TWI226708B - Omnidirectional one-dimensional photonic crystal and light emitting device made from the same - Google Patents

Omnidirectional one-dimensional photonic crystal and light emitting device made from the same Download PDF

Info

Publication number
TWI226708B
TWI226708B TW92131818A TW92131818A TWI226708B TW I226708 B TWI226708 B TW I226708B TW 92131818 A TW92131818 A TW 92131818A TW 92131818 A TW92131818 A TW 92131818A TW I226708 B TWI226708 B TW I226708B
Authority
TW
Taiwan
Prior art keywords
light
omnidirectional
dielectric
emitting device
item
Prior art date
Application number
TW92131818A
Other languages
Chinese (zh)
Other versions
TW200501429A (en
Inventor
Chung-Hsiang Lin
Original Assignee
Han Shin Company Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Han Shin Company Ltd filed Critical Han Shin Company Ltd
Priority to TW92131818A priority Critical patent/TWI226708B/en
Publication of TW200501429A publication Critical patent/TW200501429A/en
Application granted granted Critical
Publication of TWI226708B publication Critical patent/TWI226708B/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Polarising Elements (AREA)

Abstract

A light emitting device includes a light-generating unit for generating a primary light in a first wavelength range, a wavelength-converting member connected to the light-generating unit for converting a portion of the primary light into a secondary light in a second wavelength range, and an omnidirectional reflector connected to the wavelength-converting member for receiving the secondary light and the remainder of the primary light which was not converted by the wavelength-converting member. The omnidirectional reflector is made from an omnidirectional one-dimensional photonic crystal having a reflectance characteristic that substantially permits total reflection of the remainder of the primary light with any incident angle and polarization back to the wavelength-converting member.

Description

1226708 玫、發明說明·· 【發明所屬之技術領域】 本發明是有關於一種全方向一維光子晶體 (Omnidirectional One-Dimensional Photonic Crystal),及一由其製造的發光裝置。 【先前技術】 在通訊及資訊科技業的蓬勃發展之下,針對通訊及資 δ孔領域的相關產品隨之因應而生,並於近年來趨向普及 化。因此,大型及小型顯示器如:液晶顯示螢幕及個人行 動產品等等,也因應科技的進步而形成一廣大的消費市 場。由於發光二極體(Light Emitting Diode ; LED)具有 體積小之優勢,因此已被廣泛應用於小型顯示器背光模組 及通訊等消費市場。但目前因為亮度不夠的問題,尚未能 廣泛使用於大型液晶顯示器的背光模組及平面照明等市 場。因此,將發光二極體應用在大型顯示器的背光模組及 平面照明等領域,是研究發光二極體技術領域的工程師有 待克服的一大難題。 熟知此技術領域的相關人士皆知,針對發光二極體的 白光發光機制,是以藍光或紫外光(Ultraviolet ; UV)的 發光二極體晶片搭配適當的石粦光體(Phosphor )相互作用 後’使其發光光譜(Spectrum)趨近白光而成。 美國專利第5,813,753號揭露一發光裝置,具有:一 紫外光/藍光發光二極體、一光穿透體、一填光體及一可 見光穿透(Long Wave Pass ;以下簡稱LWP)濾波器。該發 1226708 光二極體是被設置在-具有—反射側壁的凹槽。該光穿透 體包圍該發光二極體並填滿該凹槽。_光體是以顆粒狀 的形式被分散在該光穿透财。該可見光穿㈣波器是形 成在該光穿透體的一前側。 參閱圖卜美國專利第6,155,699揭露—種習知之發 光裝置10,具有:一界定出一凹槽12的容裳體n、一設 置在該凹槽12的發光二極體13、―封裝該發光二極體13 的圓頂狀封裝層14、-包圍該封裝層14的分布式布拉格 10 15 反射鏡(Distributed Bragg Reflector;以下簡稱 dbr) 鏡面15、一包圍該DBR鏡面15的波長轉換構件 (Wavelength Converting Meniber)16,及一封裝該波長轉 換構件16的透鏡17。 該DBR鏡面15為該技術領域所熟知的一多層介電結 構。該多層介電結構在介電常數上具有一週期性的變化, 且顯示出一頻率光帶隙(photonic Bandgap)的特性。該光 帶隙防止一特定頻率範圍的光在該介電結構内傳遞,並容 許該頻率範圍的光全反射。 4波長轉換構件16通常是由鱗光材料 (Phosphorescent Materials)所製成,為該技術領域所熟 知的一波長轉換介質。該介質是用來吸收並轉換一具有一 較短波長範圍的一次光(例如:一不可見光、一紫外光或一 監光),成為一具有一較長波長範圍的二次光(例如:可見 光或白光)。 孩DBR鏡面15具有一傳遞大部分一次光經過該dbr 20 1226708 鏡面15到該波長轉換構件16㈣透性(π·出繼e ㈤⑽心⑽’及-防止由該波長轉換構件16所產生 的二次光進人該封裝層14的反射性(㈣如酿 ㈤⑽㈣心)。在使用中,該發光二極體13發射出一 穿過該封裝層14及該DBR鏡面15的一次光且該一次光 接續被該波長轉換構件16中的磷光材料轉換成一二次 光。-部份的該二次光經由該透鏡π離開該發光裝置1〇, 同時剩餘的該二次光照射該繼鏡面15,並且後續由該 臟鏡面15被反射回該波長轉換構件16,以便於防止該 人光進入4封衣層14 ’由此提高該發光裝置的發光 效率。 ίο 15 由方;,邊-次光被轉換成該二次光的量,是依在該波 長轉換構件16中的鱗光材料之濃度及量子效率咖耐⑽1226708 Description of invention ... [Technical field to which the invention belongs] The present invention relates to an Omnidirectional One-Dimensional Photonic Crystal, and a light-emitting device manufactured by the same. [Previous Technology] Under the booming development of the communications and information technology industries, related products in the field of communications and information technology have emerged accordingly, and have become more popular in recent years. Therefore, large and small displays such as LCD screens and personal mobile products have also formed a large consumer market in response to technological advances. Because light emitting diodes (LEDs) have the advantage of small size, they have been widely used in consumer markets such as small display backlight modules and communications. However, due to the problem of insufficient brightness, it has not been widely used in markets such as backlight modules and flat lighting of large LCDs. Therefore, the application of light-emitting diodes in the backlight modules and flat lighting of large displays is a major problem that engineers in the field of light-emitting diode technology need to overcome. Relevant persons who are familiar with this technical field know that the white light emission mechanism for light emitting diodes is based on the interaction of blue light or ultraviolet (Ultraviolet; UV) light emitting diode chips with appropriate phosphors (Phosphor). Its emission spectrum (Spectrum) is close to white light. U.S. Patent No. 5,813,753 discloses a light emitting device having: an ultraviolet / blue light emitting diode, a light penetrating body, a light filling body, and a visible light transmission (LWP) filter. The emitting 1226708 photodiode is a groove provided in-having-a reflective side wall. The light penetrating body surrounds the light emitting diode and fills the groove. The light body is dispersed in the form of particles in the light penetrating property. The visible light penetrating wave filter is formed on a front side of the light penetrating body. See FIG. U.S. Patent No. 6,155,699 for disclosure of a conventional light emitting device 10, which includes: a capacitor body n defining a groove 12, a light emitting diode 13 provided in the groove 12, The dome-shaped encapsulation layer 14 of the light-emitting diode 13, a distributed Bragg Reflector (hereinafter referred to as dbr) surrounding the encapsulation layer 14, a mirror surface 15, and a wavelength conversion member surrounding the DBR mirror surface 15 ( Wavelength Converting Meniber) 16 and a lens 17 encapsulating the wavelength conversion member 16. The DBR mirror 15 is a multi-layered dielectric structure well known in the art. The multilayer dielectric structure has a periodic change in dielectric constant and exhibits a characteristic of a photonic frequency bandgap. The optical band gap prevents light of a specific frequency range from being transmitted within the dielectric structure and allows total reflection of light of the frequency range. The 4-wavelength conversion member 16 is generally made of Phosphorescent Materials, and is a wavelength conversion medium well known in the technical field. The medium is used to absorb and convert a primary light with a short wavelength range (for example: an invisible light, an ultraviolet light or a monitor light) into a secondary light with a longer wavelength range (for example: visible light Or white light). The child DBR mirror 15 has a permeability that transmits most of the primary light through the dbr 20 1226708 mirror 15 to the wavelength conversion member 16 (π · 出 · e ㈤⑽ 心 ⑽ 'and-prevents secondary waves generated by the wavelength conversion member 16 The light enters the reflectivity of the encapsulation layer 14 (like the heart). In use, the light-emitting diode 13 emits a primary light that passes through the encapsulation layer 14 and the DBR mirror surface 15 and the primary light is continuously connected. The phosphorescent material in the wavelength conversion member 16 is converted into primary and secondary light.-A part of the secondary light leaves the light emitting device 10 through the lens π, while the remaining secondary light illuminates the secondary mirror surface 15 and subsequent The dirty mirror surface 15 is reflected back to the wavelength conversion member 16 in order to prevent the person's light from entering the 4 coating layer 14 ′, thereby improving the light emitting efficiency of the light emitting device. Ο 15 15, the edge-second light is converted into The amount of the secondary light depends on the concentration of the scaly material in the wavelength conversion member 16 and the quantum efficiency.

Emc赚y)而定,該—次光之—顯著的量無法被轉換, 且可穿過該波長轉換構件16及該透鏡17並進人线中, 導致該發光裝f 1G的發光效率及該二次光的品f下降, 例如:色溫(c〇lor㈣⑽㈣及純度(purity),且若 次光為一紫外光時會對環境造成傷害。因此,需要改 。°亥次光轉換成該二次光的效率,以便於提高該發光裝 置1 〇的效率。 前面所提及的DBR鏡面〗5及該Lwp濾波器是具有呈 對的高低折射率⑽ractive Jndex)層之介電結構。眾所 k头地,g知的D別鏡面及該濾波器,對於反射或穿 透相對灰6亥介電結構之一表φ的一法線之大範圍角度的 20 1226708 入射光而言,其所呈現出來的功效無法滿足具廣角度散射 的發光裝置之需求。 美國專利苐6,130, 780號揭露一由一全方向一維光子 晶體所製成的全方向反射鏡。該全方向一維光子晶體具有 一全方向光帶隙,使得當一入射光的頻率(或波長)落入該 光帶隙時,可全反射任何一入射角及偏極= (Polarization)的光。此處所揭露的全方向反射鏡,是由 複數呈對的高低折射率層之介電材料所構成。該兩介電材 10 15 2〇 :之間折射率的差異,必須是足夠高才可以形成全方向光 帶隙。以上所提到的前案專利,在此併入本案作為參考資 料。 、 綜觀而言,如何將發光二極體或其他發光源所發射之 大角度的光充分利用,藉而提高光源與螢光體的作用,以 便於有效地應用在顯示器的背光模組或平面照明設備 上’是當前研究發光二極體及設計背光模組的業者不斷努 力的方向。 【發明内容】 本發明之另一目的,即在提供一種具有全方向反射鏡 的發光裝置,細克服前知所提到的缺失。 不同的,以至於該反射鏡具有一反射性及一穿透性 本發明之全方向反射鏡,包含:一在介電常數上具有 週期性變化的介電體。該介電體具有至少一介電單元。该 介電單元具有至少三介電層。該等介電層在折=率1是: 互不后1 2S 士人 rr 6J. Q . 該 1226708 反射性可實質地全反射一且有一 一 ,、啕 弟一波長範圍的一次 光。而該穿透性可傳遞一呈有兮裳 、士 g m 、 可心/、啕巧弟一波長範圍以外的第二 波長範圍的二次光。 另外’本發明之具有全方向反射鏡的發光裝置,包 含:-發光單波長轉換構件及至少—全方向反射鏡。 。亥&光單元可產生一具有一第一波長範圍的一次光。 該波長轉換構件連接於該發光單元,用以轉換部分該 一次光成為一具有一第二波長範圍的二次光。 ίο 15 该全方向反射鏡連接於該波長轉換構件,用以接收該 二次光,及未被該波長轉換構件轉換的剩餘之一次光。該 全方向反射鏡是一在介電常數上具有週期性變化的介電 、、^構,且具有至少一介電單元。該介電單元至少具有一第 一介電層及一第二介電層。該等介電層在折射率上是相互 不同的,以致於該全方向反射鏡具有一傳遞該二次光經過 該全方向反射鏡的穿透性,及一實質地全反射以任何入射 角及偏極化的該剩餘一次光回該波長轉換構件之反射性。 本發明之功效在於,第一,利用該全方向反射鏡使不 論以何種角度或是偏極化方向射出之該一次光,皆可完 王地反射回該波長轉換構件中,使該一次光可充分 地與該波長轉換構件進行波長轉換作用,以提高本 叙明之發光裝置的發光效率。第二,由於該一次光被該 王方向反射鏡多次且多方向地散射(J5cattering),故該 發光裝置之一發光面的光源色度(C〇1〇r)之均勻性得以 大幅改善。第三,由於該一次光之光分佈被該全方向反射 20 1226708 鏡散射開來,因此該發光單元在該發光裝置中的幾何設計 上’不但可以保持該發光裝置發光面的均勻性,更可解決 發光裝置過熱的問題。 【實施方式】 5 本發明之前述以及其他技術内容、特點與功效,在以 下配合參考圖式之四較佳實施例的詳細說明中,將可清楚 的明白。 在本發明被詳細描述之前,要注意的是,在以下的說 明中’類似的元件是以相同的編號來表示。 寒 10 針對發光二極體的白光發光機制,是以藍光或紫外光 的t光一極體晶片搭配適當的螢光體相互作用後,使其發 光光譜趨近白光而成。例如以藍光發光二極體與黃光螢光 體搭配,或是以紫外光發光二極體搭配紅綠藍(rgb)螢光 體所組成。 15 然而,如上面所提到的方法所形成的白光,通常具有 (olor Temperature)偏高和光源色度控制不易等 缺點。色溫偏高是由於藍光佔發光光譜的大部分,為降低 # 藍光強度或是提昇黃光部分的強度,必須提高藍光與螢光 體作用的機會。而光源色度則取決於激發光與營光體的作 2〇 用放率。當激發光為紫外光時’由於紫外光對光源色度上 貢獻極小,因此,欲得到色溫及色度均句的高亮度白光, 則需提高紫外光與螢光體的作用率,以減少紫外光被傳遞 到螢光體外。 參閱圖2與圖3,本發明且士八|二 个七明具有全方向反射鏡的發光裝 10 10 15 20 1226708 置之一第一較佳實施例,包含:一發光單元51、一波長轉 換構件4、一第一基板31、一第二基板%、—第一全方向 反射鏡6、-第二全方向反射鏡8 ’及一金屬反射鏡7卜 該發光單元51具有複數發光元件5]1。該等發光元件 511可產生一由350nm到47〇njn之第一波長範圍的一次 光。適用於本發明的發光元件是選自於發光二極體、有機 發光二極體(〇rganic Light Emitting Diode ; 0LED)或高 分子有機發光二極體(Polymer Light Emming Dm P圖之發光元件。在該第__較佳實施例中是使用训⑽ 波長之紫外光發光二極體。 該波長轉換構件4是一螢光體。該波長轉換構件4具 有-上表面41(即該發光農置的出光面),及_相反於該上 表面41的下表面42(即該發光裝置的背光面)。使該等發 光兀件5U是以一二维陣列(Array)的排列方式,鎮嵌在 該波長轉換構件4内且位在該波長轉換構件&的下表面 適用於本發明的波長轉換構件4是以適量的溶劑 Sove⑷為母材(Matrix),將螢光粉m贈⑽以 社〇1分散在該母材中所製備而得螢光體。在該第-較 二貝知例中,錢長轉換構件4是利用適量 色螢光粉,分散在該母材中所制借^ “ 取 』 τ所衣備而侍。猎該波長轉換構 + r /分6亥一次光成為一由4_爪到700nm的第二波 長'圍:二次光(由紅藍綠三原色所混成的白光)。 構^及第基板31、32是分別設置在該波長轉換 、上表面41及下表面42。在該第—較佳實施例中, 11 5 10 15 20 1226708 T致到的該波長轉換 —法形成在該第二 鏡二兩向一維光子晶體所製成的該等全方向反射 二基板面在^ 轉換構件4轉換6=接收該二次光及未被該波長 分別是- = —次光。該等全方向反射鏡6、8 別且 "$ *數上具有週期性變化的介電結構,且分 方J具有十四個介 別具有-第—人ΓΓ 等介電單元61、81分 及一第_人+ Ή θ 611、81卜—第二介電層612、812 第一’丨黾層613、813。該等介+屏^11 ^ =反Τ' 813在折射率上是相互不同的,以致於該等3全 射鏡二鏡:穿ΙΓ—傳遞Γ次光經過該等全方向反 偏搞 及貝為地全反射以任何入射角及 ° 一 “亥剩餘—次光回該波長轉換構件4之反射性。 二第:介電層611、811、第二介電層612、81 弟二介電層613、813,呈古一笙_4匕6 A-n- -t- s 折射率、一第二折射率 弟二折射率。該第一全方向反射 層612,分別設置於該 ^^-;," 該第二全方向反射, 6U、613之間。 於該電層812’分別設置 射率是:於:;:1=13之間。且該_ 於該等第一折及弟二折射率,該等第三折射率是低 適用於本發明的該等介電層6U、6l2、613、8n、812、 813是選自於下列所構成群組中之三介電材料:二氧 12 1226708 化鈦(Ti〇2)、二氧化矽(Si〇2)、五氧化二鈕(Ta2〇5)、 氧化紹(A 12 0 3)、氧化鎮(M g 0)、氧化錯(Z r 0 2)、氟化 鎮(MgF2)、IL化鋇(BaF2)及氟化妈(CaF2)。在該第一 較佳實施例中,該等第一介電層611、811、第二介電 層612、812及第三介電層613、813分別是二氧化鈦、 二氧化梦及五氧化二紐。 其中,適用於製作本發明之該等介電層611、612、 613、811、812、813的方法,是一選自於電子束蒸錢 (E-Beam Evaporation)、 射 頻濺鍍(R. F· Sputtering)、溶膠-凝膠法(s〇:l-Gel)或化學氣相沉 積法(Chemical Vapor Deposition ; CVD)之薄膜沉 積技術。在該第一較佳實施例中,上述的二氧化鈦、 一氧化石夕及五氧化二經是利用射頻減鍵法形成。另 外,在該第一較佳實施例中,位在該第一基板31上 表面的全方向反射鏡6,是利用射頻濺鍍法沉積在該 第一基板3 1的上表面,也可以是直接形成在該波長 轉換構件4的上表面41上。 參見圖4,表示由該第一、第二及第三介電層 611、811、61 2、81 2、61 3、8 1 3 所製成的全方向一 維光子晶體之光帶結構。當此光子晶體之晶袼間隙 (Lattice Spacing)a 為 11〇· 〇nm 時,該光子晶體具 有頻率"方;〇.298(a/c)至0.295(a/c)之間的全方 向光帶隙(波長範圍為369nm至373nm),其頻率相當 於由圖4的點201到點202。圖4中的波速(化” 13 1226708Emc earns y), the significant amount of the -second light cannot be converted, and can pass through the wavelength conversion member 16 and the lens 17 and merge into the line, resulting in the luminous efficiency of the light emitting device f 1G and the two The quality f of the secondary light decreases, for example: color temperature (color㈣⑽㈣ and purity), and if the secondary light is an ultraviolet light, it will cause harm to the environment. Therefore, it needs to be changed. ° Hierth light is converted into the secondary light In order to improve the efficiency of the light-emitting device 10, the aforementioned DBR mirror surface 5 and the Lwp filter are dielectric structures having pairs of high and low refractive index (ractive Jndex) layers. It is widely known that the D-type mirror and the filter are known for 20 1226708 incident light that reflects or penetrates a wide range of angles relative to a normal φ of one of the gray dielectric structures. The presented effects cannot meet the needs of light-emitting devices with wide-angle scattering. U.S. Patent No. 6,130,780 discloses an omnidirectional mirror made of an omnidirectional one-dimensional photonic crystal. The omnidirectional one-dimensional photonic crystal has an omnidirectional optical bandgap, so that when the frequency (or wavelength) of an incident light falls within the optical bandgap, it can totally reflect any light with an incident angle and polarisation = (Polarization) . The omnidirectional mirror disclosed here is composed of a plurality of high and low refractive index dielectric materials. The difference in refractive index between the two dielectric materials 10 15 2 0: must be high enough to form an omnidirectional optical band gap. The patents mentioned in the previous case are hereby incorporated into this case for reference. In a nutshell, how to make full use of the large-angle light emitted by light-emitting diodes or other light-emitting sources, thereby improving the role of light sources and phosphors, so as to be effectively applied to the backlight module or flat lighting of the display "On-device" is the current direction of continuous efforts by industry researchers who research light-emitting diodes and design backlight modules. SUMMARY OF THE INVENTION Another object of the present invention is to provide a light-emitting device with an omnidirectional mirror to overcome the defects mentioned in the prior art. The difference is that the mirror has a reflectivity and a penetrability. The omnidirectional mirror of the present invention includes a dielectric body having a periodic change in dielectric constant. The dielectric body has at least one dielectric unit. The dielectric unit has at least three dielectric layers. The dielectric layer at a rate of 1 is: 1 2S scholars rr 6J. Q. The 1226708 reflectivity can be substantially totally reflected one-to-one, one-time light in the wavelength range. And the penetrability can transmit a secondary light having a second wavelength range outside a wavelength range of Xishang, Shi gm, Kexin, and Qiaodi. In addition, the light-emitting device having an omnidirectional mirror according to the present invention includes:-a light-emitting single-wavelength conversion member and at least-an omnidirectional mirror. . The & light unit can generate a primary light having a first wavelength range. The wavelength conversion member is connected to the light emitting unit for converting a part of the primary light into a secondary light having a second wavelength range. ίο 15 The omnidirectional mirror is connected to the wavelength conversion member to receive the secondary light and the remaining primary light that has not been converted by the wavelength conversion member. The omnidirectional mirror is a dielectric structure having a periodic change in dielectric constant, and has at least one dielectric unit. The dielectric unit has at least a first dielectric layer and a second dielectric layer. The dielectric layers are mutually different in refractive index, so that the omnidirectional mirror has a penetrability that transmits the secondary light through the omnidirectional mirror, and a substantially total reflection at any incident angle and The remaining polarized polarized light returns to the reflectivity of the wavelength conversion member. The effect of the present invention is that, first, the omnidirectional mirror can be used to reflect the primary light emitted at any angle or the direction of polarization, so that the primary light can be reflected back into the wavelength conversion member, so that the primary light The wavelength conversion function can be sufficiently performed with the wavelength conversion member to improve the light emitting efficiency of the light emitting device described herein. Secondly, since the primary light is scattered multiple times (J5cattering) by the king-direction mirror, the uniformity of the chromaticity (CO) of the light source of one light emitting surface of the light emitting device is greatly improved. Third, because the light distribution of the primary light is scattered by the omnidirectional reflection 20 1226708 mirror, the geometric design of the light-emitting unit in the light-emitting device 'not only can maintain the uniformity of the light-emitting surface of the light-emitting device, but also Solve the problem of overheating of the light emitting device. [Embodiment] 5 The foregoing and other technical contents, features, and effects of the present invention will be clearly understood in the following detailed description with reference to the fourth preferred embodiment of the drawings. Before the present invention is described in detail, it is to be noted that in the following description, 'similar elements are represented by the same reference numerals. Han 10's white light emission mechanism for light emitting diodes is based on the interaction of blue light or ultraviolet t light monopolar wafers with appropriate phosphors to make their light emission spectrum approach white light. For example, a blue light emitting diode is matched with a yellow light emitting phosphor, or an ultraviolet light emitting diode is matched with a red green blue (rgb) phosphor. 15 However, the white light formed by the methods mentioned above usually has disadvantages such as high olor temperature and difficult control of light source chromaticity. The high color temperature is because blue light accounts for most of the luminescence spectrum. In order to reduce the intensity of # blue light or increase the intensity of yellow light, the chance of blue light interacting with phosphors must be increased. The chromaticity of the light source depends on the use of the excitation light and the light-emitting body. When the excitation light is UV light, because UV light contributes very little to the chromaticity of the light source, to obtain high-intensity white light with uniform color temperature and chromaticity, it is necessary to increase the interaction rate of UV light and phosphor to reduce UV Light is passed outside the fluorescent body. Referring to FIG. 2 and FIG. 3, the present invention is one of the first preferred embodiment of the light emitting device 10 10 15 20 1226708 with two omnidirectional mirrors, including: a light emitting unit 51 and a wavelength conversion. Component 4, a first substrate 31, a second substrate%, a first omnidirectional mirror 6, a second omnidirectional mirror 8 ', and a metal mirror 7; the light emitting unit 51 has a plurality of light emitting elements 5] 1. The light emitting elements 511 can generate a primary light in a first wavelength range from 350 nm to 4700 njn. A light-emitting element suitable for the present invention is a light-emitting element selected from a light-emitting diode, an organic light-emitting diode (0rganic Light Emitting Diode; 0LED), or a polymer organic light-emitting diode (Polymer Light Emming Dm P). In the first preferred embodiment, an ultraviolet light emitting diode using a training wavelength is used. The wavelength conversion member 4 is a phosphor. The wavelength conversion member 4 has an upper surface 41 (that is, the light emitting agricultural Light-emitting surface), and _ the lower surface 42 opposite to the upper surface 41 (that is, the backlight surface of the light-emitting device). The light-emitting elements 5U are embedded in a two-dimensional array The wavelength conversion member 4 located in the wavelength conversion member 4 and located on the lower surface of the wavelength conversion member & is suitable for the present invention. The wavelength conversion member 4 is based on a proper amount of a solvent, Sove⑷, as a matrix material. The phosphor is prepared by dispersing in the base material. In the first and second examples, the money-length conversion member 4 is made by dispersing in the base material with an appropriate amount of color phosphor powder. 』Τ cloak ready to serve. Hunt the wavelength conversion structure + r / min 6 Hai once Become a second wavelength from 4_claw to 700nm: the secondary light (white light mixed with the three primary colors of red, blue, and green). The substrates 31 and 32 are respectively set on the wavelength conversion, the upper surface 41, and Lower surface 42. In the first preferred embodiment, the wavelength conversion method caused by 11 5 10 15 20 1226708 T is formed in the omnidirectional directions made by the two-way two-dimensional one-dimensional photonic crystal of the second mirror. The reflecting two substrate surfaces are converted at ^ conversion member 4 = 6 = receiving the secondary light and not at the wavelength are-=-secondary light. These omnidirectional mirrors 6, 8 and "" $ * have periodicity in number The dielectric structure is changed, and Fang J has fourteen dielectric units with 61-81 points such as -th ΓΓ and a first_person + Ή θ 611, 81b-second dielectric layer 612, 812 The first '丨 黾 layers 613, 813. The media + screen ^ 11 ^ = anti-T' 813 are different from each other in refractive index, so that these three total lens two mirrors: wear Γ-pass Γ times The light passes through these omnidirectional anti-polarization and total reflection at any angle of incidence and ° — "Remainder—the secondary light returns to the reflectivity of the wavelength conversion member 4." The electrical layers 611, 811, the second dielectric layers 612, 81 and the second dielectric layers 613, 813 have a refractive index of ancient, a 6-an-t-s, and a second refractive index. The first omnidirectional reflection layer 612 is respectively disposed at the ^^-;, and the second omnidirectional reflection layer is between 6U and 613. The emissivity is set at the electrical layer 812 ', respectively: at :: 1 = 13. And the _ is between the first refractive index and the second refractive index, and the third refractive index is low. The dielectric layers 6U, 61, 613, 8n, 812, and 813 which are suitable for the present invention are Three dielectric materials selected from the group consisting of: titanium dioxide 12 1226708 titanium oxide (Ti〇2), silicon dioxide (Si〇2), two pentoxide (Ta205), and oxide (A 12 0 3), oxidation town (M g 0), oxidation oxide (Z r 0 2), fluoride town (MgF2), IL barium (BaF2) and fluoride mom (CaF2). In the first preferred embodiment, the first dielectric layers 611, 811, the second dielectric layers 612, 812, and the third dielectric layers 613, 813 are respectively titanium dioxide, dream dioxide, and pentoxide. . The method suitable for making the dielectric layers 611, 612, 613, 811, 812, and 813 of the present invention is a method selected from the group consisting of E-Beam Evaporation and RF sputtering Sputtering), sol-gel (s0: l-Gel) or chemical vapor deposition (Chemical Vapor Deposition; CVD) thin film deposition technology. In the first preferred embodiment, the above-mentioned titanium dioxide, monoxide and pentoxide are formed by a radio frequency reduction method. In addition, in the first preferred embodiment, the omnidirectional mirror 6 located on the upper surface of the first substrate 31 is deposited on the upper surface of the first substrate 31 by radio frequency sputtering, or it may be directly It is formed on the upper surface 41 of the wavelength conversion member 4. Referring to FIG. 4, there is shown an optical band structure of an omnidirectional one-dimensional photonic crystal made of the first, second, and third dielectric layers 611, 811, 61 2, 81 2, 61 3, 8 1 3. When the Lattice Spacing a of this photonic crystal is 110.0 nm, the photonic crystal has a frequency "square; omnidirectional between 0.298 (a / c) and 0.295 (a / c) Optical band gap (wavelength range 369nm to 373nm), its frequency corresponds to point 201 to point 202 in FIG. 4. The wave velocity in Figure 4

Number ; k〇及波偏極化TE& TM的定義,則見於美 國專利第6,1 3 0,7 8 0號的說明書中。 參見圖5,為由上述全方向一維光子晶體所形成之全 方向反射鏡,對於從空氣中以所有入射角及偏極化的入射 5 光之平均穿透率(Transmittance)與反射率 (Reflectance)之光譜。其中,可看到在波長介於366⑽ 和378 之間,平均反射率皆大於99%,此結果與圖 4中光帶隙的分析相符合。 蒼見圖6’為由該全方向一維光子晶體 10 (Tl〇2/Sl〇2/Ta205 ; three-some)所製成的全方向反射 鏡6、8’與一由Ti〇2/Si〇2(pair)所製成之全方向反 射鏡的平均穿透率與反射率光譜之比較目。此處是 以兩種一維光子晶體,對從該波長轉換構件4中以〇 到90度入射之紫外光,進行平均穿透及反射特性的 15 ^匕較。其中,可看出Ti〇2/Si〇2/Ta2〇5之平均反射率 白大於 99/〇,且 Ti〇2/Si〇2/Ta2〇5 的波形較 Ti〇2/Si〇2 的波形窄,其表示在沒有減少該一次光的反射率 下,Ti〇2/Si〇2/Ta2〇5更能有效地把該二次光(可見光) 傳遞出去。因此,不論該發光單元51是以何種角度 20 或是偏極化方向射出,皆可被完全侷限在該波長轉 換構件4内多次且多方向地散射,而無法傳遞出該 波長轉換構件4。 〃值得-提的是’由於在本發明之第_較佳實施例中, 該第二全方向反射鏡8主要是全反射往該發光裝置 14 5 10 15 1226708 之背光面方向發射的一次光回該波長轉換構件2 中,因此,參見圖6,每一介電單元81也可以是僅 由Ti⑴及Si〇2所構成,便可達成全反射該_次光的 再參見圖2,該金屬反射層7][是形成在該第二 王方向反射鏡8的一下表面。 、在傳統的發光裝置中,於發光單元的底部會形 成有一金屬反射層,用以反射一次光及二次光二波 長轉換構件中。但是,當一次光為不可見光(例如uv 光)夺此金屬反射層將會吸收掉部分的一次光,並 降低此發光裝置的發光效率。 “在該第一較佳實施例中,該一次光是被由全方向一維 光子晶體所製成的第二全方向反射鏡8全反射回該波長轉 、牛4中另外,该二次光(白光)又可藉由該金屬層71 ^回:波長轉換構件4,並由該波長轉換構件4傳遞出 : 方向反射鏡6,由此提高本發明之發光裝置的發The definitions of Number; k0 and wave polarization TE & TM are found in the specification of U.S. Patent No. 6,130,780. Referring to FIG. 5, it is an omnidirectional mirror formed by the above-mentioned omnidirectional one-dimensional photonic crystal. The average transmittance and reflectance of 5 incident light from the air at all angles of incidence and polarization. ) Of the spectrum. Among them, it can be seen that the average reflectance is greater than 99% at a wavelength between 366⑽ and 378, and this result is consistent with the analysis of the optical band gap in FIG. 4. Fig. 6 'shows an omnidirectional mirror 6, 8' made of the omnidirectional one-dimensional photonic crystal 10 (TlO2 / SlO2 / Ta205; three-some) and a omnidirectional mirror 6, 8 ' Comparison of the average transmittance and reflectance spectrum of an omnidirectional mirror made by 〇2 (pair). Here, two types of one-dimensional photonic crystals are used to compare the average transmission and reflection characteristics of ultraviolet light incident from the wavelength conversion member 4 at 0 to 90 degrees. Among them, it can be seen that the average reflectance white of Ti〇2 / Si〇2 / Ta205 is greater than 99 / 〇, and the waveform of Ti〇2 / Si〇2 / Ta205 is larger than that of Ti〇2 / Si〇2. Narrow, which means that without reducing the reflectivity of the primary light, Ti〇2 / Si〇2 / Ta205 can transmit the secondary light (visible light) more effectively. Therefore, no matter what angle 20 or polarization direction the light emitting unit 51 emits from, it can be completely confined within the wavelength conversion member 4 to be scattered multiple times and in multiple directions, and the wavelength conversion member 4 cannot be transmitted. . 〃 It is worth mentioning that 'because in the _ preferred embodiment of the present invention, the second omnidirectional mirror 8 is mainly a total light reflected back to the primary surface of the light emitting device 14 5 10 15 1226708. In the wavelength conversion member 2, therefore, referring to FIG. 6, each dielectric unit 81 may also be composed of only Ti⑴ and SiO2, which can achieve total reflection of the secondary light. See FIG. 2 again, the metal reflection Layer 7] [is formed on the lower surface of the second king direction reflector 8. In a conventional light-emitting device, a metal reflective layer is formed on the bottom of the light-emitting unit to reflect the primary light and secondary light two-wavelength conversion members. However, when the primary light is invisible light (such as UV light), the metal reflective layer will absorb part of the primary light and reduce the light-emitting efficiency of the light-emitting device. "In the first preferred embodiment, the primary light is totally reflected back to the wavelength converter by a second omnidirectional mirror 8 made of an omnidirectional one-dimensional photonic crystal. In addition, the secondary light (White light) The metal layer 71 ^ back to: the wavelength conversion member 4 and transmitted by the wavelength conversion member 4: the directional mirror 6, thereby improving the light emitting device of the present invention.

20 ,回7,本發明具有全方向反射鏡的發光裝置之 第二較佳實施例,大致上是與該第_較佳實施例相同。 不:處在於,該第—全方向反射鏡6是呈一半球形狀, 叫加該二次光傳遞過該第_全方向反射鏡㈣穿透率 =進-步地提升該第二較佳實施例之發光裝置的發光: 鏡的發光裝 閱圖8與® 9,本發明具有全方向反射 15 5 10 15 20 、下表 1226708 較佳實施例,大致±是與該第—較 二其不同處在於,該發光裝置包含有兩金屬反射:;目 且该波長㈣構件4更具# θ 2, 另外,該於汉十仃6又置的側面43。 施例。 凡51的排列關係也不同於該第-較佳實 該波長轉換構件4的兩側面43是分別與該上 面41、42連接。 =光單元51具有複數發光元件512。該等發光元 杜广別主兩一維陣列的排列方式鑲嵌在該波長㈣ 件4的該等側面43上。 ^ “該等金屬反射層72是分別形成在該等側面43, 蓋该等發光元件512。 參閱圖10,本發明具有全方向反射鏡的發光裝置之一 第四較佳實施例,大致上是與該第—較佳實施例相同。直 不同處在於,該發光單元51、第二全方向反射鏡8、 金屬反射層71及第二基板32的設置位置。 該發光單元51具有-發光元件513。該發光元件513 是鑲嵌在該波長轉換構件4中,並具有一下表面5〇1。在 該第四較佳實施例中,該發光元件513是由一磊晶 (Epi taxy)基材及一形成在該磊晶基材上的發光晶 體所構成(圖未示)。適用於本發明之該磊晶基材是一選自 於藍寶石(Sapphire)、砸化鋅(ZnSe)、氧化鋅(Zn〇) 或氮化鎵(GaN)之磊晶基材。在該第四較佳實施例 中,該蠢晶基材是使用藍寶石。20, Back to 7, the second preferred embodiment of the light-emitting device having an omnidirectional mirror according to the present invention is substantially the same as the first preferred embodiment. No: The reason is that the first-omnidirectional mirror 6 is in the shape of a hemisphere, so that the second light is transmitted through the first-omnidirectional mirror. Transmittance = Promote the second preferred implementation step by step. The light emission of the light-emitting device of the example: The light emission of the mirror is shown in Figs. 8 and ® 9. The present invention has an omnidirectional reflection of 15 5 10 15 20 and the following table 1226708. The preferred embodiment is roughly ± different from the second and the second. The light-emitting device includes two metal reflections: and the wavelength chirp member 4 has # θ 2, and the side 43 of the Han Shi 仃 6 is placed. Example. The arrangement relationship of Fan 51 is also different from that of the first preferred embodiment. Both side surfaces 43 of the wavelength conversion member 4 are connected to the upper surfaces 41 and 42, respectively. The light unit 51 includes a plurality of light emitting elements 512. The arrangement of the two-dimensional arrays of the two-dimensional array of Du Guangbei's masters is embedded on the side faces 43 of the wavelength unit 4. ^ "The metal reflective layers 72 are respectively formed on the side faces 43 and cover the light emitting elements 512. Referring to Fig. 10, a fourth preferred embodiment of a light emitting device with an omnidirectional mirror according to the present invention is roughly The same as the first preferred embodiment. The only difference is that the light emitting unit 51, the second omnidirectional mirror 8, the metal reflection layer 71, and the second substrate 32 are disposed. The light emitting unit 51 has a light emitting element 513. The light-emitting element 513 is embedded in the wavelength conversion member 4 and has a lower surface 501. In the fourth preferred embodiment, the light-emitting element 513 is made of an epitaxy substrate and a substrate. The epitaxial substrate (not shown) formed on the epitaxial substrate. The epitaxial substrate suitable for the present invention is selected from the group consisting of sapphire, ZnSe, and zinc oxide (Zn). O) or an epitaxial substrate of gallium nitride (GaN). In the fourth preferred embodiment, the sapphire substrate is sapphire.

16 1226708 ϋ亥第一全方向反射鏡8是被嵌埋該波長轉換構件4的 下表面42,並且具有一上表面8〇1及一相反於該上表面 801的下表面802。該第二全方向反射鏡8的上表面8〇1 疋形成在該發光元件513的下表面501 (即磊晶基材的下表 5 面)。 °亥金屬反射層71是形成在該波長轉換構件4的下表 面42 ’且覆蓋該第二全方向反射鏡8的下表面8〇2。 忒第二基板32是形成在該金屬反射層71的一下表 面並且覆蓋該金屬反射層71。 10 麥閱圖11,本發明具有全方向反射鏡的發光裝置之一 第五較佳實施例,大致上是與該第四較佳實施例相同。其 不同處在於,該金屬反射層η是形成在該第二基板 32的下表面,並且覆蓋該第二基板32。 另外值得一提的是,在本發明的該等較佳實施 15 例中,是利用該等全方向反射鏡6、8之全方向光帶 隙的特性,使其光帶隙位於入射光源為37〇⑽紫外 光的波長範圍内,並配合三原色螢光粉以形成白光 :發光機制。而本發明的應用並不侷限在該等較佳 實施例的限制條件内,也可以是針對不同顏色的發 20 光機制並配合色彩學(Chromatics)的應用,設計出 具有一預定波長範圍之光帶隙的全方向一維光子晶 體之全方向反射鏡,使得所選用的營光粉可配合該 預定波長範圍的入射光源,以形成其他顏色的發= 機制。 17 5 10 15 20 1226708 比較該等較佳實施例,可得到以下幾個結果: 1 (一)、上面所提到的全方向反射鏡6 8 口 隔波長為37Gnm的紫外光,並、/可以有效阻 傳#糾冰W 阿施1的紫外光直接 傳遞到外界,以降低對人體所造成的傷害。 直接 (1)、«上述的結果㈠,本翻巾的全方 度。 毛先冗度及穩定光源色 、/三)、在該第-及第二較佳實施例中,由於該一次光# 之光分佈,是被該等全方向反射鏡8散射開來,因此可氕 寬該等發光元件51卜512之間的距離。而在調寬過該等 lx光7G件51卜512的間距後,不但仍可保持該發光裳f 發光面的均勻性’也因此解決了發光裝置過熱的問題。 (四)、在該等較佳實施例中,由於該—次光被該等纟 · 方向反射鏡6、8完全侷限在波長轉換構件4(螢光體)中。 所以,即使波長轉換構件4的層厚極薄或是螢光體的密度 不高,仍可使該一次光與之充分作用。故有能提本發明之 · 高發光裝置的發光亮度與縮小發光裝置之體積的優點。 本發明之具有全方向反射鏡的發光裝置,具有降低對 人體所造成的傷害、提高白光之發光亮度、光源色度穩 疋角午决叙光裝置過熱的問題及重量體積輕薄化等特點, … 確實達到本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 18 1226708 範圍及發明說明書内容所作簡單 丨F <間早的寺效變化與修比 應仍屬本發明專利涵蓋之範圍内。 白 【圖式簡單說明】 圖1是一示意圖,說明一種習知之發光裝置; 圖2是一側視剖面示咅圖 丁心圖,祝明本發明之發 一第一較佳實施例; ,九衣置之 圖3是該圖2之局部放大示意圖,說 光子晶體之全方向反射鏡的細部結構; 方白-維 10 15 20 圖4是一光帶結構圖,說明該全方向一 光帶結構; 、准先子日日體之 圖5是一平均反射率及穿 標表示波長,垂直 = 日圖,其中’水平座 且从铩表不平均反射率及穿透率; 圖6是一平均反射率及穿透率光譜圖; ® 7疋側視局部剖面示意圖,士分日日士 & j囬丁〜圚呪明本發明之發光裝 置之弟二較佳實施例; 圖^是-側視局部剖面示意圓,說明本發明之發光裝 弟三較佳實施例; 圖,:二二:三Γ實施例之另—側視局部剖面示意 旻數叙先几件呈兩一維陣列的排列方式,· ,10是—侧視局部剖面示意圖’說明本發明之發光 衣 —第四較佳實施例;及16 1226708 The first omnidirectional mirror 8 is embedded in the lower surface 42 of the wavelength conversion member 4, and has an upper surface 801 and a lower surface 802 opposite to the upper surface 801. The upper surface 801 of the second omnidirectional mirror 8 is formed on the lower surface 501 of the light emitting element 513 (that is, the lower surface of the epitaxial substrate). The metal reflective layer 71 is formed on the lower surface 42 'of the wavelength conversion member 4 and covers the lower surface 802 of the second omnidirectional mirror 8. The second substrate 32 is formed on the lower surface of the metal reflection layer 71 and covers the metal reflection layer 71. 10 As shown in FIG. 11, a fifth preferred embodiment of the light-emitting device having an omnidirectional mirror according to the present invention is substantially the same as the fourth preferred embodiment. The difference is that the metal reflective layer η is formed on the lower surface of the second substrate 32 and covers the second substrate 32. It is also worth mentioning that in the 15 examples of the preferred embodiment of the present invention, the characteristics of the omnidirectional optical band gap of the omnidirectional mirrors 6, 8 are used to make the optical band gap of the incident light source at 37 〇⑽ Ultraviolet light in the wavelength range, combined with the three primary color phosphors to form white light: light emitting mechanism. The application of the present invention is not limited to the limitations of the preferred embodiments, and it can also be designed for light with a different color emission mechanism and the application of Chromatics to design a light with a predetermined wavelength range. The band gap omnidirectional one-dimensional photonic crystal is an omnidirectional mirror, so that the selected camping light powder can be used with the incident light source in the predetermined wavelength range to form other colors. 17 5 10 15 20 1226708 Comparing these preferred embodiments, the following results can be obtained: 1 (1) The above-mentioned omnidirectional mirror 6 8 is separated by 37Gnm ultraviolet light, and // Effective blocking transmission #rectification ice W The ultraviolet light of Ash 1 is directly transmitted to the outside world to reduce the harm to the human body. Directly (1), «The above result㈠, the full degree of the present towel. Mao's redundancy and stable light source color, / c) In the first and second preferred embodiments, since the light distribution of the primary light # is scattered by the omnidirectional mirrors 8, it can be The distance between the light emitting elements 51 and 512 is wide. After widening the pitch of the 51x512 of these lx light 7G pieces, not only the uniformity of the light emitting surface of the light emitting skirt f can be maintained, but also the problem of overheating of the light emitting device is solved. (4) In the preferred embodiments, since the secondary light is completely confined in the wavelength conversion member 4 (fluorescent body) by the directional mirrors 6 and 8. Therefore, even if the layer thickness of the wavelength conversion member 4 is extremely thin or the density of the phosphor is not high, the primary light can be made to fully interact with it. Therefore, there is an advantage that the light emitting brightness of the high light emitting device and the reduction in the size of the light emitting device of the present invention can be mentioned. The light-emitting device with omnidirectional reflector of the present invention has the characteristics of reducing the harm to human body, increasing the luminous brightness of white light, the problem of overheating of the light source chromatic stability angle light device, and the light weight and thinness, etc ... The objective of the present invention is indeed achieved. However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, what is simply done in accordance with the scope of the present application for patent 18 1226708 and the content of the invention specification F < The change of temple effect and repair ratio should still be within the scope of the patent of the present invention. White [Brief description of the drawings] FIG. 1 is a schematic diagram illustrating a conventional light emitting device; FIG. 2 is a side cross-sectional view of a drawing and a heart chart, wishing a first preferred embodiment of the present invention; Figure 3 of the clothing set is a partially enlarged schematic diagram of Figure 2, which shows the detailed structure of the omnidirectional mirror of the photonic crystal; Fang Bai-dimensional 10 15 20 Figure 4 is a diagram of the structure of an optical band, illustrating the structure of the optical band in all directions ; Figure 5 of the quasi-pseudo-sun heliosphere is an average reflectance and the wavelength indicated by the standard, vertical = daily chart, where 'horizontal base and uneven reflectance and transmittance from the surface; Figure 6 is an average reflection Spectral chart of transmittance and transmittance; ® 7 疋 Side view partial cross-section schematic diagram, Shifenri Ri & J Huiding ~ Ming Ming the second best embodiment of the light-emitting device of the present invention; Figure ^ is-side view The partial cross section is a schematic circle, illustrating the three preferred embodiments of the light-emitting device of the present invention; Figures: 22: 3 Another embodiment of the side-side view The partial cross section shows the arrangement of the first few pieces in a two-dimensional array 10 is a schematic partial cross-sectional view of a side view 'illustrates the luminescence of the present invention - a fourth preferred embodiment; and

圖 1 1 B 1疋―側視局部剖面示意圖’說明本發明之發光 、 一第五較佳實施例。 19 1226708 【圖式之主要元件代表符號簡單說明】 201 ,率點201 611 第一介電層 202 頻率點202 612 第二介電層 31 …第一基板 613 第三介電層 32 第二基板 71 金屬反射層 4……… …波長轉換構件 72 金屬反射層 41 上表面 8 第二全方向反射層 :: ^ -j 4 下表面 801 上表面 501 ◊下表面 802 :下表面 51 -…發光單元 81 - …、介電單元 511… ……發光元件 811 s … …第一介電層 512 發光元件 812… …第二介電層 513… …“發光元件 813… …第三介電層 6 … < 第一全方向反射鏡 61 …介電單元 20Fig. 1 1 B 1 疋-a schematic partial cross-sectional side view 'illustrates a light emitting, a fifth preferred embodiment of the present invention. 19 1226708 [Brief description of the main components of the diagram] 201, rate point 201 611 first dielectric layer 202 frequency point 202 612 second dielectric layer 31… first substrate 613 third dielectric layer 32 second substrate 71 Metal reflection layer 4 ......... wavelength conversion member 72 metal reflection layer 41 upper surface 8 second omnidirectional reflection layer: ^ -j 4 lower surface 801 upper surface 501 ◊ lower surface 802: lower surface 51 -... light emitting unit 81 -..., dielectric unit 511 ... ... light-emitting element 811 s ... ... first dielectric layer 512 light-emitting element 812 ... ... second dielectric layer 513 ... "light-emitting element 813 ... ... third dielectric layer 6 ... < First omnidirectional mirror 61 ... dielectric unit 20

Claims (1)

1226708 拾、申请專利範圍: 1. -種全方向反射鏡,包含: ^全方向光子晶體之介電體,在介電常數上具週 又化JL/、有至少一介電單元,該介電單元至少具有— 介電層、-第二介電層及—第三介電層,該等介電 射率上是相互不同的,以至於該全方向反射鏡具有 f及牙透性,該反射性實質地全反射一具有一第—波長 ,的、_人光’㈣透性傳遞-具有該第-波長範圍以外 勺弟二波長範圍的二次光。 :·根據中請專利範圍第丨項之全方向反射鏡,其中, 、弟二及第三介電層分別具有—第一折射率、一" 射率及-第三折射率,該第二介電層是設置於該第—及於 三介電層之間’且該第二折射率是低於該第—及弟 率,該第三折射率是低於該第一折射率。 —射 .,據:請專利範圍第1項之全方向反射鏡,其中,該第 、弟二及第三介電層是由選自於下列所構成群组: '氟化鎂、 其中,該第 二氧化矽 五介電材料層所組成:二氧化鈦、二氣切、 虱化一鈕、氧化鋁、氧化鎂、氧化錯 氟化鋇及氟化鈣。 根據申請專利範圍第1項之全方向反射鏡, 、第一及第三介電層是分別由二氧化歛 及五氧化二组所製成。 一種具有全方向反射鏡的發光裝置,包含: 發光單元,可產生-具有一第一波長範固的一次 21 1226708 光; 一 A〜長轉換構件,連接於該發光單元用以轉換部分該 —次::為-具有-第二波長範圍的二次光;及 向光子sa體之第一全方向反射鏡,連接於該波 、轉換構件心接收該二欠光,及未被該波長轉換構件轉 換的剩餘之一次光。 根據申凊專利範圍第5項之發光裝置,其中,該第一全 方2反射鏡具有至少一介電單元,該介電單元至少具有 卜;|電層及一苐一介電層,該等介電層在折射率上 是相互不同的,以致於該第一全方向反射鏡具有一傳遞 該二次光經過該第一全方向反射鏡的穿透性,及一實質 地全反射該剩餘一次光回該波長轉換構件之反射性。 •根據申請專利範圍第5項之發光裝置,其中,該第一全 方向反射鏡具有至少一介電單元,該介電單元至少具有 第 η電層、一第二介電層及一第三介電層,該等介 笔層在折射率上是相互不同的,以致於該第一全方向反 射鏡具有一傳遞該二次光經過該第一全方向反射性的穿 透鏡’及一實質地全反射該剩餘一次光回該波長轉換構 件之反射性。 .根據申請專利範圍第7項之發光裝置,其中,該第一、 第二及第三介電層分別具有一第一折射率、一第二折射 率及一第三折射率,該第二介電層是設置於該第一及第 一)丨電層之間,且該第二折射率是低於該第一及第三折 射率,該第三折射率是低於該第一折射率。 22 12267081226708 Scope of patent application: 1. An omnidirectional mirror, including: ^ omnidirectional photonic crystal dielectric, has a dielectric constant JL / on the dielectric constant, has at least one dielectric unit, the dielectric The unit has at least a dielectric layer, a second dielectric layer, and a third dielectric layer. The dielectric emissivities are different from each other, so that the omnidirectional mirror has f and tooth permeability, and the reflection Substantially total reflection-a secondary light having a first wavelength, a human light 'transmissive transmission-having a second wavelength range outside the first wavelength range. : · According to the omnidirectional mirror of the patent scope of the patent application, wherein the second, third and third dielectric layers respectively have a first refractive index, a " emissivity and a third refractive index, the second A dielectric layer is disposed between the first and third dielectric layers, and the second refractive index is lower than the first and second refractive indexes, and the third refractive index is lower than the first refractive index. —Emission. According to: The omnidirectional mirror of item 1 of the patent scope, wherein the first, second and third dielectric layers are selected from the group consisting of: 'magnesium fluoride, where, the The second silicon oxide is composed of five dielectric material layers: titanium dioxide, two gas cuts, one button, aluminum oxide, magnesium oxide, barium oxide fluoride, and calcium fluoride. According to the omnidirectional mirror of item 1 of the patent application scope, the first and third dielectric layers are made of two groups of pentoxide and pentoxide, respectively. A light-emitting device with an omnidirectional mirror includes: a light-emitting unit that can generate-a primary 21 1226708 light with a first wavelength range; an A ~ long conversion member connected to the light-emitting unit to convert a part of this time :: Is-secondary light with-second wavelength range; and a first omnidirectional reflector towards the photon sa body, connected to the wave, the conversion member receives the two under-lights, and is not converted by the wavelength conversion member The rest of the light. The light-emitting device according to item 5 of the patent claim, wherein the first all-square 2 reflector has at least one dielectric unit, and the dielectric unit has at least a dielectric layer and a dielectric layer. The dielectric layers are mutually different in refractive index, so that the first omnidirectional mirror has a penetrability that transmits the secondary light through the first omnidirectional mirror, and a substantially total reflection of the remaining one time. The light returns to the reflectivity of the wavelength conversion member. • The light-emitting device according to item 5 of the scope of patent application, wherein the first omnidirectional mirror has at least one dielectric unit, and the dielectric unit has at least an n-th electrical layer, a second dielectric layer, and a third dielectric. Electrical layers, the pen layers are mutually different in refractive index, so that the first omnidirectional mirror has a through lens that transmits the secondary light through the first omnidirectional reflectance, and a substantially Reflects the remaining primary light back to the reflectivity of the wavelength conversion member. The light-emitting device according to item 7 of the scope of patent application, wherein the first, second, and third dielectric layers have a first refractive index, a second refractive index, and a third refractive index, respectively, and the second dielectric layer The electric layer is disposed between the first and first electric layers, and the second refractive index is lower than the first and third refractive indexes, and the third refractive index is lower than the first refractive index. 22 1226708 根據申請專利範圍第8項之發光裝 塔一 ”干,该發光 早兀具有至少一發光元件,該發光元件是一 選自於發光二極體、有機發光二極體 T八 子有機發光二極體之發光元件。 — 10·根據申請專利範圍第9項之發光裝置,其中,該發光一 件是由350nm到470nm之波長範圍發射出該一次光 光二極體。 、 u.根據申請專利範圍第10項之發光裝置,其中,該波+轉 換構件是一勞光體,使該發光二極體所發射出的j 光,可被該螢光體轉變成為由40〇1^到7〇〇nm波長範^ 之該二次光。 12·根據申請專利範圍第n項之發光裝置,其中,該波長轉 換構件具有一上表面及一相反於該上表面的下表面,該 第王方向反射鏡是設置在該波長轉換構件之上表面, 該發光元件是鑲嵌在該波長轉換構件内且位在該波長轉 換構件的下表面。 13·根據申請專利範圍第12項之發光裝置,更包含一全方向 光子晶體之第二全方向反射鏡、一第一基板及一第二美 板,該第一及第二基板分別設置在該波長轉換構件的上 表面及下表面,該發光元件鑲嵌在該波長轉換構件内且 位在該下表面,該第一及第二全方向反射鏡是分別形成 在該第一及第二基板上。 14·根據申請專利範圍第i 3項之發光裝置,其中,該第二全 方向反射鏡具有至少一介電單元,該介電單元具有至少 23 1226708 二在折射率上是相互不同的介電層。 1 5.根據申請專利範圍第丨3項之發光裝置,更包含一金屬反 射層’該金屬反射層是形成在該第二全方向反射鏡上。 16·根據申請專利範圍第11項之發光裝置,更包含一全方向 光子日日肖豆之弟一全方向反射鏡、一第一基板及一第二基 板,該波長轉換構件具有一上表面、一相反於該上表面 的下表面及複數側面,該第一及第二基板分別設置在該 波長轉換構件的上表面及下表面,該第一及第二全方向 反射鏡分別形成在該第一及第二基板上,該發光元件鑲 嵌在該波長轉換構件的其中之一側面上。 1 7·根據申請專利範圍第16項之發光裝置,其中,該發光單 兀具有複數發光元件,該等發光元件是鑲嵌在該波長轉 換構件的其中至少一側面上。 18. 根據申請專利範圍第17項之發光裝置,其中,該第二全 方向反射鏡具有至少一介電單元,該介電單元具有至少 一在折射率上是相互不同的介電層。 19. 根據申請專利範圍第18項之發光裝置’更包含至少一金 屬射鏡°玄孟屬反射鏡是形成在該側面,且覆蓋該等 發光元件。 2〇·根據申請專利範圍第u項之發光裝置,更包含一第一基 板,該波長轉換構件具有一上表面纟一相反於該上表面 的下表面,該第一基板是形成在波長轉換構件的上表 面,該第一全方向反射鏡是形成在該第一基板上,該發 光元件疋被肷埋在該波長轉換構件的下表面。 24 1226708According to Item 8 of the scope of the patent application, the light-emitting tower has at least one light-emitting element. The light-emitting element is a light-emitting diode selected from the group consisting of light-emitting diodes, organic light-emitting diodes T, and eight organic light-emitting diodes. Light emitting element. — 10. The light emitting device according to item 9 of the scope of patent application, wherein the light emitting element emits the primary light-emitting diode in a wavelength range of 350 nm to 470 nm. The light-emitting device of item, wherein the wave + conversion member is a light source, so that the j light emitted by the light-emitting diode can be converted by the phosphor into a wavelength of from 4001 to 700 nm The second light of the standard ^. 12. The light-emitting device according to the nth item of the scope of patent application, wherein the wavelength conversion member has an upper surface and a lower surface opposite to the upper surface, and the first directional reflector is provided. On the upper surface of the wavelength conversion member, the light emitting element is embedded in the wavelength conversion member and located on the lower surface of the wavelength conversion member. 13. The light emitting device according to item 12 of the scope of patent application, further comprising A second omnidirectional mirror of an omnidirectional photonic crystal, a first substrate and a second US plate, the first and second substrates are respectively disposed on an upper surface and a lower surface of the wavelength conversion member, and the light emitting element is embedded in The wavelength conversion member is located inside the lower surface, and the first and second omnidirectional mirrors are respectively formed on the first and second substrates. 14. The light-emitting device according to item i 3 of the scope of patent application, wherein The second omnidirectional mirror has at least one dielectric unit, and the dielectric unit has at least 23 1226708 two dielectric layers that are mutually different in refractive index. 1 5. The light-emitting device according to item 3 of the scope of patent application It further includes a metal reflective layer. The metal reflective layer is formed on the second omnidirectional mirror. 16. The light-emitting device according to item 11 of the patent application scope further includes an omnidirectional photon. An omnidirectional mirror, a first substrate, and a second substrate. The wavelength conversion member has an upper surface, a lower surface opposite to the upper surface, and a plurality of side surfaces. The first and second substrates are respectively provided. On the upper surface and the lower surface of the wavelength conversion member, the first and second omnidirectional mirrors are respectively formed on the first and second substrates, and the light emitting element is embedded on one of the side surfaces of the wavelength conversion member. 17. The light-emitting device according to item 16 of the scope of patent application, wherein the light-emitting unit has a plurality of light-emitting elements, and the light-emitting elements are embedded in at least one side surface of the wavelength conversion member. The light-emitting device of item 17, wherein the second omnidirectional mirror has at least one dielectric unit, and the dielectric unit has at least one dielectric layer that is mutually different in refractive index. 19. According to item 18 of the scope of patent application The light-emitting device 'further includes at least one metal lens. A Xuanmen mirror is formed on the side and covers the light-emitting elements. 20. The light-emitting device according to item u of the scope of patent application, further comprising a first substrate. The wavelength conversion member has an upper surface and a lower surface opposite to the upper surface. The first substrate is formed on the wavelength conversion member. On the upper surface, the first omnidirectional mirror is formed on the first substrate, and the light emitting element 疋 is buried on the lower surface of the wavelength conversion member. 24 1226708 21 ·根據申請專利範圍第2〇項之發光裝置,更包含一全方向 光子日日版之第一全方向反射鏡及一金屬反射層,該發光 兀件具有一下表面,該第二全方向反射鏡是被嵌埋該波 長轉換構件的下表面,且具有一上表面及一相反於該上 表面的下表面,該第二全方向反射鏡的上表面是形成在 ”亥毛光兀件的下表面,該金屬反射層是形成在該波長轉 換構件的下表面且覆蓋該第二全方向反射鏡的下表面。 22·根據申請專利範圍第21項之發光裝置,更包含一形成在 違金屬反射層上的第二基板。 23·根據申請專利範圍第17項之發光裝置,其中,該第二全 方向反射鏡具有至少一介電單元,該介電單元具有至少 一在折射率上是相互不同的介電層。21 · The light-emitting device according to Item 20 of the scope of patent application, further comprising a first-direction omnidirectional mirror and a metal reflection layer of the Japanese-Japanese version of the omnidirectional photon, the light-emitting element has a lower surface, and the second omni-directional reflection The mirror is embedded in the lower surface of the wavelength conversion member, and has an upper surface and a lower surface opposite to the upper surface. The upper surface of the second omnidirectional mirror is formed on the lower side of the "Homao light element" On the surface, the metal reflective layer is formed on the lower surface of the wavelength conversion member and covers the lower surface of the second omnidirectional mirror. 22. The light-emitting device according to item 21 of the scope of patent application, further comprising a metal reflection formed on the surface. The second substrate on the layer. 23. The light emitting device according to item 17 of the scope of patent application, wherein the second omnidirectional mirror has at least one dielectric unit, and the dielectric unit has at least one refractive index that is different from each other. Dielectric layer. 24.根據申請專利範圍第2〇項之發光裝置更包含一全方向 光=晶體之第二全方向反射鏡及一第二基板,該發光元 八有下表面,5亥第二全方向反射鏡嵌埋在該波長轉 換構件的下表面,並具有一上表面及一相反於該上表面 的下表面,該第二全方向反射鏡的上表面是形成在該發 光凡件白勺下表面,言亥第二基板形成在該波長轉換構件的 下表面並覆蓋該第二全方向反射鏡。 25. 根!申請專利範圍第24項之發光裝置,更包含一形成在 及第—基板上的金屬反射鏡,且該金屬反射鏡是覆蓋住 ϋ亥弟一基板。 26. 根據申請專利範㈣25項之發光裝置,其中,該第二全 方向反射鏡具有至少一介電單元,該介電單元具有至少 25 1226708 一在折射率上是相互不同的介電層。 27·根據申請專利範圍第7項之發光裝置 第二及第三介電層是選自於下列所構成群 二一 :::料:二氧化鈦、二氧一氧化二,、氧化: 乳化叙、減錯、氟⑽、氟化織氟化句。 28.根據申請專利範圍第7之項發光裝置,其中,該第一、 弟二及第三介電層是分別由二氧化鈦、二氧化石夕及五氧 化二鈕所製成。 29·根據申請專利範第21項或第24項之發光裝置,其中, 7發光it件是由—蠢晶基材及—形成在該蠢日a日基材上的 名又光日日版所構成,該第二全方向反射鏡是形成在該磊晶 基材的下表面,該磊晶基材是一選自於藍寶石、硒化鋅、 氧化辞或氮化鎵之磊晶基材。 30.根據申請專利範第29項之發光裝置,其中,該磊晶基材 是藍寶石。24. The light-emitting device according to item 20 of the scope of patent application further includes a second omnidirectional mirror with an omnidirectional light = crystal and a second substrate. The light emitting element has a lower surface, and a second omnidirectional mirror with a height of 50m. It is embedded in the lower surface of the wavelength conversion member and has an upper surface and a lower surface opposite to the upper surface. The upper surface of the second omnidirectional mirror is formed on the lower surface of the light emitting element. A second substrate is formed on the lower surface of the wavelength conversion member and covers the second omnidirectional mirror. 25. Root! The light-emitting device with the scope of application for patent No. 24 further includes a metal reflector formed on the and first substrate, and the metal reflector covers a substrate of ϋ ϋ. 26. The light-emitting device according to item 25 of the patent application, wherein the second omnidirectional mirror has at least one dielectric unit, and the dielectric unit has at least 25 1226708-dielectric layers that are mutually different in refractive index. 27. The second and third dielectric layers of the light-emitting device according to item 7 of the scope of the patent application are selected from the group consisting of: Titanium Dioxide, Dioxide Dioxide, Oxidation: Emulsification, Subtraction False, fluorene, fluorinated weave fluorinated sentences. 28. The light-emitting device according to item 7 of the scope of patent application, wherein the first, second and third dielectric layers are made of titanium dioxide, stone dioxide and pentoxide respectively. 29. The light-emitting device according to item 21 or item 24 of the patent application, wherein the 7 light-emitting it is made of-stupid crystal substrate and-on the substrate of the stupid day a-day, the name of the day-light version In one embodiment, the second omnidirectional mirror is formed on a lower surface of the epitaxial substrate, and the epitaxial substrate is an epitaxial substrate selected from sapphire, zinc selenide, oxide or gallium nitride. 30. The light-emitting device according to claim 29, wherein the epitaxial substrate is sapphire. 2626
TW92131818A 2003-06-16 2003-11-13 Omnidirectional one-dimensional photonic crystal and light emitting device made from the same TWI226708B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92131818A TWI226708B (en) 2003-06-16 2003-11-13 Omnidirectional one-dimensional photonic crystal and light emitting device made from the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW92116298 2003-06-16
TW92131818A TWI226708B (en) 2003-06-16 2003-11-13 Omnidirectional one-dimensional photonic crystal and light emitting device made from the same

Publications (2)

Publication Number Publication Date
TW200501429A TW200501429A (en) 2005-01-01
TWI226708B true TWI226708B (en) 2005-01-11

Family

ID=35634298

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92131818A TWI226708B (en) 2003-06-16 2003-11-13 Omnidirectional one-dimensional photonic crystal and light emitting device made from the same

Country Status (1)

Country Link
TW (1) TWI226708B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901964B2 (en) 2005-11-10 2011-03-08 Seoul Opto Device Co., Ltd. Method of fabricating AC light emitting device having photonic crystal structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415691B2 (en) * 2008-08-18 2013-04-09 Tsmc Solid State Lighting Ltd. Omnidirectional reflector
US9997676B2 (en) 2014-05-14 2018-06-12 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
TW201603316A (en) * 2014-07-04 2016-01-16 新世紀光電股份有限公司 Light emitting component
TWI641285B (en) 2014-07-14 2018-11-11 新世紀光電股份有限公司 Light emitting module and method for manufacturing light emitting unit
CN106842710B (en) 2017-03-27 2019-05-03 京东方科技集团股份有限公司 A kind of backlight module, its production method and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901964B2 (en) 2005-11-10 2011-03-08 Seoul Opto Device Co., Ltd. Method of fabricating AC light emitting device having photonic crystal structure
US8716727B2 (en) 2005-11-10 2014-05-06 Seoul Opto Device Co., Ltd. Ac light emitting device having photonic crystal structure and method of fabricating the same

Also Published As

Publication number Publication date
TW200501429A (en) 2005-01-01

Similar Documents

Publication Publication Date Title
US10490717B2 (en) Light emitting device and method of manufacturing the same, and display device
US10401557B2 (en) Semiconductor light emitting diode chip and light emitting device having the same
TWI601267B (en) Efficient lighting system with wide color range
CN106374027B (en) Light supply apparatus
JP5877347B2 (en) BACKLIGHT DEVICE, LIQUID CRYSTAL DISPLAY DEVICE USING THE BACKLIGHT DEVICE, AND LIGHT EMITTING DIODE USED FOR THE SAME
US6833565B2 (en) White-light led with dielectric omni-directional reflectors
EP2206166B1 (en) Polarized light emitting device
TWI261378B (en) Polarized light emitting device
TW201041190A (en) Polarized white light emitting diode (LED)
US8384101B2 (en) Semiconductor light-emitting device
US20060145172A1 (en) Light emitting diode with a quasi-omnidirectional reflector
US11411134B2 (en) Light emitting apparatus, method of fabricating light emitting apparatus, and method of emitting light using light emitting apparatus thereof
US20060145137A1 (en) Quantum dot/quantum well Light Emitting Diode
CN105972474A (en) Light-emitting device, light-emitting unit and detector
CN102683532B (en) Substrate containing imaging Distributed Bragg Reflector (DBR) structure
JP2005012160A (en) Light emitting device and omnidirectional reflector
JP2015523722A (en) Hybrid bulb using a combination of remote phosphor LED and direct emission LED
WO2013046866A1 (en) Optical element and projection-type display device using same
CN110707146B (en) Cover plate, organic light-emitting display panel and display device
CN100337337C (en) Omnidirectional reflector and luminous apparatus produced thereby
TWI226708B (en) Omnidirectional one-dimensional photonic crystal and light emitting device made from the same
Shi et al. Strategically constructed high-reflectivity multiple-stack distributed Bragg reflectors for efficient GaN-based flip-chip mini-LEDs
TWI287307B (en) Light-emitting device with omni-bearing reflector
US20220352416A1 (en) High color gamut photoluminescence wavelength converted white light emitting devices
WO2023082074A1 (en) Light-emitting diode and light-emitting apparatus

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent