescent layer 212 ′ of the wavelength conversion layer 210 ′ is exposed.
  • the ultraviolet adhesive film 20 a is removed so that the first electrode pads 223 and the second electrode pads 225 of the light emitting units 220 are exposed. So far, the light emitting device 200 d is completely manufactured. It should be noted that in order to facilitate explanation, only one light emitting device 200 d is schematically illustrated in FIG. 19E .
  • FIG. 19E is a schematic cross-sectional view along line Y-Y of FIG. 20A .
  • the light emitting device 200 d of the present embodiment is similar to the light emitting device 200 a of FIG. 17E , and a main difference is that: the wavelength conversion layer 210 ′ exposed by two light emitting units 220 further has the second trenches C 2 ′, wherein the second trench C 2 ′ extends from the high concentration fluorescent layer 214 ′ to a portion of the low concentration fluorescent layer 212 ′.
  • two light emitting units 220 are disposed on a continuous wavelength conversion layer 210 ′, therefore, the light emitting units 220 have the same light emitting surface, and the side surface of the low concentration fluorescent layer 212 ′ is aligned with the side surface of the reflective protecting element 240 . Therefore, the light emitted from the light emitting unit 220 can be guided through the low concentration fluorescent layer 212 ′, so that the light emitting device 200 d of the present embodiment may have larger light emitting area and preferred luminous uniformity.
  • the cutting depth in the direction of line X-X in FIG. 20A is substantially the same as the cutting depth in the direction of line Y-Y in FIG. 20A . That is, with reference to the cross-sectional view along line X-X in FIG. 20B , the flat portion 212 a ′ of the low concentration fluorescent layer 212 ′ has a thickness T. With reference to the cross-sectional view along line Y-Y in FIG. 19E , the flat portion 212 a ′ of the low concentration fluorescent layer 212 ′ also has the same thickness T. Preferably, the thickness T is, for example, between 20 micrometers to 50 micrometers.
  • FIG. 21A is schematic stereoscopic view illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 21B and FIG. 21C are schematic sectional views along the line X′-X′ and the Y′-Y′ of FIG. 21A respectively.
  • the cutting depth along the direction of line X′-X′ in FIG. 21A is different from the cutting depth along the direction of line Y′-Y′ in FIG.
  • the wavelength conversion layer 210 ′ further includes a first exposed side portion and a second exposed side portion which are not encapsulated by the reflective protecting element 240 .
  • the first exposed side portion is not parallel to the second exposed side portion, and the thickness of the wavelength conversion resin layer 210 ′ at the first exposed side portion is different from the thickness of the wavelength conversion resin layer 210 ′ at the second exposed side portion.
  • the flat portion 212 a ′′ of the low concentration fluorescent layer 212 ′′ has a first thickness T 1 in the direction of line X′-X′
  • the flat portion 212 a ′′ of the low concentration fluorescent layer 212 ′′ has a second thickness T 2 in the direction of line Y′-Y′.
  • the first thickness T 1 is different from the second thickness T 2 .
  • the first thickness T 1 is, for example, between 50 micrometers to 200 micrometers
  • the second thickness T 2 is, for example, between 20 micrometers to 50 micrometers.
  • the brightness decrease caused by dark band between adjacent two light emitting units 220 may be effectively reduced so as to improve the luminous uniformity of the light emitting device 200 e .
  • the light emitting angle may also be increased from 120 degrees to 130 degrees, i.e. the light emitting angle may be increased by 10 degrees.
  • the thickness of the flat portion 212 a ′′ of the low concentration fluorescent layer 212 ′′ and the light emitting angle of the light emitting unit 220 have a positive correlation.
  • the reflective protecting element of the invention encapsulates the side surface of the light emitting device, and the bottom surface of the reflective protecting element exposes the first bottom surface of the first electrode pad and the second bottom surface of the second electrode pad of the light emitting unit, therefore the light emitting device of the invention does not require a conventional carrying support to support and fix the light emitting unit, and may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit can also be effectively increased.
  • the light emitting units of the light emitting device in the invention only contact with one wavelength conversion layer, that is, the light emitting units have the same light emitting surface, and the side surface of the low concentration fluorescent layer is aligned with the side surface of the reflective protecting element, therefore, the light emitted from the light emitting unit can be guided through the low concentration fluorescent layer, so that the light emitting device in the invention may have larger light emitting angle and preferred luminous uniformity.
  • the reflective protecting element encapsulates the side surface of the light emitting unit, and the reflective protecting element exposes the first electrode pad and the second electrode pad of the light emitting unit.
  • the light emitting device of the invention does not require a conventional carrying support to support and fix the light emitting unit, and may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit can also be effectively increased.

Abstract

A light emitting device includes a wavelength conversion layer, at least one light emitting unit and a reflective protecting element. The wavelength conversion layer has an upper surface and a lower surface opposite to each other. The light emitting unit has two electrode pads located on the same side of the light emitting unit. The light emitting unit is disposed on the upper surface of the wavelength conversion layer and exposes the two electrode pads. The reflective protecting element encapsulates at least a portion of the light emitting unit and a portion of the wavelength conversion layer, and exposes the two electrode pads of the light emitting unit.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a continuation application of and claims the priority benefit of U.S. patent application Ser. No. 16/004,445, filed on Jun. 11, 2018, now allowed. The prior U.S. patent application Ser. No. 16/004,445 is a divisional application of and claims the priority benefit of U.S. patent application Ser. No. 15/268,654, filed on Sep. 19, 2016, now patented. The prior U.S. patent application Ser. No. 15/268,654 is a continuation-in-part application of and claims the priority benefit of U.S. application Ser. No. 14/711,798, filed on May 14, 2015, now abandoned, which claims the priority benefits of Taiwan application serial no. 103116987, filed on May 14, 2014 and U.S. provisional application Ser. No. 62/157,450, filed on May 5, 2015. The prior U.S. patent application Ser. No. 15/268,654 also claims the priority benefits of U.S. provisional application Ser. No. 62/220,249, filed on Sep. 18, 2015, U.S. provisional application Ser. No. 62/236,150, filed on Oct. 2, 2015, Taiwan application serial no. 105100499, filed on Jan. 8, 2016, U.S. provisional application Ser. No. 62/245,247, filed on Oct. 22, 2015, U.S. provisional application Ser. No. 62/262,876, filed on Dec. 3, 2015 and China application serial no. 201610293182.5, filed on May 5, 2016. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The invention relates to a light emitting device, and relates particularly to a light emitting device utilizing a light emitting diode as a light source.
  • 2. Description of Related Art
  • Generally speaking, in a light emitting diode (LED) package structure typically a light emitting diode (LED) chip is disposed on a carrying base formed in a concave cup shape from ceramic material or metal material, to fix and support the LED diode chip. Then, encapsulation adhesive is used to encapsulate the LED chip, and complete the manufacturing of the LED package structure. Here, an electrode of the LED chip is located above the carrying base and located in the concave cup. However, the carrying base of the concave cup shape has a particular thickness, such that a thickness of the LED package structure may not be reduced efficiently, therefore causing the LED package structure to be unable to meet modern needs of miniaturization.
  • SUMMARY OF THE INVENTION
  • The invention provides a light emitting device, which does not require a conventional carrying support, and may have a thinner package thickness and meet miniaturization requirements.
  • The invention provides a manufacturing method for manufacturing the abovementioned light emitting device.
  • A light emitting device of the invention includes a wavelength conversion layer, at least one light emitting unit and a reflective protecting element. The wavelength conversion layer has an upper surface and a lower surface opposite to each other. The light emitting unit has two electrode pads located on the same side of the light emitting unit. The light emitting unit is disposed on the upper surface of the wavelength conversion layer and exposes the two electrode pads. The reflective protecting element encapsulates at least a portion of the light emitting unit and a portion of the wavelength conversion layer, and exposes the two electrode pads of the light emitting unit.
  • In one embodiment of the present invention, the abovementioned light emitting device further includes an adhesive layer disposed on the wavelength conversion layer and located between the light emitting unit and the reflective protecting element.
  • In one embodiment of the present invention, the abovementioned adhesive layer is further disposed between the wavelength conversion layer and the light emitting unit.
  • In one embodiment of the present invention, the abovementioned reflective protecting element further includes a reflective surface in contact with the light emitting unit.
  • In one embodiment of the present invention, the abovementioned reflective surface of the reflective protecting element is a flat surface or a curved surface.
  • In one embodiment of the present invention, the abovementioned reflective protecting element further completely encapsulates a side surface of the wavelength conversion layer.
  • In one embodiment of the present invention, a bottom surface of the abovementioned reflective protecting element and the lower surface of the wavelength conversion layer form a plane.
  • In one embodiment of the present invention, the abovementioned reflective protecting element further at least encapsulates a portion of a side surface of the wavelength conversion layer.
  • In one embodiment of the present invention, the abovementioned side surface of a portion of the wavelength conversion layer which is not encapsulated by the reflective protecting element and a side surface of the reflective protecting element form a side plane of the light emitting device.
  • In one embodiment of the present invention, the abovementioned wavelength conversion layer further includes a first exposed side portion and a second exposed side portion which are not encapsulated by the reflective protecting element. The first exposed side portion is not parallel to the second exposed side portion, and a thickness of the wavelength conversion layer at the first exposed side portion is different from a thickness of the wavelength conversion layer at the second exposed side portion.
  • In one embodiment of the present invention, the abovementioned wavelength conversion layer further includes a low concentration fluorescent layer and a high concentration fluorescent layer, the high concentration fluorescent layer is between the low concentration fluorescent layer and the light emitting unit.
  • In one embodiment of the present invention, the abovementioned reflective protecting element fills in a gap between the two electrode pads.
  • In one embodiment of the present invention, the abovementioned reflective protecting element completely fills the gap between the two electrode pads, and a surface of the reflective protecting element is aligned with a surface of the two electrode pads.
  • In one embodiment of the present invention, the abovementioned at least one light emitting unit is a plurality of light emitting units, the wavelength conversion layer has at least one trench located between two of the light emitting units.
  • The manufacturing method of a light emitting device of the invention includes the following steps. providing a wavelength conversion layer; disposing a plurality of light emitting units arranged at intervals on the wavelength conversion layer, and exposing two electrode pads of each light emitting unit; forming a plurality of trenches on the wavelength conversion layer, wherein the trenches are located between the light emitting units; forming a reflective protecting element on the wavelength conversion layer and between the light emitting units, and filling the reflective protecting element in the trenches, wherein the reflective protecting element exposes the electrode pads of the light emitting units; and performing a cutting process along the trenches to form a plurality of light emitting devices.
  • In one embodiment of the present invention, a depth of each abovementioned trench is at least a half of a thickness of the wavelength conversion layer.
  • In one embodiment of the present invention, the abovementioned manufacturing method of the light emitting device further includes: forming an adhesive layer on the wavelength conversion layer after disposing the light emitting units arranged at intervals on the wavelength conversion layer.
  • In one embodiment of the present invention, the abovementioned manufacturing method of the light emitting device further includes: forming an adhesive layer on the wavelength conversion layer before disposing the light emitting units arranged at intervals on the wavelength conversion layer.
  • In one embodiment of the present invention, the abovementioned reflective protecting element further includes a reflective surface in contact with the light emitting unit.
  • In one embodiment of the present invention, the abovementioned reflective surface of the reflective protecting element is a flat surface or a curved surface.
  • In one embodiment of the present invention, the abovementioned wavelength conversion layer further includes a low concentration fluorescent layer and a high concentration fluorescent layer, the light emitting unit is disposed on the high concentration fluorescent layer.
  • Based on the above, because the reflective protecting element of the invention encapsulates a side surface of the light emitting device, and a bottom surface of the reflective protecting element is aligned with a first bottom surface of the first electrode pad and a second bottom surface of the second electrode pad of the light emitting unit, therefore the light emitting device of the invention does not require a conventional carrying support to support and fix the light emitting unit, and may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit can also be effectively increased.
  • To make the above features and advantages of the present invention more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIG. 1 is a schematic diagram illustrating a light emitting device according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 3 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 4 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 5 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 6 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 7 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 8 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 9 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 10A to FIG. 10D are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to an embodiment of the invention.
  • FIG. 11A to FIG. 11C are schematic cross-sectional views illustrating partial steps of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 12A to FIG. 12E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 13A to FIG. 13D are schematic cross-sectional views illustrating partial steps of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 14A to FIG. 14E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 14F to FIG. 14G are schematic cross-sectional views illustrating a part of a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 15A to FIG. 15E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 16A to FIG. 16C are schematic cross-sectional views illustrating a light emitting device according to a plurality of embodiments of the invention.
  • FIG. 17A to FIG. 17E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 18A to FIG. 18B are schematic cross-sectional views illustrating two light emitting devices according to two embodiments of the invention.
  • FIG. 19A to FIG. 19E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention.
  • FIG. 20A is schematic stereoscopic view illustrating the light emitting device in FIG. 19E.
  • FIG. 20B is a schematic sectional view along the line X-X of FIG. 20A.
  • FIG. 21A is schematic stereoscopic view illustrating a light emitting device according to another embodiment of the invention.
  • FIG. 21B and FIG. 21C are schematic sectional views along the line X′-X′ and the Y′-Y′ of FIG. 21A respectively.
  • DESCRIPTION OF THE EMBODIMENTS
  • FIG. 1 is a schematic diagram illustrating a light emitting device according to an embodiment of the invention. Referring to FIG. 1, in the present embodiment, a light emitting device 100 a includes a light emitting unit 110 a and a protecting element 120. The light emitting unit 110 a has an upper surface 112 a and a lower surface 114 a opposite to each other, a side surface 116 a connecting the upper surface 112 a and the lower surface 114 a and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114 a and separated from each other. The protecting element 120 encapsulates the side surface 116 a of the light emitting unit 110 a and exposes the upper surface 112 a, a first bottom surface 113 a of the first electrode pad 113 and a second bottom surface 115 a of the second electrode pad 115.
  • More specifically, as shown in FIG. 1, the upper surface 112 a of the light emitting unit 110 a of the present embodiment is aligned with a top surface 122 of the protecting element 120, a bottom surface 124 of the protecting element 120 is aligned with the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode 115, and the protecting element 120 also can encapsulate or expose the lower surface 114 a of the light emitting unit 110 a located between the first electrode pad 113 and the second electrode pad 115. In the present embodiment, the side surface 116 a of the light emitting unit 110 a is perpendicular to the upper surface 112 a and the lower surface 114 a, however the invention is not limited thereto, and the light emitting unit 110 a, for example, is an LED with a light emitting wavelength (including but not limited thereto) in a range of 315 nanometers to 780 nanometers, and the LED includes but not limited thereto an ultraviolet light LED, a blue light LED, a green light LED, a yellow light LED, an orange light LED or a red light LED.
  • Preferably, the reflection rate of the protecting element 120 is at least greater than 90%, that is to say, the protecting element 120 of the present embodiment has high reflectivity characteristic, wherein a material of the protecting element 120 is a polymer material doped with high reflective particles, the reflective particle, for example but not limited thereto, titanium dioxide (TiO2), and the polymer material, for example but not limited thereto, epoxy or silicone. In addition, a material of the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 a of the present embodiment is a metal material or a metal alloy, for example, gold, aluminium, tin, silver, bismuth, indium or a combination thereof, however the invention is not limited thereto.
  • Because the protecting element 120 of the present embodiment encapsulates the side surface 116 a of the light emitting unit 110 a, and exposes the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode pad 115 of the light emitting unit 110 a, therefore the light emitting device 100 a of the present embodiment not only does not require a conventional carrying support to support and fix the light emitting unit 110 a, may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit 110 a can also be effectively increased by the reflective protecting element 120 having high reflectivity.
  • It should be noted here, the below embodiments utilize the same label and partial contents of the above embodiment, wherein the same labels are adopted to represent same or similar elements and the description of similar technical content is omitted.
  • FIG. 2 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention. Referring to FIG. 1 and FIG. 2, a light emitting device 100 b of the present embodiment and the light emitting device 100 a of FIG. 1 are similar. The main difference between the two lies in: a side surface 116 b of the light emitting device 110 b of the present embodiment is not perpendicular to an upper surface 112 b and a lower surface 114 b, a surface area of the upper surface 112 b of the light emitting device 110 b is larger than a surface area of the lower surface 114 b. An angle of incidence of the side surface 116 b and the lower surface 114 b is, for example, between 95 degrees to 150 degree. A contour shape defined by the upper surface 112 b, the side surface 116 b and the lower surface 114 b of the light emitting device 110 b of the present embodiment renders a trapezoid, therefore the edge light emitted from the light emitting device 110 b occurring may be lowered and the protecting element 120 of high reflectivity may further increase the forward light emitting efficiency of the light emitting device 110 b effectively.
  • FIG. 3 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention. Referring to FIG. 1 and FIG. 3, a light emitting device 100 c of the present embodiment and the light emitting device 100 a of FIG. 1 are similar. The main difference between the two lies in: the light emitting device 100 c of the present embodiment further includes a first extension electrode 130 c and a second extension electrode 140 c. The first extension electrode 130 c is disposed on the bottom surface 124 of the protecting element 120 and electrically connected to the first electrode pad 113. The second extension electrode 140 c is disposed on the bottom surface 124 of the protecting element 120 and directly electrically connected to the second electrode pad 115. The first extension electrode 130 c and the second extension electrode 140 c are separated from each other and cover a part of the bottom surface 124 of the protecting element 120.
  • As shown in FIG. 3, a design of the first extension electrode 130 c and the second extension electrode 140 c of the present embodiment completely overlaps the first electrode pad 113 and the second electrode pad 115, and extends towards an edge of the protecting element 120. Of course, in other embodiments not shown, a design of the first extension electrode and the second extension electrode may also partially overlap the first electrode pad and the second electrode pad, and only a design in which the first extension electrode and the second extension electrode are connected electrically to the first electrode pad and the second electrode pad is the scope namely desired to be protected by the present embodiment. In addition, the first extension electrode 130 c and the second extension electrode 140 c of the present embodiment are exposed from a part of the bottom surface 124 of the protecting element 120.
  • In the present embodiment, a material of the first extension electrode 130 c and the second extension electrode 140 c may be respectively the same or different with the first pad electrode 113 and the second electrode pad 115 of the light emitting unit 110 a. When the material of the first extension electrode 130 c and the second extension electrode 140 c are respectively the same as the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 a, a seamless connection may be made between the first extension electrode 130 c and the first electrode pad 113, namely an integrally formed structure, and a seamless connection may be made between the second extension electrode 140 c and the second electrode pad 115, namely an integrally formed structure. When the material of the first extension electrode 130 c and the second extension electrode 140 c are respectively different than the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 a, the material of the first extension electrode 130 c and the second extension electrode 140 c may, for example, be silver, gold, bismuth, tin, indium or an alloy thereof of the above materials.
  • Because the light emitting device 100 c of the present embodiment has the first extension electrode 130 c and the second extension electrode 140 c respectively connected electrically with the first pad electrode 113 and the second electrode pad 115 of the light emitting unit 110 a, therefore an electrode contact area of the light emitting device 100 c may be effectively increased, to facilitate performing the subsequent assembly of the light emitting device 100 c with other outside circuits, and may increase the alignment accuracy and the assembly efficiency. For example, an area of the first extension electrode 130 c is larger than an area of the first electrode pad 113 and an area of the second extension electrode 140 c is larger than an area of the second electrode pad 115.
  • FIG. 4 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention. Referring to FIG. 3 and FIG. 4, a light emitting device 100 d of the present embodiment and the light emitting device 100 c of FIG. 3 are similar. The main difference between the two lies in: an edge of a first extension electrode 130 d and an edge of the second extension electrode 140 d of the present embodiment are aligned with the edge of the reflective protecting element 120.
  • FIG. 5 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention. Referring to FIG. 1 and FIG. 5, a light emitting device 100 e of the present embodiment and the light emitting device 100 a of FIG. 1 are similar. The main difference between the two lies in: the light emitting device 100 e of the present embodiment further includes an encapsulation adhesive layer 150, wherein the encapsulation adhesive layer 150 is disposed on the upper surface 112 a of the light emitting unit 110 a, to increase light extraction efficiency and improve the light pattern. The encapsulation adhesive layer 150 may also extend onto at least portion of the upper surface 122 of the reflective protecting element 120, such that an edge of the encapsulation adhesive layer 150 can be aligned with the edge of the protecting element 120. In addition, at least one wavelength converting material may be doped in the encapsulation adhesive layer 150, wherein the wavelength converting material is used to convert the wavelengths of at least part of the light beam emitted by the light emitting unit 110 a into other wavelengths of light beam, and a material of the wavelength converting material includes fluorescent material, phosphorescent material, dyes, quantum dot material or a combination thereof. In addition, an oxide having high scattering ability, such as titanium dioxide (TiO2) or silicon dioxide (SiO2) may be doped in the encapsulation adhesive layer 150 to increase the light emitting efficiency.
  • In one present embodiment of the invention, the light emitting device includes but not limited thereto a ultraviolet light emitting device, a blue light emitting device, a green light emitting device a yellow light emitting device, an orange light emitting device or a red light emitting device, and the wavelength converting material includes but not limited thereto a red wavelength converting material, an orange wavelength converting material, an orange-yellow wavelength converting material, a yellow wavelength converting material, a yellow-green wavelength converting material, a green wavelength converting material or a combination thereof, and is used to convert the wavelengths of part or all of the light beam emitted by the light emitting device. Wavelength converted light and unconverted light wavelength light after mixing, the light emitting device emits a light with a dominant wavelength at a specific wavelength range, its light color such as, but not limited to red, orange, orange-yellow, amber, yellow, yellow-green or green, or a white light with a specific correlated color temperature, the correlated color temperature range, for example, between 2500K to 7000K, but not limited thereto.
  • FIG. 6 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention. Referring to FIG. 6 and FIG. 4, a light emitting device 100 f of the present embodiment and the light emitting device 100 d of FIG. 4 are similar. The main difference between the two lies in: the light emitting device 100 f of the present embodiment further includes the encapsulation adhesive layer 150, wherein the encapsulation adhesive layer 150 is disposed on the upper surface 112 a of the light emitting unit 110 a, to increase light extraction efficiency and improve the light pattern. The encapsulation adhesive layer 150 may also extend onto at least portion of the upper surface 122 of the protecting element 120, and the edge of the encapsulation adhesive layer 150 can be aligned with the edge of the reflective protecting element 120. In addition, at least one wavelength converting material may be doped in the encapsulation adhesive layer 150, wherein the wavelength converting material is used to convert the wavelengths of at least part of the light beam emitted by the light emitting unit 110 a into other wavelengths of light beam, and a material of the wavelength converting material includes fluorescent material, phosphorescent material, dyes, quantum dot material or a combination thereof. In addition, an oxide having high scattering ability, such as titanium dioxide (TiO2) or silicon dioxide (SiO2) may be doped in the encapsulation adhesive layer 150 to increase the light emitting efficiency.
  • It should be noted, in the embodiments of FIG. 4 and FIG. 6, the edge of the first extension electrode 130 d and the edge of the second extension electrode 140 d are aligned with the edge of the reflective protecting element 120. This type of design not only may expand a contact area of the electrode, but in the manufacturing process, the reflective protecting element 120 may encapsulate a plurality of light emitting devices 110 a arranged at intervals at the same time, and after forming a patterned metal layer so as to respectively form the first extension electrode 130 d and the second extension electrode 140 d at the same time, then cutting is performed such that the edge of the first extension electrode 130 d and the edge of the second extension electrode 140 d of each light emitting device 100 f are aligned with the edge of the reflective protecting element 120. In this way, manufacturing time may be saved.
  • FIG. 7 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention. With reference to FIG. 7 and FIG. 5, a light emitting device 100 g of the present embodiment is similar to the light emitting device 100 e of FIG. 5, and a main difference is that: the light emitting device 100 g of the present embodiment further includes a light transmissible layer 160 disposed on the encapsulation adhesive layer 150, wherein a transmittance of the light transmissible layer 160, for example, is greater than 50%. In the present embodiment, a material of the light transmissible layer 160 is glass, ceramics, resins, acrylic, silicone or etc., for example, for guiding the light generated by the light emitting unit 110 a to the outside to effectively increase a light flux and a light extraction rate of the light emitting device 100 g and for effectively protecting the light emitting unit 110 a from influence of external moisture and oxygen.
  • FIG. 8 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention. With reference to FIG. 8 and FIG. 7, a light emitting device 100 h of the present embodiment is similar to the light emitting device 100 g of FIG. 7, and a main difference is that: a light transmissible layer 160′ of the light emitting device 100 h of the present embodiment is disposed between the light emitting unit 110 a and the encapsulation adhesive layer 150.
  • FIG. 9 is a schematic diagram illustrating a light emitting device according to another embodiment of the invention. With reference to FIG. 9 and FIG. 6, a light emitting device 100 i of the present embodiment is similar to the light emitting device 100 f of FIG. 6, and a main difference is that: the light emitting device 100 i of the present embodiment further includes a light transmissible layer 160 disposed on the encapsulation adhesive layer 150, wherein a transmittance of the light transmissible layer 160, for example, is greater than 50%. In the present embodiment, a material of the light transmissible layer 160 is glass, ceramics, resins, acrylic, silicone or etc., for example, for guiding the light generated by the light emitting unit 110 a to the outside to effectively increase a light flux and a light extraction rate of the light emitting device 100 i and for effectively protecting the light emitting unit 110 a from influence of external moisture and oxygen.
  • In the following embodiments, the light emitting devices 100 a, 100 g, 100 d, and 100 i of the invention are taken as examples for specifically describing a manufacturing method of the light emitting device of the invention respectively with reference to FIG. 10A to FIG. 10D, FIG. 11A to FIG. 11C, FIG. 12A to FIG. 12E, and
  • FIG. 13A to FIG. 13D.
  • FIG. 10A to FIG. 10D are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to an embodiment of the invention. With reference to FIG. 10A, first, a plurality of light emitting devices 110 a are disposed on a substrate 10, wherein each light emitting unit 110 a has an upper surface 112 a and a lower surface 114 a opposite to each other, a side surface 116 a connecting the upper surface 112 a and the lower surface 114 a, and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114 a and separated from each other. The first electrode pad 113 and the second electrode pad 115 of each light emitting unit 110 a are disposed on the substrate 10. In other words, a light emitting surface of the light emitting unit 110 a, i.e. the upper surface 112 a, is relatively away from the substrate 10. In the present embodiment, a material of the rigid substrate 10 is stainless steel, ceramics, or other non-conductive materials, for example. The light emitting unit 110 a, for example, is an LED with a light emitting wavelength (including but not limited thereto) in a range of 315 nanometers to 780 nanometers, and the LED includes but not limited thereto an ultraviolet light LED, a blue light LED, a green light LED, a yellow light LED, an orange light LED or a red light LED.
  • Then, with reference to FIG. 10B, a protecting element 120′ is formed on the substrate 10, wherein the protecting element 120′ encapsulates each light emitting unit 110 a. In other words, the reflective protecting element 120′ completely and directly covers the upper surface 112 a, the lower surface 114 a, and the side surface 116 a of the light emitting unit 110 a and fills a gap between the first electrode pad 113 and the second electrode pad 115. Here, a reflection rate of the protecting element 120′ is at least greater than 90%. That is to say, the protecting element 120′ of the present embodiment has a high reflectivity characteristic, wherein a material of the protecting element 120′ is a polymer material doped with high reflective particles, the reflective particle, for example but not limited thereto, titanium dioxide (TiO2), and the polymer material, for example but not limited thereto, epoxy or silicone.
  • Then, with reference to FIG. 10C, a part of the reflective protecting element 120′ is removed to form a reflective protecting element 120, wherein the reflective protecting element 120 exposes the upper surface 112 a of each light emitting unit 110 a. Moreover, the upper surface 112 a of each light emitting unit 110 a can be aligned with a top surface 122 of the reflective protecting element 120. Here, a method of removing a part of the reflective protecting element 120′ is a grinding method or a polishing method, for example.
  • Thereafter, with reference to FIG. 10D, a cutting process is performed to cut the reflective protecting element 120 along a cutting line L so as to form a plurality of light emitting devices 100 a separated from each other, wherein each light emitting device 100 a includes at least one light emitting unit 110 a and the reflective protecting element 120 encapsulating the side surface 116 a of the light emitting unit 110 a and exposing the upper surface 112 a.
  • Finally, with reference to FIG. 10D, the substrate 10 is removed to expose a bottom surface 124 of the reflective protecting element 120 of each light emitting device 100 a, a first bottom surface 113 a of the first electrode pad 113 and a second bottom surface 115 a of the second electrode pad 115.
  • FIG. 11A to FIG. 11C are schematic cross-sectional views illustrating partial steps of a manufacturing method of a light emitting device according to another embodiment of the invention. The manufacturing method of the light emitting device of the present embodiment is similar to the manufacturing method of the light emitting device of FIG. 10A to FIG. 10D, and a main difference is that: between the steps of FIG. 10C and FIG. 10D, namely, after removing a part of the reflective protecting element 120′ and before performing the cutting process, with reference to FIG. 11A, an encapsulation adhesive layer 150 is formed on the light emitting unit 110 a and the reflective protecting element 120 to increase the light extraction rate and improve the light pattern. Here, the encapsulation adhesive layer 150 covers the upper surface 112 a of the light emitting unit 110 a and the top surface 122 of the reflective protecting element 120, and at least one wavelength converting material can be doped in the encapsulation adhesive layer 150. The relevant illustration of the wavelength converting material can be referred to the aforementioned embodiments. In addition, an oxide having high scattering ability, such as titanium dioxide (TiO2) or silicon dioxide (SiO2) may be doped in the encapsulation adhesive layer 150 to increase the light emitting efficiency.
  • Then, with reference to FIG. 11B, a light transmissible layer 160 is formed on the light emitting unit 110 a and the reflective protecting element 120, wherein the light transmissible layer 160 is located on the encapsulation adhesive layer 150 and covers the encapsulation adhesive layer 150. For example, a transmittance of the light transmissible layer 160 is greater than 50%. In the present embodiment, a material of the light transmissible layer 160 is glass, ceramics, resins, acrylic, silicone or etc., for example, for guiding the light generated by the light emitting unit 110 a to the outside to effectively increase a light flux and a light extraction rate of the light emitting device 100 g formed in the subsequent process and for effectively protecting the light emitting unit 110 a from influence of external moisture and oxygen.
  • Thereafter, with reference to FIG. 11C, a cutting process is performed to cut the light transmissible layer 160, the encapsulation adhesive layer 150, and the reflective protecting element 120 along a cutting line L so as to form a plurality of light emitting devices 100 g separated from each other. Finally, with reference to FIG. 11C, the substrate 10 is removed to expose a bottom surface 124 of the reflective protecting element 120 of each light emitting device 100 g, wherein the bottom surface 124 of the reflective protecting element 120 of each light emitting device 100 g exposes to a first bottom surface 113 a of the first electrode pad 113 and a second bottom surface 115 a of the second electrode pad 115. In another embodiment, the cutting process can be performed after removing the another substrate 10.
  • FIG. 12A to FIG. 12E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention. First, with reference to FIG. 12A, the manufacturing method of the light emitting device of the present embodiment is similar to the manufacturing method of the light emitting device of FIG. 10A to FIG. 10D, and a main difference is that: with reference to FIG. 12A, the light emitting unit 110 a of the present embodiment is not contact with the substrate 10 through the first electrode pad 113 and the second electrode pad 115, but through the upper surface 112 a.
  • Then, with reference to FIG. 12B, a reflective protecting element 120′ is formed on the substrate 10, wherein the protecting element encapsulates each light emitting unit 110 a.
  • Next, with reference to FIG. 12C, a part of the reflective protecting element 120′ is removed to form a reflective protecting element 120, wherein the reflective protecting element 120 exposes a first bottom surface 113 a of the first electrode pad 113 and a second bottom surface 115 a of the second electrode pad 115 of each light emitting unit 110 a.
  • Then, with reference to FIG. 12D, a patterned metal layer is formed as an extension electrode layer E which is located on the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode pad 115 of each light emitting unit 110 a. Here, a method of forming the extension electrode layer E is a vapor deposition method, a sputtering method, a plating method, a chemical plating method or a mask etching method, for example.
  • Thereafter, with reference to FIG. 12E, a cutting process is performed to cut the extension electrode layer E and the reflective protecting element 120 along a cutting line so as to form a plurality of light emitting device 100 d separated from each other, wherein each light emitting device 100 d includes at least one light emitting unit 110 a, the reflective protecting element 120 at least encapsulating the side surface 116 a of the light emitting unit 110 a, a first extension electrode 130 d in direct contact with the first electrode pad 113, and a second extension electrode 140 d in direct contact with the second electrode pad 115. The first extension electrode 130 d and the second extension electrode 140 d are separated from each other and expose a part of the bottom surface 124 of the reflective protecting element 120. At the moment, the area of the first extension electrode 130 d can be larger than the area of the first electrode pad 113 and the area of the second extension electrode 140 d is larger than the area of the second electrode pad 115. An edge of the first extension electrode 130 d and an edge of the second extension electrode 140 d are aligned with an edge of the reflective protecting element 120.
  • Finally, with reference to FIG. 12E, the substrate 10 is removed to expose the top surface 122 of the reflective protecting element 120 and the upper surface 112 a of the light emitting unit 110 a of each light emitting device 100 d, wherein the top surface 122 of the reflective protecting element 120 of each light emitting device 100 d is aligned with the upper surface 112 a of the light emitting unit 110 a. In another embodiment, the cutting process can be performed after removing the another substrate 10.
  • FIG. 13A to FIG. 13D are schematic cross-sectional views illustrating partial steps of a manufacturing method of a light emitting device according to another embodiment of the invention. The manufacturing method of the light emitting device of the present embodiment is similar to the manufacturing method of the light emitting device of FIG. 12A to FIG. 12E, and a main difference is that: between the steps of FIG. 12D and FIG. 12E, namely, after forming the extension electrode layer E and before performing the cutting process, with reference to FIG. 13A, another substrate 20 is provided and disposed on extension electrode layer E. Here, a material of the another substrate 20 is stainless steel, ceramics, or other non-conductive materials, for example.
  • Then, with reference to FIG. 13A again, after providing another substrate 20, the substrate 10 is removed to expose the top surface 122 of the reflective protecting element 120 and the upper surface 112 a of the light emitting unit 110 a, wherein the upper surface 112 a of each light emitting unit 110 a is aligned with the top surface 122 of the reflective protecting element 120.
  • Next, with reference to FIG. 13B, an encapsulation adhesive layer 150 is formed on the light emitting unit 110 a and the reflective protecting element 120 to increase the light extraction rate and improve the light pattern. Here, the encapsulation adhesive layer 150 covers the upper surface 112 a of the light emitting unit 110 a and the top surface 122 of the reflective protecting element 120, and at least one wavelength converting material can be doped in the encapsulation adhesive layer 150. The relevant illustration of the wavelength converting material can be referred to the aforementioned embodiments. In addition, an oxide having high scattering ability, such as titanium dioxide (TiO2) or silicon dioxide (SiO2) may be doped in the encapsulation adhesive layer 150 to increase the light emitting efficiency.
  • Then, with reference to FIG. 13C, a light transmissible layer 160 is formed on the light emitting unit 110 a and the reflective protecting element 120, wherein the light transmissible layer 160 is located on the encapsulation adhesive layer 150 and covers the encapsulation adhesive layer 150. For example, a transmittance of the light transmissible layer 160 is greater than 50%. Here, a material of the light transmissible layer 160 is glass, ceramics, resins acrylic, silicone or etc, for example, for guiding the light generated by the light emitting unit 110 a to the outside to effectively increase a light flux and a light extraction rate of the light emitting device 100 i formed in the subsequent process and for effectively protecting the light emitting unit 110 a from influence of external moisture and oxygen.
  • Thereafter, with reference to FIG. 13D, a cutting process is performed to cut the light transmissible layer 160, the encapsulation adhesive layer 150, the reflective protecting element 120 and extension electrode layer E along a cutting line L so as to form a plurality of light emitting devices 100 i separated from each other. Finally, with reference to FIG. 13D, the another rigid substrate 20 is removed to expose the first extension electrode 130 d and the second extension electrode 140 d of each light emitting device 100. In another embodiment, the cutting process can be performed after removing the another substrate 20.
  • FIG. 14A to FIG. 14E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention. Please refer to FIG. 14A first, a wavelength conversion layer 170 is provided, wherein the wavelength conversion layer 170 includes a low concentration fluorescent layer 174 and a high concentration fluorescent layer 172 located on the low concentration fluorescent layer 174. Here, the steps of forming the wavelength conversion layer 170 is, for example, forming the wavelength conversion resin layer 170 by ways of mixing dopant and resin (i.e. evenly mixing the resin in liquid state or in molten with the wavelength conversion material, the wavelength conversion material is, for example, fluorescent powder but not limited thereto) first, then placing the wavelength conversion resin layer 170 for a period of time, for example, 24 hours for sedimentation, and the high concentration fluorescent resin layer 172 and the low concentration fluorescent resin layer 174 which are separated in a form of upper and lower layers. That is, the wavelength conversion resin layer 170 is taking two-layered resin layer for example. Then two-layered wavelength conversion layer 170 of present embodiment is formed after curing. Certainly, in another embodiment, with reference to FIG. 14A′, a wavelength conversion layer 170′ is provided, wherein the wavelength conversion layer 170′ is a single layer.
  • Then, with reference to FIG. 14B, a plurality of light emitting units 110 c arranged at intervals are disposed on the wavelength conversion layer 170, wherein each light emitting unit 110 c has an upper surface 112 c and a lower surface 114 c opposite to each other, a side surface 116 c connecting the upper surface 112 c and the lower surface 114 c, and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114 c and separated from each other, and the upper surface 112 c of the light emitting unit 110 c is located on the high concentration fluorescent layer 172 of the wavelength conversion layer 170. After that, a plurality of adhesive layers 150 c having a material containing transparent resin are formed on the wavelength conversion layer 170 and extending on a side surface 116 c of the light emitting unit 110 c, wherein the adhesive layers 150 c are not completely covered the side surface 116 c of the light emitting units 110 c, but as shown in FIG. 14B, the adhesive layer 150 c has a inclined surface having a curvature, and the closer to the light emitting unit 110 c, the thicker of the adhesive layer 150 c. Here, the purpose of setting the adhesive layers 150 c is fixing the position of the light emitting units 110 c.
  • It must be noted that, in other embodiment, with reference to FIG. 14B′, an uncured adhesive layer 150 c′ having a material containing transparent resin may be also formed on the wavelength conversion layer 170 before disposing the light emitting units 110 c arranged at intervals on the wavelength conversion layer 170. And the adhesive layer 150 c′ may extends to be disposed between the light emitting unit 110 c and the high concentration fluorescent layer 172 after disposing the light emitting units 110 c arranged at intervals on the wavelength conversion layer 170.
  • Thereafter, with reference to FIGS. 14B and 14C, a first cutting process is performed to cut the wavelength conversion layer 170 so as to form a plurality of units 101 separated from each other after curing the adhesive layers 150 c, wherein each unit 101 includes at least one light emitting unit 110 c and the wavelength conversion layer 170 disposed on the upper surface 112 c of the light emitting unit 110 c, and a side surface 171 of the wavelength conversion layer 170 of each unit 101 extends outside the side surface 116 c of the light emitting unit 110 c. Then, with reference to FIG. 14C, the units 101 arranged at intervals are disposed on a substrate 10. In the present embodiment, a material of the rigid substrate 10 is stainless steel, ceramics, or other non-conductive materials but not limited thereto. In another embodiment, a first cutting process cutting the wavelength conversion layer 170 is performed before disposing the light emitting units 110 c on the wavelength conversion layer 170. A patterned wavelength conversion layer 170 is formed after cutting process, and the light emitting units 110 c are disposed on the patterned wavelength conversion layer 170.
  • Then, with reference to FIG. 14D, a reflective protecting element 120 c is formed on the substrate 10, and the reflective protecting element 120 c encapsulates the side surface 116 c of the light emitting unit 110 c of each unit 101 and the side surface 171 of the wavelength conversion layer 170. Here, the way of forming the reflective protecting element 120 c is, for example, performing by dripping, wherein the reflective protecting element 120 c directly encapsulates adhesive layer 150 c and extends to encapsulate the side surface 171 of the wavelength conversion layer 170 along the adhesive layer 150 c. The reflective protecting element 120 c is not over the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 c. Here, the reflective protecting element 120 c is, for example, a white resin layer.
  • Finally, with reference to both FIG. 14D and FIG. 14E, a second cutting process is performed to cut the reflective protecting element 120 c and remove the substrate 10 so as to form a plurality of light emitting devices 100 j separated from each other. Each light emitting device 100 j includes at least one light emitting unit 110 c and the reflective protecting element 120 c encapsulating the side surface 116 c of the light emitting unit 110 c and the side surface 171 of the wavelength conversion layer 170. a top surface 122 c of the reflective protecting element 120 c of each light emitting device 100 j and a top surface 173 of the wavelength conversion layer 170 are exposed after removing the substrate 10. In another embodiment, the cutting process may be performed after removing the substrate 10. So far, the light emitting device 100 j is completely manufactured.
  • With reference to FIG. 14E, on the structure, the light emitting device 100 j of the present embodiment includes the light emitting unit 110 c, the reflective protecting element 120 c, the adhesive layer 150 c and the wavelength conversion layer 170. The wavelength conversion layer 170 is disposed on the upper surface 112 c of the light emitting unit 110 c, wherein the wavelength conversion layer 170 includes the low concentration fluorescent layer 174 and the high concentration fluorescent layer 172, the high concentration fluorescent layer 172 is located between the low concentration fluorescent layer 174 and the light emitting unit 110 c, and the side surface 171 of the wavelength conversion layer 170 extends outside the side surface 116 c of the light emitting unit 110 c. Here, the low concentration fluorescent layer 174 can be used for a transparent protective layer so as to increase paths for water vapor transmission and effectively prevent the infiltration of water vapor. The adhesive layer 150 c is disposed between the side surface 116 c of the light emitting unit 110 c and the reflective protecting element 120 c so as to fix the position of the light emitting unit 110 c. The reflective protecting element 120 c encapsulates along the adhesive layer 150 c of the side surface 116 c of the light emitting unit 110 c, and further encapsulates the side surface 171 of the wavelength conversion layer 170, therefore, the light emitting device 100 j of the present embodiment not only does not require a conventional carrying support to support and fix the light emitting unit 110 c, may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit 110 c may also be effectively increased through the reflective protecting element 120 having high reflectivity. Here, in particular, the top surface 122 c of the reflective protecting element 120 c is aligned with the top surface 173 of the wavelength conversion layer 170.
  • FIG. 14F to FIG. 14G are schematic cross-sectional views illustrating a part of a manufacturing method of a light emitting device according to another embodiment of the invention. Please refer to FIG. 14F first, the manufacturing method of the light emitting device includes, for example, a part of the manufacturing method of the light emitting device illustrated in FIG. 14A to FIG. 14C. Besides, a reflective protecting element 120 c′ is formed on the substrate 10, and the reflective protecting element 120 c′ encapsulates the side surface 116 c of the light emitting unit 110 c of each unit 101 and the side surface 171 of the wavelength conversion layer 170 to form a device similar with that in FIG. 14E. However, the difference of the reflective protecting element 120 c′ and the reflective protecting element 120 c is that a surface of the reflective protecting element 120 c′ away from the substrate 10 has a recess with respect to the lower surface 114 c of the light emitting unit 110 c. Please refer to both FIG. 14F and
  • FIG. 14G, a second cutting process is performed to cut the reflective protecting element 120 c′ and remove the substrate 10 so as to form a plurality of light emitting devices 100 j′ separated from each other. the reflective protecting element 120 c′ of the light emitting devices 100 j′. Particularly, since the surface of the reflective protecting element 120 c′ away from the substrate 10 has the recess with respect to the lower surface 114 c of the light emitting unit 110 c in the manufacturing method of the light emitting device according to the embodiment of the invention, the reflective protecting element 120 c′ is not easy to being overflowed to cover the lower surface 114 c and affect the contact of the first electrode pad 113 and the second electrode pad 115.
  • FIG. 15A to FIG. 15E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention. Please refer to FIG. 15A first, a first release film 30 is provided, then, a wavelength conversion layer 170 a is provided on the first release film 30, the wavelength conversion layer 170 a may be a single layer or a multi-layer, in present embodiment, the wavelength conversion layer 170 a includes a low concentration fluorescent layer 174 a and a high concentration fluorescent layer 172 a located on the low concentration fluorescent layer 174 a. Here, the steps of forming the wavelength conversion layer 170 a is, for example, forming the wavelength conversion layer 170 a by ways of mixing dopant and resin first, then placing the wavelength conversion resin layer 170 a for a period of time, for example, 24 hours, and the low concentration fluorescent resin layer 174 a and the high concentration fluorescent resin layer 172 a separated from each other are formed. Then two-layered wavelength conversion layer 170 a of present embodiment is formed after curing. Here, the first release film is, for example, a double-sided adhesive film.
  • Then, with reference to FIG. 15A, a plurality of light emitting units 110 c arranged at intervals are disposed on the wavelength conversion layer 170 a, wherein each light emitting unit 110 c has an upper surface 112 c and a lower surface 114 c opposite to each other, a side surface 116 c connecting the upper surface 112 c and the lower surface 114 c, and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114 c and separated from each other, and the upper surface 112 c of the light emitting unit 110 c is located on the high concentration fluorescent layer 172 a of the wavelength conversion layer 170 a. Here, two adjacent light emitting units 110 c have a gap G therebetween, and the gap G is, for example, 700 micrometers. After that, a plurality of adhesive layers 150 c are formed on the side surface 116 c of the light emitting units 110 c, wherein the adhesive layers 150 c are not completely covered the side surface 116 c of the light emitting units 110 c, but as shown in FIG. 15B, the adhesive layer 150 c has an inclined surface having a curvature, and the closer to the light emitting unit 110 c, the thicker of the adhesive layer 150 c. Here, the purpose of setting the adhesive layers 150 c is fixing the position of the light emitting unit 110 c. The adhesive layers 150 c may be also formed on the wavelength conversion layer 170 a before disposing the light emitting units 110 c on the wavelength conversion layer 170 a.
  • Then, with reference to FIG. 15B, a first cutting process is performed to cut the high concentration fluorescent layer 172 a and a portion of the low concentration fluorescent layer 174 a so as to form a plurality of trenches C. With reference to FIG. 15B, the wavelength conversion layer 170 a is not completely cut in the first cutting process, only the high concentration fluorescent layer 172 a is completely cut and a portion of the low concentration fluorescent layer 174 a is cut in the first cutting process. Here, a width W of the trench C is, for example, 400 micrometers, and a depth D of the trench C is, for example, a half of a thickness T of the wavelength conversion layer 170 a. The thickness T of the wavelength conversion resin layer 170 a is, for example, 140 micrometers, and the depth D of the trench C is, for example, 70 micrometers. At this time, the position of the trench C and the position of the adhesive layer 150 c do not interfere with each other. In another embodiment, a first cutting process cutting the high concentration fluorescent layer 172 a and a portion of the low concentration fluorescent layer 174 a is performed before disposing the light emitting units 110 c on the wavelength conversion layer 170 a. A patterned wavelength conversion layer 170 a is formed after cutting process, and the light emitting units 110 c are disposed on the patterned wavelength conversion layer 170 a.
  • Then, with reference to FIG. 15C, a reflective protecting element 120 d is formed on the low concentration fluorescent layer 174 a, and the reflective protecting element 120 d encapsulates the side surface 116 c of the light emitting units 110 c, wherein the reflective protecting element 120 d completely fills in the trench C and exposes the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 c. Here, the reflective protecting element 120 d is, for example, a white resin layer.
  • Finally, with reference to FIG. 15D and FIG. 15E, the first release layer 30 is removed, and a second release layer 40 is provided so that the first electrode pad 113 and the second electrode pad 115 of the light emitting unit 110 c attach on the second release layer 40. Here, the second release layer 40 is, for example, an ultraviolet adhesive or a double-sided adhesive. Thereafter, a second cutting process is performed to cut the reflective protecting element 120 d and the low concentration fluorescent layer 174 a along an extending direction of the trench C (i.e. the extending direction of a cutting line L in FIG. 15D) so as to form a plurality of light emitting devices 100 k separated from each other. Each light emitting device 100 k includes at least one light emitting unit 110 c, the wavelength conversion layer 170 a disposing on the upper surface 112 a of the light emitting unit 110 c and the reflective protecting element 120 d encapsulating the side surface 116 c of the light emitting unit 110 c respectively. In present embodiment, the wavelength conversion layer 170 a includes the high concentration fluorescent layer 172 a and the low concentration fluorescent layer 174 a, here, the side surface 171 a of the low concentration fluorescent layer 174 a of the wavelength conversion layer 170 a is aligned with the side surface 121 of the reflective protecting element 120 d, and the reflective protecting element 120 d further encapsulates the side surface 173 a of the high concentration fluorescent layer 172 a. The second release layer 40 is removed, and the light emitting device 100 k is completely manufactured.
  • With reference to FIG. 15E, on the structure, the light emitting device 100 k of the present embodiment includes the light emitting unit 110 c, the reflective protecting element 120 d, the adhesive layer 150 c and the wavelength conversion layer 170 a. The wavelength conversion resin layer 170 a is disposed on the upper surface 112 c of the light emitting unit 110 c, wherein the wavelength conversion layer 170 a includes the low concentration fluorescent layer 174 a and the high concentration fluorescent layer 172 a.
  • The high concentration fluorescent layer 172 a is located between the low concentration fluorescent layer 174 a and the light emitting unit 110 c, and the side surface 171 a of the wavelength conversion layer 170 a extends outside the side surface 116 c of the light emitting unit 110 c. Here, the low concentration fluorescent layer 174 may be used for a transparent protective layer so as to increase paths for water vapor transmission and effectively prevent the infiltration of water vapor. The adhesive layer 150 c is disposed between the side surface 116 c of the light emitting unit 110 c and the reflective protecting element 120 d so as to fix the position of the light emitting units 110 c. The reflective protecting element 120 d of the present embodiment encapsulates along the adhesive layer 150 c located on the side surface 116 c of the light emitting unit 110 c, and further encapsulates the side surface 173 a of two sides of the high concentration fluorescent layer 172 a of the wavelength conversion layer 170 a. Therefore, the light emitting device 100 k of the present embodiment not only does not require a conventional carrying support to support and fix the light emitting unit 110 c, may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit 110 c may also be effectively increased through the reflective protecting element 120 d having high reflectivity. Besides, the low concentration fluorescent layer 174 a of the wavelength conversion layer 170 a of the present embodiment encapsulates a top surface 122 d of the reflective protecting element 120 d. That is, the side surface 173 a of the high concentration fluorescent layer 172 a of the wavelength conversion layer 170 a is not aligned with the side surface 171 a of the low concentration fluorescent layer 174 a.
  • In other embodiments, with reference to FIG. 16A, the light emitting device 100 m of the present embodiment and the light emitting device 100 j in FIG. 14E are similar. The main difference between the two lies in: the reflective protecting element 120 m of the present embodiment completely fills in the gap S between the first electrode pad 113 and the second electrode pad 115 and completely encapsulates a first side surface 113 b of the first electrode pad 113 and a second side surface 115 b of the second electrode pad 115. Besides, a bottom surface 124 m of the reflective protecting element 120 m is aligned with the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode pad 115. In this way, the light leakage in the bottom portion of the light emitting device 100 m can be avoided. Besides, the reflective protecting element 120 m completely encapsulates the surface of two sides of the wavelength conversion layer 170 a. Furthermore, since the reflective protecting element 120 m has a great encapsulating performance and a preferred structural strength, therefore, the light emitting device 100 m of the present embodiment not only does not require a conventional carrying support to support and fix the light emitting unit 110 c, may effectively lower the thickness and manufacturing cost of the package.
  • Otherwise, with reference to FIG. 16B, the light emitting device 100 n of the present embodiment and the light emitting device 100 k in FIG. 16A are similar. The main difference between the two lies in: the reflective protecting element 120 n of the present embodiment fills in the gap S between the first electrode pad 113 and the second electrode pad 115 but the reflective protecting element 120 n does not completely fill therein, and the reflective protecting element 120 n only encapsulates a portion of the first side surface 113 b of the first electrode pad 113 and a portion of the second side surface 115 b of the second electrode pad 115. In other words, a bottom surface 124 n of the reflective protecting element 120 n and the first bottom surface 113 a of the first electrode pad 113 have a height difference H therebetween, and the bottom surface 124 n of the reflective protecting element 120 n and the second bottom surface 115 a of the second electrode pad 115 have the same height difference H therebetween. Besides, with reference to FIG. 16C, the light emitting device 100 p of the present embodiment and the light emitting device 100 n in FIG. 16B are similar. The main difference between the two lies in: In particular, the first electrode pad 113′ and the second electrode pad 115′ of the present embodiment are multilayered metal layer, for example, composed by a first metal layer M1 and a second metal layer M2 but not limited thereto. The reflective protecting element 120 p completely encapsulates a side surface of the first metal layer M1 of the first electrode pad 113′ and the second electrode pad 115′, but the reflective protecting element 120 p does not completely encapsulate a side surface of the second metal layer M2 of the first electrode pad 113′ and the second electrode pad 115′. Briefly, the first electrode pad 113 and 113′ and the second electrode pad 115 and 115′ of the light emitting device 100 m, 100 n and 100 p may be a single layered metal layer or a multilayered metal layer but not limited thereto.
  • FIG. 17A to FIG. 17E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention. In a manufacturing method of a light emitting device of the present embodiment, with reference to FIG. 17A first, a wavelength conversion layer 210 is provided, and the wavelength conversion layer 210 may be a single layer or a multi-layer. In present embodiment, the wavelength conversion layer 210 includes a low concentration fluorescent layer 212 and a high concentration fluorescent layer 214 located on the low concentration fluorescent layer 212. Here, the steps of forming the wavelength conversion layer 210 is, for example, evenly mixing the fluorescent powder (not shown) and the resin (not shown) first. Then, laying the wavelength conversion resin layer on a release film (not shown), and placing the wavelength conversion resin layer for a period of time, for example, 24 hours, after that, the wavelength conversion resin layer 210 having a low concentration fluorescent resin layer 212 and a high concentration fluorescent resin layer 214 separated from each other is formed because of the density difference between the fluorescent powder and the resin. The high concentration fluorescent resin layer 214 will precipitate below the low concentration fluorescent resin layer 212, and the color of the high concentration fluorescent resin layer 214 is, for example, yellow, the low concentration fluorescent resin layer 212 is, for example, having a transparent property. Then wavelength conversion layer 210 of present embodiment is formed after curing. Preferably, a thickness of the low concentration fluorescent resin layer 212 is larger than a thickness of the high concentration fluorescent resin layer 214, and in one embodiment, the thickness ratio may be between 1 to 200 but not limited thereto.
  • After that, please refer to FIG. 17A first, a double-sided adhesive film 10 a is provided, the low concentration fluorescent layer 212 of the wavelength conversion layer 210 is disposed on the double-sided adhesive film 10 a so as to fix the position of the wavelength conversion layer 210 through the double-sided adhesive film 10 a.
  • Then, a first cutting process is performed from the high concentration fluorescent layer 214 to a portion of the low concentration fluorescent layer 212 so as to form a plurality of trenches C1. After the first cutting process, a patterned wavelength conversion layer 210 is formed. Here, a depth of each trench C1 is at least a half of a thickness of the wavelength conversion resin layer 210. For example, the thickness of the wavelength conversion layer 10 is 240 micrometers, and the depth of the trench C1 is 200 micrometers. At this time, the trench C1 can distinguish the low concentration fluorescent layer 212 of the wavelength conversion layer 210 from a flat portion 212 a and a protruding portion 212 b located on the flat portion 212 a. The high concentration fluorescent layer 212 is located on the protruding portion 212 b.
  • Then, with reference to FIG. 17B, a plurality of light emitting units 220 are disposed on the wavelength conversion layer 210, wherein each light emitting unit 220 has an upper surface 222 and a lower surface 224 opposite to each other, a side surface 226 connecting the upper surface 222 and the lower surface 224, and a first electrode pad 223 and a second electrode pad 225 located on the lower surface 224 and separated from each other. The upper surface 222 of the light emitting unit 220 is located on the high concentration fluorescent layer 214 of the wavelength conversion layer 210 so as to increase the light extraction rate and improve the light pattern. The trenches C1 divides the light emitting units 220 into a plurality of units A, each unit A includes at least two light emitting units 220 in present embodiment (two light emitting units 220 are schematically illustrated in FIG. 17B). Each light emitting unit 220, for example, is an LED with a light emitting wavelength in a range of 315 nanometers to 780 nanometers, and the LED includes but not limited thereto an ultraviolet light LED, a blue light LED, a green light LED, a yellow light LED, an orange light LED or a red light LED.
  • After that, with reference to FIG. 17B, the adhesive layers 230 a is formed on the wavelength conversion layer 210 and extends to be disposed on the side surface 226 of the light emitting units 220. With reference to FIG. 17B, the adhesive layer 230 a is gradually thickening from the lower surface 224 of each light emitting unit 220 to the upper surface 222, and the adhesive layer 230 a has a concave surface 232 with respect to the side surface 226 of the light emitting 220 but not limited thereto. Here, the purpose of setting the adhesive layers 230 a is not only fixing the position of the light emitting units 220 but also improving the light extraction effect of the side surface of the chip since the adhesive layer 230 a is a light transmissible material and the index of refraction of the adhesive layer 230 a is greater than 1. The adhesive layers 230 a may be also formed on the wavelength conversion layer 210 before disposing the light emitting units 220 on the wavelength conversion layer 210.
  • Then, with reference to FIG. 17C, a reflective protecting element 240 is formed between the light emitting units 220, and the reflective protecting element 240 fills in the trenches C1, wherein the reflective protecting element 240 is formed on the wavelength conversion layer 210 and encapsulates each unit A, and the reflective protecting element 240 fills in the trenches C1. The reflective protecting element 240 exposes the lower surface 224, the first electrode pad 223 and the second electrode pad 225 of each light emitting unit 220. Here, the reflectivity of the reflective protecting element 240 is at least greater than 90%, and the reflective protecting element 240 is, for example, a white resin layer. The way of forming the reflective protecting element 240 is, for example, performing by dripping, wherein the reflective protecting element 240 directly encapsulates adhesive layer 230 a and extends to encapsulate the side surface of the high concentration fluorescent resin layer 214 along the adhesive layer 230 a, and the reflective protecting element 240 fills in the trenches C1. At this time, the reflective protecting element 240 is not over the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220.
  • After that, with reference to FIG. 17C, a second cutting process is performed from the reflective protecting element 240 and along the trench C1, and the low concentration fluorescent layer 212 is penetrated so that a plurality of light emitting device 200 a separated from each other is formed. At this time, with reference to FIG. 17C, the wavelength conversion layer 210 in contacted with two light emitting units 220 in each unit A is continuous, i.e. the light emitting units 220 have the same light emitting surface, therefore the light emitted from the light emitting units 220 can be guided through the transparent low concentration fluorescent layer 212, so that the light emitting device 200 a has preferred luminous uniformity.
  • Then, with reference to both FIG. 17C and FIG. 17D, a reverse process is performed after performing the second cutting process. An ultraviolet adhesive film 20 a on the first electrode pads 223 and the second electrode pads 225 of the light emitting units 220 is provided first so as to fix the relative position of the light emitting devices 200 a. Then, the double-sided adhesive film 10 a is removed and the low concentration fluorescent layer 212 of the wavelength conversion resin layer 210 is exposed. Finally, with reference to FIG. 17E, the ultraviolet adhesive film 20 a is removed so that the first electrode pads 223 and the second electrode pads 225 of the light emitting units 220 are exposed. So far, the light emitting device 200 a is completely manufactured. It should be noted that in order to facilitate explanation, only one light emitting device 200 a is schematically illustrated in FIG. 17E.
  • With reference to FIG. 17E, on the structure, the light emitting device 200 a includes a plurality of light emitting units 220 (two light emitting units 220 are schematically illustrated in FIG. 17E), a wavelength conversion layer 210 and a reflective protecting element 240. Each light emitting unit 220 has an upper surface 222 and a lower surface 224 opposite to each other, a side surface 226 connecting the upper surface 222 and the lower surface 224, and a first electrode pad 223 and a second electrode pad 225 separated from each other which are located on the lower surface 224 and. The wavelength conversion layer 210 is disposed on the upper surface 222 of the light emitting unit 220, and the wavelength conversion layer 210 includes a low concentration fluorescent layer 212 and a high concentration fluorescent layer 214. The low concentration fluorescent layer 212 has a flat portion 212 a and a protruding portion 212 b located on the flat portion 212 a. The high concentration fluorescent layer 214 is disposed between the upper surface 222 and the protruding portion 212 b, wherein the high concentration fluorescent layer 214 encapsulates the protruding portion 212 b and touches the upper surface 222 of light emitting unit 200. The light emitting units 220 are arranged at intervals and expose a portion of the wavelength conversion layer 210. The reflective protecting element 240 encapsulates the side surface 226 of each light emitting unit 220 and encapsulates the wavelength conversion resin layer 210 exposed by the light emitting unit 220. The reflective protecting element 240 exposes the lower surface 224, the first electrode pad 223 and the second electrode pad 225 of each light emitting unit 220. The side surface of the reflective protecting element 240 is aligned with the side surface of the flat portion 212 a of the low concentration fluorescent layer 212.
  • The light emitting units 220 of the light emitting device 200 a of the present embodiment only touch one wavelength conversion layer 210, that is, the light emitting units 220 have the same light emitting surface, and a side surface of the low concentration fluorescent layer 212 is aligned with a side surface of the reflective protecting element 240. Therefore, the light emitted from the light emitting units 220 can be guided through the low concentration fluorescent layer 212, so that the light emitting device 200 a of the present embodiment may have larger light emitting area and preferred luminous uniformity. Besides, the reflective protecting element 240 encapsulates the side surface 226 of the light emitting unit 220, and the reflective protecting element 240 exposes the first electrode pad 223 and the second electrode pad 225 of the light emitting unit 220. Therefore, the light emitting device 200 a of the present invention does not require a conventional carrying support to support and fix the light emitting unit 220, and may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit 220 can also be effectively increased.
  • It should be mentioned that the structural configuration of the adhesive layer 230 a of the present embodiment is not limited even though the adhesive layer 230 a illustrated in FIG. 17E has a concave surface 232 with respect to the side surface 226 of the light emitting 220 in particular. In other words, the reflective protecting element 240 further includes a reflective surface 242 in contact with the light emitting unit 220, and the reflective surface 242 is a curved surface in particular. However, in other embodiments, with reference to FIG. 18A, the light emitting device 200 b of the present embodiment and the light emitting device 200 a in FIG. 17E are similar. The main difference between the two lies in: the adhesive layer 230 b has a convex surface 234 with respect to the side surface 226 of each light emitting unit 220, therefore edge light emitted from the light emitting unit 220 occurring may be increased, and the light emitting area of the light emitting device 200 b may be also increased with the configuration of the wavelength conversion layer 210. In other words, the reflective surface 242 a of the reflective protecting element 240 a is a curved surface in particular. Otherwise, with reference to FIG. 18B, a light emitting device 200 c of the present embodiment and the light emitting device 200 a of FIG. 17E are similar. The main difference between the two lies in: the adhesive layer 230 c has an inclined surface 236 with respect to the side surface 226 of each light emitting unit 220. In other words, the reflective surface 242 b of the reflective protecting element 240 b is a flat surface in particular.
  • It should be noted here, the below embodiments utilize the same label and partial contents of the above embodiment, wherein the same labels are adopted to represent same or similar elements and the description of similar technical content is omitted.
  • FIG. 19A to FIG. 19E are schematic cross-sectional views illustrating a manufacturing method of a light emitting device according to another embodiment of the invention. The manufacturing method of the light emitting device 200 d of the present embodiment is similar to the manufacturing method of the light emitting device 200 a of FIG. 17A to FIG. 17E, and a main difference is that: with reference to FIG. 19A, a plurality of second trenches C2′ cut from the high concentration fluorescent layer 214′ to a portion of the low concentration fluorescent layer 212′ are further formed in performing the first cutting process. With reference to FIG. 19A, the position of the trenches C1′ and the position of the trenches C2′ are staggered arranged, wherein a depth of each trench C1′ is at least a half of a thickness of the wavelength conversion layer 210′, and a depth of each second trench C2′ is the same as the depth of each first trench C1′. For example, the thickness of the wavelength conversion layer 210′ is 240 micrometers, and the depth of the trench C1′ and the depth of the second trench C2′ are 200 micrometers but not limited thereto. At this time, the flat portion 212 a′ of the low concentration fluorescent layer 212′ has a thickness T, preferably, the thickness T is, for example, between 20 micrometers to 50 micrometers. At this time, the second trench C2′ can divide the protruding portion of the low concentration fluorescent layer 212′ of the wavelength conversion layer 210′ into two sub protruding portions 212 b′, and the high concentration fluorescent layer 214′ is located on the sub protruding portions 212 b′.
  • Then, with reference to FIG. 19B, the light emitting units 220 arranged at intervals are disposed on the wavelength conversion layer 210′, wherein the second trench C2′ is located between two light emitting units 220 of each unit A, the light emitting units 220 are disposed on the sub protruding portions 212 b′ respectively, and the upper surface 222 of the light emitting unit 220 directly touches the high concentration fluorescent layer 214′. Preferably, the ratio of the length of each sub protruding portion 212 b′ and the length of the corresponding light emitting unit 220 is larger than 1 and less than 1.35, that is, a side surface of the sub protruding portion 212 b′ of the low concentration fluorescent layer 212′ is outside the side surface of the light emitting unit 220, and a side surface of the high concentration fluorescent layer 214′ also extends outside the side surface of the light emitting unit 220 so that the light emitting area of the light emitting unit 220 may be effectively increased. After that, an adhesive layer 230 a on the side surface 226 of the light emitting unit 220 is formed, wherein the adhesive layer 230 a is merely disposed on the side surface 226 of the light emitting unit 220 and extends on the high concentration fluorescent layer 214′ of the wavelength conversion layer 210′, the adhesive layer 230 a does not extend to be disposed on the low concentration fluorescent layer 212′.
  • Then, the same as the abovementioned steps in FIG. 17C, FIG. 17D and FIG. 17E, with reference to FIG. 19C, the reflective protecting element 240 on the wavelength conversion layer 210′ is formed, and the reflective protecting element 240 encapsulates each unit A and fills in the trenches C1′ and the trenches C2′. After that, a second cutting process is performed from the reflective protecting element 240 and along the trench C1′, and the low concentration fluorescent layer 212′ is penetrated so that a plurality of light emitting devices 200 d separated from each other are formed.
  • Then, with reference to both FIG. 19C and FIG. 19D, a reverse process is performed after performing the second cutting process. An ultraviolet adhesive film 20 a on the first electrode pads 223 and the second electrode pads 225 of the light emitting units 220 is provided first so as to fix the relative position of the light emitting devices 200 a. Then, the double-sided adhesive film 10 a is removed and the low concentration fluorescent layer 212′ of the wavelength conversion layer 210′ is exposed. Finally, with reference to FIG. 19E, the ultraviolet adhesive film 20 a is removed so that the first electrode pads 223 and the second electrode pads 225 of the light emitting units 220 are exposed. So far, the light emitting device 200 d is completely manufactured. It should be noted that in order to facilitate explanation, only one light emitting device 200 d is schematically illustrated in FIG. 19E.
  • Please refer to both FIG. 19E, FIGS. 20A and 20B, it should be noted that FIG. 19E is a schematic cross-sectional view along line Y-Y of FIG. 20A. The light emitting device 200 d of the present embodiment is similar to the light emitting device 200 a of FIG. 17E, and a main difference is that: the wavelength conversion layer 210′ exposed by two light emitting units 220 further has the second trenches C2′, wherein the second trench C2′ extends from the high concentration fluorescent layer 214′ to a portion of the low concentration fluorescent layer 212′. That is, two light emitting units 220 are disposed on a continuous wavelength conversion layer 210′, therefore, the light emitting units 220 have the same light emitting surface, and the side surface of the low concentration fluorescent layer 212′ is aligned with the side surface of the reflective protecting element 240. Therefore, the light emitted from the light emitting unit 220 can be guided through the low concentration fluorescent layer 212′, so that the light emitting device 200 d of the present embodiment may have larger light emitting area and preferred luminous uniformity.
  • Especially, in the first cutting process, the cutting depth in the direction of line X-X in FIG. 20A is substantially the same as the cutting depth in the direction of line Y-Y in FIG. 20A. That is, with reference to the cross-sectional view along line X-X in FIG. 20B, the flat portion 212 a′ of the low concentration fluorescent layer 212′ has a thickness T. With reference to the cross-sectional view along line Y-Y in FIG. 19E, the flat portion 212 a′ of the low concentration fluorescent layer 212′ also has the same thickness T. Preferably, the thickness T is, for example, between 20 micrometers to 50 micrometers.
  • Certainly, in other embodiments, the flat portion 212 a′ of the low concentration fluorescent layer 212′ may also have different thicknesses when cutting from different directions in the first cutting process. FIG. 21A is schematic stereoscopic view illustrating a light emitting device according to another embodiment of the invention. FIG. 21B and FIG. 21C are schematic sectional views along the line X′-X′ and the Y′-Y′ of FIG. 21A respectively. With reference to both FIG. 21A, FIG. 21B and FIG. 21C, the cutting depth along the direction of line X′-X′ in FIG. 21A is different from the cutting depth along the direction of line Y′-Y′ in FIG. 21A in the first cutting process, so that the wavelength conversion layer 210′ further includes a first exposed side portion and a second exposed side portion which are not encapsulated by the reflective protecting element 240. The first exposed side portion is not parallel to the second exposed side portion, and the thickness of the wavelength conversion resin layer 210′ at the first exposed side portion is different from the thickness of the wavelength conversion resin layer 210′ at the second exposed side portion. In detail, the flat portion 212 a″ of the low concentration fluorescent layer 212″ has a first thickness T1 in the direction of line X′-X′, and the flat portion 212 a″ of the low concentration fluorescent layer 212″ has a second thickness T2 in the direction of line Y′-Y′. The first thickness T1 is different from the second thickness T2. Preferably, the first thickness T1 is, for example, between 50 micrometers to 200 micrometers, and the second thickness T2 is, for example, between 20 micrometers to 50 micrometers.
  • Since the flat portion 212 a″ of the low concentration fluorescent layer 212″ has the first thickness T1 and the second thickness T2 different from the first thickness T1 in the direction of line X′-X′ and the direction of line Y′-Y′ respectively, the brightness decrease caused by dark band between adjacent two light emitting units 220 may be effectively reduced so as to improve the luminous uniformity of the light emitting device 200 e. Otherwise, it is worth mentioning that, taking the direction of line X′-X′ for example, when the thickness T1 of the flat portion 212 a″ of the low concentration fluorescent layer 212″ is increased from 0.04 millimeters to 0.2 millimeters, the light emitting angle may also be increased from 120 degrees to 130 degrees, i.e. the light emitting angle may be increased by 10 degrees. Briefly, the thickness of the flat portion 212 a″ of the low concentration fluorescent layer 212″ and the light emitting angle of the light emitting unit 220 have a positive correlation.
  • In summary, the reflective protecting element of the invention encapsulates the side surface of the light emitting device, and the bottom surface of the reflective protecting element exposes the first bottom surface of the first electrode pad and the second bottom surface of the second electrode pad of the light emitting unit, therefore the light emitting device of the invention does not require a conventional carrying support to support and fix the light emitting unit, and may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit can also be effectively increased.
  • Besides, the light emitting units of the light emitting device in the invention only contact with one wavelength conversion layer, that is, the light emitting units have the same light emitting surface, and the side surface of the low concentration fluorescent layer is aligned with the side surface of the reflective protecting element, therefore, the light emitted from the light emitting unit can be guided through the low concentration fluorescent layer, so that the light emitting device in the invention may have larger light emitting angle and preferred luminous uniformity. Besides, the reflective protecting element encapsulates the side surface of the light emitting unit, and the reflective protecting element exposes the first electrode pad and the second electrode pad of the light emitting unit. Therefore, the light emitting device of the invention does not require a conventional carrying support to support and fix the light emitting unit, and may effectively lower the thickness and manufacturing cost of the package. At the same time, the forward light emitting efficiency of the light emitting unit can also be effectively increased.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims (20)

What is claimed is:
1. A light emitting device, comprising:
at least one light emitting unit having a light emitting body and electrode pads coupled thereto, wherein each of the electrode pads comprises a second metal layer and a first metal layer interposed between the light emitting body and the second metal layer;
a wavelength conversion layer comprising a high concentration fluorescent layer and a low concentration fluorescent layer disposed thereon;
an adhesive layer adhering the wavelength conversion layer to an upper surface of the light emitting body opposite to the electrode pads and encapsulating a portion of a lateral surface of the light emitting body, wherein the high concentration fluorescent layer faces to the upper surface of the light emitting body; and
a reflective layer, covering the light emitting body, the adhesive layer and the wavelength conversion layer to at least expose an upper surface of the low concentration fluorescent layer and side surfaces and lower surfaces of the second metal layer of the electrode pads, wherein a reflective surface of the reflective layer is inclined to the lateral surface of the light emitting body and reflects a light emitted from the light emitting body back into the high concentration fluorescent layer,
wherein the light emitting device has a flat lateral surface comprising the reflective layer and a portion of the low concentration fluorescent layer covering the reflective layer, and the adhesive layer further comprises a portion disposed directly between the high concentration fluorescent layer and the light emitting body.
2. The light emitting device as claimed in claim 1, wherein the reflective surface of the reflective layer comprises a convex surface or a concave surface.
3. The light emitting device as claimed in claim 1, wherein the lower surface of the reflective layer is not lower than a bottom surface of the light emitting body.
4. The light emitting device as claimed in claim 3, wherein the lower surface of the reflective layer is inclined to the lateral surface of the light emitting body and recessed upwardly.
5. The light emitting device as claimed in claim 1, wherein the lower surface of the reflective layer is inclined to the lateral surface of the light emitting body and recessed upwardly.
6. The light emitting device as claimed in claim 1, wherein the reflective layer further exposes the first metal layers of the electrode pads.
7. The light emitting device as claimed in claim 6, wherein a portion of the reflective layer is filled into a gap between the electrode pads.
8. The light emitting device as claimed in claim 6, wherein the lower surface of the reflective layer is inclined to the lateral surface of the light emitting body and recessed upwardly.
9. The light emitting device as claimed in claim 8, wherein a portion of the reflective layer is filled into a gap between the electrode pads.
10. The light emitting device as claimed in claim 1, wherein a portion of the reflective layer is filled into a gap between the electrode pads.
11. A light emitting device, comprising:
at least one light emitting unit having a light emitting body and electrode pads coupled thereto, wherein each of the electrode pads comprises a second metal layer and a first metal layer interposed between the light emitting body and the second metal layer;
a wavelength conversion layer comprising a high concentration fluorescent layer and a low concentration fluorescent layer disposed thereon;
an adhesive layer adhering the high concentration fluorescent layer to an upper surface of the light emitting body opposite to the electrode pads, wherein the adhesive layer encapsulates the upper surface and a portion of a lateral surface of the light emitting body; and
a reflective layer covering the light emitting body, the adhesive layer and the wavelength conversion layer to expose an upper surface of the low concentration fluorescent layer and be filled into a gap between the electrode pads, the second metal layers of the electrode pads protruding from a lower surface of the reflective layer, wherein a reflective surface of the reflective layer is inclined to the lateral surface of the light emitting body and reflects a light emitted from the light emitting body back into the high concentration fluorescent layer,
wherein the light emitting device has a flat lateral surface comprising the reflective layer and a portion of the low concentration fluorescent layer covering the reflective layer, and the lower surface of the reflective layer is inclined to the lateral surface of the light emitting body and recessed upwardly.
12. The light emitting device as claimed in claim 11, wherein the reflective surface of the reflective layer comprises a convex surface or a concave surface.
13. The light emitting device as claimed in claim 11, wherein the lower surface of the reflective layer is not lower than a bottom surface of the light emitting body.
14. The light emitting device as claimed in claim 11, wherein the reflective layer further exposes the first metal layers of the electrode pads.
15. A light emitting device, comprising:
at least one light emitting unit having a light emitting body and electrode pads coupled thereto, wherein each of the electrode pads comprises a second metal layer and a first metal layer interposed between the light emitting body and the second metal layer;
a wavelength conversion layer disposed on the light emitting body;
an adhesive layer adhering the wavelength conversion layer to an upper surface of the light emitting body opposite to the electrode pads, wherein the adhesive layer encapsulates the upper surface and a portion of a lateral surface of the light emitting body; and
a reflective layer covering the light emitting body, the adhesive layer and the wavelength conversion layer to expose an upper surface of the wavelength conversion layer and be filled into a gap between the electrode pads, the second metal layers of the electrode pads protruding from a lower surface of the reflective layer, wherein a curved reflective surface of the reflective layer is inclined to the lateral surface of the light emitting body and reflects a light emitted from the light emitting body back into the wavelength conversion layer,
wherein the light emitting device has a flat lateral surface comprising the reflective layer and a portion of the wavelength conversion layer covering the reflective layer, and the lower surface of the reflective layer is inclined to the lateral surface of the light emitting body and recessed upwardly.
16. The light emitting device as claimed in claim 15, wherein the curved reflective surface of the reflective layer comprises a convex surface or a concave surface.
17. The light emitting device as claimed in claim 15, wherein the lower surface of the reflective layer is not lower than a bottom surface of the light emitting body.
18. The light emitting device as claimed in claim 15, wherein the reflective layer further exposes the first metal layers of the electrode pads.
19. The light emitting device as claimed in claim 15, wherein the wavelength conversion layer comprises a high concentration fluorescent layer and a low concentration fluorescent layer disposed thereon.
20. The light emitting device as claimed in claim 15, wherein the second metal layer comprises silver, gold, bismuth, tin, indium or an alloy thereof.
US17/164,725 2014-05-14 2021-02-01 Light emitting device Abandoned US20210159369A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/164,725 US20210159369A1 (en) 2014-05-14 2021-02-01 Light emitting device
US17/848,408 US20230006109A1 (en) 2014-05-14 2022-06-24 Light emitting device and manufacturing method thereof

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
TW103116987 2014-05-14
TW103116987 2014-05-14
US201562157450P 2015-05-05 2015-05-05
US14/711,798 US20150333227A1 (en) 2014-05-14 2015-05-14 Light emitting device package structure and manufacturing method thereof
US201562220249P 2015-09-18 2015-09-18
US201562236150P 2015-10-02 2015-10-02
US201562245247P 2015-10-22 2015-10-22
US201562262876P 2015-12-03 2015-12-03
TW105100499 2016-01-08
TW105100499 2016-01-08
CN201610293182.5A CN106129231B (en) 2015-05-05 2016-05-05 Light emitting device and preparation method thereof
CN201610293182.5 2016-05-05
US15/268,654 US9997676B2 (en) 2014-05-14 2016-09-19 Light emitting device and manufacturing method thereof
US16/004,445 US10910523B2 (en) 2014-05-14 2018-06-11 Light emitting device
US17/164,725 US20210159369A1 (en) 2014-05-14 2021-02-01 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/004,445 Continuation US10910523B2 (en) 2014-05-14 2018-06-11 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/848,408 Continuation-In-Part US20230006109A1 (en) 2014-05-14 2022-06-24 Light emitting device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
US20210159369A1 true US20210159369A1 (en) 2021-05-27

Family

ID=57684018

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/268,654 Active US9997676B2 (en) 2014-05-14 2016-09-19 Light emitting device and manufacturing method thereof
US16/004,445 Active US10910523B2 (en) 2014-05-14 2018-06-11 Light emitting device
US17/164,725 Abandoned US20210159369A1 (en) 2014-05-14 2021-02-01 Light emitting device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/268,654 Active US9997676B2 (en) 2014-05-14 2016-09-19 Light emitting device and manufacturing method thereof
US16/004,445 Active US10910523B2 (en) 2014-05-14 2018-06-11 Light emitting device

Country Status (1)

Country Link
US (3) US9997676B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557952B (en) 2014-06-12 2016-11-11 新世紀光電股份有限公司 Light emitting component
JP6447557B2 (en) * 2016-03-24 2019-01-09 日亜化学工業株式会社 Method for manufacturing light emitting device
CN107689409B (en) * 2016-08-03 2019-09-20 展晶科技(深圳)有限公司 Light emitting diode
DE102016121099A1 (en) * 2016-11-04 2018-05-09 Osram Opto Semiconductors Gmbh PREPARATION OF RADIATION-EMITTING SEMICONDUCTOR COMPONENTS
DE102016124873B4 (en) * 2016-12-19 2023-09-21 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung White light source and method for producing a white light source
CN108231974B (en) 2016-12-21 2022-09-02 日亚化学工业株式会社 Method for manufacturing light emitting device
US10784423B2 (en) 2017-11-05 2020-09-22 Genesis Photonics Inc. Light emitting device
US10854780B2 (en) 2017-11-05 2020-12-01 Genesis Photonics Inc. Light emitting apparatus and manufacturing method thereof
US10290790B1 (en) * 2018-01-31 2019-05-14 Huizhou China Star Optoelectronics Technology Co., Ltd. High thermal conductivity quantum dot light emitting diode
US10505082B2 (en) * 2018-02-06 2019-12-10 Huizhou China Star Optoelectronics Technology Co., Ltd. Quantum dot light emitting diode and manufacturing method
US10381531B1 (en) * 2018-02-06 2019-08-13 Huizhou China Star Optoelectronics Technology Co., Ltd. Quantum dot LED and manufacturing method for the same
JP6760321B2 (en) 2018-03-20 2020-09-23 日亜化学工業株式会社 Light emitting device and manufacturing method of light emitting device
JP6848997B2 (en) * 2018-04-11 2021-03-24 日亜化学工業株式会社 Light emitting device
DE102018110506A1 (en) * 2018-05-02 2019-11-07 Osram Opto Semiconductors Gmbh OPTOELECTRONIC COMPONENT, CONVERSION ELEMENT, METHOD FOR MANUFACTURING A VARIETY OF CONVERSION ELEMENTS AND METHOD FOR PRODUCING AN OPTOELECTRONIC COMPONENT
CN108807303B (en) * 2018-05-17 2020-07-24 江苏如高第三代半导体产业研究院有限公司 Single-side light-emitting wafer-level Chip Scale Package (CSP) packaging structure and preparation method thereof
JP6825608B2 (en) * 2018-08-16 2021-02-03 日亜化学工業株式会社 Manufacturing method of light emitting module
JP6959548B2 (en) * 2018-10-04 2021-11-02 日亜化学工業株式会社 Light emitting device and its manufacturing method
CN111463193B (en) 2019-01-21 2021-11-12 光宝光电(常州)有限公司 Chip-level light-emitting diode packaging structure
TWI814842B (en) * 2019-06-17 2023-09-11 大陸商蘇州鐸力斯科技有限公司 White light emitting diode and backlight module and display device comprising the same
US11536892B2 (en) * 2019-12-20 2022-12-27 Nichia Corporation Method for manufacturing light-emitting module
US11612965B2 (en) 2020-03-27 2023-03-28 Integrated Silicon Solution Inc. Method of forming package structure
TWI780503B (en) * 2020-10-22 2022-10-11 欣興電子股份有限公司 Light-emitting package and method of manufacturing the same
JP7328557B2 (en) 2020-11-30 2023-08-17 日亜化学工業株式会社 Light source, light source device, and light source manufacturing method
JP7328568B2 (en) 2021-06-30 2023-08-17 日亜化学工業株式会社 Light source, light source device, and light source manufacturing method

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813753A (en) 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
US6155699A (en) 1999-03-15 2000-12-05 Agilent Technologies, Inc. Efficient phosphor-conversion led structure
JP3866058B2 (en) 2001-07-05 2007-01-10 シャープ株式会社 Semiconductor device, wiring board and tape carrier
EP1416219B1 (en) 2001-08-09 2016-06-22 Everlight Electronics Co., Ltd Led illuminator and card type led illuminating light source
KR100447867B1 (en) 2001-10-05 2004-09-08 삼성전자주식회사 Semiconductor package
US6952079B2 (en) 2002-12-18 2005-10-04 General Electric Company Luminaire for light extraction from a flat light source
JP3716252B2 (en) 2002-12-26 2005-11-16 ローム株式会社 Light emitting device and lighting device
US20040159900A1 (en) 2003-01-27 2004-08-19 3M Innovative Properties Company Phosphor based light sources having front illumination
TWI226708B (en) 2003-06-16 2005-01-11 Han Shin Company Ltd Omnidirectional one-dimensional photonic crystal and light emitting device made from the same
US9142740B2 (en) 2003-07-04 2015-09-22 Epistar Corporation Optoelectronic element and manufacturing method thereof
TWI220076B (en) 2003-08-27 2004-08-01 Au Optronics Corp Light-emitting device
JP4516337B2 (en) 2004-03-25 2010-08-04 シチズン電子株式会社 Semiconductor light emitting device
JP4996463B2 (en) 2004-06-30 2012-08-08 クリー インコーポレイテッド Chip scale method for packaging light emitting device and light emitting device packaged on chip scale
JP4747726B2 (en) 2004-09-09 2011-08-17 豊田合成株式会社 Light emitting device
JP4667803B2 (en) 2004-09-14 2011-04-13 日亜化学工業株式会社 Light emitting device
WO2006080530A1 (en) 2005-01-31 2006-08-03 Toppan Printing Co., Ltd. Optical sheet, and backlight unit and display using the same
US9018655B2 (en) 2005-02-03 2015-04-28 Epistar Corporation Light emitting apparatus and manufacture method thereof
TWI244228B (en) 2005-02-03 2005-11-21 United Epitaxy Co Ltd Light emitting device and manufacture method thereof
US7382091B2 (en) 2005-07-27 2008-06-03 Lung-Chien Chen White light emitting diode using phosphor excitation
KR100640496B1 (en) 2005-11-23 2006-11-01 삼성전기주식회사 Vertically structured gan type led device
US8080828B2 (en) 2006-06-09 2011-12-20 Philips Lumileds Lighting Company, Llc Low profile side emitting LED with window layer and phosphor layer
TWI309480B (en) 2006-07-24 2009-05-01 Everlight Electronics Co Ltd Led packaging structure
US20080049445A1 (en) 2006-08-25 2008-02-28 Philips Lumileds Lighting Company, Llc Backlight Using High-Powered Corner LED
US7889421B2 (en) 2006-11-17 2011-02-15 Rensselaer Polytechnic Institute High-power white LEDs and manufacturing method thereof
KR101319209B1 (en) 2006-11-24 2013-10-16 엘지디스플레이 주식회사 Backlight unit of liquid crystal display device
US8252615B2 (en) 2006-12-22 2012-08-28 Stats Chippac Ltd. Integrated circuit package system employing mold flash prevention technology
WO2008104103A1 (en) 2007-03-01 2008-09-04 Tsungwen Chan Method for manufacturing a plurality of smd leds and structure thereof
TW200841089A (en) 2007-04-09 2008-10-16 Chu-Liang Cheng Light source module and liquid crystal display
US7810956B2 (en) 2007-08-23 2010-10-12 Koninklijke Philips Electronics N.V. Light source including reflective wavelength-converting layer
US8552444B2 (en) 2007-11-19 2013-10-08 Panasonic Corporation Semiconductor light-emitting device and manufacturing method of the same
US9024340B2 (en) 2007-11-29 2015-05-05 Nichia Corporation Light emitting apparatus and method for producing the same
JP5235405B2 (en) 2007-12-28 2013-07-10 三洋電機株式会社 Nonaqueous electrolyte secondary battery
GB0801509D0 (en) 2008-01-28 2008-03-05 Photonstar Led Ltd Light emitting system with optically transparent thermally conductive element
KR20100127286A (en) 2008-03-21 2010-12-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. A luminous device
JP2009245981A (en) 2008-03-28 2009-10-22 Toyota Central R&D Labs Inc Led light-emitting device
US8461613B2 (en) 2008-05-27 2013-06-11 Interlight Optotech Corporation Light emitting device
TWI416755B (en) 2008-05-30 2013-11-21 Epistar Corp Light source module, related light bar and related liquid crystal display
US7888691B2 (en) 2008-08-29 2011-02-15 Koninklijke Philips Electronics N.V. Light source including a wavelength-converted semiconductor light emitting device and a filter
US7973327B2 (en) 2008-09-02 2011-07-05 Bridgelux, Inc. Phosphor-converted LED
US7825427B2 (en) 2008-09-12 2010-11-02 Bridgelux, Inc. Method and apparatus for generating phosphor film with textured surface
JP5170765B2 (en) 2008-09-22 2013-03-27 日東電工株式会社 Thermosetting composition and optical semiconductor device
US7928655B2 (en) 2008-11-10 2011-04-19 Visera Technologies Company Limited Light-emitting diode device and method for fabricating the same
CN101515621B (en) 2009-02-19 2011-03-30 旭丽电子(广州)有限公司 LED chip, manufacturing method and encapsulating method
CN101834236B (en) 2009-03-11 2013-02-13 晶元光电股份有限公司 Luminescent device
JP5903039B2 (en) 2009-03-19 2016-04-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Color adjustment device
US8317384B2 (en) 2009-04-10 2012-11-27 Intellectual Discovery Co., Ltd. Light guide film with cut lines, and optical keypad using such film
JP5482378B2 (en) 2009-04-20 2014-05-07 日亜化学工業株式会社 Light emitting device
WO2010134331A1 (en) 2009-05-22 2010-11-25 Panasonic Corporation Semiconductor light-emitting device and light source device using the same
US8097894B2 (en) 2009-07-23 2012-01-17 Koninklijke Philips Electronics N.V. LED with molded reflective sidewall coating
US20110031516A1 (en) 2009-08-07 2011-02-10 Koninklijke Philips Electronics N.V. Led with silicone layer and laminated remote phosphor layer
TWI403003B (en) 2009-10-02 2013-07-21 Chi Mei Lighting Tech Corp Light-emitting diode and method for manufacturing the same
JP2011114093A (en) 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Lighting system
TWI414088B (en) 2009-12-16 2013-11-01 Epistar Corp Light-emitting device and the manufacturing method thereof
DE112011100376T5 (en) 2010-01-29 2012-11-29 Citizen Electronics Co., Ltd. METHOD FOR PRODUCING A LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE
RU2525325C2 (en) 2010-02-09 2014-08-10 Нития Корпорейшн Light-emitting device and method to manufacture light-emitting device
US8771577B2 (en) 2010-02-16 2014-07-08 Koninklijke Philips N.V. Light emitting device with molded wavelength converting layer
US9039216B2 (en) 2010-04-01 2015-05-26 Lg Innotek Co., Ltd. Light emitting device package and light unit having the same
EP2378576A2 (en) 2010-04-15 2011-10-19 Samsung LED Co., Ltd. Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package
JP5390472B2 (en) 2010-06-03 2014-01-15 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP5414627B2 (en) 2010-06-07 2014-02-12 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP5759790B2 (en) 2010-06-07 2015-08-05 株式会社東芝 Manufacturing method of semiconductor light emitting device
JP5572013B2 (en) 2010-06-16 2014-08-13 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP5566785B2 (en) 2010-06-22 2014-08-06 日東電工株式会社 Composite sheet
CN102315354B (en) 2010-06-29 2013-11-06 展晶科技(深圳)有限公司 Packaging structure of light emitting diode
JP5486431B2 (en) 2010-07-27 2014-05-07 日東電工株式会社 LIGHT EMITTING DEVICE COMPONENT, LIGHT EMITTING DEVICE, AND ITS MANUFACTURING METHOD
JP2012033823A (en) 2010-08-02 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
US20120061700A1 (en) 2010-09-09 2012-03-15 Andreas Eder Method and system for providing a reliable light emitting diode semiconductor device
CN102412344A (en) 2010-09-23 2012-04-11 展晶科技(深圳)有限公司 Light emitting diode (LED) packaging method
TW201218428A (en) 2010-10-25 2012-05-01 Hon Hai Prec Ind Co Ltd Light emitting diode package structure
KR20120050282A (en) 2010-11-10 2012-05-18 삼성엘이디 주식회사 Light emitting device package and method of manufacturing the same
CN201910421U (en) 2010-12-01 2011-07-27 宝创科技股份有限公司 Planar structure for LED (light-emitting diode) device
KR20120072962A (en) 2010-12-24 2012-07-04 삼성엘이디 주식회사 Light emitting device package and method of manufacturing the same
KR20120082190A (en) 2011-01-13 2012-07-23 삼성엘이디 주식회사 Light emitting device package
US8581287B2 (en) 2011-01-24 2013-11-12 Stanley Electric Co., Ltd. Semiconductor light emitting device having a reflective material, wavelength converting layer and optical plate with rough and plane surface regions, and method of manufacturing
JP5647028B2 (en) 2011-02-14 2014-12-24 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
TWI525858B (en) 2011-02-15 2016-03-11 Light emitting diode package structure
CN102683514B (en) 2011-03-06 2017-07-14 维亚甘有限公司 LED package and manufacture method
KR20120106568A (en) 2011-03-18 2012-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and manufacturing method thereof
US8899767B2 (en) 2011-03-31 2014-12-02 Xicato, Inc. Grid structure on a transmissive layer of an LED-based illumination module
US20120261689A1 (en) 2011-04-13 2012-10-18 Bernd Karl Appelt Semiconductor device packages and related methods
JP5670249B2 (en) 2011-04-14 2015-02-18 日東電工株式会社 Light emitting element transfer sheet manufacturing method, light emitting device manufacturing method, light emitting element transfer sheet, and light emitting device
JP5745319B2 (en) 2011-04-14 2015-07-08 日東電工株式会社 Fluorescent reflection sheet and method for manufacturing light emitting diode device
CN103534822A (en) 2011-04-20 2014-01-22 株式会社Elm Light emitting device and method for manufacturing same
JP5680472B2 (en) 2011-04-22 2015-03-04 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
CN102760822B (en) 2011-04-27 2015-02-04 展晶科技(深圳)有限公司 Light-emitting diode encapsulation structure and manufacturing method thereof
EP3544067B1 (en) 2011-05-16 2020-09-09 Nichia Corporation Light diode emitting device and method for manufacturing the same
DE102011050450A1 (en) 2011-05-18 2012-11-22 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip, optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
TW201248725A (en) * 2011-05-31 2012-12-01 Aceplux Optotech Inc Epitaxial substrate with transparent cone, LED, and manufacturing method thereof.
JP5840388B2 (en) 2011-06-01 2016-01-06 日東電工株式会社 Light emitting diode device
JP2013016588A (en) 2011-07-01 2013-01-24 Citizen Electronics Co Ltd Led light-emitting device
JP2013021175A (en) 2011-07-12 2013-01-31 Toshiba Corp Semiconductor light-emitting element
JP5848562B2 (en) 2011-09-21 2016-01-27 シチズン電子株式会社 Semiconductor light emitting device and manufacturing method thereof.
US9318646B2 (en) 2011-10-07 2016-04-19 Konica Minolta, Inc. LED device manufacturing method and fluorescent material-dispersed solution used in same
JP5893888B2 (en) 2011-10-13 2016-03-23 シチズン電子株式会社 Semiconductor light emitting device
US20130094177A1 (en) 2011-10-13 2013-04-18 Intematix Corporation Wavelength conversion component with improved thermal conductive characteristics for remote wavelength conversion
TW201318221A (en) 2011-10-26 2013-05-01 Episil Technologies Inc Silicon submount for light emitting diode and method of forming the same
TW201320412A (en) 2011-11-14 2013-05-16 Evergreen Optronics Inc Light emitting diode package
KR101905535B1 (en) 2011-11-16 2018-10-10 엘지이노텍 주식회사 Light emitting device and light apparatus having thereof
TW201324736A (en) 2011-12-08 2013-06-16 Genesis Photonics Inc Light emitting device
TW201327926A (en) 2011-12-30 2013-07-01 Ind Tech Res Inst Light conversion structure and the light emitting device packaging structure using the same
JP5956167B2 (en) 2012-01-23 2016-07-27 スタンレー電気株式会社 LIGHT EMITTING DEVICE, VEHICLE LIGHT, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
KR101957700B1 (en) 2012-02-01 2019-03-14 삼성전자주식회사 Ligt Emitting Device
US8946747B2 (en) 2012-02-13 2015-02-03 Cree, Inc. Lighting device including multiple encapsulant material layers
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
TWI545701B (en) 2012-02-21 2016-08-11 隆達電子股份有限公司 Electronic unit base and electronic module and electronic device using the same
US9735198B2 (en) 2012-03-30 2017-08-15 Cree, Inc. Substrate based light emitter devices, components, and related methods
TWI495056B (en) 2012-04-24 2015-08-01 Genesis Photonics Inc Substrate structure
JP5816127B2 (en) 2012-04-27 2015-11-18 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
CN103515520B (en) 2012-06-29 2016-03-23 展晶科技(深圳)有限公司 Package structure for LED and manufacture method thereof
US20140009060A1 (en) 2012-06-29 2014-01-09 Nitto Denko Corporation Phosphor layer-covered led, producing method thereof, and led device
CN103531669B (en) 2012-07-05 2016-09-07 北京时代浩鼎科技股份有限公司 The manufacture method of package structure for LED
US10535798B2 (en) 2012-07-18 2020-01-14 Semicon Light Co., Ltd. Semiconductor light emitting device comprising finger electrodes
US9287475B2 (en) 2012-07-20 2016-03-15 Cree, Inc. Solid state lighting component package with reflective polymer matrix layer
DE102012107290A1 (en) 2012-08-08 2014-02-13 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device, conversion agent platelets and method of making a conversion agent platelet
US9356070B2 (en) 2012-08-15 2016-05-31 Epistar Corporation Light-emitting device
JP6099901B2 (en) 2012-08-23 2017-03-22 スタンレー電気株式会社 Light emitting device
JP6149487B2 (en) 2012-11-09 2017-06-21 日亜化学工業株式会社 LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
JP2014112669A (en) 2012-11-12 2014-06-19 Citizen Holdings Co Ltd Semiconductor light-emitting device and manufacturing method of the same
CN103855142B (en) 2012-12-04 2017-12-29 东芝照明技术株式会社 Light-emitting device and lighting device
CN103855270A (en) 2012-12-07 2014-06-11 展晶科技(深圳)有限公司 Light-emitting device and manufacturing method thereof
US9490398B2 (en) 2012-12-10 2016-11-08 Citizen Holdings Co., Ltd. Manufacturing method of light emitting device in a flip-chip configuration with reduced package size
TWM453969U (en) 2012-12-26 2013-05-21 Genesis Photonics Inc Light emitting device
KR20140094752A (en) 2013-01-22 2014-07-31 삼성전자주식회사 An electronic device package and a packaging substrate for the same
CN103137571A (en) 2013-01-22 2013-06-05 日月光半导体制造股份有限公司 Semiconductor encapsulation structure and manufacturing method thereof
JP5819335B2 (en) 2013-02-18 2015-11-24 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP2014170902A (en) * 2013-03-05 2014-09-18 Toshiba Corp Semiconductor light-emitting device and manufacturing method of the same
FR3003403B1 (en) 2013-03-14 2016-11-04 Commissariat Energie Atomique METHOD FOR FORMING LIGHT EMITTING DIODES
CN103199183B (en) 2013-04-08 2016-01-27 厦门市三安光电科技有限公司 A kind of encapsulating structure improving vertical LED chip brightness
TWI540766B (en) 2013-07-10 2016-07-01 隆達電子股份有限公司 Light emitting diode package structure
CN104347610B (en) 2013-07-23 2017-06-20 深圳市瑞丰光电子股份有限公司 Embedded LED device and preparation method thereof and luminaire
TW201507209A (en) 2013-08-01 2015-02-16 Genesis Photonics Inc Light emitting diode package structure and manufacturing method thereof
CN104425671A (en) 2013-08-21 2015-03-18 展晶科技(深圳)有限公司 Method for manufacturing light emitting diode
KR20150042362A (en) 2013-10-10 2015-04-21 삼성전자주식회사 Light emitting diode package and method of manufacturing the same
TWI533478B (en) 2013-10-14 2016-05-11 新世紀光電股份有限公司 Flip chip light emitting diode package structure
TWI520383B (en) 2013-10-14 2016-02-01 新世紀光電股份有限公司 Light emitting diode package structure
CN103531725A (en) 2013-10-16 2014-01-22 上海和辉光电有限公司 Electroluminescent component and packaging method thereof
JP6182050B2 (en) * 2013-10-28 2017-08-16 株式会社東芝 Semiconductor light emitting device
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
KR102075993B1 (en) * 2013-12-23 2020-02-11 삼성전자주식회사 Method of Fabricating White LED Devices
JP6244906B2 (en) 2013-12-27 2017-12-13 日亜化学工業株式会社 Semiconductor light emitting device
TWI542047B (en) 2014-01-13 2016-07-11 邱羅利士公司 Manufacturing method of light emitting diode package structure
KR101584201B1 (en) * 2014-01-13 2016-01-13 삼성전자주식회사 Semiconductor light emitting device
JP2015173142A (en) 2014-03-11 2015-10-01 株式会社東芝 semiconductor light-emitting device
US20150280078A1 (en) 2014-03-31 2015-10-01 SemiLEDs Optoelectronics Co., Ltd. White flip chip light emitting diode (fc led) and fabrication method
TWI557955B (en) 2014-04-23 2016-11-11 光寶光電(常州)有限公司 Led carrier and manufacturing method thereof
CN203910851U (en) 2014-05-23 2014-10-29 晶科电子(广州)有限公司 White light LED chip
TWI557952B (en) 2014-06-12 2016-11-11 新世紀光電股份有限公司 Light emitting component
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
TWI532221B (en) 2014-07-14 2016-05-01 新世紀光電股份有限公司 Light emitting unit and light emitting module
CN104253194A (en) 2014-09-18 2014-12-31 易美芯光(北京)科技有限公司 Structure and method for packaging of chip-size white LED (light emitting diode)
US20160181476A1 (en) 2014-12-17 2016-06-23 Apple Inc. Micro led with dielectric side mirror
US20160190406A1 (en) 2014-12-24 2016-06-30 Epistar Corporation Light-emitting device and manufacturing method thereof
CN106549092A (en) 2015-09-18 2017-03-29 新世纪光电股份有限公司 Light emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
US20170005238A1 (en) 2017-01-05
US10910523B2 (en) 2021-02-02
US20180294388A1 (en) 2018-10-11
US9997676B2 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
US20210159369A1 (en) Light emitting device
US20180151781A1 (en) Light emitting device package structure and manufacturing method thereof
US10804444B2 (en) Light-emitting device and manufacturing method thereof
TWI766841B (en) Light emitting device and method of manufacturing the same
EP3188263B1 (en) Light-emitting device
TWI495164B (en) Light emitting device
CN110767793A (en) Light emitting device and method for manufacturing the same
JP6299176B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE EQUIPPED WITH THE LIGHT EMITTING DEVICE
JP6213582B2 (en) Light emitting device
CN107968141B (en) Light emitting device and method for manufacturing the same
US11043615B2 (en) Light-emitting device having a dielectric multilayer film arranged on the side surface of the light-emitting element
JP6955135B2 (en) Light emitting device and its manufacturing method
JP2015195294A (en) Method of manufacturing light emitting device
US11069843B2 (en) Light-emitting device
US20170288095A1 (en) Light-emitting device
TWI769337B (en) Light emitting device
TWI717347B (en) Manufacturing method of light emitting device
KR102634692B1 (en) Semiconductor light emitting device package
TWI710146B (en) Light emitting device package structure
JP2010147040A (en) Semiconductor light emitting device and method of manufacturing same
TW202221391A (en) Light emitting device, backlight, and display panel
JP2015111626A (en) Light-emitting device and method of manufacturing the same
TWI786500B (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION