TWI717347B - Manufacturing method of light emitting device - Google Patents

Manufacturing method of light emitting device Download PDF

Info

Publication number
TWI717347B
TWI717347B TW105114037A TW105114037A TWI717347B TW I717347 B TWI717347 B TW I717347B TW 105114037 A TW105114037 A TW 105114037A TW 105114037 A TW105114037 A TW 105114037A TW I717347 B TWI717347 B TW I717347B
Authority
TW
Taiwan
Prior art keywords
light
wavelength conversion
layer
emitting
emitting device
Prior art date
Application number
TW105114037A
Other languages
Chinese (zh)
Other versions
TW201703286A (en
Inventor
洪政暐
洪欽華
杜隆琦
張瑞夫
郭柏村
李皓鈞
林育鋒
Original Assignee
新世紀光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新世紀光電股份有限公司 filed Critical 新世紀光電股份有限公司
Publication of TW201703286A publication Critical patent/TW201703286A/en
Application granted granted Critical
Publication of TWI717347B publication Critical patent/TWI717347B/en

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

A light emitting device includes a wavelength conversion layer, at least one light emitting unit and a reflective protecting element. The wavelength conversion layer has an upper surface and a lower surface opposite to each other. The light emitting unit has two electrode pads located on the same side of the light emitting unit. The light emitting unit is disposed on the upper surface of the wavelength conversion layer and exposes the two electrode pads. The reflective protecting element encapsulates at least a portion of the light emitting unit and a portion of the wavelength conversion layer, and exposes the two electrode pads of the light emitting unit.

Description

發光裝置的製作方法 Manufacturing method of light emitting device

本發明是有關於一種發光裝置及其製作方法,且特別是有關於一種以發光二極體作為光源的發光裝置及其製作方法。 The present invention relates to a light-emitting device and a manufacturing method thereof, and more particularly to a light-emitting device using a light-emitting diode as a light source and a manufacturing method thereof.

一般來說,發光二極體封裝結構通常是將發光二極體晶片配置於由陶瓷材料或金屬材料所形成之凹杯型態的承載基座上,以固定及支撐發光二極體晶片。之後,再使用封裝膠體來包覆發光二極體晶片,而完成發光二極體封裝結構的製作。此時,發光二極體晶片的電極是位於承載基座的上方並位於凹杯內。然而,凹杯型態的承載基座具有一定的厚度,而使得發光二極體封裝結構的厚度無法有效降低,因而使發光二極體封裝結構無法滿足現今薄型化的需求。 Generally speaking, the light-emitting diode package structure usually disposes the light-emitting diode chip on a concave cup-shaped carrier base formed of ceramic or metal material to fix and support the light-emitting diode chip. After that, the encapsulant is used to cover the light-emitting diode chip to complete the manufacture of the light-emitting diode package structure. At this time, the electrode of the light-emitting diode chip is located above the supporting base and in the concave cup. However, the concave-cup type supporting base has a certain thickness, so that the thickness of the light-emitting diode package structure cannot be effectively reduced, so that the light-emitting diode package structure cannot meet the current thinning demand.

本發明提供一種發光裝置,其無需採用習知的承載支 架,可具有較薄的封裝厚度且符合薄型化的需求。 The present invention provides a light-emitting device, which does not require the use of conventional bearing supports The frame can have a thinner package thickness and meet the requirements of thinning.

本發明提供一種發光裝置的製作方法,用以製作上述的發光裝置。 The present invention provides a method for manufacturing a light-emitting device for manufacturing the above-mentioned light-emitting device.

本發明的發光裝置,其包括一波長轉換層、至少一發光單元及一反射保護件。波長轉換層具有彼此相對的一上表面與一下表面。發光單元具有二電極墊,且二電極墊位於發光單元的同一側。發光單元配置於波長轉換層的上表面上並露出二電極墊。反射保護件包覆至少部分發光單元及部分波長轉換層,且暴露出發光單元的二電極墊。 The light-emitting device of the present invention includes a wavelength conversion layer, at least one light-emitting unit and a reflection protection member. The wavelength conversion layer has an upper surface and a lower surface opposite to each other. The light-emitting unit has two electrode pads, and the two electrode pads are located on the same side of the light-emitting unit. The light-emitting unit is arranged on the upper surface of the wavelength conversion layer and the two electrode pads are exposed. The reflective protection member covers at least part of the light-emitting unit and part of the wavelength conversion layer, and exposes the two electrode pads of the light-emitting unit.

在本發明的一實施例中,上述的發光裝置更包括:一透光層,配置於波長轉換層上且位於發光單元與反射保護件之間。 In an embodiment of the present invention, the above-mentioned light-emitting device further includes: a light-transmitting layer disposed on the wavelength conversion layer and located between the light-emitting unit and the reflective protection member.

在本發明的一實施例中,上述的透光層更配置於波長轉換層與發光單元之間。 In an embodiment of the present invention, the aforementioned light-transmitting layer is further disposed between the wavelength conversion layer and the light-emitting unit.

在本發明的一實施例中,上述的反射保護件更包含一與發光單元接觸的反射面。 In an embodiment of the present invention, the above-mentioned reflective protection member further includes a reflective surface in contact with the light-emitting unit.

在本發明的一實施例中,上述的反射保護件的反射面為一平面或一曲面。 In an embodiment of the present invention, the reflective surface of the above-mentioned reflective protection member is a flat surface or a curved surface.

在本發明的一實施例中,上述的反射保護件更完全包覆波長轉換層的一側面。 In an embodiment of the present invention, the above-mentioned reflection protection member more completely covers one side of the wavelength conversion layer.

在本發明的一實施例中,上述的反射保護件的一底面與波長轉換層的下表面形成一平面。 In an embodiment of the present invention, a bottom surface of the above-mentioned reflection protection member and a bottom surface of the wavelength conversion layer form a plane.

在本發明的一實施例中,上述的反射保護件更至少包覆 部分波長轉換層的一側面。 In an embodiment of the present invention, the above-mentioned reflective protection member further covers at least Part of one side of the wavelength conversion layer.

在本發明的一實施例中,上述的未被反射保護件包覆的部分波長轉換層的側面與反射保護件的一側面形成發光裝置的一側平面。 In an embodiment of the present invention, the side surface of the part of the wavelength conversion layer that is not covered by the reflection protection member and one side surface of the reflection protection member form a side plane of the light emitting device.

在本發明的一實施例中,上述的波長轉換層更包括未被反射保護件包覆的一第一暴露側部與一第二暴露側部。第一暴露側部與第二暴露側部不平行,且波長轉換層於第一暴露側部處的厚度不同於波長轉換層於第二暴露側部處的厚度。 In an embodiment of the present invention, the aforementioned wavelength conversion layer further includes a first exposed side portion and a second exposed side portion that are not covered by the reflective protection member. The first exposed side and the second exposed side are not parallel, and the thickness of the wavelength conversion layer at the first exposed side is different from the thickness of the wavelength conversion layer at the second exposed side.

在本發明的一實施例中,上述的波長轉換層更包括一低濃度螢光層以及一高濃度螢光層,高濃度螢光層位於低濃度螢光層與發光單元之間。 In an embodiment of the present invention, the aforementioned wavelength conversion layer further includes a low-concentration phosphor layer and a high-concentration phosphor layer, and the high-concentration phosphor layer is located between the low-concentration phosphor layer and the light-emitting unit.

在本發明的一實施例中,上述的反射保護件填充於二電極墊之間的一間隙。 In an embodiment of the present invention, the above-mentioned reflective protection member fills a gap between the two electrode pads.

在本發明的一實施例中,上述的反射保護件完全填滿二電極墊之間的間隙且反射保護件的一表面切齊於二電極墊的一表面。 In an embodiment of the present invention, the above-mentioned reflection protection member completely fills the gap between the two electrode pads and a surface of the reflection protection member is cut to a surface of the two electrode pads.

在本發明的一實施例中,上述的至少一發光單元為多個發光單元,波長轉換層具有至少一溝槽,位於二發光單元之間。 In an embodiment of the present invention, the aforementioned at least one light-emitting unit is a plurality of light-emitting units, and the wavelength conversion layer has at least one groove located between the two light-emitting units.

本發明的發光裝置的製作方法,其包括以下步驟。提供一波長轉換層;將多個間隔排列的發光單元配置於波長轉換層上,並暴露出每一發光單元的二電極墊;在波長轉換層上形成多個溝槽,其中溝槽位於發光單元之間;形成一反射保護件於波長 轉換層上以及發光單元間並填滿溝槽,其中反射保護件暴露出發光單元的電極墊;以及沿著溝槽進行一切割程序,以形成多個發光裝置。 The manufacturing method of the light-emitting device of the present invention includes the following steps. A wavelength conversion layer is provided; a plurality of light emitting units arranged at intervals are arranged on the wavelength conversion layer and the two electrode pads of each light emitting unit are exposed; a plurality of grooves are formed on the wavelength conversion layer, wherein the grooves are located in the light emitting unit Between; forming a reflection protection at the wavelength The conversion layer and between the light-emitting units are filled with grooves, wherein the reflective protection member exposes the electrode pads of the light-emitting units; and a cutting process is performed along the grooves to form a plurality of light-emitting devices.

在本發明的一實施例中,上述的每一溝槽的深度至少為波長轉換層的厚度的一半。 In an embodiment of the present invention, the depth of each of the aforementioned trenches is at least half of the thickness of the wavelength conversion layer.

在本發明的一實施例中,上述的發光裝置的製作方法,更包括:將間隔排列的發光單元配置於波長轉換層上之後,形成一透光層於波長轉換層上。 In an embodiment of the present invention, the manufacturing method of the above-mentioned light-emitting device further includes: after arranging the spaced light-emitting units on the wavelength conversion layer, forming a light-transmitting layer on the wavelength conversion layer.

在本發明的一實施例中,上述的發光裝置的製作方法,更包括:將間隔排列的發光單元配置於波長轉換層上之前,形成一透光層於波長轉換層上。 In an embodiment of the present invention, the above-mentioned method for manufacturing the light-emitting device further includes: before arranging the spaced light-emitting units on the wavelength conversion layer, forming a light-transmitting layer on the wavelength conversion layer.

在本發明的一實施例中,上述的反射保護件更包含一與發光單元接觸的反射面。 In an embodiment of the present invention, the above-mentioned reflective protection member further includes a reflective surface in contact with the light-emitting unit.

在本發明的一實施例中,上述的反射保護件的反射面為一平面或一曲面。 In an embodiment of the present invention, the reflective surface of the above-mentioned reflective protection member is a flat surface or a curved surface.

在本發明的一實施例中,上述的波長轉換層更包括一低濃度螢光層以及一高濃度螢光層,發光單元配置於高濃度螢光層上。 In an embodiment of the present invention, the aforementioned wavelength conversion layer further includes a low-concentration phosphor layer and a high-concentration phosphor layer, and the light-emitting unit is disposed on the high-concentration phosphor layer.

基於上述,由於本發明的反射保護件包覆發光單元的側表面,且反射保護件的底面切齊於發光單元的第一電極墊的第一底面以及第二電極墊的第二底面。因此,本發明的發光裝置不但不需要使用習知的承載支架來支撐及固定發光單元,而可有效較 少封裝厚度以及製作成本,同時,亦可有效提高發光單元的正向出光效率。 Based on the foregoing, the reflective protection member of the present invention covers the side surface of the light emitting unit, and the bottom surface of the reflective protection member is aligned with the first bottom surface of the first electrode pad and the second bottom surface of the second electrode pad of the light emitting unit. Therefore, the light-emitting device of the present invention not only does not need to use the conventional supporting bracket to support and fix the light-emitting unit, but can effectively compare The package thickness and manufacturing cost are reduced, and at the same time, the forward light extraction efficiency of the light emitting unit can be effectively improved.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

10:基板 10: substrate

10a:雙面膠膜 10a: Double-sided adhesive film

20:另一基板 20: Another substrate

20a:UV膠膜 20a: UV film

30:第一離型膜 30: The first release film

40:第二離型膜 40: second release film

100a、100b、100c、100d、100e、100f、100g、100h、100i、100j、100k、100m、100n、100p、200a、200b、200c、200d:發光裝置 100a, 100b, 100c, 100d, 100e, 100f, 100g, 100h, 100i, 100j, 100k, 100m, 100n, 100p, 200a, 200b, 200c, 200d: light emitting device

101:單元 101: unit

110a、110b、110c、110c’、220:發光單元 110a, 110b, 110c, 110c’, 220: light-emitting unit

112a、112b、112c、222:上表面 112a, 112b, 112c, 222: upper surface

113、113’、223:第一電極墊 113, 113’, 223: first electrode pad

113a:第一底面 113a: first bottom surface

113b:第一側表面 113b: first side surface

114a、114b、114c、224:下表面 114a, 114b, 114c, 224: lower surface

115、115’、225:第二電極墊 115, 115’, 225: second electrode pad

115a:第二底面 115a: second bottom surface

115b:第二側表面 115b: second side surface

116a、116b、116c:側表面 116a, 116b, 116c: side surface

120、120’、120c、120d、120m、120n、120p、240、240a、240b:反射保護件 120, 120’, 120c, 120d, 120m, 120n, 120p, 240, 240a, 240b: reflective protection

121:邊緣 121: Edge

122、122c、122d:頂面 122, 122c, 122d: top surface

124、124m、124n:底面 124, 124m, 124n: bottom surface

130d、130c:第一延伸電極 130d, 130c: first extension electrode

140d、140c:第二延伸電極 140d, 140c: second extension electrode

150:封裝膠層 150: Encapsulation adhesive layer

150c、150c’、230a、230b、230c:透光膠層 150c, 150c’, 230a, 230b, 230c: transparent adhesive layer

160、160’:透光層 160, 160’: Translucent layer

170、170’、170a、210、210’:波長轉換膠層 170, 170’, 170a, 210, 210’: wavelength conversion adhesive layer

171、171a:側邊緣 171, 171a: side edges

172、172a、214、214’:高濃度螢光膠層 172, 172a, 214, 214’: high concentration fluorescent glue layer

173:頂面 173: top surface

173a:邊緣 173a: Edge

174、174a、212、212’、212”:低濃度螢光膠層 174, 174a, 212, 212’, 212": low concentration fluorescent glue layer

212a、212a’、212a”:平板部 212a, 212a’, 212a": flat part

212b:突出部 212b: protrusion

212b’:突出子部 212b’: Protruding sub-part

226:側表面 226: side surface

232:內凹表面 232: concave surface

234:外凸表面 234: convex surface

236:傾斜表面 236: Inclined Surface

242、242a、242b:反射面 242, 242a, 242b: reflective surface

A:單元 A: Unit

C:溝槽 C: groove

C1、C1’:溝槽 C1, C1’: groove

C2’:第二溝槽 C2’: Second groove

D:深度 D: depth

E:延伸電極層 E: Extension electrode layer

G:間距 G: Spacing

H:高度差 H: height difference

L:切割線 L: cutting line

M1:第一金屬層 M1: The first metal layer

M2:第二金屬層 M2: second metal layer

S:間隙 S: gap

T:厚度 T: thickness

T1:第一厚度 T1: first thickness

T2:第二厚度 T2: second thickness

W:寬度 W: width

X-X、X’-X’、Y-Y、Y’-Y’:線 X-X, X’-X’, Y-Y, Y’-Y’: Line

圖1繪示為本發明的一實施例的一種發光裝置的示意圖。 FIG. 1 is a schematic diagram of a light-emitting device according to an embodiment of the invention.

圖2繪示為本發明的另一實施例的一種發光裝置的示意圖。 FIG. 2 is a schematic diagram of a light emitting device according to another embodiment of the invention.

圖3繪示為本發明的另一實施例的一種發光裝置的示意圖。 FIG. 3 is a schematic diagram of a light-emitting device according to another embodiment of the invention.

圖4繪示為本發明的另一實施例的一種發光裝置的示意圖。 FIG. 4 is a schematic diagram of a light-emitting device according to another embodiment of the invention.

圖5繪示為本發明的另一實施例的一種發光裝置的示意圖。 FIG. 5 is a schematic diagram of a light emitting device according to another embodiment of the invention.

圖6繪示為本發明的另一實施例的一種發光裝置的示意圖。 FIG. 6 is a schematic diagram of a light-emitting device according to another embodiment of the invention.

圖7繪示為本發明的另一實施例的一種發光裝置的示意圖。 FIG. 7 is a schematic diagram of a light emitting device according to another embodiment of the invention.

圖8繪示為本發明的另一實施例的一種發光裝置的示意圖。 FIG. 8 is a schematic diagram of a light-emitting device according to another embodiment of the invention.

圖9繪示為本發明的另一實施例的一種發光裝置的示意圖。 FIG. 9 is a schematic diagram of a light emitting device according to another embodiment of the invention.

圖10A至圖10D繪示為本發明的一實施例的一種發光裝置的製作方法的剖面示意圖。 10A to 10D are schematic cross-sectional views of a method of manufacturing a light-emitting device according to an embodiment of the invention.

圖11A至圖11C繪示為本發明的另一實施例的一種發光裝置的製作方法的局部步驟的剖面示意圖。 11A to 11C are schematic cross-sectional views showing partial steps of a method of manufacturing a light-emitting device according to another embodiment of the present invention.

圖12A至圖12E繪示為本發明的另一實施例的一種發光裝置的製作方法的剖面示意圖。 12A to 12E are schematic cross-sectional diagrams of a method of manufacturing a light-emitting device according to another embodiment of the invention.

圖13A至圖13D繪示為本發明的另一實施例的一種發光裝置的製作方法的局部步驟的剖面示意圖。 13A to 13D are schematic cross-sectional views showing partial steps of a method of manufacturing a light-emitting device according to another embodiment of the invention.

圖14A至圖14E繪示為本發明的另一實施例的一種發光裝置的製作方法的剖面示意圖。 14A to 14E are schematic cross-sectional views showing a method of manufacturing a light-emitting device according to another embodiment of the invention.

圖15A至圖15E繪示為本發明的另一實施例的一種發光裝置的製作方法的剖面示意圖。 15A to 15E are schematic cross-sectional diagrams of a manufacturing method of a light emitting device according to another embodiment of the invention.

圖16A至圖16C繪示為本發明的多個實施例的發光裝置的剖面示意圖。 16A to 16C are schematic cross-sectional views of light emitting devices according to various embodiments of the invention.

圖17A至圖17E繪示為本發明的一實施例的一種發光裝置的製作方法的剖面示意圖。 17A to 17E are schematic cross-sectional views of a manufacturing method of a light-emitting device according to an embodiment of the invention.

圖18A與圖18B繪示為本發明的二實施例的二種發光裝置的剖面示意圖。 18A and 18B are schematic cross-sectional views of two types of light-emitting devices according to two embodiments of the invention.

圖19A至圖19E繪示為本發明的另一實施例的一種發光裝置的製作方法的剖面示意圖。 19A to 19E are schematic cross-sectional diagrams of a method of manufacturing a light-emitting device according to another embodiment of the invention.

圖20A繪示為圖19E的發光裝置的立體示意圖。 FIG. 20A is a three-dimensional schematic diagram of the light-emitting device of FIG. 19E.

圖20B繪示為沿圖20A的線X-X的剖面示意圖。 Fig. 20B is a schematic cross-sectional view taken along the line X-X of Fig. 20A.

圖21A繪示為本發明的另一實施例的一種發光裝置的立體示意圖。 FIG. 21A is a three-dimensional schematic diagram of a light emitting device according to another embodiment of the invention.

圖21B與圖21C分別繪示為沿圖21A的線X’-X’以及線Y’-Y’的剖面示意圖。 21B and 21C are respectively schematic cross-sectional views taken along the line X'-X' and the line Y'-Y' of FIG. 21A.

圖1繪示為本發明的一實施例的一種發光裝置的示意圖。請先參考圖1,在本實施例中,發光裝置100a包括一發光單元110a以及一反射保護件120。發光單元110a具有彼此相對的一上表面112a與一下表面114a、一連接上表面112a與下表面114a的側表面116a以及位於下表面114a上且彼此分離的一第一電極墊113與一第二電極墊115。反射保護件120包覆發光單元110a的側表面116a且暴露出至少部分上表面112a及暴露出第一電極墊113的至少部分一第一底面113a以及第二電極墊115的至少部分一第二底面115a。 FIG. 1 is a schematic diagram of a light-emitting device according to an embodiment of the invention. Please refer to FIG. 1 first. In this embodiment, the light-emitting device 100a includes a light-emitting unit 110a and a reflective protection member 120. The light emitting unit 110a has an upper surface 112a and a lower surface 114a opposite to each other, a side surface 116a connecting the upper surface 112a and the lower surface 114a, and a first electrode pad 113 and a second electrode on the lower surface 114a and separated from each other. Pad 115. The reflective protector 120 covers the side surface 116a of the light-emitting unit 110a and exposes at least part of the upper surface 112a and at least part of the first bottom surface 113a of the first electrode pad 113 and at least part of the second bottom surface of the second electrode pad 115 115a.

更具體來說,如圖1所示,本實施例的發光單元110a的上表面112a與反射保護件120的一頂面122切齊,反射保護件120的一底面124與第一電極墊113的一第一底面113a以及第二電極墊115的一第二底面115a切齊,且反射保護件120可覆蓋或曝露出發光單元110a位於第一電極墊113與一第二電極墊115之間的下表面114a。在本實施例中,發光單元110a的側表面116a垂直於上表面112a與下表面114a,但並不以此為限,而發光單元110a例如是發光二極體,發光二極體的發光波長(包括但不限於)介於315奈米至780奈米之間,發光二極體包括但不限於紫外光、藍光、綠光、黃光、橘光或紅光發光二極體。 More specifically, as shown in FIG. 1, the upper surface 112a of the light-emitting unit 110a of the present embodiment is aligned with a top surface 122 of the reflective protective member 120, and a bottom surface 124 of the reflective protective member 120 is aligned with the first electrode pad 113 A first bottom surface 113a and a second bottom surface 115a of the second electrode pad 115 are aligned, and the reflective protection member 120 can cover or expose the light-emitting unit 110a located between the first electrode pad 113 and the second electrode pad 115 Surface 114a. In this embodiment, the side surface 116a of the light-emitting unit 110a is perpendicular to the upper surface 112a and the lower surface 114a, but it is not limited to this. The light-emitting unit 110a is, for example, a light-emitting diode. Including but not limited to) between 315 nanometers and 780 nanometers, the light emitting diodes include but not limited to ultraviolet light, blue light, green light, yellow light, orange light or red light emitting diodes.

反射保護件120的反射率至少大於90%,也就是說,本實施例的反射保護件120具有高反射率的特性,其中反射保護件 120的材質為包括一摻有高反射粒子的高分子材料,高反射粒子例如但不限於是二氧化鈦(TiO2)粉末,而高分子材料例如不限於是環氧樹脂或矽樹脂。此外,本實施例的發光單元110a的第一電極墊113與第二電極墊115的材質為一金屬材料或金屬合金,例如是金、鋁、錫、銀、鉍、銦或其組合,但不以此為限。 The reflectivity of the reflective protective member 120 is at least greater than 90%, that is, the reflective protective member 120 of the present embodiment has the characteristic of high reflectivity, wherein the material of the reflective protective member 120 includes a polymer material doped with highly reflective particles The highly reflective particles are, for example, but not limited to, titanium dioxide (TiO 2 ) powder, and the polymer material is, for example, not limited to epoxy resin or silicon resin. In addition, the material of the first electrode pad 113 and the second electrode pad 115 of the light-emitting unit 110a of this embodiment is a metal material or metal alloy, such as gold, aluminum, tin, silver, bismuth, indium or a combination thereof, but not Limit this.

在本實施例中,反射保護件120包覆發光單元110a的側表面116a,且曝露出發光單元110a的第一電極墊113的第一底面113a以及第二電極墊115的第二底面115a,發光裝置100a不需要使用習知的承載支架來支撐及固定發光單元110a,而可有效減少封裝厚度以及製作成本,同時,亦可透過具有高反射率的反射保護件120來有效提高發光單元110a的正向出光效率。 In this embodiment, the reflective protector 120 covers the side surface 116a of the light-emitting unit 110a, and exposes the first bottom surface 113a of the first electrode pad 113 of the light-emitting unit 110a and the second bottom surface 115a of the second electrode pad 115 to emit light. The device 100a does not need to use a conventional supporting bracket to support and fix the light-emitting unit 110a, and can effectively reduce the package thickness and manufacturing cost. At the same time, it can also effectively improve the normality of the light-emitting unit 110a through the reflective protector 120 with high reflectivity. To the light efficiency.

在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,相同技術內容的說明可參考前述實施例,下述實施例不再重複贅述。 It must be noted here that the following embodiments follow the component numbers and part of the content of the previous embodiments, where the same reference numbers are used to represent the same or similar components, and the description of the same technical content can refer to the previous embodiments. The following embodiments Do not repeat it again.

圖2繪示為本發明的另一實施例的一種發光裝置的示意圖。請同時參考圖1與圖2,本實施例的發光裝置100b與圖1中的發光裝置100a的主要差異之處在於:本實施例的發光單元110b的側表面116b並非垂直於上表面112b與下表面114b,本實施例中發光單元100b的上表面112b的表面積大於下表面114b的表面積,側表面116b與下表面114b的夾角例如是介於95度到150度之間。本實施例的發光單元110b的上表面112b、側表面116b及 下表面114b所界定的外型輪廓呈現倒梯形,因此可減少發光單元110b側向出光,且高反射率的反射保護件120可更進一步地有效提高發光單元110b的正向出光效率。 FIG. 2 is a schematic diagram of a light emitting device according to another embodiment of the invention. 1 and 2 at the same time, the main difference between the light-emitting device 100b of this embodiment and the light-emitting device 100a in FIG. 1 is that the side surface 116b of the light-emitting unit 110b of this embodiment is not perpendicular to the upper surface 112b and the lower surface. For the surface 114b, the surface area of the upper surface 112b of the light emitting unit 100b in this embodiment is larger than the surface area of the lower surface 114b, and the angle between the side surface 116b and the lower surface 114b is, for example, between 95 degrees and 150 degrees. The upper surface 112b, the side surface 116b and the side surface 116b of the light-emitting unit 110b of this embodiment The outer contour defined by the lower surface 114b presents an inverted trapezoid shape, so that the lateral light emission of the light-emitting unit 110b can be reduced, and the reflective protection member 120 with high reflectivity can further effectively improve the forward light emission efficiency of the light-emitting unit 110b.

圖3繪示為本發明的另一實施例的一種發光裝置的示意圖。請同時參考圖1與圖3,本實施例的發光裝置100c與圖1中的發光裝置100a的主要差異之處在於:本實施例的發光裝置100c更包括一第一延伸電極130c以及一第二延伸電極140c。第一延伸電極130c配置於反射保護件120的底面124上,且與第一電極墊113電性連接。第二延伸電極140c配置於反射保護件120的底面124上,且與第二電極墊115電性連接。第一延伸電極130c與第二延伸電極140c彼此分離且覆蓋反射保護件120的至少部分底面124。 FIG. 3 is a schematic diagram of a light-emitting device according to another embodiment of the invention. 1 and 3 at the same time, the main difference between the light-emitting device 100c of this embodiment and the light-emitting device 100a in FIG. 1 is: the light-emitting device 100c of this embodiment further includes a first extension electrode 130c and a second Extension electrode 140c. The first extension electrode 130 c is disposed on the bottom surface 124 of the reflective protection member 120 and is electrically connected to the first electrode pad 113. The second extension electrode 140 c is disposed on the bottom surface 124 of the reflective protection member 120 and is electrically connected to the second electrode pad 115. The first extension electrode 130c and the second extension electrode 140c are separated from each other and cover at least a part of the bottom surface 124 of the reflection protector 120.

如圖3所示,本實施例的第一延伸電極130c與第二延伸電極140c的設置完全重疊於第一電極墊113與第二電極墊115,且朝著反射保護件120的邊緣延伸。當然,於其他未繪示的實施例中,第一延伸電極與第二延伸電極的設置亦可部分重疊於第一電極墊與第二電極墊,只要第一延伸電極與第二延伸電極電性連接至第一電極墊與第二電極墊的設置即為本實施例所欲保護之範圍。此外,本實施例的第一延伸電極130c與第二延伸電極140c暴露出反射保護件120的部分底面124。 As shown in FIG. 3, the arrangement of the first extension electrode 130 c and the second extension electrode 140 c of this embodiment completely overlaps the first electrode pad 113 and the second electrode pad 115, and extends toward the edge of the reflection protector 120. Of course, in other unillustrated embodiments, the arrangement of the first extension electrode and the second extension electrode can also partially overlap the first electrode pad and the second electrode pad, as long as the first extension electrode and the second extension electrode are electrically connected The settings connected to the first electrode pad and the second electrode pad are within the scope of this embodiment. In addition, the first extension electrode 130c and the second extension electrode 140c of this embodiment expose a part of the bottom surface 124 of the reflective protection member 120.

在本實施例中,第一延伸電極130c與第二延伸電極140c的材質可分別相同或不同於發光單元110a的第一電極墊113與第 二電極墊115。當第一延伸電極130c與第二延伸電極140c的材質分別相同於發光單元110a的第一電極墊113與第二電極墊115時,第一延伸電極130c與第一電極墊113之間可為無接縫連接,即為一體成型的結構,第二延伸電極140c與第二電極墊115之間可為無接縫連接,即為一體成型的結構。當第一延伸電極130c與第二延伸電極140c的材質分別不同於發光單元110a的第一電極墊113與第二電極墊115時,第一延伸電極130c與第二延伸電極140c的材質可例如是銀、金、鉍、錫、銦或上述材料組合的合金。 In this embodiment, the materials of the first extension electrode 130c and the second extension electrode 140c may be the same or different from the first electrode pad 113 and the second electrode pad 113 of the light-emitting unit 110a. Two electrode pad 115. When the materials of the first extension electrode 130c and the second extension electrode 140c are the same as the first electrode pad 113 and the second electrode pad 115 of the light-emitting unit 110a, there may be no gap between the first extension electrode 130c and the first electrode pad 113. The seam connection is an integrally formed structure, and the second extension electrode 140c and the second electrode pad 115 may be seamlessly connected, that is, an integrally formed structure. When the materials of the first extension electrode 130c and the second extension electrode 140c are different from the first electrode pad 113 and the second electrode pad 115 of the light-emitting unit 110a, the material of the first extension electrode 130c and the second extension electrode 140c may be, for example, Silver, gold, bismuth, tin, indium, or alloys of combinations of these materials.

由於本實施例的發光裝置100c具有與發光單元110a的第一電極墊113與第二電極墊115分別電性連接的第一延伸電極130c與第二延伸電極140c,因此可有效增加發光裝置100c的電極接觸面積,以利於後續將此發光裝置100c與其他外部電路進行組裝,可有效提高對位精準度及組裝效率。舉例來說,第一延伸電極130c的面積大於第一電極墊113的面積,第二延伸電極140c的面積大於第二電極墊115的面積。 Since the light-emitting device 100c of this embodiment has the first extension electrode 130c and the second extension electrode 140c electrically connected to the first electrode pad 113 and the second electrode pad 115 of the light-emitting unit 110a, respectively, the light-emitting device 100c can be effectively increased The electrode contact area facilitates subsequent assembly of the light-emitting device 100c with other external circuits, which can effectively improve the alignment accuracy and assembly efficiency. For example, the area of the first extension electrode 130c is larger than the area of the first electrode pad 113, and the area of the second extension electrode 140c is larger than the area of the second electrode pad 115.

圖4繪示為本發明的另一實施例的一種發光裝置的示意圖。請同時參考圖3與圖4,本實施例的發光裝置100d與圖3中的發光裝置100c的主要差異之處在於:本實施例的第一延伸電極130d的邊緣與第二延伸電極140d的邊緣切齊於反射保護件120的邊緣。 FIG. 4 is a schematic diagram of a light-emitting device according to another embodiment of the invention. 3 and 4 at the same time, the main difference between the light-emitting device 100d in this embodiment and the light-emitting device 100c in FIG. 3 is: the edge of the first extension electrode 130d and the edge of the second extension electrode 140d in this embodiment It is aligned with the edge of the reflection protector 120.

圖5繪示為本發明的另一實施例的一種發光裝置的示意圖。請同時參考圖1與圖5,本實施例的發光裝置100e與圖1中 的發光裝置100a的主要差異之處在於:本實施例的發光裝置100e更包括一封裝膠層150,其中封裝膠層150配置於發光單元110a的上表面112a上,以增加光取出率及改善光型。封裝膠層150也可以延伸至反射保護件120的至少部分上表面122上,封裝膠層150的邊緣也可以切齊於反射保護件120的邊緣。另外,封裝膠層150內也可以摻雜有至少一種波長轉換材料,波長轉換材料係用以將發光單元110a所發出的至少部分光線的波長轉換成其他波長,且波長轉換材料的材質包括螢光材料、磷光材料、染料、量子點材料及其組合,其中波長轉換材料的粒徑例如是介於3微米到50微米之間。另外,封裝膠層150內也可以摻雜具有高散射能力的氧化物,例如是二氧化鈦(TiO2)或二氧化矽(SiO2),以增加出光效率。 FIG. 5 is a schematic diagram of a light-emitting device according to another embodiment of the invention. 1 and 5 at the same time, the main difference between the light-emitting device 100e of this embodiment and the light-emitting device 100a in FIG. 1 is that the light-emitting device 100e of this embodiment further includes an encapsulation adhesive layer 150, wherein the encapsulation adhesive layer 150 is disposed on the upper surface 112a of the light-emitting unit 110a to increase the light extraction rate and improve the light type. The encapsulant layer 150 can also extend to at least a part of the upper surface 122 of the reflective protector 120, and the edge of the encapsulant layer 150 can also be aligned with the edge of the reflective protector 120. In addition, the encapsulant layer 150 may also be doped with at least one wavelength conversion material. The wavelength conversion material is used to convert at least part of the wavelength of the light emitted by the light-emitting unit 110a into other wavelengths, and the material of the wavelength conversion material includes fluorescent light. Materials, phosphorescent materials, dyes, quantum dot materials and combinations thereof, wherein the particle size of the wavelength conversion material is, for example, between 3 microns and 50 microns. In addition, the encapsulant layer 150 can also be doped with oxides with high scattering ability, such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ), to increase the light extraction efficiency.

在本發明一實施例中,發光單元包括但不限於紫外光、藍光、綠光、黃光、橘光或紅光發光單元,而波長轉換材料包括但不限於紅色、橘色、橘黃色、黃色、黃綠色或綠色的波長轉換材料或其組合,用以將發光單元所發出的光的部分或全部進行波長轉換。波長轉換的光與波長未轉換的光進行混光後,使得發光裝置發出主波長(dominant wavelenghth)在一特定範圍的光,其光色例如包括但不限於紅色、橘色、橘黃色、琥珀色、黃色、黃綠色或綠色,或是發出具有特定相對色溫的白光,相對色溫的範圍例如是介於2500K至7000K之間,但不以此為限。 In an embodiment of the present invention, the light emitting unit includes but not limited to ultraviolet light, blue light, green light, yellow light, orange light or red light emitting unit, and the wavelength conversion material includes but not limited to red, orange, orange, and yellow. , Yellow-green or green wavelength conversion materials or a combination thereof, used to perform wavelength conversion of part or all of the light emitted by the light-emitting unit. After the wavelength-converted light and the wavelength-unconverted light are mixed, the light-emitting device emits light with a dominant wavelenghth in a specific range. The light color includes, but is not limited to, red, orange, orange, and amber. , Yellow, yellow-green or green, or emit white light with a specific relative color temperature. The range of the relative color temperature is, for example, between 2500K and 7000K, but it is not limited thereto.

圖6繪示為本發明的另一實施例的一種發光裝置的示意 圖。請同時參考圖6與圖4,本實施例的發光裝置100f與圖4中的發光裝置100d的主要差異之處在於:本實施例的發光裝置100f更包括一封裝膠層150,其中封裝膠層150配置於發光單元110a的上表面112a上,以增加光取出率及改善光型。封裝膠層150也可以延伸至反射保護件120的至少部分上表面122上,封裝膠層150的邊緣也可以切齊於反射保護件120的邊緣,另外,封裝膠層150內也可以摻雜有至少一種波長轉換材料,波長轉換材料係用以將發光單元110a所發出的至少部分光線的波長轉換成其他波長,且波長轉換材料的材質包括螢光材料、磷光材料、染料、量子點材料及其組合,其中波長轉換材料的粒徑例如是介於3微米到50微米之間。另外,封裝膠層150內也可以摻雜具有高散射能力的氧化物,例如是二氧化鈦(TiO2)或二氧化矽(SiO2),以增加出光效率。 FIG. 6 is a schematic diagram of a light-emitting device according to another embodiment of the invention. 6 and 4 at the same time, the main difference between the light-emitting device 100f of this embodiment and the light-emitting device 100d in FIG. 4 is: the light-emitting device 100f of this embodiment further includes an encapsulation layer 150, wherein 150 is disposed on the upper surface 112a of the light-emitting unit 110a to increase the light extraction rate and improve the light type. The encapsulant layer 150 can also extend to at least part of the upper surface 122 of the reflective protector 120, and the edge of the encapsulant layer 150 can also be cut to the edge of the reflective protector 120. In addition, the encapsulant layer 150 can also be doped with At least one wavelength conversion material, the wavelength conversion material is used to convert at least part of the wavelength of the light emitted by the light-emitting unit 110a into other wavelengths, and the material of the wavelength conversion material includes fluorescent materials, phosphorescent materials, dyes, quantum dot materials and the like The combination, wherein the particle size of the wavelength conversion material is, for example, between 3 microns and 50 microns. In addition, the encapsulant layer 150 can also be doped with oxides with high scattering ability, such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ), to increase the light extraction efficiency.

須說明的是,在圖4及圖6的實施例中,第一延伸電極130d的邊緣與第二延伸電極140d的邊緣切齊於反射保護件120的邊緣,這樣的設計不但可以擴大電極的接觸面積,且在製程中,反射保護件120可以同時封裝多個相間隔的發光單元110a,之後形成圖案化金屬層以分別形成第一延伸電極130d與第二延伸電極140d,之後再進行切割,使每一發光裝置100f的第一延伸電極130d的邊緣與第二延伸電極140d的邊緣切齊於反射保護件120的邊緣,如此可有效節省製程時間。 It should be noted that in the embodiment of FIGS. 4 and 6, the edge of the first extension electrode 130d and the edge of the second extension electrode 140d are aligned with the edge of the reflective protection member 120. This design can not only expand the contact of the electrode During the manufacturing process, the reflective protector 120 can simultaneously encapsulate a plurality of spaced light-emitting units 110a, and then form a patterned metal layer to form the first extension electrode 130d and the second extension electrode 140d, and then perform cutting to make The edge of the first extension electrode 130d and the edge of the second extension electrode 140d of each light-emitting device 100f are aligned with the edge of the reflective protection member 120, which can effectively save process time.

圖7繪示為本發明的另一實施例的一種發光裝置的示意圖。請同 時參考圖7與圖5,本實施例的發光裝置100g與圖5中的發光裝置100e的主要差異之處在於:本實施例的發光裝置100g更包括一透光層160,配置於封裝膠層150上,其中透光層160的透光率,例如是大於50%。在本實施例中,透光層160的材質例如是玻璃、陶瓷、樹脂、壓克力或矽膠等,其目的在於可發光單元110a所產生的光導引至外界,可有效增加發光裝置100g的光通量及光取出率,且亦可有效保護發光單元110a以避免受到外界水氣與氧氣的侵襲。 FIG. 7 is a schematic diagram of a light emitting device according to another embodiment of the invention. Please Referring to FIGS. 7 and 5, the main difference between the light-emitting device 100g of this embodiment and the light-emitting device 100e in FIG. 5 is that the light-emitting device 100g of this embodiment further includes a light-transmitting layer 160 disposed on the encapsulant layer. 150, where the light transmittance of the light-transmitting layer 160 is, for example, greater than 50%. In this embodiment, the material of the light-transmitting layer 160 is, for example, glass, ceramic, resin, acrylic or silicone, etc. The purpose is to guide the light generated by the light-emitting unit 110a to the outside, which can effectively increase the light-emitting device 100g The luminous flux and light extraction rate can also effectively protect the light-emitting unit 110a from being attacked by external moisture and oxygen.

圖8繪示為本發明的另一實施例的一種發光裝置的示意圖。請同時參考圖8與圖7,本實施例的發光裝置100h與圖7中的發光裝置100g的主要差異之處在於:本實施例的發光裝置100h的透光層160’是配置於發光單元110a的上表面110a與封裝膠層150之間。 FIG. 8 is a schematic diagram of a light-emitting device according to another embodiment of the invention. 8 and 7 at the same time, the main difference between the light-emitting device 100h in this embodiment and the light-emitting device 100g in FIG. 7 is that the light-transmitting layer 160' of the light-emitting device 100h in this embodiment is disposed on the light-emitting unit 110a Between the upper surface 110a and the packaging adhesive layer 150.

圖9繪示為本發明的另一實施例的一種發光裝置的示意圖。請同時參考圖9與圖6,本實施例的發光裝置100i與圖6中的發光裝置100f的主要差異之處在於:本實施例的發光裝置100i更包括一透光層160,配置於封裝膠層150上,其中透光層160的透光率,例如是大於50%。在本實施例中,透光層160的材質例如是玻璃、陶瓷、樹脂、壓克力或矽膠等,其目的在於可發光單元110a所產生的光導引至外界,可有效增加發光裝置100i的光通量及光取出率,且亦可有效保護發光單元110a以避免受到外界水氣與氧氣的侵襲。 FIG. 9 is a schematic diagram of a light emitting device according to another embodiment of the invention. 9 and FIG. 6 at the same time, the main difference between the light-emitting device 100i of this embodiment and the light-emitting device 100f in FIG. 6 is: the light-emitting device 100i of this embodiment further includes a light-transmitting layer 160 disposed on the encapsulant On the layer 150, the light transmittance of the transparent layer 160 is, for example, greater than 50%. In this embodiment, the material of the light-transmitting layer 160 is, for example, glass, ceramic, resin, acrylic or silicone, etc. The purpose is to guide the light generated by the light-emitting unit 110a to the outside, which can effectively increase the light-emitting device 100i. The luminous flux and light extraction rate can also effectively protect the light-emitting unit 110a from being attacked by external moisture and oxygen.

以下將以圖1、圖7、圖4及圖9中的發光裝置100a、100g、100d、100i為例,並分別配合10A至圖10D、圖11A至圖11C、圖12A至圖12E以及圖13A至圖13D對本發明的發光裝置的製作方法進行詳細的說明。 The following will take the light-emitting devices 100a, 100g, 100d, and 100i in FIG. 1, FIG. 7, FIG. 4, and FIG. 9 as examples, and cooperate with 10A to 10D, 11A to 11C, 12A to 12E, and 13A, respectively. To FIG. 13D, the manufacturing method of the light-emitting device of the present invention will be described in detail.

圖10A至圖10D繪示為本發明的一實施例的一種發光裝置的製作方法的剖面示意圖。首先,請參考圖10A,將多個發光單元110a配置於一基板10上,其中每一發光單元110a具有彼此相對的上表面112a與下表面114a、連接上表面112a與下表面114a的側表面116a以及位於下表面114a上且彼此分離的第一電極墊113與第二電極墊115。每一發光單元110a的第一電極墊113與第二電極墊115設置在基板10上。也就是說,發光單元110a的發光面,即上表面112a是相對遠離基板10。在本實施例中,基板10的材質例如是不銹鋼、陶瓷或其他不導電的材質。發光單元110a例如是發光二極體,發光二極體的發光波長(包括但不限於)介於315奈米至780奈米之間,發光二極體包括但不限於紫外光、藍光、綠光、黃光、橘光或紅光發光二極體。 10A to 10D are schematic cross-sectional diagrams of a method of manufacturing a light-emitting device according to an embodiment of the invention. First, referring to FIG. 10A, a plurality of light emitting units 110a are disposed on a substrate 10, wherein each light emitting unit 110a has an upper surface 112a and a lower surface 114a opposite to each other, and a side surface 116a connecting the upper surface 112a and the lower surface 114a. And a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114a and separated from each other. The first electrode pad 113 and the second electrode pad 115 of each light-emitting unit 110 a are disposed on the substrate 10. In other words, the light-emitting surface of the light-emitting unit 110a, that is, the upper surface 112a, is relatively far away from the substrate 10. In this embodiment, the material of the substrate 10 is, for example, stainless steel, ceramic, or other non-conductive materials. The light emitting unit 110a is, for example, a light emitting diode. The light emitting wavelength of the light emitting diode (including but not limited to) is between 315 nm and 780 nm. The light emitting diode includes but not limited to ultraviolet light, blue light, and green light. , Yellow, orange or red light-emitting diodes.

接著,請參考圖10B,形成一反射保護件120’於基板10上,其中反射保護件120’包覆每一發光單元110a。也就是說,反射保護件120’完全且直接覆蓋發光單元110a的上表面112a、下表面114a以及側表面116a,且填滿第一電極墊113與第二電極墊115之間的空隙。此處,反射保護件120’的反射率至少大於90%,也就是說,本實施例的反射保護件120’可具有高反射率的特性,其中反射保護件120’的材質包括一摻雜高反射粒子的高分子材料,高反射粒子例如但不限於是二氧化鈦(TiO2)粉末,而高分子材料例如不限於是環氧樹脂或矽樹脂。 Next, referring to FIG. 10B, a reflective protective member 120' is formed on the substrate 10, wherein the reflective protective member 120' covers each light-emitting unit 110a. That is, the reflective protector 120 ′ completely and directly covers the upper surface 112 a, the lower surface 114 a and the side surface 116 a of the light emitting unit 110 a, and fills the gap between the first electrode pad 113 and the second electrode pad 115. Here, the reflectivity of the reflective protective member 120' is at least greater than 90%, that is, the reflective protective member 120' of this embodiment can have high reflectance characteristics, wherein the material of the reflective protective member 120' includes a high doped The polymer material of the reflective particles, the highly reflective particles are, for example, but not limited to, titanium dioxide (TiO 2 ) powder, and the polymer material is, for example, not limited to epoxy resin or silicon resin.

接著,請參考圖10C,移除部分反射保護件120’,而形成反射保護件120,其中反射保護件120暴露出每一發光單元110a的至少部分上表面112a。此時,每一發光單元110a的上表面112a可能切齊於反射保護 件120的頂面122。此處,移除部分反射保護件120’的方法包括例如是研磨法或拋光法。 Next, referring to FIG. 10C, a part of the reflective protective member 120' is removed to form a reflective protective member 120, wherein the reflective protective member 120 exposes at least a part of the upper surface 112a of each light-emitting unit 110a. At this time, the upper surface 112a of each light-emitting unit 110a may be aligned with the reflective protection The top surface 122 of the piece 120. Here, the method of removing part of the reflective protection member 120' includes, for example, a grinding method or a polishing method.

之後,請參考圖10D,進行一切割程序,以沿著切割線L切割反射保護件120,而形成多個彼此分離的發光裝置100a,其中每一發光裝置100a分別具有至少一個發光單元110a以及反射保護件120,反射保護件120包覆發光單元110a的側表面116a且暴露出其至少部分上表面112a。 10D, a cutting process is performed to cut the reflective protection member 120 along the cutting line L to form a plurality of light emitting devices 100a separated from each other, wherein each light emitting device 100a has at least one light emitting unit 110a and a reflective The protective member 120, the reflective protective member 120 covers the side surface 116a of the light-emitting unit 110a and exposes at least part of the upper surface 112a thereof.

最後,請再參考圖10D,移除基板10,以暴露每一發光裝置100a的反射保護件120的底面124,並曝露出每一發光裝置100a的第一電極墊113的至少部分第一底面113a以及第二電極墊115的至少部分第二底面115a。 Finally, referring to FIG. 10D again, the substrate 10 is removed to expose the bottom surface 124 of the reflective protector 120 of each light-emitting device 100a, and expose at least part of the first bottom surface 113a of the first electrode pad 113 of each light-emitting device 100a And at least part of the second bottom surface 115a of the second electrode pad 115.

圖11A至圖11C繪示為本發明的另一實施例的一種發光裝置的製作方法的局部步驟的剖面示意圖。本實施例的發光裝置的製作方法與上述圖10A至圖10D中的發光裝置的製作方法的主要差異之處在於:於圖10C與圖10D的步驟之間,意即於移除部分反射保護件120’之後,且於進行切割程序之前,請參考圖11A,形成封裝膠層150於發光單元110a與反射保護件120上,以增加光取出率及改善光型。此處,封裝膠層150覆蓋發光單元110a的上表面112a與反射保護件120的頂面122,且封裝膠層150內也可以摻雜有至少一種波長轉換材料。波長轉換材料的說明請參考前述實施例。另外,封裝膠層150內也可以摻雜具有高散射能力的氧化物,例如是二氧化鈦(TiO2)或二氧化矽(SiO2),以增加出光效率。 11A to 11C are schematic cross-sectional views showing partial steps of a method of manufacturing a light-emitting device according to another embodiment of the invention. The main difference between the manufacturing method of the light-emitting device of this embodiment and the manufacturing method of the light-emitting device in FIG. 10A to FIG. 10D is that: between the steps of FIG. 10C and FIG. 10D, it means that part of the reflective protection member is removed. After 120' and before performing the cutting process, please refer to FIG. 11A to form an encapsulant layer 150 on the light emitting unit 110a and the reflective protection member 120 to increase the light extraction rate and improve the light profile. Here, the encapsulant layer 150 covers the upper surface 112a of the light-emitting unit 110a and the top surface 122 of the reflective protector 120, and the encapsulant layer 150 may also be doped with at least one wavelength conversion material. Please refer to the foregoing embodiment for the description of the wavelength conversion material. In addition, the encapsulant layer 150 can also be doped with oxides with high scattering ability, such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ), to increase the light extraction efficiency.

接著,請參考圖11B,形成一透光層160於發光單元110a與反射保護件120上,其中透光層160位於封裝膠層150上,且覆蓋封裝膠層150。 舉例來說,透光層160的透光率大於50%。在此實施例中,透光層160的材質例如是玻璃、陶瓷、樹脂、壓克力或矽膠等,其目的在於可發光單元110a所產生的光導引至外界,可有效增加後續所形成之發光單元封光結構100g的光通量及光取出率,且亦可有效保護發光單元110a以避免受到外界水氣與氧氣的侵襲。 Next, referring to FIG. 11B, a light-transmitting layer 160 is formed on the light-emitting unit 110a and the reflective protection member 120, wherein the light-transmitting layer 160 is located on the encapsulation layer 150 and covers the encapsulation layer 150. For example, the light transmittance of the light transmitting layer 160 is greater than 50%. In this embodiment, the material of the light-transmitting layer 160 is, for example, glass, ceramic, resin, acrylic or silicone, etc. The purpose is to guide the light generated by the light-emitting unit 110a to the outside, which can effectively increase the subsequent formation. The luminous flux and light extraction rate of the light-emitting unit light-sealing structure 100g can also effectively protect the light-emitting unit 110a from being attacked by external moisture and oxygen.

之後,請參考圖11C,進行一切割程序,以沿著切割線L切割透光層160、封裝膠層150以及反射保護件120,而形成多個彼此分離的發光裝置100g。最後,請再參考圖11C,移除基板10,以暴露每一發光裝置100g的反射保護件120的底面124,其中每一發光裝置100g的反射保護件120的底面124曝露出第一電極墊113的至少部分第一底面113a以及第二電極墊115的至少部分第二底面115a。在本發明另一實施例中,亦可先移除基板10再進行一切割程序。 After that, referring to FIG. 11C, a cutting process is performed to cut the light-transmitting layer 160, the encapsulant layer 150, and the reflective protection member 120 along the cutting line L to form a plurality of light-emitting devices 100g separated from each other. Finally, referring to FIG. 11C again, the substrate 10 is removed to expose the bottom surface 124 of the reflective protective member 120 of each light-emitting device 100g, wherein the bottom surface 124 of the reflective protective member 120 of each light-emitting device 100g exposes the first electrode pad 113 At least part of the first bottom surface 113a and at least part of the second bottom surface 115a of the second electrode pad 115. In another embodiment of the present invention, the substrate 10 can also be removed first and then a cutting process is performed.

圖12A至圖12E繪示為本發明的另一實施例的一種發光裝置的製作方法的剖面示意圖。請先參考圖12A,本實施例的發光裝置的製作方法與上述圖10A至圖10D中的發光裝置的製作方法的主要差異之處在於:請參考圖12A,本實施例的發光單元110a並不是由第一電極墊113與第二電極墊115接觸基板10,而是由其上表面112a接觸基板10。 12A to 12E are schematic cross-sectional diagrams of a method of manufacturing a light-emitting device according to another embodiment of the invention. Please refer to FIG. 12A first. The main difference between the manufacturing method of the light-emitting device in this embodiment and the manufacturing method of the light-emitting device in FIGS. 10A to 10D is: please refer to FIG. 12A, the light-emitting unit 110a of this embodiment is not The first electrode pad 113 and the second electrode pad 115 contact the substrate 10, but the upper surface 112a contacts the substrate 10.

接著,請參考圖12B,形成一反射保護件120’於基板上,其中反射保護件包覆每一發光單元110a。 Next, referring to FIG. 12B, a reflective protective member 120' is formed on the substrate, wherein the reflective protective member covers each light-emitting unit 110a.

接著,請參考圖12C,移除部分反射保護件120’,以形成反射保護件120,其中反射保護件120暴露出每一發光單元110a的第一電極墊113的至少部分第一底面113a以及第二電極墊115的至少部分第二底面 115a。 Next, referring to FIG. 12C, a part of the reflective protective member 120' is removed to form a reflective protective member 120, wherein the reflective protective member 120 exposes at least a portion of the first bottom surface 113a and the first bottom surface 113a of the first electrode pad 113 of each light-emitting unit 110a At least part of the second bottom surface of the second electrode pad 115 115a.

接著,請參考圖12D,形成一圖案化金屬層作為延伸電極層E,位於每一發光單元110a的第一電極墊113的第一底面113a上以及第二電極墊115的第二底面115a上。此處,形成圖案化金屬層的方法例如是蒸鍍法、濺鍍法、電鍍法或化學鍍法以及光罩蝕刻法。 Next, referring to FIG. 12D, a patterned metal layer is formed as the extended electrode layer E, which is located on the first bottom surface 113a of the first electrode pad 113 and the second bottom surface 115a of the second electrode pad 115 of each light-emitting unit 110a. Here, the method of forming the patterned metal layer is, for example, an evaporation method, a sputtering method, an electroplating method or an electroless plating method, and a photomask etching method.

接著,請參考圖12E,進行一切割程序,以沿著切割線切割延伸電極層E與反射保護件120,而形成多個彼此分離的發光裝置100d。每一發光裝置100d分別具有至少一個發光單元110a、至少包覆發光單元110a的側表面116a的反射保護件120、直接接觸第一電極墊113的第一延伸電極130d以及直接接觸第二電極墊115的第二延伸電極140d。第一延伸電極130d與第二延伸電極140d彼此分離且暴露出反射保護件120的至少部分底面124。此時,第一延伸電極130d的面積可大於第一電極墊113的面積,而第二延伸電極140d的面積可大於第二電極墊115的面積。第一延伸電極130d的邊緣與第二延伸電極140d的邊緣切齊於反射保護件120的邊緣。 Next, referring to FIG. 12E, a cutting process is performed to cut the extended electrode layer E and the reflective protection member 120 along the cutting line to form a plurality of light-emitting devices 100d separated from each other. Each light-emitting device 100d has at least one light-emitting unit 110a, a reflective protector 120 covering at least the side surface 116a of the light-emitting unit 110a, a first extension electrode 130d directly contacting the first electrode pad 113, and a second electrode pad 115 directly contacting The second extension electrode 140d. The first extension electrode 130 d and the second extension electrode 140 d are separated from each other and expose at least a part of the bottom surface 124 of the reflective protector 120. At this time, the area of the first extension electrode 130d may be greater than the area of the first electrode pad 113, and the area of the second extension electrode 140d may be greater than the area of the second electrode pad 115. The edge of the first extension electrode 130d and the edge of the second extension electrode 140d are aligned with the edge of the reflection protector 120.

最後,請再參考圖12E,移除基板10,以暴露每一發光裝置100d的反射保護件120的頂面122與發光單元110a的上表面112a,其中每一發光裝置100g的反射保護件120的頂面122切齊於發光單元110a的上表面112a。在本發明另一實施例中,亦可先移除基板10再進行一切割程序。 Finally, referring to FIG. 12E again, the substrate 10 is removed to expose the top surface 122 of the reflection protection member 120 of each light-emitting device 100d and the upper surface 112a of the light-emitting unit 110a, wherein the reflection protection member 120 of each light-emitting device 100g The top surface 122 is aligned with the top surface 112a of the light emitting unit 110a. In another embodiment of the present invention, the substrate 10 can also be removed first and then a cutting process is performed.

圖13A至圖13D繪示為本發明的另一實施例的一種發光裝置的製作方法的局部步驟的剖面示意圖。本實施例的發光裝置的製作方法與上述圖12A至圖12E中的發光裝置的製作方法的主要差異之處在於:於圖12D與圖12E的步驟之間,意即於形成延伸電極層E之後,且於進行切割製程 之前,請參考圖13A,提供一另一基板20,並設置在延伸電極層E上。此處,另一基板20的材質例如是不銹鋼、陶瓷或其他不導電的材質。接著,請再參考圖13A,於提供另一基板20之後,移除基板10,以暴露反射保護件120的頂面122以及發光單元110a的上表面112a,其中每一發光單元110a的上表面112a切齊於反射保護件120的頂面122。 13A to 13D are schematic cross-sectional views showing partial steps of a method of manufacturing a light-emitting device according to another embodiment of the invention. The main difference between the method of manufacturing the light-emitting device of this embodiment and the method of manufacturing the light-emitting device in FIG. 12A to FIG. 12E is: between the steps of FIG. 12D and FIG. 12E, that is, after forming the extended electrode layer E , And in the cutting process Before, referring to FIG. 13A, another substrate 20 is provided and disposed on the extended electrode layer E. Here, the material of the other substrate 20 is, for example, stainless steel, ceramic, or other non-conductive materials. Next, referring to FIG. 13A, after another substrate 20 is provided, the substrate 10 is removed to expose the top surface 122 of the reflective protector 120 and the top surface 112a of the light-emitting unit 110a, wherein the top surface 112a of each light-emitting unit 110a It is aligned with the top surface 122 of the reflection protector 120.

接著,請參考圖13B,形成封裝膠層150於發光單元110a與反射保護件120上,以增加光取出率及改善光型。此處,封裝膠層150覆蓋發光單元110a的上表面112a與反射保護件120的頂面122,且封裝膠層150內也可以摻雜有至少一種波長轉換材料。波長轉換材料的說明請參考前述實施例。另外,封裝膠層150內也可以摻雜具有高散射能力的氧化物,例如是二氧化鈦(TiO2)或二氧化矽(SiO2),以增加出光效率。 Next, referring to FIG. 13B, an encapsulant layer 150 is formed on the light-emitting unit 110a and the reflective protection member 120 to increase the light extraction rate and improve the light type. Here, the encapsulant layer 150 covers the upper surface 112a of the light-emitting unit 110a and the top surface 122 of the reflective protector 120, and the encapsulant layer 150 may also be doped with at least one wavelength conversion material. Please refer to the foregoing embodiment for the description of the wavelength conversion material. In addition, the encapsulant layer 150 can also be doped with oxides with high scattering ability, such as titanium dioxide (TiO 2 ) or silicon dioxide (SiO 2 ), to increase the light extraction efficiency.

接著,請參考圖13C,形成一透光層160於發光單元110a與反射保護件120上,其中透光層160位於封裝膠層150上,且覆蓋封裝膠層150。舉例來說,透光層160的透光率大於50%。此處,透光層160的材質例如是玻璃、陶瓷、樹脂、壓克力或矽膠等,其目的在於可發光單元110a所產生的光導引至外界,可有效增加後續所形成之發光單元封光結構100i的光通量及光取出率,且亦可有效保護發光單元110a以避免受到外界水氣與氧氣的侵襲。 Next, referring to FIG. 13C, a light-transmitting layer 160 is formed on the light-emitting unit 110a and the reflective protection member 120, wherein the light-transmitting layer 160 is located on the encapsulation layer 150 and covers the encapsulation layer 150. For example, the light transmittance of the light transmitting layer 160 is greater than 50%. Here, the material of the light-transmitting layer 160 is, for example, glass, ceramic, resin, acrylic or silicone, etc., and its purpose is to guide the light generated by the light-emitting unit 110a to the outside, which can effectively increase the light-emitting unit encapsulation formed subsequently The luminous flux and light extraction rate of the light structure 100i can also effectively protect the light-emitting unit 110a from external moisture and oxygen.

之後,請參考圖13D,進行一切割程序,以沿著切割線L切割透光層160、封裝膠層150、反射保護件120及延伸電極層E,而形成多個彼此分離的發光裝置100i。最後,請再參考圖13D,移除另一基板20,以暴露每一發光裝置100i的第一延伸電極130d與第二延伸電極140d。在本發 明另一實施例中,亦可先移除基板20再進行一切割程序。 Afterwards, referring to FIG. 13D, a cutting process is performed to cut the light-transmitting layer 160, the encapsulation layer 150, the reflective protection member 120, and the extended electrode layer E along the cutting line L to form a plurality of light-emitting devices 100i separated from each other. Finally, referring to FIG. 13D again, the other substrate 20 is removed to expose the first extension electrode 130d and the second extension electrode 140d of each light emitting device 100i. In this hair In another embodiment, it is also possible to remove the substrate 20 before performing a cutting process.

圖14A至圖14E繪示為本發明的另一實施例的一種發光裝置的製作方法的剖面示意圖。請先參考圖14A,提供一波長轉換膠層170,其中波長轉換膠層170包括一低濃度螢光膠層174以及一位於低濃度螢光膠層174上的高濃度螢光膠層172。此處,形成波長轉換膠層170的步驟例如是先透過摻質與膠體混合的方式(即是將液態或熔融態膠體與波長轉換材料均勻混合,波長轉換材料例如是螢光粉但不以此為限),以形成波長轉換膠層170,之後靜置波長轉換膠層170一段時間,如24小時的沉降之後,即形成上下層分離的高濃度螢光膠層172與低濃度螢光膠層174。也就是說,本實施例的波長轉換層170是以兩層膠層作為舉例說明。當然,於其他實施例中,請參考圖14A’,提供一波長轉換膠層170’,其中波長轉換膠層170’為單一膠層,此仍屬於本發明所欲保護之範圍。 14A to 14E are schematic cross-sectional views showing a method of manufacturing a light-emitting device according to another embodiment of the invention. Please refer to FIG. 14A first. A wavelength conversion adhesive layer 170 is provided. The wavelength conversion adhesive layer 170 includes a low-concentration phosphor layer 174 and a high-concentration phosphor layer 172 on the low-concentration phosphor layer 174. Here, the step of forming the wavelength conversion adhesive layer 170 is, for example, first through the mixing of dopants and colloids (that is, the liquid or molten colloid is uniformly mixed with the wavelength conversion material. The wavelength conversion material is, for example, phosphor, but not (Not limited), to form the wavelength conversion adhesive layer 170, and then let the wavelength conversion adhesive layer 170 stand for a period of time, such as 24 hours of sedimentation, to form a high-concentration phosphor layer 172 and a low-concentration phosphor layer separated from the upper and lower layers 174. That is to say, the wavelength conversion layer 170 of this embodiment is illustrated with two adhesive layers as an example. Of course, in other embodiments, please refer to FIG. 14A' to provide a wavelength conversion adhesive layer 170', wherein the wavelength conversion adhesive layer 170' is a single adhesive layer, which still falls within the scope of the present invention.

接著,請參考圖14B,將多個間隔排列的發光單元110c配置於波長轉換膠層170上,其中每一發光單元110c具有彼此相對的一上表面112c與一下表面114c、一連接上表面112c與下表面114c的側表面116c以及位於下表面114c上且彼此分離的一第一電極墊113與一第二電極墊115,而發光單元110c的上表面112c位於波長轉換膠層170的高濃度螢光膠層172上。接著,再分別形成多個材料包含透光膠體的透光膠層150c於波長轉換膠層170上且延伸至發光單元110c的側表面116c上,其中透光膠層150c 並沒有完全覆蓋發光單元110c的側表面116c,而是如圖14B所示,透光膠層150c是具有曲率斜面,且越靠近發光單元110c的上表面112c,即靠近波長轉換膠層170,透光膠層150c的厚度越厚。此處,透光膠層150c的目的在於固定發光單元110c的位置。 Next, referring to FIG. 14B, a plurality of light-emitting units 110c arranged at intervals are disposed on the wavelength conversion adhesive layer 170, wherein each light-emitting unit 110c has an upper surface 112c and a lower surface 114c opposite to each other, and a connecting upper surface 112c and The side surface 116c of the lower surface 114c and a first electrode pad 113 and a second electrode pad 115 located on the lower surface 114c and separated from each other, and the upper surface 112c of the light-emitting unit 110c is located on the high-concentration phosphor of the wavelength conversion glue layer 170 On the glue layer 172. Next, a plurality of light-transmitting adhesive layers 150c including light-transmitting colloids are formed on the wavelength conversion adhesive layer 170 and extended to the side surface 116c of the light-emitting unit 110c, wherein the light-transmitting adhesive layer 150c It does not completely cover the side surface 116c of the light-emitting unit 110c, but as shown in FIG. 14B, the light-transmitting adhesive layer 150c has a slope of curvature, and the closer to the upper surface 112c of the light-emitting unit 110c, that is, the wavelength conversion adhesive layer 170, The thickness of the photoresist layer 150c is thicker. Here, the purpose of the transparent adhesive layer 150c is to fix the position of the light emitting unit 110c.

須說明的是,於其他實施例中,請參考圖14B’,亦可在將間隔排列的發光單元110c配置於波長轉換膠層170上之前,形成一未固化且材料包含透光膠體的透光膠層150c’於波長轉換膠層170上。而將發光單元110c間隔排列地配置於波長轉換膠層170上之後,透光膠層150c’可延伸配置於發光單元110c與高濃度螢光膠層172之間。 It should be noted that, in other embodiments, please refer to FIG. 14B'. Before arranging the spaced light emitting units 110c on the wavelength conversion adhesive layer 170, an uncured light-transmitting material including a light-transmitting colloid can also be formed. The glue layer 150c' is on the wavelength conversion glue layer 170. After the light-emitting units 110c are arranged on the wavelength conversion adhesive layer 170 at intervals, the light-transmitting adhesive layer 150c' can be extended and arranged between the light-emitting units 110c and the high-concentration phosphor layer 172.

接著,請同時參考圖14B與圖14C,在透光層150c’固化後,進行一第一切割程序,以切割波長轉換膠層170,而形成多個彼此分離的單元101,其中每一單元101分別具有至少一個發光單元110c以及配置於發光單元110c的上表面112c的波長轉換膠層170,且每一單元101的波長轉換膠層170的兩側邊緣171延伸至發光單元110c的側表面116c之外。緊接著,請再參考圖14C,將間隔排列的單元101配置於一基板10上。在本實施例中,基板10的材質例如是不銹鋼、陶瓷或其他不導電的材質,於此並不加以限制。 Next, referring to FIGS. 14B and 14C at the same time, after the light-transmitting layer 150c' is cured, a first cutting process is performed to cut the wavelength conversion adhesive layer 170 to form a plurality of separate units 101, each of which is 101 Each has at least one light-emitting unit 110c and a wavelength conversion adhesive layer 170 disposed on the upper surface 112c of the light-emitting unit 110c, and the two side edges 171 of the wavelength conversion adhesive layer 170 of each unit 101 extend to the side surface 116c of the light-emitting unit 110c outer. Next, referring to FIG. 14C again, the cells 101 arranged at intervals are arranged on a substrate 10. In this embodiment, the material of the substrate 10 is, for example, stainless steel, ceramic or other non-conductive materials, which is not limited herein.

之後,請參考圖14D,形成一反射保護件120c於基板10上且包覆每一單元101的發光單元110c的側表面116c以及波長轉換膠層170的邊緣171。此處,反射保護件120c的形成方式例如 是透過點膠的方式所形成,其中反射保護件120c直接覆蓋透光膠層150c且沿著透光膠層150c延伸覆蓋於波長轉換膠層170的邊緣171。發光單元110c的第一電極墊113與第二電極墊115於基板10上的正投影不重疊於反射保護件120c於基板10上的正投影。此處,反射保護件120c例如是一白膠層。 After that, referring to FIG. 14D, a reflective protection member 120 c is formed on the substrate 10 and covers the side surface 116 c of the light emitting unit 110 c of each unit 101 and the edge 171 of the wavelength conversion adhesive layer 170. Here, the formation method of the reflection protection member 120c is for example It is formed through glue dispensing, in which the reflective protector 120c directly covers the transparent glue layer 150c and extends along the transparent glue layer 150c to cover the edge 171 of the wavelength conversion glue layer 170. The orthographic projection of the first electrode pad 113 and the second electrode pad 115 of the light-emitting unit 110c on the substrate 10 does not overlap the orthographic projection of the reflective protector 120c on the substrate 10. Here, the reflection protection member 120c is, for example, a white glue layer.

最後,請同時參考圖14D與圖14E,進行一第二切割程序,以切割反射保護件120c,並且移除基板10,而形成多個彼此分離的發光裝置100j。每一發光裝置100j分別具有至少一個發光單元101以及包覆發光單元110c的側表面116c與波長轉換膠層170的邊緣171的反射保護件120c。於移除基板10之後,暴露每一發光裝置100j的反射保護件120c的一頂面122c與波長轉換膠層170的一頂面173。在本發明另一實施例中,亦可先移除基板10再進行一切割程序。至此,已完成發光裝置100j的製作。 Finally, please refer to FIGS. 14D and 14E at the same time to perform a second cutting process to cut the reflective protection member 120c and remove the substrate 10 to form a plurality of light emitting devices 100j separated from each other. Each light-emitting device 100j has at least one light-emitting unit 101 and a reflective protective member 120c covering the side surface 116c of the light-emitting unit 110c and the edge 171 of the wavelength conversion adhesive layer 170, respectively. After the substrate 10 is removed, a top surface 122c of the reflective protection member 120c of each light-emitting device 100j and a top surface 173 of the wavelength conversion adhesive layer 170 are exposed. In another embodiment of the present invention, the substrate 10 can also be removed first and then a cutting process is performed. So far, the manufacture of the light-emitting device 100j has been completed.

在結構上,請再參考圖14E,本實施例的發光裝置100j包括發光單元110c、反射保護件120c、透光膠層150c以及波長轉換膠層170。波長轉換膠層170配置於發光單元110c的上表面112c上,其中波長轉換膠層170包括低濃度螢光膠層174以及高濃度螢光膠層172,而高濃度螢光膠層172位於低濃度螢光膠層174與發光單元110c之間,且波長轉換膠層170的邊緣171延伸至發光單元110c的側表面116c之外。此處,低濃度螢光膠層174可用來做為透光保護層,以增加水氣傳遞路徑,有效防止水氣滲入。透光膠層150c配置於發光單元110c的側表面116c與反射保護件 120c之間,用以固定發光單元110c的位置。本實施例的反射保護件120c是沿著覆蓋發光單元110c的側表面116c的透光膠層150c而更包覆於波長轉換膠層170的邊緣171,因此本實施例的發光裝置100j不需要使用習知的承載支架來支撐及固定發光單元110c,而可有效減少封裝厚度以及製作成本。同時,亦可透過具有高反射率的反射保護件120c來有效提高發光單元110c的正向出光效率。此處,反射保護件120c的頂面122c具體化是切齊於波長轉換膠層170的頂面173。 In terms of structure, please refer to FIG. 14E again. The light-emitting device 100j of this embodiment includes a light-emitting unit 110c, a reflective protection member 120c, a transparent adhesive layer 150c, and a wavelength conversion adhesive layer 170. The wavelength conversion adhesive layer 170 is disposed on the upper surface 112c of the light-emitting unit 110c. The wavelength conversion adhesive layer 170 includes a low-concentration phosphor layer 174 and a high-concentration phosphor layer 172, and the high-concentration phosphor layer 172 is located at a low concentration. Between the fluorescent glue layer 174 and the light emitting unit 110c, and the edge 171 of the wavelength conversion glue layer 170 extends beyond the side surface 116c of the light emitting unit 110c. Here, the low-concentration fluorescent glue layer 174 can be used as a light-transmitting protective layer to increase the water vapor transmission path and effectively prevent water vapor infiltration. The light-transmitting adhesive layer 150c is disposed on the side surface 116c of the light-emitting unit 110c and the reflective protection member Between 120c is used to fix the position of the light-emitting unit 110c. The reflective protection member 120c of this embodiment is along the light-transmitting adhesive layer 150c covering the side surface 116c of the light-emitting unit 110c and is further covered on the edge 171 of the wavelength conversion adhesive layer 170, so the light-emitting device 100j of this embodiment does not need to be used The conventional supporting bracket supports and fixes the light-emitting unit 110c, which can effectively reduce the package thickness and manufacturing cost. At the same time, the reflective protection member 120c with high reflectivity can also effectively improve the forward light extraction efficiency of the light-emitting unit 110c. Here, the top surface 122c of the reflective protection member 120c is embodied to be aligned with the top surface 173 of the wavelength conversion adhesive layer 170.

圖15A至圖15E繪示為本發明的另一實施例的一種發光裝置的製作方法的剖面示意圖。請先參考圖15A,提供一第一離型膜30,接著,提供一波長轉換膠層170a於第一離型膜30上,波長轉換膠層170a可以是單一層膠層,或是多層膠層,在本實施例中,波長轉換膠層170a是包括一低濃度螢光膠層174a以及一位於低濃度螢光膠層174a上的高濃度螢光膠層172a。此處,形成波長轉換膠層170a的步驟例如是先透過摻質與膠體混合的方式形成波長轉換膠層170a,之後靜置波長轉換膠層170a一段時間,如24小時後,即形成分離的低濃度螢光膠層172a與高濃度螢光膠層174a。此處,第一離型膜30例如是雙面膠膜。 15A to 15E are schematic cross-sectional diagrams of a manufacturing method of a light emitting device according to another embodiment of the invention. Please refer to FIG. 15A first, a first release film 30 is provided, and then, a wavelength conversion adhesive layer 170a is provided on the first release film 30. The wavelength conversion adhesive layer 170a can be a single layer or multiple layers In this embodiment, the wavelength conversion adhesive layer 170a includes a low-concentration phosphor layer 174a and a high-concentration phosphor layer 172a on the low-concentration phosphor layer 174a. Here, the step of forming the wavelength conversion adhesive layer 170a is, for example, to form the wavelength conversion adhesive layer 170a by mixing dopants and colloids first, and then let the wavelength conversion adhesive layer 170a stand for a period of time, such as 24 hours later, to form a separate low Concentration fluorescent glue layer 172a and high-concentration fluorescent glue layer 174a. Here, the first release film 30 is, for example, a double-sided adhesive film.

接著,請再參考圖15A,將多個間隔排列的發光單元110c配置於波長轉換膠層170A上,其中每一發光單元110c具有彼此相對的一上表面112c與一下表面114c、一連接上表面112c與下表面114c的側表面116c以及位於下表面114c上且彼此分離的一 第一電極墊113與一第二電極墊115,而發光單元110c的上表面112c位於波長轉換膠層170a的高濃度螢光膠層172a上。此處,相鄰兩發光單元110c具有一間距G,且此間距G例如是700微米。接著,再分別形成多個透光膠層150c於發光單元110c的側表面116c上,其中透光膠層150c並沒有完全覆蓋發光單元110c的側表面116c,而是如圖15B所示,透光膠層150c是具有曲率斜面,且越靠近發光單元110c的上表面112c,透光膠層150c的厚度越厚。此處,透光膠層150c的目的在於固定發光單元110c的位置。 Next, referring to FIG. 15A again, a plurality of light-emitting units 110c arranged at intervals are disposed on the wavelength conversion adhesive layer 170A, wherein each light-emitting unit 110c has an upper surface 112c and a lower surface 114c opposite to each other, and a connecting upper surface 112c And the side surface 116c of the lower surface 114c and the one located on the lower surface 114c and separated from each other The first electrode pad 113 and a second electrode pad 115, and the upper surface 112c of the light emitting unit 110c is located on the high-concentration phosphor layer 172a of the wavelength conversion adhesive layer 170a. Here, two adjacent light emitting units 110c have a gap G, and the gap G is, for example, 700 microns. Then, a plurality of light-transmitting adhesive layers 150c are respectively formed on the side surface 116c of the light-emitting unit 110c. The light-transmitting adhesive layer 150c does not completely cover the side surface 116c of the light-emitting unit 110c, but as shown in FIG. The adhesive layer 150c has a slope of curvature, and the closer to the upper surface 112c of the light-emitting unit 110c, the thicker the thickness of the transparent adhesive layer 150c. Here, the purpose of the transparent adhesive layer 150c is to fix the position of the light emitting unit 110c.

接著,請參考圖15B,進行一第一切割程序,以切割高濃度螢光膠層172a以及部分低濃度螢光膠層174a,而形成多個溝槽C。如圖15B所示,第一次切割程序並沒有完全切斷波長轉換膠層170a,而是只有切斷高濃度螢光膠層172a以及切割部分低濃度螢光膠層174a。此處,溝槽C的寬度W例如是400微米,且溝槽C的深度D例如是波長轉換膠層170a的厚度T的一半。波長轉換膠層170a的厚度T例如是140微米,而溝槽C的深度D例如是70微米。此時,溝槽C的位置與的封裝膠層150c的位置並沒有相互干涉。 Next, referring to FIG. 15B, a first cutting process is performed to cut the high-concentration phosphor layer 172a and part of the low-concentration phosphor layer 174a to form a plurality of grooves C. As shown in FIG. 15B, the first cutting process does not completely cut off the wavelength conversion adhesive layer 170a, but only cuts off the high-concentration phosphor layer 172a and cuts part of the low-concentration phosphor layer 174a. Here, the width W of the trench C is, for example, 400 microns, and the depth D of the trench C is, for example, half of the thickness T of the wavelength conversion adhesive layer 170a. The thickness T of the wavelength conversion adhesive layer 170a is, for example, 140 microns, and the depth D of the trench C is, for example, 70 microns. At this time, the position of the trench C and the position of the encapsulant layer 150c do not interfere with each other.

之後,請參考圖15C,形成一反射保護件120d於低濃度螢光膠層174a上且包覆發光單元110c的側表面116c,其中反射保護件120d填滿溝槽C且暴露出發光單元110c的第一電極墊113以及第二電極墊115。此處,反射保護件120d例如是一白膠層。 Afterwards, referring to FIG. 15C, a reflective protection member 120d is formed on the low-concentration phosphor layer 174a and covers the side surface 116c of the light-emitting unit 110c, wherein the reflective protection member 120d fills the trench C and exposes the light-emitting unit 110c The first electrode pad 113 and the second electrode pad 115. Here, the reflection protection member 120d is, for example, a white glue layer.

最後,請同時參考圖15D與圖15E,移除第一離型層30, 並提供一第二離型層40,使發光單元110c的第一電極墊113與第二電極墊115接觸第二離型膜40。此處,第二離型層40例如是UV膠或雙面膠。接著,進行一第二切割程序,以沿著溝槽C的延伸方向(即圖式15D中切割線L的延伸方向)而切割反射保護件120d與低濃度螢光膠層174a,而形成多個彼此分離的發光裝置100k。每一發光裝置100k分別具有至少一個發光單元110c、配置於發光單元110c的上表面112c的波長轉換膠層170a以及包覆發光單元110c的側表面116c的反射保護件120d。本實施例中,波長轉換膠層170a是包含高濃度螢光膠層172a與低濃度螢光膠層174a,此處,波長轉換膠層170a的低濃度螢光膠層174a的邊緣171a切齊於反射保護件120d的邊緣121,且反射保護件120d更包覆高濃度螢光膠層172a的邊緣173a。移除第二離形層40,而完成發光裝置100k的製作。 Finally, please refer to FIGS. 15D and 15E at the same time to remove the first release layer 30, A second release layer 40 is also provided so that the first electrode pad 113 and the second electrode pad 115 of the light-emitting unit 110c contact the second release film 40. Here, the second release layer 40 is, for example, UV glue or double-sided tape. Then, a second cutting process is performed to cut the reflective protection member 120d and the low-concentration phosphor layer 174a along the extending direction of the trench C (ie, the extending direction of the cutting line L in FIG. 15D) to form a plurality of The light emitting devices 100k are separated from each other. Each light emitting device 100k has at least one light emitting unit 110c, a wavelength conversion adhesive layer 170a disposed on the upper surface 112c of the light emitting unit 110c, and a reflective protection member 120d covering the side surface 116c of the light emitting unit 110c. In this embodiment, the wavelength conversion glue layer 170a includes a high-concentration fluorescent glue layer 172a and a low-concentration fluorescent glue layer 174a. Here, the edge 171a of the low-concentration fluorescent glue layer 174a of the wavelength conversion glue layer 170a is aligned with The edge 121 of the reflective protection member 120d is further covered with the edge 173a of the high-concentration phosphor layer 172a. The second release layer 40 is removed, and the fabrication of the light-emitting device 100k is completed.

在結構上,請再參考圖15E,本實施例的發光裝置100k包括發光單元110c、反射保護件120d、透光膠層150c以及波長轉換膠層170a。波長轉換膠層170a配置於發光單元110c的上表面112c上,其中波長轉換膠層170a包括低濃度螢光膠層174a以及高濃度螢光膠層172a,而高濃度螢光膠層172a位於低濃度螢光膠層174a與發光單元110c之間,且波長轉換膠層170a的邊緣171a延伸至發光單元110c的側表面116c之外。此處,低濃度螢光膠層174可用來做為透光保護層,以增加水氣傳遞路徑,有效防止水氣滲入。透光膠層150c配置於發光單元110c的側表面116c與反射 保護件120d之間,用以固定發光單元110c的位置。本實施例的反射保護件120d是沿著覆蓋發光單元110c的側表面116c的透光膠層150c而更包覆於波長轉換膠層170a的高濃度螢光膠層172a的兩側邊緣173a,因此本實施例的發光裝置100k不需要使用習知的承載支架來支撐及固定發光單元110c,而可有效減少封裝厚度以及製作成本。同時,亦可透過具有高反射率的反射保護件120d來有效提高發光單元110c的正向出光效率。此外,本實施例的波長轉換膠層170a的低濃度螢光膠層174a覆蓋反射保護件120d的一頂面122d。也就是說,本實施例的波長轉換膠層170a的高濃度螢光膠層172a的邊緣173a與低濃度螢光膠層174a的邊緣171a的並沒有切齊。 In terms of structure, please refer to FIG. 15E again. The light-emitting device 100k of this embodiment includes a light-emitting unit 110c, a reflective protection member 120d, a transparent adhesive layer 150c, and a wavelength conversion adhesive layer 170a. The wavelength conversion glue layer 170a is disposed on the upper surface 112c of the light-emitting unit 110c, wherein the wavelength conversion glue layer 170a includes a low-concentration fluorescent glue layer 174a and a high-concentration fluorescent glue layer 172a, and the high-concentration fluorescent glue layer 172a is located at a low concentration Between the fluorescent glue layer 174a and the light emitting unit 110c, and the edge 171a of the wavelength conversion glue layer 170a extends beyond the side surface 116c of the light emitting unit 110c. Here, the low-concentration fluorescent glue layer 174 can be used as a light-transmitting protective layer to increase the water vapor transmission path and effectively prevent water vapor infiltration. The transparent adhesive layer 150c is disposed on the side surface 116c of the light-emitting unit 110c and the reflective Between the protective parts 120d, the position of the light-emitting unit 110c is fixed. The reflective protection member 120d of this embodiment is along the transparent adhesive layer 150c covering the side surface 116c of the light-emitting unit 110c, and is further covered on the two side edges 173a of the high-concentration fluorescent adhesive layer 172a of the wavelength conversion adhesive layer 170a. The light-emitting device 100k of this embodiment does not need to use a conventional supporting bracket to support and fix the light-emitting unit 110c, and can effectively reduce the package thickness and the manufacturing cost. At the same time, the reflective protection member 120d with high reflectivity can also effectively improve the forward light extraction efficiency of the light emitting unit 110c. In addition, the low-concentration phosphor adhesive layer 174a of the wavelength conversion adhesive layer 170a of this embodiment covers a top surface 122d of the reflective protection member 120d. In other words, the edge 173a of the high-concentration phosphor layer 172a of the wavelength conversion adhesive layer 170a of this embodiment is not aligned with the edge 171a of the low-concentration phosphor layer 174a.

於其他實施例中,請參考圖16A,本實施例的發光裝置100m與圖14E中的發光裝置100j相似,差異之處在於:本實施例的反射保護件120m完全填滿第一電極墊113與第二電極墊114之間的間隙S且完全覆蓋第一電極墊113的一第一側表面113b與第二電極墊115的一第二側表面115b,而反射保護件120m的一底面124m切齊於第一電極墊113的第一底面113a與第二電極墊115的第二底面115a。如此一來,可以避免發光裝置100m的底部產生漏光的情況。此外,反射保護件120m則完全包覆於波長轉換膠層170a的兩側邊緣。再者,由於反射保護件120m的包覆性佳且具有較佳的結構性強度,因此本實施例的發光裝置100m不需要使用習知的承載支架來支撐及固定發光單元110c,而可有效減少 封裝厚度以及製作成本。 In other embodiments, please refer to FIG. 16A. The light-emitting device 100m in this embodiment is similar to the light-emitting device 100j in FIG. 14E. The difference is that the reflective protection member 120m of this embodiment completely fills the first electrode pad 113 and The gap S between the second electrode pads 114 completely covers a first side surface 113b of the first electrode pad 113 and a second side surface 115b of the second electrode pad 115, and a bottom surface 124m of the reflective protection member 120m is in line On the first bottom surface 113 a of the first electrode pad 113 and the second bottom surface 115 a of the second electrode pad 115. In this way, light leakage from the bottom of the light emitting device 100m can be avoided. In addition, the reflective protection member 120m completely covers both sides of the wavelength conversion glue layer 170a. Furthermore, since the reflective protection member 120m has good coating properties and better structural strength, the light-emitting device 100m of this embodiment does not need to use a conventional supporting bracket to support and fix the light-emitting unit 110c, and can effectively reduce Package thickness and manufacturing cost.

或者是,請參考圖16B,本實施例的發光裝置100n與圖16A中的發光裝置100k相似,差異之處在於:本實施例的反射保護件120n填充於第一電極墊113與第二電極墊114之間的間隙S但並未完全填滿,且反射保護件120n僅覆蓋第一電極墊113的部分第一側表面113b與第二電極墊115的部分第二側表面115b。換言之,反射保護件120n的一底面124n與第一電極墊113的第一底面113a及第二電極墊115的第二底面115a之間具有一高度差H。或者是,請參考圖16C,本實施例的發光裝置100p與圖16B中的發光裝置100n相似,差異之處在於:本實施例中第一電極墊113’與第二電極墊115’具體化為多層金屬層,如有第一金屬層M1及第二金屬層M2所組成,但並不以此為限。反射保護件120p完全覆蓋第一電極墊113’與第二電極墊115的第一金屬層M1的側表面,但並未完全覆蓋第一電極墊113’與第二電極墊115’的第二金屬層M2的側表面。簡言之,發光裝置100m、100n、100p的發光單元110c、110c’的第一電極墊113、113’與第二電極墊115、115’可為單一金屬層或多層金屬層,與此並不加以限制。 Or, please refer to FIG. 16B. The light-emitting device 100n of this embodiment is similar to the light-emitting device 100k of FIG. 16A, except that the reflective protection member 120n of this embodiment is filled in the first electrode pad 113 and the second electrode pad. The gap S between 114 is not completely filled, and the reflective protector 120n only covers part of the first side surface 113b of the first electrode pad 113 and part of the second side surface 115b of the second electrode pad 115. In other words, there is a height difference H between a bottom surface 124n of the reflective protection member 120n, the first bottom surface 113a of the first electrode pad 113 and the second bottom surface 115a of the second electrode pad 115. Or, please refer to FIG. 16C. The light-emitting device 100p in this embodiment is similar to the light-emitting device 100n in FIG. 16B. The difference is that the first electrode pad 113' and the second electrode pad 115' in this embodiment are embodied as The multi-layer metal layer may be composed of the first metal layer M1 and the second metal layer M2, but it is not limited thereto. The reflective protector 120p completely covers the side surfaces of the first metal layer M1 of the first electrode pad 113' and the second electrode pad 115, but does not completely cover the second metal of the first electrode pad 113' and the second electrode pad 115' Side surface of layer M2. In short, the first electrode pads 113, 113' and the second electrode pads 115, 115' of the light-emitting units 110c, 110c' of the light-emitting devices 100m, 100n, and 100p can be a single metal layer or multiple metal layers. Be restricted.

圖17A至圖17E繪示為本發明的一實施例的一種發光裝置的製作方法的剖面示意圖。關於本實施例的發光裝置的製作方法,首先,請參考圖17A,提供一波長轉換膠層210,波長轉換膠層210可為單一層膠層或是多層膠層,本實施例中的波長轉換膠層210包括一低濃度螢光膠層212以及一位於低濃度螢光膠層212 上的高濃度螢光膠層214。此處,形成波長轉換膠層210的步驟例如是先透過摻質與膠體混合的方式將由螢光粉(未繪示)與矽膠(未繪示)加以均勻混合後所形成的波長轉換膠材料層(未繪示)鋪設於一離型膜(未繪示)上,之後靜置波長轉換膠材料層一段時間,如24小時後,因為螢光粉跟矽膠的密度差異而形成具有分離的一低濃度螢光膠層212與一高濃度螢光膠層214的波長轉換膠層210,其中高濃度螢光膠層214會沉澱於低濃度螢光膠層212的下方,而高濃度螢光膠層214例如是黃色,低濃度螢光膠層212例如是透明的,低濃度螢光膠層212的厚度較佳是大於高濃度螢光膠層214的厚度,在一實施例中,厚度的比值可介於1至200間,但並不以此為限。 17A to 17E are schematic cross-sectional views of a manufacturing method of a light-emitting device according to an embodiment of the invention. Regarding the manufacturing method of the light-emitting device of this embodiment, first, referring to FIG. 17A, a wavelength conversion glue layer 210 is provided. The wavelength conversion glue layer 210 can be a single layer glue layer or a multi-layer glue layer. The wavelength conversion in this embodiment The glue layer 210 includes a low-concentration fluorescent glue layer 212 and a low-concentration fluorescent glue layer 212 On the high-concentration fluorescent glue layer 214. Here, the step of forming the wavelength conversion adhesive layer 210 is, for example, by mixing a dopant and a colloid to form a wavelength conversion adhesive material layer by uniformly mixing phosphor (not shown) and silicone (not shown). (Not shown) Lay on a release film (not shown), and then let the wavelength conversion adhesive material layer stand for a period of time, such as 24 hours later, due to the difference in density between the phosphor and the silicone, a separate low is formed The wavelength conversion glue layer 210 is composed of a high-concentration fluorescent glue layer 212 and a high-concentration fluorescent glue layer 214, wherein the high-concentration fluorescent glue layer 214 is deposited under the low-concentration fluorescent glue layer 212, and the high-concentration fluorescent glue layer 214 is yellow, for example, and the low-concentration phosphor layer 212 is, for example, transparent. The thickness of the low-concentration phosphor layer 212 is preferably greater than the thickness of the high-concentration phosphor layer 214. In one embodiment, the thickness ratio may be Between 1 and 200, but not limited to this.

接著,請再參考圖17A,提供一雙面膠膜10a,波長轉換膠層210的低濃度螢光膠層212配置於雙面膠膜10a上,以透過雙面膠膜10a來固定波長轉換膠層210的位置。接著,進行一第一切割程序,以從高濃度螢光膠層214切割至部分低濃度螢光膠層212,而形成多個溝槽C1。此處,每一溝槽C1的深度至少為波長轉換膠層210的厚度的一半。舉例來說,如波長轉換膠層210的厚度為240微米,而溝槽C1的深度則例如為200微米。此時,溝槽C1可將波長轉換膠層210的低濃度螢光膠層212區分為一平板部212a以及一位於平板部212a上的突出部212b,而高濃度螢光膠層214則位於突出部212b上。 Next, referring to FIG. 17A again, a double-sided adhesive film 10a is provided. The low-concentration fluorescent adhesive layer 212 of the wavelength conversion adhesive layer 210 is disposed on the double-sided adhesive film 10a to fix the wavelength conversion adhesive through the double-sided adhesive film 10a. The location of layer 210. Then, a first cutting process is performed to cut from the high-concentration phosphor layer 214 to a part of the low-concentration phosphor layer 212 to form a plurality of trenches C1. Here, the depth of each trench C1 is at least half the thickness of the wavelength conversion adhesive layer 210. For example, if the thickness of the wavelength conversion adhesive layer 210 is 240 microns, and the depth of the trench C1 is, for example, 200 microns. At this time, the trench C1 can divide the low-concentration phosphor layer 212 of the wavelength conversion adhesive layer 210 into a flat portion 212a and a protrusion 212b located on the flat portion 212a, and the high-concentration phosphor layer 214 is located on the protrusion部212b上.

接著,請參考圖17B,將多個間隔排列的發光單元220 配置於波長轉換膠層210上,其中每一發光單元220具有彼此相對的一上表面222與一下表面224、一連接上表面222與下表面224的側表面226以及位於下表面224上且彼此分離的一第一電極墊223與一第二電極墊225。發光單元220的上表面222位於波長轉換膠層210的高濃度螢光膠層214上,以增加光取出率及改善光型。溝槽C1將發光單元220區分為多個單元A,在本實施例中每一單元A中至少包括二個發光單元220(圖17B中示意地繪示兩個發光單元220)。每一發光單元220例如是為發光波長介於315奈米至780奈米之間的發光二極體晶片,而發光二極體晶片包括但不限於紫外光、藍光、綠光、黃光、橘光或紅光發光二極體晶片。 Next, referring to FIG. 17B, a plurality of light-emitting units 220 arranged at intervals Disposed on the wavelength conversion adhesive layer 210, each light emitting unit 220 has an upper surface 222 and a lower surface 224 opposite to each other, a side surface 226 connecting the upper surface 222 and the lower surface 224, and is located on the lower surface 224 and separated from each other Of a first electrode pad 223 and a second electrode pad 225. The upper surface 222 of the light-emitting unit 220 is located on the high-concentration fluorescent glue layer 214 of the wavelength conversion glue layer 210 to increase the light extraction rate and improve the light type. The trench C1 divides the light-emitting unit 220 into a plurality of units A. In this embodiment, each unit A includes at least two light-emitting units 220 (two light-emitting units 220 are schematically shown in FIG. 17B). Each light-emitting unit 220 is, for example, a light-emitting diode chip with a light-emitting wavelength between 315 nm and 780 nm, and the light-emitting diode chip includes, but is not limited to, ultraviolet light, blue light, green light, yellow light, and orange light. Light or red light emitting diode chip.

接著,請再參考圖17B,形成一透光膠層230a於波長轉換膠層210上且延伸配置於發光單元220的側表面226上。如圖17B所示,透光膠層230a由每一發光單元220的下表面224往上表面222逐漸增厚,且透光膠層230a相對於發光單元220的側表面226具有一內凹表面232,但並不以此為限。此處,透光膠層230a的目的除了在於固定發光單元220的位置之外,因透光膠層230a為一透光材質且折射率大於1,因此亦可增加晶片側面的光取出效果。 Next, referring to FIG. 17B again, a transparent adhesive layer 230a is formed on the wavelength conversion adhesive layer 210 and is extended on the side surface 226 of the light emitting unit 220. As shown in FIG. 17B, the light-transmitting adhesive layer 230a gradually thickens from the lower surface 224 of each light-emitting unit 220 to the upper surface 222, and the light-transmitting adhesive layer 230a has a concave surface 232 relative to the side surface 226 of the light-emitting unit 220. , But not limited to this. Here, the purpose of the light-transmitting adhesive layer 230a is to fix the position of the light-emitting unit 220. Since the light-transmitting adhesive layer 230a is a light-transmitting material and has a refractive index greater than 1, it can also increase the light extraction effect on the side of the chip.

接著,請參考圖17C,形成一反射保護件240於發光單元220之間並填滿溝槽C1,其中反射保護件240形成於波長轉換膠層210上且包覆每一單元A並填滿溝槽C1。反射保護件240暴露出每一發光單元220的下表面224、第一電極墊223以及第二電 極墊225。此處,反射保護件240的反射率至少大於90%,而反射保護件240例如是一白膠層。反射保護件240的形成方式例如是透過點膠的方式,其中反射保護件240直接覆蓋透光膠層230a且沿著透光膠層230a延伸覆蓋於高濃度螢光膠層214的邊緣上且填滿溝槽C1。此時,發光單元220的第一電極墊223與第二電極墊225於雙面膠膜10a上的正投影不重疊於反射保護件240於雙面膠膜10a上的正投影。 Next, referring to FIG. 17C, a reflective protective member 240 is formed between the light-emitting units 220 and fills the trench C1, wherein the reflective protective member 240 is formed on the wavelength conversion adhesive layer 210 and covers each unit A and fills the trench Slot C1. The reflective protector 240 exposes the lower surface 224 of each light-emitting unit 220, the first electrode pad 223, and the second electrical 极垫225. Here, the reflectivity of the reflective protective member 240 is at least greater than 90%, and the reflective protective member 240 is, for example, a white glue layer. The reflective protective member 240 is formed by, for example, dispensing through glue, where the reflective protective member 240 directly covers the light-transmitting glue layer 230a and extends along the light-transmitting glue layer 230a to cover the edge of the high-concentration fluorescent glue layer 214 and fill Full groove C1. At this time, the orthographic projection of the first electrode pad 223 and the second electrode pad 225 of the light-emitting unit 220 on the double-sided adhesive film 10a does not overlap the orthographic projection of the reflective protector 240 on the double-sided adhesive film 10a.

接著,請再參考圖17C,進行一第二切割程序,以從反射保護件240沿著溝槽C1而貫穿低濃度螢光膠層212,而形成多個彼此分離的發光裝置200a。此時,如圖17C所示,每一單元A中的二個發光單元220所接觸的波長轉換膠層210是連續的,意即這些發光單元220具有同一發光面,因此發光單元220所發出的光可透過透明的低濃度螢光膠層212來進行導光,可使得本實施例的發光裝置200a具有較佳的發光均勻性。 Next, referring to FIG. 17C again, a second cutting process is performed to penetrate the low-concentration phosphor layer 212 from the reflective protection member 240 along the trench C1 to form a plurality of light-emitting devices 200a separated from each other. At this time, as shown in FIG. 17C, the wavelength conversion adhesive layer 210 contacted by the two light-emitting units 220 in each unit A is continuous, which means that these light-emitting units 220 have the same light-emitting surface, so the light-emitting units 220 emit Light can pass through the transparent low-concentration phosphor layer 212 to guide light, so that the light-emitting device 200a of this embodiment has better light-emitting uniformity.

之後,請同時參考圖17C與圖17D,進行第二切割程序之後,需進行一翻膜程序。首先,先提供一UV膠膜20a於發光單元220的第一電極墊223與第二電極墊225上,以先固定這些發光裝置200a的相對位置。接著,移除雙面膠膜10a而暴露出波長轉換膠層210的低濃度螢光膠層212。最後,請參考圖17E,移除UV膠膜20a而暴露出發光單元220的第一電極墊223與第二電極墊225。至此,已完成發光裝置200a的製作。需說明的是,為了方便說明起見,圖17E僅示意地繪示一個發光裝置200a。 After that, please refer to FIG. 17C and FIG. 17D at the same time. After the second cutting procedure is performed, a film turning procedure is required. First, a UV glue film 20a is provided on the first electrode pad 223 and the second electrode pad 225 of the light-emitting unit 220 to fix the relative positions of the light-emitting devices 200a. Then, the double-sided adhesive film 10a is removed to expose the low-concentration phosphor adhesive layer 212 of the wavelength conversion adhesive layer 210. Finally, referring to FIG. 17E, the UV glue film 20a is removed to expose the first electrode pad 223 and the second electrode pad 225 of the light-emitting unit 220. So far, the fabrication of the light-emitting device 200a has been completed. It should be noted that, for convenience of description, FIG. 17E schematically illustrates only one light emitting device 200a.

在結構上,請再參考圖17E,發光裝置200a包括多個發光單元220(圖17E中示意地繪示二個發光單元220)、一波長轉換膠層210以及一反射保護件240。每一發光單元220具有彼此相對的一上表面222與一下表面224、一連接上表面222與下表面224的側表面226以及位於下表面224上且彼此分離的一第一電極墊223與一第二電極墊225。波長轉換膠層210配置於發光單元220的上表面222上,且波長轉換膠層210包括一低濃度螢光膠層212以及一高濃度螢光膠層214。低濃度螢光膠層212具有一平板部212a以及一位於平板部212a上的突出部212b。高濃度螢光膠層214配置於上表面222與突出部212b之間,其中高濃度螢光膠層214覆蓋突出部212b且接觸發光單元220的上表面222。發光單元220間隔排列且暴露出部分波長轉換膠層210。反射保護件240包覆每一發光單元220的側表面226且覆蓋發光單元220所暴露出的波長轉換膠層210。反射保護件240暴露出每一發光單元220的下表面224、第一電極墊223以及第二電極墊225。反射保護件240的邊緣切齊於低濃度螢光膠層212的平板部212a的邊緣。 In terms of structure, please refer to FIG. 17E again. The light-emitting device 200a includes a plurality of light-emitting units 220 (two light-emitting units 220 are schematically shown in FIG. 17E), a wavelength conversion adhesive layer 210 and a reflection protection member 240. Each light-emitting unit 220 has an upper surface 222 and a lower surface 224 opposite to each other, a side surface 226 connecting the upper surface 222 and the lower surface 224, and a first electrode pad 223 and a first electrode pad 223 and a first electrode pad 223 on the lower surface 224 and separated from each other. Two electrode pad 225. The wavelength conversion adhesive layer 210 is disposed on the upper surface 222 of the light-emitting unit 220, and the wavelength conversion adhesive layer 210 includes a low-concentration phosphor layer 212 and a high-concentration phosphor layer 214. The low-concentration phosphor layer 212 has a flat portion 212a and a protrusion 212b on the flat portion 212a. The high-concentration phosphor layer 214 is disposed between the upper surface 222 and the protrusion 212 b. The high-concentration phosphor layer 214 covers the protrusion 212 b and contacts the upper surface 222 of the light-emitting unit 220. The light emitting units 220 are arranged at intervals and part of the wavelength conversion glue layer 210 is exposed. The reflective protection member 240 covers the side surface 226 of each light-emitting unit 220 and covers the wavelength conversion adhesive layer 210 exposed by the light-emitting unit 220. The reflective protector 240 exposes the lower surface 224 of each light-emitting unit 220, the first electrode pad 223 and the second electrode pad 225. The edge of the reflective protection member 240 is aligned with the edge of the flat portion 212 a of the low-concentration phosphor layer 212.

由於本實施例的發光裝置200a中的這些發光單元220僅與一個波長轉換膠層210相接觸,意即這些發光單元220具有同一發光面,且低濃度螢光膠層212的邊緣與反射保護件240的邊緣切齊。因此,發光單元220所發出的光透過低濃度螢光膠層212的導引,可使得本實施例的發光裝置200a可具有較大的發光面積與較佳的發光均勻性。此外,反射保護件240包覆發光單元220 的側表面226,且反射保護件240曝露出發光單元220的第一電極墊223以及第二電極墊225。因此,本實施例的發光裝置200a不需要使用習知的承載支架來支撐及固定發光單元220,可有效較少封裝厚度以及製作成本,同時,亦可有效提高發光單元220的正向出光效率。 Since the light-emitting units 220 in the light-emitting device 200a of this embodiment are in contact with only one wavelength conversion adhesive layer 210, it means that the light-emitting units 220 have the same light-emitting surface, and the edge of the low-concentration phosphor layer 212 is in contact with the reflective protection member. The edges of 240 are cut straight. Therefore, the light emitted by the light-emitting unit 220 is guided through the low-concentration phosphor layer 212, so that the light-emitting device 200a of this embodiment can have a larger light-emitting area and better light-emitting uniformity. In addition, the reflective protector 240 covers the light-emitting unit 220 The side surface 226 of the light-emitting unit 220, and the reflective protector 240 exposes the first electrode pad 223 and the second electrode pad 225 of the light-emitting unit 220. Therefore, the light-emitting device 200a of the present embodiment does not need to use a conventional supporting bracket to support and fix the light-emitting unit 220, which can effectively reduce the package thickness and manufacturing cost, and at the same time, can effectively improve the forward light extraction efficiency of the light-emitting unit 220.

值得一提的是,本實施例並不限定透光膠層230a的結構型態,雖然圖17E所繪示的透光膠層230a具體化為相對於發光單元220的側表面226具有內凹表面232。換言之,反射保護件240更包含一與發光單元220接觸的反射面242,而此反射面242具體化為曲面。但,於其他實施例中,請參考圖18A,本實施例的發光裝置200b與圖17E中的發光裝置200a相似,差異之處在於:透光膠層230b相對於每一發光單元220的側表面226具有一外凸表面234,可有效增加發光單元220的側向出光,且透過配合波長轉換膠層210的配置,亦可增加發光裝置200b的出光面積。換言之,反射保護件240a的反射面242a具體化為曲面。或者是,請參考圖18B,本實施例的發光裝置200c與圖17E中的發光裝置200a相似,差異之處在於:透光膠層230c相對於每一發光單元220的側表面226具有一傾斜表面236。換言之,反射保護件240b的反射面242b具體化為平面。 It is worth mentioning that the present embodiment does not limit the structure of the light-transmitting adhesive layer 230a, although the light-transmitting adhesive layer 230a depicted in FIG. 17E is embodied as having a concave surface relative to the side surface 226 of the light-emitting unit 220 232. In other words, the reflective protection member 240 further includes a reflective surface 242 in contact with the light emitting unit 220, and the reflective surface 242 is embodied as a curved surface. However, in other embodiments, please refer to FIG. 18A. The light-emitting device 200b of this embodiment is similar to the light-emitting device 200a in FIG. 17E. The difference is that the transparent adhesive layer 230b is opposite to the side surface of each light-emitting unit 220. 226 has a convex surface 234, which can effectively increase the lateral light output of the light emitting unit 220, and can also increase the light output area of the light emitting device 200b through the configuration of the wavelength conversion adhesive layer 210. In other words, the reflective surface 242a of the reflective protector 240a is embodied as a curved surface. Alternatively, please refer to FIG. 18B. The light-emitting device 200c of this embodiment is similar to the light-emitting device 200a in FIG. 17E, except that the light-transmitting adhesive layer 230c has an inclined surface relative to the side surface 226 of each light-emitting unit 220. 236. In other words, the reflective surface 242b of the reflective protector 240b is embodied as a plane.

在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,相同技術內容的說明可參考前述實施例,下述實施例不再重 複贅述。 It must be noted here that the following embodiments follow the component numbers and part of the content of the previous embodiments, where the same reference numbers are used to represent the same or similar components, and the description of the same technical content can refer to the previous embodiments. The following embodiments No longer heavy Repeat.

圖19A至圖19E繪示為本發明的另一實施例的一種發光裝置的製作方法的剖面示意圖。本實施例的發光裝置200d的製作方法與上述圖17A至圖17E中的發光裝置200a的製作方法的主要差異之處在於:請參考圖19A,於進行第一切割程序時,更形成多個從高濃度螢光膠層214’切割至部分低濃度螢光膠層212’的第二溝槽C2’。如圖19A所示,溝槽C1’與第二溝槽C2’的位置呈交錯排列,其中每一溝槽C1’的深度至少為波長轉換膠層210’的厚度的一半,且每一第二溝槽C2’的深度與每一溝槽C1’的深度相同。舉例來說,如波長轉換膠層210’的厚度為240微米,而溝槽C1’的深度以及第二溝槽C2’的深度則例如為200微米,但並不以此為限。此時,低濃度螢光膠層212’的平板部212a’具有一厚度T,較佳地,厚度T例如是介於20微米至50微米之間。第二溝槽C2’將波長轉換膠層210’中的低濃度螢光膠層212’的突出部區分為二突出子部212b’,而高濃度螢光膠層214’位於這些突出子部212b’上。 19A to 19E are schematic cross-sectional diagrams of a method of manufacturing a light-emitting device according to another embodiment of the invention. The main difference between the manufacturing method of the light-emitting device 200d of this embodiment and the manufacturing method of the light-emitting device 200a in FIGS. 17A to 17E is that: please refer to FIG. 19A, when the first cutting process is performed, a plurality of slaves are formed. The high-concentration phosphor layer 214' is cut to a part of the second trench C2' of the low-concentration phosphor layer 212'. As shown in FIG. 19A, the positions of the trenches C1' and the second trenches C2' are staggered, wherein the depth of each trench C1' is at least half the thickness of the wavelength conversion adhesive layer 210', and each second The depth of the trench C2' is the same as the depth of each trench C1'. For example, if the thickness of the wavelength conversion adhesive layer 210' is 240 microns, the depth of the trench C1' and the depth of the second trench C2' are, for example, 200 microns, but it is not limited thereto. At this time, the flat portion 212a' of the low-concentration phosphor layer 212' has a thickness T. Preferably, the thickness T is, for example, between 20 microns and 50 microns. The second trench C2' divides the protrusions of the low-concentration phosphor layer 212' in the wavelength conversion adhesive layer 210' into two protrusions 212b', and the high-concentration phosphor layer 214' is located at these protrusions 212b 'on.

接著,請參考圖19B,將間隔排列的發光單元220配置於波長轉換膠層210’上,其中第二溝槽C2’位於每一發光單元單元A中的二個發光單元220之間,而發光單元220分別配置於突出子部212b’上,且發光單元220的上表面222直接接觸高濃度螢光膠層214’。較佳地,每一突出子部212b’的長度與對應的發光單元220的長度的比值為大於1且小於1.35,也就是說,低濃度螢 光膠層212’的突出子部212b’的邊緣在發光單元220的邊緣外,且高濃度螢光膠層214’的邊緣亦延伸至發光單元220的邊緣外,可有效增加發光單元220的發光面積。接著,分別形成一透光膠層230a於發光單元220的側表面226上,其中透光膠層226僅配置於發光單元220的側表面226上且延伸至波長轉換膠層210’的高濃度螢光膠層214’上,其並未延伸配置於低濃度螢光膠層212’上。 Next, referring to FIG. 19B, the light-emitting units 220 arranged at intervals are disposed on the wavelength conversion adhesive layer 210', wherein the second groove C2' is located between the two light-emitting units 220 in each light-emitting unit unit A, and emits light The units 220 are respectively disposed on the protruding sub-parts 212b', and the upper surface 222 of the light-emitting unit 220 directly contacts the high-concentration phosphor layer 214'. Preferably, the ratio of the length of each protruding sub-part 212b' to the length of the corresponding light-emitting unit 220 is greater than 1 and less than 1.35, that is, the low-density fluorescent The edge of the protruding portion 212b' of the photoresist layer 212' is outside the edge of the light-emitting unit 220, and the edge of the high-concentration phosphor layer 214' also extends beyond the edge of the light-emitting unit 220, which can effectively increase the light emission of the light-emitting unit 220 area. Next, a light-transmitting adhesive layer 230a is formed on the side surface 226 of the light-emitting unit 220, wherein the light-transmitting adhesive layer 226 is only disposed on the side surface 226 of the light-emitting unit 220 and extends to the high-concentration phosphor of the wavelength conversion adhesive layer 210' On the photoresist layer 214', it is not extended on the low-concentration phosphor layer 212'.

接著,同上述圖17C、圖17D與圖17E的步驟,請先考圖19C,即形成反射保護件240於波長轉換膠層210’上且包覆每一單元A並填滿溝槽C1’與第二溝槽C2’,接著,進行一第二切割程序,以從反射保護件240沿著溝槽C1’而貫穿低濃度螢光膠層212’,而形成多個彼此分離的發光裝置200d。接著,請同時參考圖19C與圖19D,進行第二切割程序之後,需進行一翻膜程序。首先,先提供UV膠膜20a於發光單元220的第一電極墊223與第二電極墊225上,以先固定這些發光裝置200a的相對位置。接著,移除雙面膠膜10a而暴露出波長轉換膠層210’的低濃度螢光膠層212’。最後,請參考圖19E,移除UV膠膜20a而暴露出發光單元220的第一電極墊223與第二電極墊225上。至此,已完成發光裝置200d的製作。需說明的是,為了方便說明起見,圖19E僅示意地繪示一個發光裝置200d。 Next, similar to the steps of FIGS. 17C, 17D, and 17E, please refer to FIG. 19C first, that is, forming a reflective protection member 240 on the wavelength conversion adhesive layer 210' and covering each cell A and filling the trenches C1' and The second trench C2' is followed by a second cutting process to penetrate the low-concentration phosphor layer 212' from the reflective protection member 240 along the trench C1' to form a plurality of light-emitting devices 200d separated from each other. Next, please refer to FIGS. 19C and 19D at the same time. After the second cutting process is performed, a film turning process is required. First, the UV glue film 20a is provided on the first electrode pad 223 and the second electrode pad 225 of the light-emitting unit 220 to fix the relative positions of the light-emitting devices 200a. Then, the double-sided adhesive film 10a is removed to expose the low-concentration phosphor adhesive layer 212' of the wavelength conversion adhesive layer 210'. Finally, referring to FIG. 19E, the UV glue film 20a is removed to expose the first electrode pad 223 and the second electrode pad 225 of the light-emitting unit 220. So far, the fabrication of the light-emitting device 200d has been completed. It should be noted that, for convenience of description, FIG. 19E schematically illustrates only one light-emitting device 200d.

請同時參考圖19E、圖20A與圖20B,其中需說明的是,圖19E所繪示的是沿著圖20A中的線Y-Y所繪示的剖面示意圖。本實施例的發光裝置200d與圖17E中的發光裝置200a相似,差 異之處在於:二個發光單元220之間所暴露出的波長轉換膠層210’更具有第二溝槽C2’,其中第二溝槽C2’從高濃度螢光膠層214’延伸至部分低濃度螢光膠層212’。也就是說,二個發光單元220是配置於一個連續的波長轉換膠層210’上,因此發光單元220具有同一個發光面,且低濃度螢光膠層212’的邊緣與反射保護件240的邊緣切齊。因此,發光單元220所發出的光透過低濃度螢光膠層212’的導引,可使得本實施例的發光裝置200d可具有較大的發光面積與較佳的發光均勻性。 Please refer to FIG. 19E, FIG. 20A and FIG. 20B at the same time. It should be noted that FIG. 19E shows a schematic cross-sectional view along the line Y-Y in FIG. 20A. The light-emitting device 200d of this embodiment is similar to the light-emitting device 200a in FIG. The difference is that the wavelength conversion adhesive layer 210' exposed between the two light-emitting units 220 further has a second trench C2', wherein the second trench C2' extends from the high-concentration phosphor layer 214' to a portion Low-concentration fluorescent glue layer 212'. That is to say, the two light-emitting units 220 are arranged on a continuous wavelength conversion adhesive layer 210', so the light-emitting units 220 have the same light-emitting surface, and the edge of the low-concentration phosphor layer 212' and the reflective protection member 240 The edges are neat. Therefore, the light emitted by the light-emitting unit 220 is guided through the low-concentration phosphor layer 212', so that the light-emitting device 200d of this embodiment can have a larger light-emitting area and better light-emitting uniformity.

特別是,進行第一次切割程序時,於圖20A中線X-X的方向以及線Y-Y的方向所切割的深度實質上相同。也就是說,請參考圖20B,在線X-X方向的剖面圖上,低濃度螢光膠層212’的平板部212a’具有一厚度T,請參考圖19E,而在線Y-Y方向的剖面圖上,低濃度螢光膠層212’的平板部212a’同樣具有厚度T。較佳地,厚度T例如是介於20微米至50微米之間。 In particular, when the first cutting procedure is performed, the cutting depths in the direction of the line X-X and the direction of the line Y-Y in FIG. 20A are substantially the same. That is, please refer to FIG. 20B. In the cross-sectional view along the line XX, the flat portion 212a' of the low-concentration phosphor layer 212' has a thickness T. Please refer to FIG. 19E. The flat portion 212a' of the concentrated phosphor layer 212' also has a thickness T. Preferably, the thickness T is, for example, between 20 microns and 50 microns.

當然,於其他實施例中,於進行第一次切割程序時,於不同方向的切割時,低濃度螢光膠層212’的平板部212a’亦可有不同的厚度。圖21A繪示為本發明的另一實施例的一種發光裝置的立體示意圖。圖21B與圖21C分別繪示為沿圖21A的線X’-X’以及線Y’-Y’的剖面示意圖。請同時參考圖21A、圖21B與圖21C,進行第一次切割程序時,於圖21A中線X’-X’的方向與線Y’-Y’的方向所切割的深度不同,而導致波長轉換膠層210’更包括未被該反射保護件240包覆的一第一暴露側部與一第二暴露側部,第 一暴露側部與第二暴露側部不平行,且波長轉換膠層210’於第一暴露側部處的厚度不同於波長轉換膠層210’於第二暴露側部處的厚度。詳細來說,低濃度螢光膠層212”的平板部212a”於線X’-X’的方向上具有一第一厚度T1,而低濃度螢光膠層212”的平板部212a”於Y’-Y’的方向D2上具有一第二厚度T2,而第一厚度T1不同於第二厚度T2。較佳地,第一厚度T1例如是介於50微米至200微米之間,而第二厚度T2例如是介於20微米至50微米之間。 Of course, in other embodiments, during the first cutting process, the flat portion 212a' of the low-concentration phosphor layer 212' can also have different thicknesses when cutting in different directions. FIG. 21A is a three-dimensional schematic diagram of a light emitting device according to another embodiment of the invention. 21B and 21C are respectively schematic cross-sectional views taken along the line X'-X' and the line Y'-Y' of FIG. 21A. Please refer to Figure 21A, Figure 21B and Figure 21C at the same time. When performing the first cutting procedure, the cutting depth in the direction of the line X'-X' and the direction of the line Y'-Y' in Figure 21A is different, resulting in wavelength The conversion adhesive layer 210' further includes a first exposed side portion and a second exposed side portion that are not covered by the reflective protector 240. An exposed side portion is not parallel to the second exposed side portion, and the thickness of the wavelength conversion glue layer 210' at the first exposed side portion is different from the thickness of the wavelength conversion glue layer 210' at the second exposed side portion. In detail, the flat portion 212a" of the low-concentration phosphor layer 212" has a first thickness T1 in the direction of the line X'-X', and the flat portion 212a" of the low-concentration phosphor layer 212" is at Y The direction D2 of the'-Y' has a second thickness T2, and the first thickness T1 is different from the second thickness T2. Preferably, the first thickness T1 is, for example, between 50 μm and 200 μm, and the second thickness T2 is, for example, between 20 μm and 50 μm.

由於本實施例的低濃度螢光膠層212”的平板部212a”於X’-X’的方向上與Y’-Y’的方向上分別具有不同的第一厚度T1與第二厚度T2,因此可有效降低相鄰兩發光單元220之間因暗帶而產生亮度降低的情況,進而可提高發光裝置200e的發光均勻性。此外,值得一提的是,以線Y’-Y’的方向來舉例說明,當低濃度螢光膠層212”’的平板部212a”的厚度T2例如由0.04公釐(mm)提高至0.2公釐(mm)時,發光單元220的出光角度亦可由原來的120度增加至130度,意即發光單元220的出光角度可增加10度。簡言之,低濃度螢光膠層212”’的平板部212a”的厚度大小與發光單元220的出光角度成正相關。 Since the flat portion 212a" of the low-concentration phosphor layer 212" of this embodiment has different first thickness T1 and second thickness T2 in the X'-X' direction and the Y'-Y' direction, respectively, Therefore, the brightness reduction caused by the dark band between two adjacent light-emitting units 220 can be effectively reduced, and the light-emitting uniformity of the light-emitting device 200e can be improved. In addition, it is worth mentioning that, taking the direction of the line Y'-Y' as an example, when the thickness T2 of the flat portion 212a" of the low-concentration phosphor layer 212"' is increased from 0.04 mm (mm) to 0.2 In millimeters (mm), the light output angle of the light emitting unit 220 can also be increased from 120 degrees to 130 degrees, which means that the light output angle of the light emitting unit 220 can be increased by 10 degrees. In short, the thickness of the flat portion 212a" of the low-concentration phosphor layer 212"' is positively correlated with the light-emitting angle of the light-emitting unit 220.

綜上所述,由於本發明的反射保護件包覆發光單元的側表面,且反射保護件的底面曝露出發光單元的第一電極墊的第一底面以及第二電極墊的第二底面。因此,本發明的發光裝置不但不需要使用習知的承載支架來支撐及固定發光單元,而可有效減少封裝厚度以及製作成本,同時,亦可有效提高發光單元的正向 出光效率。 In summary, because the reflective protection member of the present invention covers the side surface of the light-emitting unit, and the bottom surface of the reflective protection member exposes the first bottom surface of the first electrode pad and the second bottom surface of the second electrode pad of the light-emitting unit. Therefore, the light-emitting device of the present invention not only does not need to use the conventional supporting bracket to support and fix the light-emitting unit, but can effectively reduce the package thickness and manufacturing cost, and at the same time, it can also effectively improve the forward direction of the light-emitting unit. Light efficiency.

此外,由於本發明的發光裝置中的這些發光單元僅與一個波長轉換膠層相接觸,意即這些發光單元具有同一個發光面,且低濃度螢光膠層的邊緣與反射保護件的邊緣切齊。因此,發光單元所發出的光透過低濃度螢光膠層的導引,可使得本發明的發光裝置可具有較大的發光角度與較佳的發光均勻性。此外,反射保護件包覆發光單元的側表面且曝露出發光單元的第一電極墊以及第二電極墊。因此,本發明的發光裝置不需要使用習知的承載支架來支撐及固定發光單元,可有效較少封裝厚度以及製作成本,同時,亦可有效提高發光單元的正向出光效率。 In addition, since the light-emitting units in the light-emitting device of the present invention are in contact with only one wavelength conversion adhesive layer, it means that these light-emitting units have the same light-emitting surface, and the edge of the low-concentration phosphor layer is cut from the edge of the reflective protection member. Qi. Therefore, the light emitted by the light-emitting unit is guided through the low-concentration phosphor layer, so that the light-emitting device of the present invention can have a larger light-emitting angle and better light-emitting uniformity. In addition, the reflective protector covers the side surface of the light-emitting unit and exposes the first electrode pad and the second electrode pad of the light-emitting unit. Therefore, the light-emitting device of the present invention does not need to use the conventional supporting bracket to support and fix the light-emitting unit, which can effectively reduce the package thickness and manufacturing cost, and at the same time, can effectively improve the forward light extraction efficiency of the light-emitting unit.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100a:發光裝置 100a: Light-emitting device

110a:發光單元 110a: light-emitting unit

112a:上表面 112a: upper surface

113:第一電極墊 113: First electrode pad

113a:第一底面 113a: first bottom surface

114a:下表面 114a: lower surface

115:第二電極墊 115: second electrode pad

115a:第二底面 115a: second bottom surface

116a:側表面 116a: side surface

120:反射保護件 120: reflection protection

122:頂面 122: top surface

124:底面 124: Bottom

Claims (10)

一種發光裝置的製作方法,包括:提供一波長轉換層;將多個發光單元間隔排列地配置在該波長轉換層上,並暴露出每一發光單元的兩個電極墊;藉由移除該波長轉換層的一部分而在該波長轉換層上形成多個溝槽,其中該些溝槽位於該些發光單元之間,並且每一溝槽的深度小於該波長轉換層的厚度;形成一反射保護件於該波長轉換層上並位在該些發光單元之間,且該反射保護件填入該溝槽中,其中該反射保護件暴露出該些發光單元的該些電極墊;以及沿著該些溝槽藉由切割該波長轉換層和該反射保護件而進行一切割程序,而形成多個發光裝置,其中每一發光裝置的一側表面暴露出該波長轉換層的一部分及以該反射保護件的一部分填充的每一溝槽的輪廓,其中每一發光裝置中的每一發光單元的該些電極墊的下表面是自由的表面。 A method for manufacturing a light-emitting device includes: providing a wavelength conversion layer; arranging a plurality of light-emitting units on the wavelength conversion layer at intervals and exposing two electrode pads of each light-emitting unit; by removing the wavelength A part of the conversion layer is formed to form a plurality of trenches on the wavelength conversion layer, wherein the trenches are located between the light-emitting units, and the depth of each trench is less than the thickness of the wavelength conversion layer; forming a reflection protection member On the wavelength conversion layer and located between the light-emitting units, and the reflection protection member is filled in the groove, wherein the reflection protection member exposes the electrode pads of the light-emitting units; and along the The groove performs a cutting process by cutting the wavelength conversion layer and the reflection protection member to form a plurality of light-emitting devices, wherein one side surface of each light-emitting device exposes a part of the wavelength conversion layer and the reflection protection member A part of the outline of each trench is filled, wherein the lower surface of the electrode pads of each light-emitting unit in each light-emitting device is a free surface. 如申請專利範圍第1項所述的發光裝置的製作方法,其中每一溝槽的該深度至少是該波長轉換層的該厚度的一半。 According to the manufacturing method of the light-emitting device described in claim 1, wherein the depth of each groove is at least half of the thickness of the wavelength conversion layer. 如申請專利範圍第1項所述的發光裝置的製作方法,更包括:在將該些發光單元間隔排列地配置在該波長轉換層上之後,在該波長轉換層上形成一透光層。 The manufacturing method of the light-emitting device as described in the first item of the scope of the patent application further includes: after the light-emitting units are arranged on the wavelength conversion layer in an interval, forming a light-transmitting layer on the wavelength conversion layer. 如申請專利範圍第1項所述的發光裝置的製作方法,更包括:在將該些發光單元間隔排列地配置在該波長轉換層上之前,在該波長轉換層上形成一透光層。 The manufacturing method of the light-emitting device as described in item 1 of the scope of patent application further includes: forming a light-transmitting layer on the wavelength conversion layer before the light-emitting units are arranged on the wavelength conversion layer at intervals. 如申請專利範圍第1項所述的發光裝置的製作方法,其中該反射保護件更包括與該發光單元接觸的一反射面。 According to the manufacturing method of the light-emitting device described in item 1 of the scope of patent application, the reflective protection member further includes a reflective surface in contact with the light-emitting unit. 如申請專利範圍第5項所述的發光裝置的製作方法,其中該反射保護件的該反射面是一平面或一曲面。 According to the manufacturing method of the light-emitting device described in item 5 of the scope of patent application, the reflective surface of the reflective protection member is a flat surface or a curved surface. 如申請專利範圍第1項所述的發光裝置的製作方法,其中該波長轉換層更包括一低濃度螢光層以及一高濃度螢光層,該些發光單元配置在該高濃度螢光層上,其中該低濃度螢光層的螢光粉濃度小於該高濃度螢光層的螢光粉濃度。 The method of manufacturing a light-emitting device according to the first item of the patent application, wherein the wavelength conversion layer further includes a low-concentration phosphor layer and a high-concentration phosphor layer, and the light-emitting units are arranged on the high-concentration phosphor layer , Wherein the phosphor concentration of the low-concentration phosphor layer is less than the phosphor concentration of the high-concentration phosphor layer. 一種發光裝置的製作方法,包括:提供一波長轉換層;將多個發光單元間隔排列地配置在該波長轉換層上,並暴露出每一發光單元的兩個電極墊,其中該波長轉換層更包括一低濃度螢光層以及一高濃度螢光層,該些發光單元配置在該高濃度螢光層上,其中該低濃度螢光層的螢光粉濃度小於該高濃度螢光層的螢光粉濃度;藉由移除該高濃度螢光層的一部分而在該波長轉換層上形成多個溝槽,其中該些溝槽位於該些發光單元之間,並且每一溝槽的深度小於該波長轉換層的厚度; 形成一反射保護件於該波長轉換層上並位在該些發光單元之間,且該反射保護件填入該溝槽中,其中該反射保護件暴露出該些發光單元的該些電極墊;以及沿著該些溝槽藉由切割該波長轉換層和該反射保護件而進行一切割程序,而形成多個發光裝置,其中每一發光裝置的一側表面暴露出該低濃度螢光層及以該反射保護件的一部分填充的每一溝槽的輪廓。 A method for manufacturing a light-emitting device includes: providing a wavelength conversion layer; arranging a plurality of light-emitting units on the wavelength conversion layer at intervals and exposing two electrode pads of each light-emitting unit, wherein the wavelength conversion layer is more Comprising a low-concentration phosphor layer and a high-concentration phosphor layer, the light-emitting units are arranged on the high-concentration phosphor layer, wherein the phosphor concentration of the low-concentration phosphor layer is less than that of the high-concentration phosphor layer Light powder concentration; by removing part of the high-concentration phosphor layer to form a plurality of trenches on the wavelength conversion layer, wherein the trenches are located between the light-emitting units, and the depth of each trench is less than The thickness of the wavelength conversion layer; Forming a reflection protection member on the wavelength conversion layer and between the light-emitting units, and the reflection protection member is filled in the groove, wherein the reflection protection member exposes the electrode pads of the light-emitting units; And performing a cutting process along the grooves by cutting the wavelength conversion layer and the reflective protection member to form a plurality of light-emitting devices, wherein one side surface of each light-emitting device exposes the low-concentration phosphor layer and The contour of each groove filled with a part of the reflective protection member. 如申請專利範圍第1或8項所述的發光裝置的製作方法,其中每一發光裝置的該反射保護件更包括一反射面,該反射面朝向該發光單元且傾斜於該發光單元的一側表面。 According to the method for manufacturing a light-emitting device according to item 1 or 8 of the scope of the patent application, the reflective protection member of each light-emitting device further includes a reflective surface facing the light-emitting unit and inclined to one side of the light-emitting unit surface. 如申請專利範圍第9項所述的發光裝置的製作方法,其中該反射保護件的該反射面包括一平面或一曲面。 According to the manufacturing method of the light-emitting device described in item 9 of the scope of patent application, the reflective surface of the reflective protection member includes a flat surface or a curved surface.
TW105114037A 2015-05-05 2016-05-05 Manufacturing method of light emitting device TWI717347B (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201562157450P 2015-05-05 2015-05-05
US62/157,450 2015-05-05
TW104115331 2015-05-14
TW104115331 2015-05-14
US201562220249P 2015-09-18 2015-09-18
US62/220,249 2015-09-18
US201562236150P 2015-10-02 2015-10-02
US62/236,150 2015-10-02
US201562245247P 2015-10-22 2015-10-22
US62/245,247 2015-10-22
US201562262876P 2015-12-03 2015-12-03
US62/262,876 2015-12-03
TW105100499 2016-01-08
TW105100499 2016-01-08

Publications (2)

Publication Number Publication Date
TW201703286A TW201703286A (en) 2017-01-16
TWI717347B true TWI717347B (en) 2021-02-01

Family

ID=58400871

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105114037A TWI717347B (en) 2015-05-05 2016-05-05 Manufacturing method of light emitting device

Country Status (1)

Country Link
TW (1) TWI717347B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231974B (en) 2016-12-21 2022-09-02 日亚化学工业株式会社 Method for manufacturing light emitting device
CN111969094B (en) * 2020-09-02 2022-10-04 安晟技术(广东)有限公司 Packaging structure of LED chip
CN116072800B (en) * 2023-03-06 2023-06-23 镭昱光电科技(苏州)有限公司 Micro-LED display chip and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201401565A (en) * 2012-06-29 2014-01-01 Advanced Optoelectronic Tech LED package and method for manufacturing the same
TW201403873A (en) * 2012-07-05 2014-01-16 Advanced Optoelectronic Tech Method for manufacturing LED package
TW201515273A (en) * 2013-08-21 2015-04-16 Advanced Optoelectronic Tech Method for manufacutring light emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201401565A (en) * 2012-06-29 2014-01-01 Advanced Optoelectronic Tech LED package and method for manufacturing the same
TW201403873A (en) * 2012-07-05 2014-01-16 Advanced Optoelectronic Tech Method for manufacturing LED package
TW201515273A (en) * 2013-08-21 2015-04-16 Advanced Optoelectronic Tech Method for manufacutring light emitting diode

Also Published As

Publication number Publication date
TW201703286A (en) 2017-01-16

Similar Documents

Publication Publication Date Title
CN110767793A (en) Light emitting device and method for manufacturing the same
US10910523B2 (en) Light emitting device
US10804444B2 (en) Light-emitting device and manufacturing method thereof
CN107968141B (en) Light emitting device and method for manufacturing the same
TW201605073A (en) Light emitting device package structure and manufacturing method thereof
TWI731394B (en) Light-emitting device
JP7080010B2 (en) Light emitting element and its manufacturing method
CN108110117B (en) Light emitting diode with light blocking layer
TW201537780A (en) Semiconductor light emitting device
JP6024352B2 (en) Light emitting device and manufacturing method thereof
TWI717347B (en) Manufacturing method of light emitting device
KR102424005B1 (en) Light-emitting device
JP2019009429A (en) Light-emitting device
TW201417342A (en) Light-emitting device
JP2007234779A (en) Light emitting device
JP2017204623A (en) Light-emitting device and method for manufacturing the same
JP6729627B2 (en) Light source module
US20170084800A1 (en) Light emitting device package structure and manufacturing method thereof
JP5853441B2 (en) Light emitting device
TWI710146B (en) Light emitting device package structure
TWI786500B (en) Light emitting device and manufacturing method thereof
KR102634692B1 (en) Semiconductor light emitting device package
JPWO2021261567A5 (en)
JP2015111626A (en) Light-emitting device and method of manufacturing the same
US20220320392A1 (en) Light emitting package structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees