TWI287307B - Light-emitting device with omni-bearing reflector - Google Patents

Light-emitting device with omni-bearing reflector Download PDF

Info

Publication number
TWI287307B
TWI287307B TW95100149A TW95100149A TWI287307B TW I287307 B TWI287307 B TW I287307B TW 95100149 A TW95100149 A TW 95100149A TW 95100149 A TW95100149 A TW 95100149A TW I287307 B TWI287307 B TW I287307B
Authority
TW
Taiwan
Prior art keywords
light
omnidirectional reflector
illuminating device
diode chip
omnidirectional
Prior art date
Application number
TW95100149A
Other languages
Chinese (zh)
Other versions
TW200727506A (en
Inventor
Jung-Chieh Su
Jing-Heng Chen
Original Assignee
Jung-Chieh Su
Jing-Heng Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jung-Chieh Su, Jing-Heng Chen filed Critical Jung-Chieh Su
Priority to TW95100149A priority Critical patent/TWI287307B/en
Publication of TW200727506A publication Critical patent/TW200727506A/en
Application granted granted Critical
Publication of TWI287307B publication Critical patent/TWI287307B/en

Links

Abstract

A light-emitting device with omni-bearing reflector is disclosed. A fluorescent glue layer is spread around the LED chip and an omni-bearing reflector is placed on the fluorescent glue. The fluorescent glue and the omni-bearing reflector are not in contact with each other and form an air gap. Because characteristic of the omni-bearing reflector, if a medium with smaller refraction index than the refraction index of the fluorescent glue and the omni-bearing reflector is in front of the omni-bearing reflector before light emitted from the LED chip inputs into the omni-bearing reflector in the whole incident angle, all incident light has better refraction rate. Therefore, the fluorescent glue limits light emitted from the LED chip, such that light can be excited to become fluorescent, and then achieves better fluorescence-transformation efficiency.

Description

1287307 , 九、發明說明: 【發明所屬之技術領域】1287307, Nine, invention description: [Technical field to which the invention belongs]

W 本發明係有關一種發光裝置,特別是指一種可提高螢光粉發光效率 與出光效率的具全方位反射器之發光裝置。 【先前技術】 日本日亞化學所研發出的白光發光二極體,是在藍光發光二極體晶片 的外圍覆蓋有黃光螢光粉層,此藍光發光二極體晶片所發出藍光之波長約 為400〜530奈米(nm) ’利用藍光發光二極體晶片所發出的光線激發黃光螢 光粉層產生黃光,同時也會有部份的藍光穿透出來,此部份藍光配合上黃 色螢光即形成藍黃混合之一波長的白光。然而,利用藍光發光二極體晶片 與黃光螢光粉組合而成之白光發光二極體,由於激發藍光強度大於螢光粉 發光光譜的大部份波長強度,因此,其色溫偏高,且藍光發光二極體波長 隨溫度增加而改變使得光源色溫控制不易,因此,必須改善藍光與黃光螢 光粉作用的機制’以控制白光發光二極體之色溫。 在美國專利第6, 833, 565號所揭露的利用全方位反射器 、(omni-directional reflector)僅反射特定(紫外光)波長原理,一方面來 •阻絕紫外線外漏,一方面可提昇白光轉換效率,也就是增加螢光發光量, 並可改進螢光發光均勻度。此全方位反射器的功能是針對某一紫外光波長 範圍的光線在0〜90度入射角範圍内,產生高反射能力。由於全方位反射器 會全角度反射紫外光波長,而可控制光束的行程。全方位反射器使紫外光 5 1287307 波長光子被拘束在螢光粉層間,反覆多方向反射並穿過螢光粉層形成共振 腔結構,可將紫外光充分利用於產生二次以上之可見螢光;因此,可增加 ‘白光發光二極體三原色(RGB)亮度。同時,全方位反射器並不會反射所產生 之可見光源,使得可見光會充份穿出基板。並且,特定螢光之可見光波長 在設計下可被控制透出基板的量,達到控制白光發光二極體三原色之顏色 度與亮度的目的。另外,如使用藍光發光二極體作為光源時,對於針對紫 外光波長的全方位反射器而言,一方面部份反射藍光進行增加螢光發光; φ 另一方面控制藍光透射比例,使得光源色度的品質可輕易操控。 上述之全方位反射器的設計原理有兩種;其中一種是利用一維光子晶 體原理方式設計製作而成,如美國專利公告號第20040252509號。 如第1圖所示,為此案所揭露之發光裝置2〇〇架構,從發光二極體晶片27〇 發出之光線會直接經過螢光膠280與玻璃基材295,再入射全方位反射器 290。因此,當光線的入射角約大於5〇度時,螢光膠280所產生之可見光 在全方位反射器290與空氣之介面291即會產生全内反射(total internal _ ref lection)之效應。 如第2圖所示,為第1圖之發光裝置200之全光譜之穿透率(虛線所示) 與反射率(實線所示)之理論計算模擬數據。全方位反射器29〇之計算模擬 係針對中心波長為370奈米之紫外光發光二極體晶片27〇,同時全方位反射 器290係在玻璃基板295上按順序與厚度以二氧化鈦、氧化石夕及氧化組三 種材料共42層組成。由全入射角計算射出光譜,可証明此全方位反射器29〇 對於發光二極體發射光波長之反射效果,及其對於可見光之穿透效果。結 6 1287307 果顯示發光裝置200之可見光發光穿透率僅為40%左右,有必要再去提昇其 可見光穿透率。 % 另一種全方位反射器則是利用週期性光學薄膜堆疊而成,例如:以二 •種或是二種以上的材質交替堆疊,以週期性堆疊成干涉式光學薄膜反射 鏡,如中華民國專利公告號第1239671號。雖然這兩種結構具有對 發光二極體發射光波長產生高反射的效果,但由於其為週期性堆疊的型 式,故存在有對於發光二極體發射光波長的反射範圍會隨入射角度增加而 φ 往短波長方向移動的現象。於是,須加以控制來滿足發光二極體發出之光 線在0〜90度入射角範圍内,全方位反射器皆可產生高反射率,同時在空氣 與發光裝置界面可產生高的可見光穿透率。 【發明内容】 鑒於以上的問題,本發明的主要目的在於提供一種具全方位反射器之 發光裝置,乃在螢光膠上方之全方位反射器與螢光膠間具有一介質,使發 # 光二極體晶片所發射之光線可以在螢光膠中產生反覆且全方向的反射,藉 此可提高發光二極體晶片出射光線的螢光轉換效能,並增加螢光粉發光效 率〇 ‘ 為達上述目的,本發明所揭露之具全方位反射器之發光裝置,包含有 .基板、一個以上之發光二極體晶片、螢光膠與全方位反射器。發光二極體 晶片係設置於基板上,並由其出射面發射出光線,且係為紫外光或藍光發 光二極體晶片。螢光膠係由螢光粉與樹脂混合而成,並塗佈於發光二極體 1287307 , 晶片之外圍,當發光二極體晶片發出之光線穿過此螢光膠時,會激發螢光 粉產生一次可見之榮光。 全方位反射器係以光學鍍膜之方式製作,且設置於螢光膠上方對應於 •發光二極體晶片之出射面的—側,且不與螢光雜觸,而在兩者之間設有 一介質’此介質之折射率乃小於螢光膠與全方位反射器之折射率,又,其 折射率係以介於1〜1· 5之間為較佳,譬如,介質可為空氣。因此,本發明 之發光裝置具有町特點:在發光二極體晶#所發射光線全肖度入射全方 0 位反射器前之介質折射率小於螢光膠與全方位反射器之折射率時,所有在 〇〜90度入射角範圍内之入射光線具有較佳高反射率與可見光穿透率。從而 使發光二極體晶片發出的光線被侷限於螢光膠中,讓激發光線反覆激發出 / * · 螢光,而具較高激發光的螢光轉換效能。 當發光二極體晶片發出的光線入射於全方位反射器之前,需先由螢光 膠進入介質再人射於全方位反㈣。雖然螢練與介質二者間存在折射率 的差異,但其介面可以為非平面或粗糙面,故可以不產生全内反射現象, 籲使得入射於全方位反射器的入射角可存在任意角度範圍。而由此全方位反 射器之反射光經過介質再入射於螢光膠時,由於螢光膠折射率大於介質折 射率,所以無全内反射產生。因此,從全方位反射器反射之光線可很容易 進入螢光膠中,使得發光二極體晶片發出的光線容易被侷限於螢光膠中進 行反覆反射現象以激發螢光粉產生可見光的效果。上述特點使螢光粉層可 以儘量激發出可見的螢光,進而提高螢光粉的波長轉換效能與改善發光均 勻性。 1287307 由於全方位反射器並不會反射螢光膠所產生之可見光,因此,榮光膠 之可見光可穿透全方位反射器而發射出來。且某些特定可見光波長在經過 -光學設計之後,可控制其透出全方位反射器的可見光發光量、發光譜與發 .光角度分佈,而達到控制發光裝置所發出光線之色座標、均勻度與亮度的 目標。 為使對本發明的目的、構造特徵及其功能有進一步的了解,茲配合圖 式詳細說明如下: 【實施方式】 根據本發明所揭露之具全方位反射器之發光裝置,係指包括至少一可 藉由施加外部電能而發光或產生光之發光層之有機/無機電激發光二極 體。更明確地,折射率係針對發光二極體之發光層發出之主要發光之尖峰 波長。 請參考第3圖所示,本發明之第一實施例所提供的具全方位反射器之 • 發光裝置100,包括有基板60、發光二極體晶片70、螢光膠80、全方位反 射器90、基板95及側反射板1〇,且螢光膠80與全方位反射器90之間隔 著一介質50,藉由此介質50係可提高發光裝置1〇〇的發光效率。以下將就 •本實施例之詳細結構與理論基礎作一說明。 ‘ 其中’基板60乃具可製作電路之功能,並可將發光二極體發出之光線 與螢光粉產生之可見光反射。發光二極體晶片7〇則設置於基板60上,藉 由外加電流而驅動此發光二極體晶片7〇發出光線,此光線係由發光二極體 1287307 晶片70的出射面71發射出來,用以提供激發螢光膠80所需之光源。 在本實施例中,此發光裝置100包含有1個發光二極體晶片7〇。然而, —實務上係可依照不同的亮度需求,置入單個或多個發光二極體晶片7〇來產 生所需亮度’並可以不同陣列排列方式來設置之。而發光二極體晶片可 採用紫外光或藍光發光二極體晶片,設置上乃可先在基板6〇上製作形成電 路,再將發光二極體晶片70固晶於製作好的電路基板60上即可。 另外,螢光膠80係可針對發光二極體晶片70所發出的光之波長,採 φ 用適當螢光粉成份與對於發光二極體發出之光線透明之樹脂,以一定比例 混合製作而成。將螢光膠80塗佈在發光二極體晶片70的周圍,當發光二 極體晶片70發出之光線穿過此螢光穋80時,光線會激發螢光粉產生二次 可見光,即發出螢光。 全方位反射器90乃設置於螢光膠80上方,其對應於發光二極體晶片 70之出射面71的一側,且全方位反射器90與螢光膠80間需隔一層介質 50,此介質50之折射率乃小於螢光膠與全方位反射器之折射率,且介質50 • 之折射率是以介於1〜1· 5之間為較佳,譬如,可於全方位反射器90與螢光 膠80間形成一空氣間隙。此全方位反射器90可利用光學鍍膜方式進行製 作,例如:濺鍍(sputtering)、電子搶(E-gun)、化學氣相沉積(Chemical Vapor Deposition; CVD)···等方式。並且,可依據所需之光學反射效果, -來設計製作全方位反射器90之鍍膜的材料及厚度,使其僅反射特定發光二 極體晶片70發射之波長,但並不會反射螢光膠80產生之可見光。故,此 全方位反射器90可設計為針對發光二極體70之所有的光束出射角,與不 1287307 同的電場極性(polarizations)皆有高的反射率。 而全方位反射器90之製作係可利用於基板95表面上連續沉積一種以 上之咼折射率材質及一種以上之低折射率材質,使全方位反射器9〇全方位 反射特疋之發光二極體波長,並使螢光層8〇發射之可見光可穿透全方位反 射器90穿透出來。基板95須選擇針對螢光膠80產生之可見光具高穿透率 的材質。此高折射率材質可採用二氧化鈦(Ti〇2)、氧化钽(Ta2〇5)、二氧化錯 (ZiU)、氧化鋅(Zn〇)、三氧化二鈥(ΜΑ)、五氧化二銳(Nb2〇〇、氧化銦 • (In2〇3)、氧化錫(Sn〇2)、氧化録(Sb〇3)、氧化給(_2)、氧化鏵(Ce〇2)及硫 化鋅(ZnS)中任一種以上之材質進行薄膜沉積。而此低折射率材質係選自由 氧化梦(SiO〇、氧化鋁(ΑΙΑ)、氧化鎂(Mg〇)、氧化鑭(La2〇3)、氧化镱(Yb2〇3)、 氧化釔(Y2〇3)、氧化銃(Sc2〇3)、氧化鎢(W〇3)、氟化鋰(LiF)、氟化鈉(NaF)、 氟化鎮(MgF2)、氟化約(CaFO、氟化錯(SrF〇、氟化鎖(BaF2)、敦化紹(A1F3)、 氟化鑛(LaF3)、氟化鉉(NdF3)、氟化記(YF3)和氟化鈽(CeF3)中任一種以上組 合進行薄膜沉積。 ® 當發光二極體發出之光線由螢光膠80經過空氣間隙50入射於此全方 位反射器90之入射角大於一特定角度範圍時,由於螢光膠8〇(折射率約為 1· 4〜2. 0)與介質50二者間折射率的差異,發光二極體發出之光線會在螢光 膠80與介質50介面51會產生全内反射現象,使發光二極體發出之光線被 •侷限於螢光膠80中”以儘量激發螢光粉產生螢光,進而提高螢光粉的波長 轉換效能。而此特定角度即為發光二極體發出之光線之全内反射臨界角。 當發光二極體所發出光線之入射角大於此特定角度範圍時,如螢光膠⑼與 1287307 . 介質50之介面51設計為非平面或粗糙面時,便不會產生全内反射現象。 而對於經由螢光粉激發產生的可見光而言,由於在鍍有全方位反射器 90之基板95與外界空氣之介面91可能會發生全内反射現象,因此,須在 •鍍有全方位反射器90之基板95的遠離發光二極體70之另一側面加以處 理’以破壞冉全内反射現象;如第4圖所示,可在全方位反射器90之基板 95的表面上製作具表面粗糖結構之擴散板(diffuser)、繞射光學元件 (Diffractive Optical Element; DOE)、半球形鏡(Dome lens)、微透鏡陣 φ 列(microlens array)、可見光穿透濾波器(Long wave pass filter)或是 抗反射膜(Anti-reflection coating)等光學元件20,以增加發光裝置100 發出之可見光的亮度。 另外,因侧反射板10係設置於螢光膠80之周圍,可將入射於側反射 板10之光線反射回去,所以發光二極體晶片70所發出之光束,可以全角 度入射螢光膠80上方之全方位反射器90。然而,因為螢光膠80外圍之全 方位反射器90與側反射板10會反射特定波長範圍之光線,因此,會使發 # 光二極體晶片70發出之光線被侷限於全方位反射器90與具有反射光束功 能(包含紫外光與可見光)之電路基板60間。而側反射板1〇之設置更加使 發光二極體發出之光束在螢光粉層80與空氣間隙50間反覆且多方向的反 射。 ’ 每當發光二極體晶片70發出之紫外光穿過螢光膠80時,此紫外光會 激發螢光膠80中的螢光粉產生二次可見螢光。藉由此光線在全方位反射器 90、基板60與側反射板10間反覆且多方向的反射,讓此光線盡量激發榮 12 1287307 光粉,使發光二極體晶片70所發出光線的能量耗盡,以提高螢光粉的光波 長轉換效能,而使發光裝置100發出更多的可見光螢光。 在此實施例中,發光二極體晶片70係可採用紫外光或藍光發光二極體 晶片,並可依據不同顏色的色座標、演色指數與色溫需求,而搭配不同成 份的螢光膠80 ,以激發出本同光譜成份或顏色的光線如紅、藍、綠、白等 色。 而本發明之第二實施例,如第5圖所示,其結構大致上是與第一實施 • 例雷同,而其不同之處在於:此基板60上對應於全方位反射器90之一側 係製作有一全方位反射層61,此全方位反射層61之設置係為使整個發光裝 置100内形成一激發腔結構,讓發光二極體發出之光在全方位反射器9〇與 全方位反射片61間多次的反射,以盡量激發出螢光粉,使發光二極體發出 之光的能量耗盡,以提高螢光粉的光波長轉換效能。而此反射層61或基板 60亦可為另一全方位反射器。 請參考第6圖所示,係為本發明之第三實施例,此實施例之結構大致 鲁上係與上述第二實施例雷同,不過,在第二實施例中,其基板60係為一板 狀結構’而在此實施例中,此基板6〇之外型則為一碗狀結構,二者間僅是 基板60外型之改變而已但皆具全方位反射可見光與紫外光光線功能。而使 用者可依據不同的使用需求而選擇合適之基。 請參考第7圖所示,係為本發明之第四實施例,首先,將紫外光發光 一極體晶片70固晶於支架的金屬碗杯11〇中,此支架的二個接腳12〇係為 各自獨立的金屬電極,用以通入電流。而在發光二極體晶片7〇的外圍塗佈 13 1287307 上螢光膠80,並於螢光膠80的上方以光學鍍膜的方式製作上一全方位反射 器90,且螢光膠80與全方位反射器90之間隔著一介質5〇,且介質5〇之 折射率必須小於螢光勝80與全方位反射器90之折射率,並以介於卜1 $ .之間為較佳,譬如,介質50可為空氣。此全方位反射器90之製作方法可 參考第一實施例中所述。 藉由支架的金屬電極通入電流,而驅動發光二極體晶片70發光,當其 所發出的光線穿過螢光膠80時,此光線會激發螢光粉發出螢光。同樣地, • 藉由此全方位反射器90與螢光膠80間存在一介質50,可將所有在〇〜90度 範圍内务發射的發光二極體晶片光線,侷限於螢光膠80内作反覆且多方向 的反射,讓發光二極體晶片所發射的光盡量激發出螢光粉,以提高螢光的 轉換效能。而螢光粉被激發後所發出之可見光仍可穿透出全方位反射器 90 ’以實際提昇發光裝置100之發光效率。藉由控制全方位反射器9〇對於 發光二極體發出之光反射率的不同,即可調整具全方位反射器之發光裝置 所發出光線之色座標、亮度與均勻度。 • 同樣地,在此實施例中,其發光二極體晶片70係可採用紫外光發光二 極體晶片,使用者可依據不同的使用需求,而搭配不同顏色的螢光膠8〇, 以激發出不同顏色的光線,例如:紅光、黃光、綠光、白光…等。此外,亦 可利用藍光發光二極體晶片搭配上黃光、綠光、紅光螢光膠80亦可分別激 -發出白光、綠光、紅光與其他色光。 如第8圖所示,為第3圖之發光裝置1〇〇之全光譜之穿透率(虛線所示) 與反射率(實線所示)理論計算模擬數據。本實施例全方位反射器之計算模 1287307 擬係針對中心波長為370奈米之紫外光發光二極體晶片,並針對所有入射 角度取平均值,以求得全入射角之出射光譜,同時全方位反射器9q係在玻 璃基板95上以氧化组、氧化石夕及二氧化鈦三種材料共42層組成。 圖中顯示,此全方位反射器90對紫外光波長(370奈米)全角度平均(all angle average)反射率達到100%,反之,可見光波長(4〇〇〜7〇〇奈米)全角 度平均穿透率卻達到幾乎80%。與習知技術相較(即,比較第2圖與第8圖), 可見將發光裝置100增加一層空氣間隙50於螢光膠80與全方位反射器90 • 之間,可以大幅增加可見光發光穿透率(約從40%增加到80%)。 再者’在此些模擬數據中,當入射角介於〇〜45度之間時,藍光的穿透 率是介於0~60%之間。而在波長為500〜700奈米的範圍内,光線之穿透率係 大於80%以上。如此-來,即可利用部份藍光來激發榮光粉,而部份藍光則 穿透全方位反射器90,由基板95出射面91射出進入空氣,並搭配螢光膠 80所激發出之黃光,以形成白光。就習知之白光發光二極體而言本發明 亦可利用藍光發光二極體晶片7〇與黃光螢光膠8〇所組成的發光裝置來產 _生較兩的白光發光效率,由第8圖可看出可將部份藍光於榮光膠内反覆反 射激發黃光’使得藍光強度降低,而黃光強度提高。 雖然本義贿述之實施_露如上,並非肋限定本發明。在 •不麟本發明之精神和範_,所為之更動與_,均屬本發明之專利保 *護範圍,於本發騎界定之保護範_參考_之申請專利範圍。 1287307 【圖式簡單說明】 第1圓係先前技術之發光裝置之示意圖; 第2圖係先前技術之發光裝置之光譜模擬數據圖; 第3圖係本發明之第一實施例之具全方位反射器之發光裝置的結構示意圖; 第4圖係本發明之第一實施例之在全方位反射器之基板的表面上製作有光 學元件之示意圖; 第5圖係本發明之第二實施例之具全方位反射器之發光裝置的結構示意圖; # 第6圖係本發明之第三實施例之具全方位反射器之發光裝置的結構示意圖; 第7圖係本發明之第四實施例之具全方位反射器之發光裝置的結構示意 圖;及 第8圖係為驗證本發明之具全方位反射器之發光裝置的光譜模擬數據圖。 【主要元件符號說明】 1〇 側反射板 • 2〇 光學元件 50 介質 51 介面 6〇 基板 • 61 反射層 70 發光二極體晶片 出射面 71 1287307 80 螢光膠 90 全方位反射器 91 介面 95 基板 100 發光裝置 110 金屬碗杯 120 接腳 200 發光裝置 270 發光二極體晶片 280 螢光膠 290 全方位反射器 291,介面 295 基板The present invention relates to a light-emitting device, and more particularly to a light-emitting device having an omnidirectional reflector which can improve the luminous efficiency and light-emitting efficiency of the phosphor powder. [Prior Art] The white light emitting diode developed by Nichia Chemical Co., Ltd. is covered with a yellow fluorescent powder layer on the periphery of the blue light emitting diode chip, and the wavelength of blue light emitted by the blue light emitting diode chip is about 400. ~530nm (nm) 'Using the light emitted by the blue light-emitting diode chip to excite the yellow fluorescent powder layer to produce yellow light, and at the same time, some of the blue light will penetrate, and this part of the blue light is matched with the yellow fluorescent light. White light of one wavelength of blue and yellow is formed. However, the white light emitting diode formed by combining the blue light emitting diode chip and the yellow light fluorescent powder has a higher color temperature and blue light emission because the excitation blue light intensity is greater than the majority of the wavelength intensity of the fluorescent powder light emitting spectrum. The wavelength of the diode changes with the increase of temperature, so that the color temperature control of the light source is not easy. Therefore, the mechanism of the action of the blue light and the yellow fluorescent powder must be improved to control the color temperature of the white light emitting diode. The use of an omni-directional reflector to reflect only the specific (ultraviolet) wavelength principle disclosed in U.S. Patent No. 6,833,565, on the one hand, to prevent ultraviolet leakage, and to enhance white light conversion. Efficiency, which is to increase the amount of fluorescent light, and improve the uniformity of fluorescent light emission. The function of this omnidirectional reflector is to produce high reflectivity for a range of light in the wavelength range of 0 to 90 degrees. Since the omnidirectional reflector reflects the wavelength of the UV light at all angles, it controls the travel of the beam. The omni-directional reflector allows the ultraviolet light 5 1287307 wavelength photons to be trapped between the phosphor layers, and repeatedly reflects in multiple directions and passes through the phosphor layer to form a resonant cavity structure, which can fully utilize ultraviolet light to generate more than two visible fluorescent lights. Therefore, the brightness of the white light emitting diode three primary colors (RGB) can be increased. At the same time, the omnidirectional reflector does not reflect the source of visible light, so that visible light will fully penetrate the substrate. Moreover, the visible light wavelength of the specific fluorescent light can be controlled to be transmitted through the substrate to achieve the purpose of controlling the color and brightness of the three primary colors of the white light emitting diode. In addition, when a blue light emitting diode is used as the light source, for the omnidirectional reflector for the ultraviolet light wavelength, on the one hand, the blue light is partially reflected to increase the fluorescent light emission; φ, on the other hand, the blue light transmission ratio is controlled so that the light source color The quality of the degree can be easily manipulated. There are two design principles for the above-described omnidirectional reflectors; one of them is designed and manufactured using a one-dimensional photonic crystal principle, such as U.S. Patent Publication No. 20040252509. As shown in Fig. 1, in the light-emitting device disclosed in the present invention, the light emitted from the LED substrate 27 passes directly through the phosphor 280 and the glass substrate 295, and then enters the omnidirectional reflector. 290. Therefore, when the incident angle of the light is greater than about 5 degrees, the visible light generated by the phosphor 280 produces an effect of total internal _ ref lection between the omnidirectional reflector 290 and the air interface 291. As shown in Fig. 2, it is the theoretical calculation simulation data of the full spectrum transmittance (indicated by a broken line) and the reflectance (shown by a solid line) of the light-emitting device 200 of Fig. 1. The omnidirectional reflector 29〇 is calculated for the 370 nm ultraviolet light emitting diode wafer 27 〇, while the omnidirectional reflector 290 is on the glass substrate 295 in order and thickness with titanium dioxide, oxidized oxide And the oxidation group consists of three layers of 42 layers. The emission spectrum is calculated from the total incident angle, and the reflection effect of the omnidirectional reflector 29 〇 on the wavelength of the emitted light of the light-emitting diode and its penetration effect on visible light can be confirmed. Conclusion 6 1287307 It is shown that the visible light transmittance of the light-emitting device 200 is only about 40%, and it is necessary to increase the visible light transmittance. % Another omnidirectional reflector is made up of periodic optical films. For example, two or more materials are alternately stacked to periodically stack into an interferometric optical film mirror, such as the Republic of China patent. Bulletin No. 12369671. Although these two structures have a high reflection effect on the wavelength of the light emitted from the light emitting diode, since it is a periodically stacked type, there is a reflection range of the wavelength of the light emitted from the light emitting diode which increases with the incident angle. The phenomenon that φ moves in the short wavelength direction. Therefore, it must be controlled to satisfy the light emitted by the light-emitting diode in the range of 0 to 90 degrees of incidence, and the omnidirectional reflector can produce high reflectivity, and at the same time, high visible light transmittance can be generated at the interface between the air and the light-emitting device. . SUMMARY OF THE INVENTION In view of the above problems, the main object of the present invention is to provide a light-emitting device with an omnidirectional reflector, which has a medium between the omnidirectional reflector and the fluorescent glue above the fluorescent glue, so that the light is emitted. The light emitted by the polar body wafer can generate a repetitive and omnidirectional reflection in the phosphor paste, thereby improving the fluorescence conversion performance of the light emitted from the LED chip and increasing the luminous efficiency of the phosphor powder. The illuminating device with an omnidirectional reflector disclosed in the present invention comprises a substrate, one or more LED chips, a fluorescent glue and an omnidirectional reflector. The light-emitting diode chip is disposed on the substrate and emits light from the exit surface thereof, and is an ultraviolet light or blue light emitting diode chip. The fluorescent glue is made of a mixture of phosphor powder and resin, and is coated on the light-emitting diode 1287307 at the periphery of the wafer. When the light emitted by the light-emitting diode chip passes through the fluorescent glue, the fluorescent powder is excited. Produce a visible glory. The omnidirectional reflector is made by optical coating, and is disposed on the side of the phosphor paste corresponding to the exit surface of the LED chip, and is not in contact with the fluorescent light, and is provided between the two. The medium's refractive index is smaller than the refractive index of the phosphor and the omnidirectional reflector. Further, the refractive index is preferably between 1 and 1.5, for example, the medium may be air. Therefore, the illuminating device of the present invention has the characteristic that when the refractive index of the medium before the light emitted by the illuminating diode crystal is completely incident on the zero-position reflector is smaller than the refractive index of the luminescent gel and the omnidirectional reflector, All incident light rays in the range of 〇 to 90 degrees of incident angle have better high reflectivity and visible light transmittance. Therefore, the light emitted from the LED chip is confined to the phosphor, so that the excitation light repeatedly excites /* · fluorescence, and the fluorescence conversion performance of the higher excitation light. When the light emitted by the LED chip is incident on the omnidirectional reflector, it is first required to enter the medium by the phosphor and then be shot in all directions (4). Although there is a difference in refractive index between the swell and the medium, the interface may be a non-planar or rough surface, so that the phenomenon of total internal reflection may not occur, so that the incident angle incident on the omnidirectional reflector may exist in any angular range. . When the reflected light of the omnidirectional reflector passes through the medium and is incident on the fluorescent glue, since the refractive index of the fluorescent adhesive is larger than the refractive index of the medium, no total internal reflection occurs. Therefore, the light reflected from the omnidirectional reflector can be easily entered into the phosphor, so that the light emitted from the LED chip can be easily confined to the phosphor to reflect the effect of the phosphor to generate visible light. The above features enable the phosphor layer to excite visible fluorescent light as much as possible, thereby improving the wavelength conversion efficiency of the phosphor powder and improving the uniformity of illumination. 1287307 Since the omnidirectional reflector does not reflect the visible light generated by the phosphor, the visible light of the glory can be emitted through the omnidirectional reflector. And after certain optical wavelengths are selected, the visible light illuminance, the luminescence spectrum and the illuminating angle distribution of the omnidirectional reflector can be controlled to achieve the color coordinates and uniformity of the light emitted by the illuminating device. Target with brightness. In order to further understand the object, the structural features and the functions of the present invention, the following detailed description is given in conjunction with the following drawings: [Embodiment] A illuminating device with an omnidirectional reflector according to the present invention is included to include at least one An organic/inorganic electroluminescent diode that emits light or generates light by applying external electrical energy. More specifically, the refractive index is the peak wavelength of the main luminescence emitted by the luminescent layer of the light-emitting diode. Referring to FIG. 3, a illuminating device 100 with an omnidirectional reflector according to a first embodiment of the present invention includes a substrate 60, a light emitting diode chip 70, a fluorescent glue 80, and an omnidirectional reflector. 90. The substrate 95 and the side reflector 1 are spaced apart, and a medium 50 is interposed between the phosphor paste 80 and the omnidirectional reflector 90, whereby the medium 50 can improve the luminous efficiency of the light-emitting device 1 . The detailed structure and theoretical basis of the present embodiment will be described below. The 'where' substrate 60 has a function of making a circuit, and can reflect the light emitted from the light-emitting diode and the visible light generated by the phosphor powder. The light-emitting diode chip 7 is disposed on the substrate 60, and the light-emitting diode wafer 7 is driven to emit light by applying an electric current, and the light is emitted from the exit surface 71 of the light-emitting diode 1287307 wafer 70. To provide the light source needed to excite the phosphor paste 80. In the embodiment, the light-emitting device 100 includes one light-emitting diode wafer 7〇. However, it is practical to place a single or multiple light-emitting diode wafers 7 依照 to produce the desired brightness ′ according to different brightness requirements' and can be arranged in different array arrangements. The light-emitting diode chip may be an ultraviolet light or a blue light-emitting diode chip, and the circuit may be formed on the substrate 6A to form a circuit, and then the light-emitting diode chip 70 is crystallized on the prepared circuit substrate 60. Just fine. In addition, the phosphor paste 80 can be made by mixing a suitable phosphor powder with a resin transparent to the light emitted from the LED, in a certain ratio with respect to the wavelength of the light emitted by the LED wafer 70. . The fluorescent glue 80 is coated around the light-emitting diode wafer 70. When the light emitted by the light-emitting diode wafer 70 passes through the fluorescent light-emitting device 80, the light will excite the fluorescent powder to generate secondary visible light, that is, emit fluorescent light. Light. The omnidirectional reflector 90 is disposed above the phosphor paste 80, which corresponds to one side of the exit surface 71 of the LED chip 70, and a holster 50 is disposed between the omnidirectional reflector 90 and the phosphor paste 80. The refractive index of the medium 50 is smaller than the refractive index of the phosphor and the omnidirectional reflector, and the refractive index of the medium 50 is preferably between 1 and 1.5, for example, in the omnidirectional reflector 90. An air gap is formed between the phosphors 80. The omnidirectional reflector 90 can be fabricated by an optical coating method such as sputtering, E-gun, Chemical Vapor Deposition (CVD), or the like. Moreover, the material and thickness of the coating of the omnidirectional reflector 90 can be designed according to the required optical reflection effect, so that only the wavelength emitted by the specific LED chip 70 is reflected, but the fluorescent glue is not reflected. 80 produces visible light. Therefore, the omnidirectional reflector 90 can be designed to have a high reflectance for all of the light beam exit angles of the light-emitting diodes 70, and the same electric field polarities as those of the 1287307. The omnidirectional reflector 90 can be used to continuously deposit more than one yttrium refractive index material and more than one low refractive index material on the surface of the substrate 95, so that the omnidirectional reflector 9 〇 omnidirectional reflection of the illuminating diode The bulk wavelength, and the visible light emitted by the phosphor layer 8 可 can penetrate through the omnidirectional reflector 90. The substrate 95 is selected to have a high transmittance for the visible light generated by the phosphor paste 80. The high refractive index material may be titanium dioxide (Ti〇2), tantalum oxide (Ta2〇5), dioxin (ZiU), zinc oxide (Zn〇), antimony trioxide (ΜΑ), and niobium pentoxide (Nb2). 〇〇, indium oxide • (In2〇3), tin oxide (Sn〇2), oxidation record (Sb〇3), oxidation (_2), cerium oxide (Ce〇2), and zinc sulfide (ZnS) The above materials are used for film deposition, and the low refractive index material is selected from the group consisting of oxidized dreams (SiO 〇, alumina (ΑΙΑ), magnesium oxide (Mg〇), lanthanum oxide (La2〇3), yttrium oxide (Yb2〇3). , yttrium oxide (Y2〇3), yttrium oxide (Sc2〇3), tungsten oxide (W〇3), lithium fluoride (LiF), sodium fluoride (NaF), fluorinated town (MgF2), fluorinated ( CaFO, fluorinated error (SrF〇, fluorinated lock (BaF2), Dunhuashao (A1F3), fluorinated ore (LaF3), cesium fluoride (NdF3), fluorinated (YF3) and cesium fluoride (CeF3) Any combination of more than one is used for film deposition. ® When the light emitted by the light-emitting diode is incident on the omnidirectional reflector 90 through the air gap 50, the incident angle of the light-emitting diode is greater than a specific angle range, due to the fluorescent glue 8〇 (refractive index is about 1·4~2. 0) and the medium 50 is folded The difference in rate, the light emitted by the light-emitting diode will cause total internal reflection phenomenon in the phosphor adhesive 80 and the medium 50 interface 51, so that the light emitted by the light-emitting diode is limited to the fluorescent glue 80 to maximize excitation. The phosphor produces fluorescence, which in turn increases the wavelength conversion efficiency of the phosphor. This specific angle is the critical angle of total internal reflection of the light emitted by the LED. When the incident angle of the light emitted by the LED is greater than this For a specific range of angles, such as fluorescent glue (9) and 1287307. When the interface 51 of the medium 50 is designed to be non-planar or rough, no total internal reflection phenomenon will occur. For the visible light generated by the phosphor powder excitation, The total internal reflection phenomenon may occur on the interface 91 of the substrate 95 plated with the omnidirectional reflector 90 and the outside air, and therefore, the other of the substrate 95 plated with the omnidirectional reflector 90 away from the light-emitting diode 70 The side is treated to 'destroy the total internal reflection phenomenon; as shown in Fig. 4, a diffuser having a surface coarse sugar structure and a diffractive optical element (Di can be fabricated on the surface of the substrate 95 of the omnidirectional reflector 90). Optical components such as ffractive Optical Element; DOE lens, microlens array, long wave pass filter, or anti-reflection coating 20, in order to increase the brightness of the visible light emitted by the light-emitting device 100. Further, since the side reflector 10 is disposed around the fluorescent glue 80, the light incident on the side reflector 10 can be reflected back, so that the light-emitting diode wafer 70 The emitted light beam can be incident on the omnidirectional reflector 90 above the fluorescent glue 80 at a full angle. However, since the omnidirectional reflector 90 and the side reflector 10 on the periphery of the phosphor paste 80 reflect light of a specific wavelength range, the light emitted from the photodiode wafer 70 is limited to the omnidirectional reflector 90 and There is a circuit board 60 having a reflected beam function (including ultraviolet light and visible light). The side reflector 1 is further arranged to cause the light beam emitted from the light-emitting diode to overlap and reflect in multiple directions between the phosphor layer 80 and the air gap 50. Whenever the ultraviolet light emitted from the LED wafer 70 passes through the phosphor 80, the ultraviolet light excites the phosphor in the phosphor 80 to produce secondary visible fluorescence. By this light, the omnidirectional reflector 90, the substrate 60 and the side reflector 10 are repeatedly reflected and multi-directionally reflected, so that the light is excited as much as possible to stimulate the light of the light emitted by the LED wafer 70. In order to improve the light wavelength conversion performance of the phosphor, the light emitting device 100 emits more visible light. In this embodiment, the LED chip 70 can be an ultraviolet or blue light emitting diode chip, and can be matched with different components of the fluorescent glue 80 according to color coordinates, color rendering index and color temperature requirements of different colors. To excite light of the same spectral composition or color such as red, blue, green, white and other colors. The second embodiment of the present invention, as shown in Fig. 5, is substantially identical in structure to the first embodiment, except that the substrate 60 corresponds to one side of the omnidirectional reflector 90. The omnidirectional reflective layer 61 is arranged to form an excitation cavity structure in the entire illuminating device 100, so that the light emitted by the illuminating diode is reflected in the omnidirectional reflector 9 全方位 and omnidirectionally. The film 61 is repeatedly reflected to excite the phosphor powder as much as possible, so that the energy of the light emitted by the light-emitting diode is exhausted to improve the light wavelength conversion efficiency of the phosphor powder. The reflective layer 61 or the substrate 60 can also be another omnidirectional reflector. Please refer to FIG. 6 , which is a third embodiment of the present invention. The structure of this embodiment is substantially the same as that of the second embodiment. However, in the second embodiment, the substrate 60 is a In the embodiment, the substrate 6 is a bowl-shaped structure, and only the external shape of the substrate 60 is changed, but all of them have the functions of reflecting visible light and ultraviolet light in an omnidirectional manner. The user can choose the appropriate base according to different usage requirements. Please refer to FIG. 7 , which is a fourth embodiment of the present invention. First, the ultraviolet light emitting body wafer 70 is crystallized in a metal cup 11 支架 of the holder, and the two pins 12 此 of the holder They are independent metal electrodes for conducting current. On the periphery of the light-emitting diode wafer 7 涂布, 13 1287307 is coated with the fluorescent glue 80, and the upper omnidirectional reflector 90 is formed by optical coating on the top of the fluorescent glue 80, and the fluorescent glue 80 and the whole The azimuth reflectors 90 are separated by a medium 5 〇, and the refractive index of the medium 5 必须 must be smaller than the refractive index of the fluorochrome 80 and the omnidirectional reflector 90, and preferably between 卜 1 and . The medium 50 can be air. The manufacturing method of the omnidirectional reflector 90 can be referred to in the first embodiment. The light-emitting diode wafer 70 is driven to emit light by passing a current through the metal electrode of the holder. When the light emitted by the light-emitting diode 70 passes through the fluorescent glue 80, the light causes the fluorescent powder to emit fluorescence. Similarly, by means of a medium 50 between the omnidirectional reflector 90 and the phosphor paste 80, all of the light-emitting diode wafers emitted in the range of 〇~90 degrees can be limited to the fluorescent glue 80. The repetitive and multi-directional reflection allows the light emitted by the LED chip to excite the phosphor as much as possible to improve the conversion performance of the fluorescent light. The visible light emitted by the phosphor powder can still penetrate the omnidirectional reflector 90' to actually improve the luminous efficiency of the light-emitting device 100. By controlling the difference in the reflectance of the omnidirectional reflector 9 〇 for the light-emitting diode, the color coordinates, brightness and uniformity of the light emitted by the omnidirectional reflector can be adjusted. Similarly, in this embodiment, the LED array 70 can be an ultraviolet light emitting diode chip, and the user can match different colors of fluorescent glue according to different usage requirements to stimulate Light of different colors, such as: red light, yellow light, green light, white light, etc. In addition, the blue light emitting diode chip can also be used with yellow, green, and red fluorescent glue 80 to separately emit white light, green light, red light, and other color lights. As shown in Fig. 8, the transmittance of the full spectrum of the light-emitting device 1 of Fig. 3 (shown by a broken line) and the reflectance (shown by a solid line) are theoretically calculated. The calculation module 1287307 of the omnidirectional reflector of the present embodiment is intended to be an ultraviolet light-emitting diode wafer having a center wavelength of 370 nm, and is averaged for all incident angles to obtain an exit spectrum of the full incident angle, and at the same time The azimuth reflector 9q is composed of a total of 42 layers of three materials of an oxidation group, an oxidized stone, and a titanium dioxide on the glass substrate 95. The omnidirectional reflector 90 shows an all angle average reflectance of 100% to the ultraviolet wavelength (370 nm), and vice versa, the visible wavelength (4 〇〇 to 7 〇〇 nm) full angle. The average penetration rate is almost 80%. Compared with the prior art (ie, comparing FIGS. 2 and 8), it can be seen that the light-emitting device 100 is added with an air gap 50 between the fluorescent glue 80 and the omnidirectional reflector 90, which can greatly increase the visible light illuminance. Transmittance (about from 40% to 80%). Furthermore, in such simulation data, when the incident angle is between 〇 and 45 degrees, the transmittance of blue light is between 0 and 60%. In the range of wavelengths of 500 to 700 nm, the transmittance of light is more than 80%. In this way, part of the blue light can be used to excite the glory powder, and part of the blue light penetrates the omnidirectional reflector 90, and the exit surface 91 of the substrate 95 is emitted into the air, and is combined with the yellow light excited by the fluorescent glue 80. To form white light. In the conventional white light emitting diode, the present invention can also utilize the light emitting device composed of the blue light emitting diode chip 7〇 and the yellow light fluorescent gel 8〇 to produce two white light emitting efficiencies, which can be obtained from the eighth figure. It can be seen that a part of the blue light can be reflected and excited by the yellow light in the glory gel to make the blue light intensity decrease, and the yellow light intensity is improved. Although the implementation of the original bribe is as described above, it is not intended to limit the invention. In addition to the spirit and scope of the present invention, both the change and the _ are the scope of the patent protection of the present invention, and the scope of the patent application is defined in the protection of the present invention. 1287307 [Simplified Schematic] FIG. 1 is a schematic diagram of a prior art light-emitting device; FIG. 2 is a spectrum simulation data diagram of a prior art light-emitting device; FIG. 3 is an omnidirectional reflection of the first embodiment of the present invention FIG. 4 is a schematic view showing the optical element produced on the surface of the substrate of the omnidirectional reflector according to the first embodiment of the present invention; FIG. 5 is a view showing the second embodiment of the present invention. Schematic diagram of the illuminating device of the omnidirectional reflector; #6 is a schematic structural view of a illuminating device with an omnidirectional reflector according to a third embodiment of the present invention; FIG. 7 is a complete embodiment of the fourth embodiment of the present invention A schematic diagram of the structure of the illuminating device of the azimuth reflector; and Fig. 8 is a graph of the spectral simulation data of the illuminating device with the omnidirectional reflector of the present invention. [Main component symbol description] 1〇 side reflector • 2〇 optical component 50 dielectric 51 interface 6〇 substrate • 61 reflective layer 70 LED output surface 71 1287307 80 Fluorescent adhesive 90 omnidirectional reflector 91 interface 95 substrate 100 illuminating device 110 metal bowl cup 120 pin 200 illuminating device 270 light emitting diode wafer 280 fluorescent glue 290 omnidirectional reflector 291, interface 295 substrate

Claims (1)

1287307 十、申請專利範圍: 1. 一種具全方位反射器之發光裝置,包含: 一基板,真可製作電路與全方位反射紫外光與可見光之功能; 一個以上之發光二極體晶片’係設置於該具電路功能基板上,由該發 光二極體晶片之一出射面發射出一光線; 一螢光膠,係由一螢光粉與一樹雁混合而成,並塗佈於該發光二極體 晶片之外圍,當該發光二極體晶片發出之該光線穿過該螢光膠時,該光線 會激發該螢光粉發出一螢光;及 一全方位反射器,係以光學鍍膜之方式製作,且設置於該螢光膠上方 對應於該發光二極體晶片之該出射面的一側,不與該螢光膠接觸,並於該 > 全方位反射器與螢光膠間設有一介質,該介質之折射率係小於該螢光膠與 該全方位反射器之折射率,使該發光二極體晶片之光線可在該螢光膠中產 生反覆且全方向的反射,以提高該發光二極體晶片之光線的轉換效能。 2·如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該介質 之折射率係介於1〜1.5之間。 3·如申請專利範圍第2項所述之具全方位反射器之發光裝置,其中該介質 係為空氣。 4·如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該發光 —極體晶片係為一紫外光發光二極體晶片,並可搭配一種或一種以上不 同顏色之螢光膠,以激發出不同顏色之螢光。 5·如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該發光 1287307 二極體晶片係為一藍光發光二極體晶片,而該螢光膠係為黃光螢光膠, 以激發出白光。 -6.如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該發光 - 二極體晶片係為一藍光發光二極體晶片’而該螢光膠係為紅光螢光膠, 以激發出紅光。 7. 如申請專利範圍第1項所述之具全方位反射器之發光裝置’其中該發光 二極體晶片係為一藍光發光二極體晶片,而該螢光膠係為綠光螢光膠, φ 以教發出綠光。 8. 如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該螢光 粉之激發光波長需配合該發光二極體晶片之發光波長。 9. 如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該基板 係為一具光線反射功能之碗狀或板狀結構。 10·如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該全方 位反射器係反射具有該發光二極體晶片波長之光線。 • 11·如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該全方 位反射器係使該螢光穿透。 12·如申請專利範圍第丨項所述之具全方位反射器之發光裝置,其中該基板 設置有該發光二極體晶片之一側係具有一反射層,以搭配該全方位反射 器而形成一使該光線產生多次反射之共振腔結構。 13·如申請專利範圍第12項所述之具全方位反射器之發光裝置,其中該反 射層係為另一全方位反射器。 1287307 . 14·如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該發光 二極體晶片係呈陣列式排列。 15·如申請專利範圍第丨項所述之具全方位反射器之發光裝置,其中該全方 位反射器係利用一種以上之高折射率材質及一種以上之低折射率材質以 光學鍍膜之方式製作而成。 16·如申請專利範圍第15項所述之具全方位反射器之發光裝置,其中該高 折射率材質係選自由二氧化鈦(Ti〇2)、氧化钽(Ta2〇5)、二氧化锆(Zr〇2)、 | 氧化鋅(ZnO)、三氧化工敍⑽必)、五氧化工銳⑽必)、氧化銦(ιη2〇3)、 氧化錫(SnOO、氧化銻(Sb〇3)、氧化铪(Hf〇〇、氧化鈽(Ce0〇及硫化鋅 (ZnS) ° Π·如申請專利範圍第15項所述之具全方位反射器之發光裝置,其中該低 折射率材質係選自由氧化石夕(Si〇2)、氧化紹(AhO3)、氧化鎮(Mg〇)、氧化 鋼(La2〇3)、氧化镱(YbO3)、氧化釔(Υ2〇3)、氧化銃(Sc2〇3)、氧化鎢(w〇3)、 氟化鋰(LiF)、氟化鈉(NaF)、氟化鎂(MgF2)、氟化鈣(CaF2)、氟化锶 _ (SrF2)、氟化鋇(BaF2)、氟化紹(A1F3)、氟化鑭(LaF3)、氟化敍(_?3)、 氟化釔(YF3)和氟化鈽(CeF3)。 18·如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該全方 ^ 位反射器之製作方式係選自由濺鍍、電子搶或化學氣相沉積。 w 19.如申請專利範圍第1項所述之具全方位反射器之發光裝置,其中該全方 位反射器對應於該螢光膠之另一側面包含有擴束片、繞射光學元件、半 球形鏡、微透鏡陣列、可見光穿透濾波器或抗反射膜。 20 1287307 20· 一種具全方位反射器之發光裝置,係於一支架的金屬碗杯中設置有一發 光二極體晶片,該矣里县有兩個獨立的金屬電極,用以通入電流而驅動 該發光二極體晶片發出一光線,該發光二極體晶片之周圍塗佈有一榮光 " 膠,其係由一螢光粉與一樹脂混合而成,當該發光二極體晶片發出的光 線穿過該螢光膠時,該光線會激發該螢光粉發出螢光,其特徵在於·· 該螢光膠之上方設有一利用光學鑛膜方式製作而成的全方位反射 器,且該螢光膠與該全方位反射器互不接觸,並於該螢光膠與該全方位 φ 反射器之間設有一介質,該介質之之折射率係小於該螢光膠與該全方位 反射器之折射率,使該發光二極體晶片之光線可在該螢光膠中產生反覆 且全方向的反射,以提高該發光二極體晶片之光線的轉換效能。 21·如申請專利範圍第20項所述之具全方位反射器之發光裝置,其中該介 質之折射率係介於卜1. 5之間。 22·如申請專利範圍第21項所述之具全方位反射器之發光裝置,其中該介 質係為空氣。 修 23·如申請專利範圍第2〇項所述之具全方位反射器之發光裝置,其中該發 光二極體晶片係為一紫外光發光二極體晶片,並可搭配一種或一種以上 不同顏色之螢光膠,以激發出不同顏色之螢光。 24·如申請專利範圍第2〇項所述之具全方位反射器之發光裝置,其中該發 光二極體晶片係為一藍光發光二極體晶片,而該螢光膠係為黃光榮光 膠’以激發出白光。 25·如申請專利範圍第2〇項所述之具全方位反射器之發光裝置,其中該發 21 1287307 光二極體晶片係為一藍光發光二極體晶片,而該螢光膠係為紅光營光 膠,以激發出紅光。 ~ 26·如申請專利範圍第20項所述之具全方位反射器之發光裝置,其中該發 - 光二極體晶片係為一藍光發光二極體晶片,而該螢光膠係為綠光螢光 膠,以激發出綠光。 27·如申請專利範圍第20項所述之具全方位反射器之發光裝置,其中該螢 光粉之激發光波長需配合該發光二極體晶片之發光波長。 φ 28·如申請專利範圍第20項所述之具全方位反射器之發光裝置,其中該全 方位反射器係反射具有該發光二極體晶片波長之光線。 29·如申請專利範圍第20項所述之具全方位反射器之發光裝置,其中該全 方位反射器係利用一種以上之高折射率材質及一種以上之低折射率材質 以光學鑛膜之方式製作而成。 30·如申請專利範圍第29§=項所述之具全方位反射器之發光裝置,其中該高 折射率材質係選自由二氧化鈦(Ti〇2)、氧化组(Ta2〇5)、二氧化锆(红〇2)、 鲁 氧化辞(ZnO)、三氧化二敍(臓3)、五氧化二銳⑽2〇5)、氧化銦(ιη2〇3)、 氧化錫(SnO〇、氧化銻(SbO〇、氧化铪(Hf〇2)、氧化鈽(ce〇〇及硫化鋅 (ZnS) 〇 31··如申請專利範圍第29項所述之具全方位反射器之發光裝置,其中該低 折射率材質係選自由氧化矽(Si〇2)、氧化鋁(A12〇3)、氧化鎂(Mg〇)、氧化 鋼(LW3)、氧化镱⑽似、氧化紀⑽〇、氧化銃(㈣3)、氧化鶴⑽)、 氟化鐘(LiF)、氟化鈉(NaF)、氟化鎖(MgF2)、氟化約(CaF2)、氣化銷 22 1287307 * (SrF2)、氟化鋇(BaF2)、氟化鋁(A1F3)、氟化鑭(LaF3)、氟化鈥(NdF3)、 氟化釔(YF3)和氟化鈽(CeF3)。 32.如申請專利範圍第20項所述之具全方位反射器之發光裝置,其中該全 ' 方位反射器之製作方式係選自由濺鍍、電子槍或化學氣相沉積。1287307 X. Patent application scope: 1. A light-emitting device with an omnidirectional reflector, comprising: a substrate, which can make a circuit and a function of reflecting ultraviolet light and visible light in an all-round way; more than one light-emitting diode chip set On the circuit-functional substrate, a light is emitted from an exit surface of the light-emitting diode chip; a fluorescent glue is mixed with a tree geese and coated on the light-emitting diode On the periphery of the body wafer, when the light emitted by the LED chip passes through the phosphor, the light excites the phosphor to emit a fluorescent light; and an omnidirectional reflector is optically coated. And disposed on a side of the phosphor paste corresponding to the exit surface of the LED chip, not in contact with the phosphor paste, and disposed between the omnidirectional reflector and the phosphor a medium having a refractive index smaller than a refractive index of the phosphor and the omnidirectional reflector, such that light of the LED chip can generate a repetitive and omnidirectional reflection in the phosphor to enhance the Illuminate The light conversion efficiency of the diode chip. 2. The illuminating device having an omnidirectional reflector according to claim 1, wherein the medium has a refractive index of between 1 and 1.5. 3. The illuminating device having an omnidirectional reflector according to claim 2, wherein the medium is air. 4. The illuminating device with an omnidirectional reflector according to claim 1, wherein the illuminating polar body chip is an ultraviolet light emitting diode chip and can be matched with one or more kinds of different colors. Glue to stimulate the fluorescence of different colors. 5. The illuminating device with an omnidirectional reflector according to claim 1, wherein the illuminating 1287307 diode chip is a blue light emitting diode chip, and the fluorescent glue is a yellow light fluorescent glue. To stimulate white light. -6. The illuminating device with omnidirectional reflector according to claim 1, wherein the illuminating-diode chip is a blue light emitting diode chip and the fluorescent glue is red light ray Glue to stimulate red light. 7. The illuminating device with an omnidirectional reflector according to claim 1, wherein the illuminating diode chip is a blue light emitting diode chip, and the fluorescent glue is a green fluorescent glue. , φ to teach green light. 8. The illuminating device with an omnidirectional reflector according to claim 1, wherein the wavelength of the excitation light of the phosphor needs to match the wavelength of the light emitted by the LED chip. 9. The omnidirectional reflector illuminating device of claim 1, wherein the substrate is a bowl or plate structure having a light reflecting function. 10. The illuminating device having an omnidirectional reflector according to claim 1, wherein the omnidirectional reflector reflects light having a wavelength of the illuminating diode chip. 11. The illuminating device having an omnidirectional reflector according to claim 1, wherein the omnidirectional reflector is adapted to penetrate the fluorescent light. 12. The illuminating device with an omnidirectional reflector according to the invention of claim 2, wherein the substrate is provided with a reflective layer on one side of the LED chip to form the omnidirectional reflector. A resonant cavity structure that causes the light to be reflected multiple times. 13. The illuminating device having an omnidirectional reflector according to claim 12, wherein the reflective layer is another omnidirectional reflector. The light-emitting device with an omnidirectional reflector according to claim 1, wherein the light-emitting diode chips are arranged in an array. 15. The illuminating device with an omnidirectional reflector according to the invention of claim 2, wherein the omnidirectional reflector is optically coated by using one or more high refractive index materials and one or more low refractive index materials. Made. The omnidirectional reflector illuminating device according to claim 15, wherein the high refractive index material is selected from the group consisting of titanium dioxide (Ti〇2), cerium oxide (Ta2〇5), and zirconium dioxide (Zr). 〇2), | Zinc Oxide (ZnO), Oxidation (10), pentoxide (10), Indium Oxide (Imium), Tin Oxide (SnOO, Sb(3), Antimony Oxide (Hf 〇〇, 钸 钸 C C C C C C Π Π Π 发光 发光 发光 发光 发光 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位(Si〇2), oxidized (AhO3), oxidized town (Mg〇), oxidized steel (La2〇3), yttrium oxide (YbO3), yttrium oxide (Υ2〇3), yttrium oxide (Sc2〇3), oxidation Tungsten (w〇3), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride (MgF2), calcium fluoride (CaF2), strontium fluoride (SrF2), barium fluoride (BaF2), Fluoride (A1F3), lanthanum fluoride (LaF3), fluorinated (_?3), yttrium fluoride (YF3), and lanthanum fluoride (CeF3). 18. As described in claim 1 Illuminating device for omnidirectional reflector, wherein the whole square reflector is produced The method is selected from the group consisting of sputtering, electron smashing, or chemical vapor deposition. The omnidirectional reflector of the illuminating device according to claim 1, wherein the omnidirectional reflector corresponds to the fluorescent glue. The other side comprises a beam expander, a diffractive optical element, a hemispherical mirror, a microlens array, a visible light transmission filter or an anti-reflection film. 20 1287307 20· A luminaire with an omnidirectional reflector, attached to a support a metal diode cup is provided with a light-emitting diode chip, and the mountain has two independent metal electrodes for driving current to drive the light-emitting diode chip to emit a light, and the periphery of the light-emitting diode chip Applying a glory < glue, which is a mixture of a phosphor and a resin. When the light emitted by the LED chip passes through the phosphor, the light excites the phosphor to emit a fire. The light is characterized in that: an omnidirectional reflector made of an optical mineral film is disposed above the fluorescent glue, and the fluorescent glue and the omnidirectional reflector are not in contact with each other, and the fluorescent glue is With this all-round A medium is disposed between the φ reflectors, and the refractive index of the medium is smaller than the refractive index of the luminescent gel and the omnidirectional reflector, so that the light of the illuminating diode chip can be reversed in the luminescent gel and An omnidirectional reflection to improve the conversion efficiency of the light of the illuminating diode chip. 21. The illuminating device with an omnidirectional reflector according to claim 20, wherein the refractive index of the medium is different The illuminating device with an omnidirectional reflector according to claim 21, wherein the medium is air. The omnidirectional reflector illuminating device of claim 2, wherein the illuminating diode chip is an ultraviolet light emitting diode chip and can be combined with one or more different colors. Fluorescent glue to excite fluorescent light of different colors. The illuminating device with an omnidirectional reflector according to the second aspect of the invention, wherein the illuminating diode chip is a blue light emitting diode chip, and the fluorescent glue is a yellow light glory 'To stimulate white light. The omnidirectional reflector illuminating device according to claim 2, wherein the 21 1287307 photodiode chip is a blue light emitting diode chip, and the fluorescent glue is red light Camp light glue to stimulate red light. The light-emitting device with an omnidirectional reflector according to claim 20, wherein the hair-light diode chip is a blue light-emitting diode chip, and the fluorescent glue is a green light-emitting device. Glue to stimulate green light. The illuminating device with an omnidirectional reflector according to claim 20, wherein the wavelength of the excitation light of the phosphor powder is matched with the wavelength of the light emitted by the LED chip. Φ28. The omnidirectional reflector illumination device of claim 20, wherein the omnidirectional reflector reflects light having a wavelength of the illuminating diode chip. 29. The illuminating device with an omnidirectional reflector according to claim 20, wherein the omnidirectional reflector utilizes more than one high refractive index material and one or more low refractive index materials in the form of an optical mineral film. Made. 30. The omnidirectional reflector illuminating device according to claim 29, wherein the high refractive index material is selected from the group consisting of titanium dioxide (Ti〇2), oxidation group (Ta2〇5), zirconium dioxide. (red 〇 2), Lu oxidized (ZnO), bismuth (臓3), bismuth oxide (10) 2 〇 5), indium oxide (ιη2〇3), tin oxide (SnO〇, yttrium oxide (SbO〇)铪 铪 H H H H H H H H H H H 〇〇 〇〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 全方位 全方位 全方位 全方位 全方位 全方位 全方位 全方位 , , , , , , , , , , , , , , , , It is selected from the group consisting of cerium oxide (Si〇2), alumina (A12〇3), magnesium oxide (Mg〇), oxidized steel (LW3), cerium oxide (10), oxidized (10) cerium, cerium oxide ((iv) 3), oxidized crane (10)), fluorinated clock (LiF), sodium fluoride (NaF), fluorinated lock (MgF2), fluorinated (CaF2), gasification pin 22 1287307 * (SrF2), barium fluoride (BaF2), fluorination Aluminum (A1F3), lanthanum fluoride (LaF3), yttrium fluoride (NdF3), yttrium fluoride (YF3), and lanthanum fluoride (CeF3) 32. omnidirectional reflector as described in claim 20 Illuminating device, wherein the full 'azimuth reflection The production methods selected from the group consisting of sputtering, chemical vapor deposition, or electron gun. 23twenty three
TW95100149A 2006-01-03 2006-01-03 Light-emitting device with omni-bearing reflector TWI287307B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95100149A TWI287307B (en) 2006-01-03 2006-01-03 Light-emitting device with omni-bearing reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95100149A TWI287307B (en) 2006-01-03 2006-01-03 Light-emitting device with omni-bearing reflector

Publications (2)

Publication Number Publication Date
TW200727506A TW200727506A (en) 2007-07-16
TWI287307B true TWI287307B (en) 2007-09-21

Family

ID=39460275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95100149A TWI287307B (en) 2006-01-03 2006-01-03 Light-emitting device with omni-bearing reflector

Country Status (1)

Country Link
TW (1) TWI287307B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623607A (en) * 2011-01-28 2012-08-01 联胜(中国)科技有限公司 Luminescent module
US10707277B2 (en) 2016-10-04 2020-07-07 Vuereal Inc. Method of integrating functional tuning materials with micro devices and structures thereof
WO2018065901A1 (en) * 2016-10-04 2018-04-12 Vuereal Inc. Color conversion layer integration into display substrate with high intensity light sources
KR20180093689A (en) * 2017-02-14 2018-08-22 삼성전자주식회사 Light emitting diode apparatus and manufacturing method thereof
JP7437938B2 (en) * 2017-06-08 2024-02-26 レイア、インコーポレイテッド Light source and multi-view backlight using it

Also Published As

Publication number Publication date
TW200727506A (en) 2007-07-16

Similar Documents

Publication Publication Date Title
TWI239671B (en) LED applied with omnidirectional reflector
CN100438095C (en) Light emitting diode with quasi-omnibearing reflector
TW201041190A (en) Polarized white light emitting diode (LED)
US6833565B2 (en) White-light led with dielectric omni-directional reflectors
CN101517761B (en) Optoelectronic component
JP5222155B2 (en) Light emitting device
US7497581B2 (en) Light recycling illumination systems with wavelength conversion
CN101013734B (en) Light emitting diode module
US7040774B2 (en) Illumination systems utilizing multiple wavelength light recycling
US8008850B2 (en) Color temperature tunable white light emitting device
CN102856312B (en) Planar light-emitting module
US20070081336A1 (en) Illumination system with optical concentrator and wavelength converting element
US8608329B2 (en) Phosphor plate and illumination system with the same
TWI287307B (en) Light-emitting device with omni-bearing reflector
CN107424524A (en) A kind of miniature LED display panel
JP2015523722A (en) Hybrid bulb using a combination of remote phosphor LED and direct emission LED
KR20100118149A (en) Light emitting diode device
WO2020023708A1 (en) Reflective color correction for phosphor illumination systems
JPWO2019244506A1 (en) Light wavelength conversion member, light wavelength conversion device, and light emitting device
CN100337337C (en) Omnidirectional reflector and luminous apparatus produced thereby
KR20070065486A (en) White light emitting device
CN104345535A (en) Laser light source and projection device
CN207396957U (en) Wavelength convert component, projecting apparatus and lighting device
CN110887022A (en) Wavelength conversion device and light source system
KR101057349B1 (en) White light source with enhanced brightness

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees