US20210040359A1 - Masking pressure-sensitive adhesive tape - Google Patents

Masking pressure-sensitive adhesive tape Download PDF

Info

Publication number
US20210040359A1
US20210040359A1 US17/080,954 US202017080954A US2021040359A1 US 20210040359 A1 US20210040359 A1 US 20210040359A1 US 202017080954 A US202017080954 A US 202017080954A US 2021040359 A1 US2021040359 A1 US 2021040359A1
Authority
US
United States
Prior art keywords
sensitive adhesive
pressure
adhesive tape
masking
masking pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/080,954
Inventor
Yuji Okawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to US17/080,954 priority Critical patent/US20210040359A1/en
Publication of US20210040359A1 publication Critical patent/US20210040359A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/068Copolymers with monomers not covered by C09J133/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/414Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of a copolymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • C09J2479/086Presence of polyamine or polyimide polyimide in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24959Thickness [relative or absolute] of adhesive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • Y10T428/2891Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof

Definitions

  • the present invention relates to a masking pressure-sensitive adhesive tape, and more specifically, to a masking pressure-sensitive adhesive tape to be used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part.
  • an electromagnetic wave shield has been provided to prevent a malfunction of the electronic part due to electromagnetic waves entering from the outside or leakage of electromagnetic waves generated from the electronic part.
  • the electromagnetic wave shield has been formed directly on the electronic part by, for example, sputtering or plating (for example, Japanese Patent Application Laid-open No. 2014-183180).
  • a masking pressure-sensitive adhesive tape is bonded onto a surface, on which formation of the electromagnetic wave shield is not required, for example, to a surface on which an electrode is formed.
  • the electromagnetic wave shield is preferably formed by sputtering.
  • a problem occurs in that a material for shielding the electromagnetic wave enters between the masking pressure-sensitive adhesive tape and the electronic part.
  • the uneven surface of an electronic part having an uneven surface for example, an electronic part including a terminal for bump formation
  • the air present in a concave part is liable to leak from the space between the masking pressure-sensitive adhesive tape and the electronic part.
  • a problem remarkably occurs in that a space is left between the masking pressure-sensitive adhesive tape and the electronic part, and the material for shielding the electromagnetic wave enters thereinto.
  • the present invention has been made to solve the related-art problem, and an object of the present invention is to provide a masking pressure-sensitive adhesive tape to be used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part, the masking pressure-sensitive adhesive tape being capable of preventing formation of a metal layer by the vacuum film formation method on a surface masked by the masking pressure-sensitive adhesive tape.
  • a masking pressure-sensitive adhesive tape is a masking pressure-sensitive adhesive tape to be used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part, the masking pressure-sensitive adhesive tape including: a base material; and a pressure-sensitive adhesive layer arranged on one side of the base material, in which the pressure-sensitive adhesive layer has a thickness of 5 ⁇ m or more, and in which the masking pressure-sensitive adhesive tape has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of 0.4 N/20 mm or more.
  • the electronic part has an uneven surface
  • the masking pressure-sensitive adhesive tape is used by being bonded onto the uneven surface
  • the masking pressure-sensitive adhesive tape has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of 10 N/20 mm or less after the masking pressure-sensitive adhesive tape is bonded onto the stainless-steel plate and left to stand at 200° C. for 1 hour.
  • a method of producing an electronic part includes using the masking pressure-sensitive adhesive tape.
  • the pressure-sensitive adhesive tape suited for masking in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part by arranging the pressure-sensitive adhesive layer having a specific thickness and setting the 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate to 0.4 N/20 mm or more.
  • the masking pressure-sensitive adhesive tape of the present invention is used, unnecessary formation of a metal layer by the vacuum film formation method on a surface masked by the masking pressure-sensitive adhesive tape can be prevented.
  • FIG. 1 is a schematic sectional view of a masking pressure-sensitive adhesive tape according to one embodiment of the present invention.
  • FIG. 1 is a schematic sectional view of a masking pressure-sensitive adhesive tape according to one embodiment of the present invention.
  • a pressure-sensitive adhesive tape 100 for masking includes a base material 10 and a pressure-sensitive adhesive layer 20 arranged on one side of the base material 10 .
  • the pressure-sensitive adhesive tape of the present invention may include a release liner on the outer side of the pressure-sensitive adhesive layer until being used, for the purpose of protecting its pressure-sensitive adhesive surface.
  • the masking pressure-sensitive adhesive tape is hereinafter sometimes simply referred to as “pressure-sensitive adhesive tape.”
  • the 180° peeling adhesive strength at 23° C. of the masking pressure-sensitive adhesive tape of the present invention bonded onto a stainless-steel plate is preferably 0.4 N/20 mm or more, more preferably 0.5 N/20 mm or more.
  • a pressure-sensitive adhesive tape suited for masking an electronic part can be obtained. More specifically, a pressure-sensitive adhesive tape that is less liable to be peeled off even in an environment in which the pressure is reduced after the pressure-sensitive adhesive tape is bonded can be obtained.
  • the masking pressure-sensitive adhesive tape of the present invention is less liable to be peeled off even when bonded onto an uneven surface of an electronic part (for example, a surface having a concave part for bump formation).
  • the upper limit of the 180° peeling adhesive strength at 23° C. of the masking pressure-sensitive adhesive tape bonded onto a stainless-steel plate is, for example, 6 N/20 mm.
  • the 180° peeling adhesive strength is measured in conformity with JIS Z 0237: 2000. Specifically, the 180° peeling adhesive strength is measured by: bonding a pressure-sensitive adhesive tape to a stainless-steel plate (arithmetic average surface roughness Ra: 50 ⁇ 25 nm) by turning a 2 kg roller one round; leaving the plate to stand at 23° C. for 30 minutes; and then peeling off the pressure-sensitive adhesive tape under the conditions of a peel angle of 180° and a peel rate (tension rate) of 300 mm/min.
  • the pressure-sensitive adhesive layer is formed of an acrylic pressure-sensitive adhesive.
  • the 180° peeling adhesive strength at 23° C. of the masking pressure-sensitive adhesive tape bonded onto a stainless-steel plate is particularly preferably from 0.5 N/20 mm to 2.5 N/20 mm.
  • the pressure-sensitive adhesive layer is formed of a silicone-based pressure-sensitive adhesive.
  • the 180° peeling adhesive strength at 23° C. of the masking pressure-sensitive adhesive tape bonded onto a stainless-steel plate is particularly preferably from 0.4 N/20 mm to 5 N/20 mm.
  • the masking pressure-sensitive adhesive tape of the present invention having such adhesive strength as described above can suitably be used for masking a surface on which formation of a metal layer is not required (for example, a surface on which an electrode is formed) in a step of forming a metal layer by a vacuum film formation method on part of a surface of an electronic part.
  • the masking pressure-sensitive adhesive tape of the present invention is less liable to be peeled off even under reduced-pressure treatment and does not form a space on a surface to be bonded.
  • the masking pressure-sensitive adhesive tape of the present invention when used, formation of a metal layer by a vacuum film formation method can be prevented on a surface masked by the masking pressure-sensitive adhesive tape (hereinafter sometimes referred to as “surface to be masked”), that is, a surface on which formation of a metal layer is not required.
  • the vacuum film formation method include a sputtering method, a vacuum deposition method, and an ion plating method. Of those, a sputtering method is preferred.
  • the thickness of the pressure-sensitive adhesive layer is 5 ⁇ m or more, preferably 6 ⁇ m or more, more preferably from 6 ⁇ m to 70 ⁇ m, still more preferably from 6 ⁇ m to 50 ⁇ m.
  • the thickness falls within such range, it is possible to obtain a pressure-sensitive adhesive tape that has a sufficient stress relaxation effect resulting from the pressure-sensitive adhesive layer at an edge of an electronic part when bonded onto the electronic part and enables digging of the edge of the electronic part into the pressure-sensitive adhesive layer.
  • formation of a metal layer on the surface to be masked can be prevented in vacuum film forming treatment. Setting the thickness of the pressure-sensitive adhesive layer to 70 ⁇ m or less can provide a pressure-sensitive adhesive tape capable of suppressing adhesive residue on an adherend.
  • the thickness of the base material is preferably from 5 ⁇ m to 100 ⁇ m, more preferably from 10 ⁇ m to 75 ⁇ m. When the thickness falls within such range, a masking pressure-sensitive adhesive tape excellent in handling can be obtained.
  • the masking pressure-sensitive adhesive tape of the present invention has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of preferably 10 N/20 mm or less, more preferably 8 N/20 mm or less, still more preferably from 1 N/20 mm to 8 N/20 mm after the masking pressure-sensitive adhesive tape is bonded onto the stainless-steel plate and left to stand at 200° C. for 1 hour.
  • a masking pressure-sensitive adhesive tape that is excellent in peeling property when peeled off from an electronic part and hardly causes adhesive residue after a predetermined step (for example, after vacuum film forming treatment) can be obtained.
  • the adhesive strength is measured after the tape is naturally cooled at ordinary temperature after the standing at 200° C. for 1 hour.
  • the pressure-sensitive adhesive layer is formed of any appropriate pressure-sensitive adhesive.
  • the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer include an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and an epoxy-based pressure-sensitive adhesive. Of those, a silicone-based pressure-sensitive adhesive or an acrylic pressure-sensitive adhesive is preferred from the viewpoint of heat resistance.
  • the silicone-based pressure-sensitive adhesive contains a silicone-based polymer as a base polymer.
  • An example of the silicone-based polymer is a polymer including dimethylsiloxane as a constitutional unit.
  • specific examples of the silicone-based pressure-sensitive adhesive include an addition reaction curable silicone-based pressure-sensitive adhesive and a peroxide curable silicone-based pressure-sensitive adhesive.
  • a commercially available product may be used as the pressure-sensitive adhesive.
  • Specific examples of the commercially available product include products manufactured by Dow Corning Toray Co., Ltd. (SD series), products manufactured by Shin-Etsu Silicones (KR-3700 series and X-40 series), and products manufactured by Shin-Etsu Chemical Co., Ltd. (K-100 series).
  • the acrylic pressure-sensitive adhesive contains an acrylic polymer as abase polymer.
  • the acrylic polymer include: homopolymers or copolymers of alkyl (meth)acrylates (preferably C1 to C20 alkyl (meth)acrylates), such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, and dodecyl (meth)acrylate; and a copolymer of any of the alkyl (meth)acrylates and any other copolymerizable monomer.
  • Examples of the other copolymerizable monomer include: carboxyl group- or acid anhydride group-containing monomers, such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic anhydride; a hydroxyl group-containing monomer, such as 2-hydroxyethyl (meth)acrylate; an amino group-containing monomer, such as morpholyl (meth)acrylate; and an amide group-containing monomer, such as (meth)acrylamide.
  • carboxyl group- or acid anhydride group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic anhydride
  • a hydroxyl group-containing monomer such as 2-hydroxyethyl (meth)acrylate
  • an amino group-containing monomer such as morpholyl (meth)acrylate
  • an amide group-containing monomer such as (meth)acrylamide.
  • the content ratio of a constitutional unit derived from the copolymerizable monomer is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, still more preferably from 0.1 part by weight to 10 parts by weight with respect to 100 parts by weight of the base polymer.
  • the weight-average molecular weight of the acrylic polymer is preferably from 200,000 to 1,500,000, more preferably from 400,000 to 1,400,000.
  • the weight-average molecular weight may be measured by GPC (solvent: THF).
  • the pressure-sensitive adhesive may further contain any appropriate additive as required.
  • the additive include a cross-linking agent, a catalyst (for example, a platinum catalyst), a tackifies, a plasticizer, a pigment, a dye, a filler, an anti-aging agent, a conductive material, an ultraviolet absorber, a photostabilizer, a peeling adjusting agent, a softener, a surfactant, a flame retardant, an antioxidant, and a solvent (for example, toluene).
  • the pressure-sensitive adhesive further contains a cross-linking agent.
  • the cross-linking agent include an isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, an aziridine-based cross-linking agent, and a chelate-based cross-linking agent.
  • the content ratio of the cross-linking agent is preferably from 0.1 part by weight to 15 parts by weight, more preferably from 0.5 part by weight to 10 parts by weight with respect to 100 parts by weight of the base polymer contained in the pressure-sensitive adhesive. When the content ratio falls within such range, a pressure-sensitive adhesive tape that has an appropriate adhesive strength, is excellent in pressure-sensitive adhesive property for an uneven surface, and hardly causes adhesive residue when peeled off can be obtained.
  • the 5% weight loss temperature of the pressure-sensitive adhesive layer is preferably 250° C. or more.
  • a masking pressure-sensitive adhesive tape that is excellent in peeling property and hardly causes adhesive residue when peeled off from an electronic part after a predetermined step (for example, after vacuum film forming treatment) can be obtained.
  • the term “5% weight loss temperature” refers to a temperature at the time when the weight of the pressure-sensitive adhesive layer is reduced by 5% with respect to an initial weight in thermogravimetric (TG) measurement under the following conditions.
  • Measurement temperature range from room temperature to 850° C. Temperature rising rate: 10° C./min Atmospheric gas: atmosphere Gas flow rate: 200 ml/min
  • the storage elastic modulus G′ at 25° C. of the pressure-sensitive adhesive layer is preferably from 5 ⁇ 10 4 to 5 ⁇ 10 6 , more preferably from 8 ⁇ 10 4 to 9 ⁇ 10 5 , still more preferably from 1 ⁇ 10 5 to 8 ⁇ 10 5 .
  • a pressure-sensitive adhesive tape that has an appropriate adhesive strength, is excellent in pressure-sensitive adhesive property for an uneven surface, and hardly causes adhesive residue when peeled off can be obtained.
  • the storage elastic modulus G′ is a value determined by preparing the pressure-sensitive adhesive layer in a thickness of from 1.5 mm to 2 mm, punching the pressure-sensitive adhesive layer with a punch having a diameter of 7.9 mm to obtain a sample, and subjecting the sample to measurement with a viscoelastic spectrometer (ARES) manufactured by Rheometric Scientific under the conditions of a chuck pressure of 100 g weight and a frequency of 1 Hz.
  • RAS viscoelastic spectrometer
  • any appropriate resin is used as a material for forming the base material.
  • the resin include a polyether sulfone-based resin, a polyether imide-based resin, a polysulfone-based resin, a polyether ether ketone-based resin, a polyarylate-based resin, an aramid-based resin, and a polyimide-based resin.
  • a base material formed of a liquid crystal polymer or a base material formed of a metal foil made of aluminum or the like Of those, a base material formed of a polyimide-based resin is preferably used.
  • the glass transition temperature of the resin for forming the base material is preferably 300° C. or less, more preferably 260° C. or less. When the glass transition temperature falls within such range, a pressure-sensitive adhesive tape excellent in heat resistance can be obtained.
  • the term “glass transition temperature” refers to a temperature at which the resin shows a peak of a loss tangent (tan ⁇ ) found under the conditions of a temperature rising rate of 5° C./min, a sample width of 5 mm, a chuck distance of 20 mm, and a frequency of 10 Hz in a DMA method (tensile method).
  • the masking pressure-sensitive adhesive tape may be produced by any appropriate method.
  • the masking pressure-sensitive adhesive tape may be obtained by, for example, applying the pressure-sensitive adhesive onto the base material.
  • the following various methods may each be adopted as a method for the application: bar coater coating, air knife coating, gravure coating, gravure reverse coating, reverse roll coating, lip coating, die coating, dip coating, offset printing, flexographic printing, screen printing, and the like.
  • a method involving separately forming the pressure-sensitive adhesive layer on a release liner and bonding the resultant to the base material may also be adopted.
  • the pressure-sensitive adhesive layer may be formed through any appropriate curing treatment.
  • the pressure-sensitive adhesive layer is formed by, for example, applying a pressure-sensitive adhesive composition containing the base polymer and the cross-linking agent described in the section B onto the base material and then heating the pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition may further contain another additive depending on the kind of the pressure-sensitive adhesive to be used.
  • the pressure-sensitive adhesive composition may further contain a platinum catalyst.
  • a method of producing an electronic part including using a masking pressure-sensitive adhesive tape.
  • the method of producing an electronic part includes, for example, bonding a masking pressure-sensitive adhesive tape to one surface of an electronic part and forming a metal layer by a vacuum film formation method on the surface of the electronic part other than the surface to which the masking pressure-sensitive adhesive tape has been bonded.
  • Examples of the electronic part include electronic parts susceptible to electromagnetic waves, such as a NAND flash memory, a power amplifier, and a Bluetooth (trademark) module.
  • the surface to be masked of the electronic part is, for example, an electrode surface of the electronic part.
  • an electrode for bump formation is formed on the surface to be masked of the electronic part.
  • the part of the electrode for bump formation has a concave shape to facilitate bump formation.
  • the depth of the concave shape is, for example, from 10 ⁇ m to 20 ⁇ m.
  • the diameter of the concave shape is, for example, from 5 mm to 7 mm.
  • the masking pressure-sensitive adhesive tape of the present invention is excellent in pressure-sensitive adhesive property even for such uneven surface.
  • the masking pressure-sensitive adhesive tape is bonded onto the electronic part by arranging the masking pressure-sensitive adhesive tape at a predetermined distance from the surface to be masked and then performing reduced-pressure treatment (so-called vacuum bonding).
  • vacuum bonding reduced-pressure treatment
  • the pressure-sensitive adhesive tape is bonded onto a surface to be masked that has an uneven surface by such method, a space between the pressure-sensitive adhesive tape and the electronic part can be reduced.
  • a metal layer is formed by a vacuum film formation method on a surface other than the surface to which the masking pressure-sensitive adhesive tape has been bonded.
  • the vacuum film formation method include a sputtering method, a vacuum deposition method, and an ion plating method. Of those, a sputtering method is preferred.
  • the masking pressure-sensitive adhesive tape is less liable to be peeled off from the surface to be masked, with the result that unnecessary formation of a metal layer on the surface to be masked can be prevented.
  • the metal layer is a layer capable of serving as an electromagnetic wave shield.
  • the pressure-sensitive adhesive A prepared in Production Example 1 was applied onto a polyimide film (manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 ⁇ m) serving as a base material to form a pressure-sensitive adhesive layer having a thickness of 7 ⁇ m.
  • a masking pressure-sensitive adhesive tape was obtained.
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 1 except that the thickness of the pressure-sensitive adhesive layer was changed to 10 ⁇ m.
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 1 except that the thickness of the pressure-sensitive adhesive layer was changed to 50 ⁇ m.
  • the pressure-sensitive adhesive B prepared in Production Example 2 was applied onto a polyimide film (manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 ⁇ m) serving as a base material to form a pressure-sensitive adhesive layer having a thickness of 5 ⁇ m.
  • a masking pressure-sensitive adhesive tape was obtained.
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 4 except that the thickness of the pressure-sensitive adhesive layer was changed to 10 ⁇ m.
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 4 except that the thickness of the pressure-sensitive adhesive layer was changed to 50 ⁇ m.
  • the pressure-sensitive adhesive C prepared in Production Example 3 was applied onto a polyimide film (manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 ⁇ m) serving as a base material. After that, curing treatment was performed at 120° C. for 3 minutes to form a pressure-sensitive adhesive layer having a thickness of 8 ⁇ m. Thus, a masking pressure-sensitive adhesive tape was obtained.
  • a polyimide film manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 ⁇ m
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 7 except that the thickness of the pressure-sensitive adhesive layer was changed to 10 ⁇ m.
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 7 except that the thickness of the pressure-sensitive adhesive layer was changed to 50 ⁇ m.
  • the pressure-sensitive adhesive D prepared in Production Example 4 was applied onto a polyimide film (manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 ⁇ m) serving as a base material. After that, curing treatment was performed at 120° C. for 3 minutes to form a pressure-sensitive adhesive layer having a thickness of 5 ⁇ m. Thus, a masking pressure-sensitive adhesive tape was obtained.
  • a polyimide film manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 ⁇ m
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 10 except that the thickness of the pressure-sensitive adhesive layer was changed to 10 ⁇ m.
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 10 except that the thickness of the pressure-sensitive adhesive layer was changed to 50 ⁇ m.
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 1 except that the thickness of the pressure-sensitive adhesive layer was changed to 4 ⁇ m.
  • a masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 7 except that the thickness of the pressure-sensitive adhesive layer was changed to 4 ⁇ m.
  • the adhesive strength of each of the resultant pressure-sensitive adhesive tapes for masking was measured in conformity to JIS Z 0237: 2000. Specifically, the pressure-sensitive adhesive tape was bonded onto a stainless-steel plate (arithmetic average surface roughness Ra: 50 ⁇ 25 nm) by turning a 2 kg roller one round, left to stand at 23° C. for 30 minutes, and then peeled off under the conditions of a peel angle of 180° and a peel rate (tension rate) of 300 mm/min to measure the adhesive strength of the masking pressure-sensitive adhesive tape.
  • a stainless-steel plate arithmetic average surface roughness Ra: 50 ⁇ 25 nm
  • Each of the resultant pressure-sensitive adhesive tapes for masking was bonded onto a stainless-steel plate (arithmetic average surface roughness Ra: 50 ⁇ 25 nm) and left to stand in an environment of 200° C. for 1 hour. After that, the stainless-steel plate including the pressure-sensitive adhesive tape was naturally cooled at ordinary temperature, and the adhesive strength of the masking pressure-sensitive adhesive tape after the heat treatment was measured by the same method as that described in the item (1).
  • NAND flash memories each having a size of length 12 mm ⁇ width 17 mm ⁇ thickness 0.5 mm and each having, on one side, a plurality of concave parts (electrodes for bump formation) each having a depth of 20 ⁇ m and a diameter of 7 mm were prepared.
  • Each of the resultant pressure-sensitive adhesive tapes for masking was attached to an 8-inch ring frame, and the electrode surfaces (the surfaces having the concave parts) of the electronic parts were bonded onto the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape by vacuum bonding. 50 of the electronic parts were bonded onto one 8-inch ring frame to prepare a measurement sample, and two such measurement samples (two measurement samples each having the 50 electronic parts mounted thereon) were prepared.
  • the measurement samples were placed in a chamber of a sputtering apparatus, and a thin film (thickness: 6 ⁇ m) of a copper-based alloy was formed. Further, a thin film (thickness: 1 ⁇ m) of a nickel-based alloy was formed on the thin film of the copper-based alloy.
  • the vacuum degree in the chamber was set to 10 ⁇ 5 Pa or less, and then argon gas was supplied to maintain a vacuum degree of 2 Pa.
  • the electronic parts were peeled off from the masking pressure-sensitive adhesive tape, and the surfaces to be masked were observed by a light microscope (100 times magnification) to confirm the presence or absence of a metal thin film formed by entering into the surfaces to be masked.
  • Table 1 the numbers of acceptable products with respect to 100 electronic parts are shown.
  • the masking pressure-sensitive adhesive tape of the present invention can be suitably used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part as a masking pressure-sensitive adhesive tape a surface on which formation of the metal layer is not required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Provided is a masking pressure-sensitive adhesive tape to be used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part, which may prevent formation of a metal layer, by the vacuum film formation method, on a surface masked by the masking pressure-sensitive adhesive tape. The masking pressure-sensitive adhesive tape includes: a base material; and a pressure-sensitive adhesive layer arranged on one side of the base material, in which the pressure-sensitive adhesive layer has a thickness of 5 μm or more, and the masking pressure-sensitive adhesive tape has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of 0.4 N/20 mm or more.

Description

  • This is a Continuation of application Ser. No. 15/147,044, filed May 5, 2016, claiming priority from Japanese Patent Application No. 2015-112963 filed on Jun. 3, 2015, which is herein incorporated by reference.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a masking pressure-sensitive adhesive tape, and more specifically, to a masking pressure-sensitive adhesive tape to be used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part.
  • 2. Description of the Related Art
  • Heretofore, in an electronic part, an electromagnetic wave shield has been provided to prevent a malfunction of the electronic part due to electromagnetic waves entering from the outside or leakage of electromagnetic waves generated from the electronic part. In recent years, from the viewpoint of reducing sizes of the electronic part, the electromagnetic wave shield has been formed directly on the electronic part by, for example, sputtering or plating (for example, Japanese Patent Application Laid-open No. 2014-183180). In this case, a masking pressure-sensitive adhesive tape is bonded onto a surface, on which formation of the electromagnetic wave shield is not required, for example, to a surface on which an electrode is formed.
  • In view of improving production efficiency, the electromagnetic wave shield is preferably formed by sputtering. However, when processing under vacuum such as sputtering is carried out, a problem occurs in that a material for shielding the electromagnetic wave enters between the masking pressure-sensitive adhesive tape and the electronic part. In particular, when the uneven surface of an electronic part having an uneven surface (for example, an electronic part including a terminal for bump formation) is masked, the air present in a concave part is liable to leak from the space between the masking pressure-sensitive adhesive tape and the electronic part. As a result, a problem remarkably occurs in that a space is left between the masking pressure-sensitive adhesive tape and the electronic part, and the material for shielding the electromagnetic wave enters thereinto.
  • SUMMARY OF THE INVENTION
  • The present invention has been made to solve the related-art problem, and an object of the present invention is to provide a masking pressure-sensitive adhesive tape to be used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part, the masking pressure-sensitive adhesive tape being capable of preventing formation of a metal layer by the vacuum film formation method on a surface masked by the masking pressure-sensitive adhesive tape.
  • A masking pressure-sensitive adhesive tape according to one embodiment of the present invention is a masking pressure-sensitive adhesive tape to be used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part, the masking pressure-sensitive adhesive tape including: a base material; and a pressure-sensitive adhesive layer arranged on one side of the base material, in which the pressure-sensitive adhesive layer has a thickness of 5 μm or more, and in which the masking pressure-sensitive adhesive tape has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of 0.4 N/20 mm or more.
  • In one embodiment, the electronic part has an uneven surface, and the masking pressure-sensitive adhesive tape is used by being bonded onto the uneven surface.
  • In one embodiment, the masking pressure-sensitive adhesive tape has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of 10 N/20 mm or less after the masking pressure-sensitive adhesive tape is bonded onto the stainless-steel plate and left to stand at 200° C. for 1 hour.
  • According to another embodiment of the present invention, there is provided a method of producing an electronic part. The method of producing an electronic part includes using the masking pressure-sensitive adhesive tape.
  • According to the present invention, it is possible to provide the pressure-sensitive adhesive tape suited for masking in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part by arranging the pressure-sensitive adhesive layer having a specific thickness and setting the 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate to 0.4 N/20 mm or more. When the masking pressure-sensitive adhesive tape of the present invention is used, unnecessary formation of a metal layer by the vacuum film formation method on a surface masked by the masking pressure-sensitive adhesive tape can be prevented.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a schematic sectional view of a masking pressure-sensitive adhesive tape according to one embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A. Entire Construction of Masking Pressure-Sensitive Adhesive Tape
  • FIG. 1 is a schematic sectional view of a masking pressure-sensitive adhesive tape according to one embodiment of the present invention. A pressure-sensitive adhesive tape 100 for masking includes a base material 10 and a pressure-sensitive adhesive layer 20 arranged on one side of the base material 10. Although not shown, the pressure-sensitive adhesive tape of the present invention may include a release liner on the outer side of the pressure-sensitive adhesive layer until being used, for the purpose of protecting its pressure-sensitive adhesive surface. The masking pressure-sensitive adhesive tape is hereinafter sometimes simply referred to as “pressure-sensitive adhesive tape.”
  • The 180° peeling adhesive strength at 23° C. of the masking pressure-sensitive adhesive tape of the present invention bonded onto a stainless-steel plate is preferably 0.4 N/20 mm or more, more preferably 0.5 N/20 mm or more. When the 180° peeling adhesive strength falls within such range, a pressure-sensitive adhesive tape suited for masking an electronic part can be obtained. More specifically, a pressure-sensitive adhesive tape that is less liable to be peeled off even in an environment in which the pressure is reduced after the pressure-sensitive adhesive tape is bonded can be obtained. The masking pressure-sensitive adhesive tape of the present invention is less liable to be peeled off even when bonded onto an uneven surface of an electronic part (for example, a surface having a concave part for bump formation). The upper limit of the 180° peeling adhesive strength at 23° C. of the masking pressure-sensitive adhesive tape bonded onto a stainless-steel plate is, for example, 6 N/20 mm. The 180° peeling adhesive strength is measured in conformity with JIS Z 0237: 2000. Specifically, the 180° peeling adhesive strength is measured by: bonding a pressure-sensitive adhesive tape to a stainless-steel plate (arithmetic average surface roughness Ra: 50±25 nm) by turning a 2 kg roller one round; leaving the plate to stand at 23° C. for 30 minutes; and then peeling off the pressure-sensitive adhesive tape under the conditions of a peel angle of 180° and a peel rate (tension rate) of 300 mm/min.
  • In one embodiment, as described later, the pressure-sensitive adhesive layer is formed of an acrylic pressure-sensitive adhesive. In this embodiment, the 180° peeling adhesive strength at 23° C. of the masking pressure-sensitive adhesive tape bonded onto a stainless-steel plate is particularly preferably from 0.5 N/20 mm to 2.5 N/20 mm. In another embodiment, as described later, the pressure-sensitive adhesive layer is formed of a silicone-based pressure-sensitive adhesive. In this embodiment, the 180° peeling adhesive strength at 23° C. of the masking pressure-sensitive adhesive tape bonded onto a stainless-steel plate is particularly preferably from 0.4 N/20 mm to 5 N/20 mm.
  • The masking pressure-sensitive adhesive tape of the present invention having such adhesive strength as described above can suitably be used for masking a surface on which formation of a metal layer is not required (for example, a surface on which an electrode is formed) in a step of forming a metal layer by a vacuum film formation method on part of a surface of an electronic part. As described above, the masking pressure-sensitive adhesive tape of the present invention is less liable to be peeled off even under reduced-pressure treatment and does not form a space on a surface to be bonded. Accordingly, when the masking pressure-sensitive adhesive tape of the present invention is used, formation of a metal layer by a vacuum film formation method can be prevented on a surface masked by the masking pressure-sensitive adhesive tape (hereinafter sometimes referred to as “surface to be masked”), that is, a surface on which formation of a metal layer is not required. Examples of the vacuum film formation method include a sputtering method, a vacuum deposition method, and an ion plating method. Of those, a sputtering method is preferred.
  • The thickness of the pressure-sensitive adhesive layer is 5 μm or more, preferably 6 μm or more, more preferably from 6 μm to 70 μm, still more preferably from 6 μm to 50 μm. When the thickness falls within such range, it is possible to obtain a pressure-sensitive adhesive tape that has a sufficient stress relaxation effect resulting from the pressure-sensitive adhesive layer at an edge of an electronic part when bonded onto the electronic part and enables digging of the edge of the electronic part into the pressure-sensitive adhesive layer. When such pressure-sensitive adhesive tape is used, formation of a metal layer on the surface to be masked can be prevented in vacuum film forming treatment. Setting the thickness of the pressure-sensitive adhesive layer to 70 μm or less can provide a pressure-sensitive adhesive tape capable of suppressing adhesive residue on an adherend.
  • The thickness of the base material is preferably from 5 μm to 100 μm, more preferably from 10 μm to 75 μm. When the thickness falls within such range, a masking pressure-sensitive adhesive tape excellent in handling can be obtained.
  • The masking pressure-sensitive adhesive tape of the present invention has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of preferably 10 N/20 mm or less, more preferably 8 N/20 mm or less, still more preferably from 1 N/20 mm to 8 N/20 mm after the masking pressure-sensitive adhesive tape is bonded onto the stainless-steel plate and left to stand at 200° C. for 1 hour. When the 180° peeling adhesive strength falls within such range, a masking pressure-sensitive adhesive tape that is excellent in peeling property when peeled off from an electronic part and hardly causes adhesive residue after a predetermined step (for example, after vacuum film forming treatment) can be obtained. The adhesive strength is measured after the tape is naturally cooled at ordinary temperature after the standing at 200° C. for 1 hour.
  • B. Pressure-Sensitive Adhesive Layer
  • The pressure-sensitive adhesive layer is formed of any appropriate pressure-sensitive adhesive. Examples of the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer include an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and an epoxy-based pressure-sensitive adhesive. Of those, a silicone-based pressure-sensitive adhesive or an acrylic pressure-sensitive adhesive is preferred from the viewpoint of heat resistance.
  • The silicone-based pressure-sensitive adhesive contains a silicone-based polymer as a base polymer. An example of the silicone-based polymer is a polymer including dimethylsiloxane as a constitutional unit. In addition, specific examples of the silicone-based pressure-sensitive adhesive include an addition reaction curable silicone-based pressure-sensitive adhesive and a peroxide curable silicone-based pressure-sensitive adhesive. A commercially available product may be used as the pressure-sensitive adhesive. Specific examples of the commercially available product include products manufactured by Dow Corning Toray Co., Ltd. (SD series), products manufactured by Shin-Etsu Silicones (KR-3700 series and X-40 series), and products manufactured by Shin-Etsu Chemical Co., Ltd. (K-100 series).
  • The acrylic pressure-sensitive adhesive contains an acrylic polymer as abase polymer. Examples of the acrylic polymer include: homopolymers or copolymers of alkyl (meth)acrylates (preferably C1 to C20 alkyl (meth)acrylates), such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, and dodecyl (meth)acrylate; and a copolymer of any of the alkyl (meth)acrylates and any other copolymerizable monomer. Examples of the other copolymerizable monomer include: carboxyl group- or acid anhydride group-containing monomers, such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic anhydride; a hydroxyl group-containing monomer, such as 2-hydroxyethyl (meth)acrylate; an amino group-containing monomer, such as morpholyl (meth)acrylate; and an amide group-containing monomer, such as (meth)acrylamide. The content ratio of a constitutional unit derived from the copolymerizable monomer is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, still more preferably from 0.1 part by weight to 10 parts by weight with respect to 100 parts by weight of the base polymer.
  • The weight-average molecular weight of the acrylic polymer is preferably from 200,000 to 1,500,000, more preferably from 400,000 to 1,400,000. The weight-average molecular weight may be measured by GPC (solvent: THF).
  • The pressure-sensitive adhesive may further contain any appropriate additive as required. Examples of the additive include a cross-linking agent, a catalyst (for example, a platinum catalyst), a tackifies, a plasticizer, a pigment, a dye, a filler, an anti-aging agent, a conductive material, an ultraviolet absorber, a photostabilizer, a peeling adjusting agent, a softener, a surfactant, a flame retardant, an antioxidant, and a solvent (for example, toluene).
  • In one embodiment, the pressure-sensitive adhesive further contains a cross-linking agent. Examples of the cross-linking agent include an isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, an aziridine-based cross-linking agent, and a chelate-based cross-linking agent. The content ratio of the cross-linking agent is preferably from 0.1 part by weight to 15 parts by weight, more preferably from 0.5 part by weight to 10 parts by weight with respect to 100 parts by weight of the base polymer contained in the pressure-sensitive adhesive. When the content ratio falls within such range, a pressure-sensitive adhesive tape that has an appropriate adhesive strength, is excellent in pressure-sensitive adhesive property for an uneven surface, and hardly causes adhesive residue when peeled off can be obtained.
  • The 5% weight loss temperature of the pressure-sensitive adhesive layer is preferably 250° C. or more. When the 5% weight loss temperature falls within such range, a masking pressure-sensitive adhesive tape that is excellent in peeling property and hardly causes adhesive residue when peeled off from an electronic part after a predetermined step (for example, after vacuum film forming treatment) can be obtained. The term “5% weight loss temperature” refers to a temperature at the time when the weight of the pressure-sensitive adhesive layer is reduced by 5% with respect to an initial weight in thermogravimetric (TG) measurement under the following conditions.
  • (TG Measurement Conditions)
  • Measurement temperature range: from room temperature to 850° C.
    Temperature rising rate: 10° C./min
    Atmospheric gas: atmosphere
    Gas flow rate: 200 ml/min
  • The storage elastic modulus G′ at 25° C. of the pressure-sensitive adhesive layer is preferably from 5×104 to 5×106, more preferably from 8×104 to 9×105, still more preferably from 1×105 to 8×105. When the storage elastic modulus falls within such range, a pressure-sensitive adhesive tape that has an appropriate adhesive strength, is excellent in pressure-sensitive adhesive property for an uneven surface, and hardly causes adhesive residue when peeled off can be obtained. The storage elastic modulus G′ is a value determined by preparing the pressure-sensitive adhesive layer in a thickness of from 1.5 mm to 2 mm, punching the pressure-sensitive adhesive layer with a punch having a diameter of 7.9 mm to obtain a sample, and subjecting the sample to measurement with a viscoelastic spectrometer (ARES) manufactured by Rheometric Scientific under the conditions of a chuck pressure of 100 g weight and a frequency of 1 Hz.
  • C. Base Material
  • Any appropriate resin is used as a material for forming the base material. Examples of the resin include a polyether sulfone-based resin, a polyether imide-based resin, a polysulfone-based resin, a polyether ether ketone-based resin, a polyarylate-based resin, an aramid-based resin, and a polyimide-based resin. There may also be used a base material formed of a liquid crystal polymer or a base material formed of a metal foil made of aluminum or the like. Of those, a base material formed of a polyimide-based resin is preferably used.
  • The glass transition temperature of the resin for forming the base material is preferably 300° C. or less, more preferably 260° C. or less. When the glass transition temperature falls within such range, a pressure-sensitive adhesive tape excellent in heat resistance can be obtained. The term “glass transition temperature” refers to a temperature at which the resin shows a peak of a loss tangent (tan δ) found under the conditions of a temperature rising rate of 5° C./min, a sample width of 5 mm, a chuck distance of 20 mm, and a frequency of 10 Hz in a DMA method (tensile method).
  • D. Method of Producing Masking Pressure-Sensitive Adhesive Tape
  • The masking pressure-sensitive adhesive tape may be produced by any appropriate method. The masking pressure-sensitive adhesive tape may be obtained by, for example, applying the pressure-sensitive adhesive onto the base material. The following various methods may each be adopted as a method for the application: bar coater coating, air knife coating, gravure coating, gravure reverse coating, reverse roll coating, lip coating, die coating, dip coating, offset printing, flexographic printing, screen printing, and the like. For example, a method involving separately forming the pressure-sensitive adhesive layer on a release liner and bonding the resultant to the base material may also be adopted.
  • In one embodiment, the pressure-sensitive adhesive layer may be formed through any appropriate curing treatment. In this embodiment, the pressure-sensitive adhesive layer is formed by, for example, applying a pressure-sensitive adhesive composition containing the base polymer and the cross-linking agent described in the section B onto the base material and then heating the pressure-sensitive adhesive composition. The pressure-sensitive adhesive composition may further contain another additive depending on the kind of the pressure-sensitive adhesive to be used. For example, when an addition reaction curable silicone-based pressure-sensitive adhesive is used, the pressure-sensitive adhesive composition may further contain a platinum catalyst.
  • E. Method of Producing Electronic Part
  • According to another aspect of the present invention, there is provided a method of producing an electronic part including using a masking pressure-sensitive adhesive tape. The method of producing an electronic part includes, for example, bonding a masking pressure-sensitive adhesive tape to one surface of an electronic part and forming a metal layer by a vacuum film formation method on the surface of the electronic part other than the surface to which the masking pressure-sensitive adhesive tape has been bonded.
  • Examples of the electronic part include electronic parts susceptible to electromagnetic waves, such as a NAND flash memory, a power amplifier, and a Bluetooth (trademark) module.
  • The surface to be masked of the electronic part is, for example, an electrode surface of the electronic part. In one embodiment, an electrode for bump formation is formed on the surface to be masked of the electronic part. The part of the electrode for bump formation has a concave shape to facilitate bump formation. The depth of the concave shape is, for example, from 10 μm to 20 μm. In addition, the diameter of the concave shape is, for example, from 5 mm to 7 mm. The masking pressure-sensitive adhesive tape of the present invention is excellent in pressure-sensitive adhesive property even for such uneven surface.
  • As a method of bonding the masking pressure-sensitive adhesive tape, any appropriate method may be adopted. In one embodiment, the masking pressure-sensitive adhesive tape is bonded onto the electronic part by arranging the masking pressure-sensitive adhesive tape at a predetermined distance from the surface to be masked and then performing reduced-pressure treatment (so-called vacuum bonding). When the pressure-sensitive adhesive tape is bonded onto a surface to be masked that has an uneven surface by such method, a space between the pressure-sensitive adhesive tape and the electronic part can be reduced.
  • After bonding the masking pressure-sensitive adhesive tape, a metal layer is formed by a vacuum film formation method on a surface other than the surface to which the masking pressure-sensitive adhesive tape has been bonded. Examples of the vacuum film formation method include a sputtering method, a vacuum deposition method, and an ion plating method. Of those, a sputtering method is preferred. In the present invention, even when a space is formed between the masking pressure-sensitive adhesive tape and the surface to be masked to expand the space during reduced-pressure treatment, for example, even when the surface to be masked is an uneven surface, the masking pressure-sensitive adhesive tape is less liable to be peeled off from the surface to be masked, with the result that unnecessary formation of a metal layer on the surface to be masked can be prevented.
  • In one embodiment, the metal layer is a layer capable of serving as an electromagnetic wave shield.
  • EXAMPLES
  • The present invention is hereinafter specifically described by way of Examples. However, the present invention is not limited by these Examples. In addition, the terms “part(s)” and “%” in Examples refer to “part(s) by weight” and “wt %”, respectively, unless otherwise stated.
  • [Production Example 1] Preparation of Pressure-Sensitive Adhesive A
  • 100 Parts by weight of butyl acrylate, 10 parts by weight of acrylic acid, and 1 part by weight of an epoxy-based cross-linking agent (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name “Tetrad-C”) were mixed to prepare a pressure-sensitive adhesive A.
  • [Production Example 2] Preparation of Pressure-Sensitive Adhesive B
  • 100 Parts by weight of butyl acrylate, 10 parts by weight of acrylic acid, and 0.5 part by weight of an epoxy-based cross-linking agent (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name “Tetrad-C”) were mixed to prepare a pressure-sensitive adhesive B.
  • [Production Example 3] Preparation of Pressure-Sensitive Adhesive C
  • 65 Parts by weight of a silicone-based pressure-sensitive adhesive (manufactured by Shin-Etsu Silicones, trade name “KR-3704”), 35 parts by weight of a silicone-based pressure-sensitive adhesive (manufactured by Shin-Etsu Silicones, trade name “KRX-40-3237-1”), 1.5 parts by weight of a platinum catalyst, and 200 parts by weight of toluene were mixed to prepare a pressure-sensitive adhesive C.
  • [Production Example 4] Preparation of Pressure-Sensitive Adhesive D
  • 13 Parts by weight of a silicone-based pressure-sensitive adhesive (manufactured by Shin-Etsu Silicones, trade name “KR-3704”), 87 parts by weight of a silicone-based pressure-sensitive adhesive (manufactured by Shin-Etsu Silicones, trade name “KRX-40-3237-1”), 1.5 parts by weight of a platinum catalyst, and 200 parts by weight of toluene were mixed to prepare a pressure-sensitive adhesive D.
  • [Example 1] Production of Masking Pressure-Sensitive Adhesive Tape
  • The pressure-sensitive adhesive A prepared in Production Example 1 was applied onto a polyimide film (manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 μm) serving as a base material to form a pressure-sensitive adhesive layer having a thickness of 7 μm. Thus, a masking pressure-sensitive adhesive tape was obtained.
  • [Example 2] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 1 except that the thickness of the pressure-sensitive adhesive layer was changed to 10 μm.
  • [Example 3] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 1 except that the thickness of the pressure-sensitive adhesive layer was changed to 50 μm.
  • [Example 4] Production of Masking Pressure-Sensitive Adhesive Tape
  • The pressure-sensitive adhesive B prepared in Production Example 2 was applied onto a polyimide film (manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 μm) serving as a base material to form a pressure-sensitive adhesive layer having a thickness of 5 μm. Thus, a masking pressure-sensitive adhesive tape was obtained.
  • [Example 5] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 4 except that the thickness of the pressure-sensitive adhesive layer was changed to 10 μm.
  • [Example 6] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 4 except that the thickness of the pressure-sensitive adhesive layer was changed to 50 μm.
  • [Example 7] Production of Masking Pressure-Sensitive Adhesive Tape
  • The pressure-sensitive adhesive C prepared in Production Example 3 was applied onto a polyimide film (manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 μm) serving as a base material. After that, curing treatment was performed at 120° C. for 3 minutes to form a pressure-sensitive adhesive layer having a thickness of 8 μm. Thus, a masking pressure-sensitive adhesive tape was obtained.
  • [Example 8] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 7 except that the thickness of the pressure-sensitive adhesive layer was changed to 10 μm.
  • [Example 9] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 7 except that the thickness of the pressure-sensitive adhesive layer was changed to 50 μm.
  • [Example 10] Production of Masking Pressure-Sensitive Adhesive Tape
  • The pressure-sensitive adhesive D prepared in Production Example 4 was applied onto a polyimide film (manufactured by Du Pont-Toray Co., Ltd., trade name “Kapton 100H”, thickness: 25 μm) serving as a base material. After that, curing treatment was performed at 120° C. for 3 minutes to form a pressure-sensitive adhesive layer having a thickness of 5 μm. Thus, a masking pressure-sensitive adhesive tape was obtained.
  • [Example 11] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 10 except that the thickness of the pressure-sensitive adhesive layer was changed to 10 μm.
  • [Example 12] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 10 except that the thickness of the pressure-sensitive adhesive layer was changed to 50 μm.
  • [Comparative Example 1] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 1 except that the thickness of the pressure-sensitive adhesive layer was changed to 4 μm.
  • [Comparative Example 2] Production of Masking Pressure-Sensitive Adhesive Tape
  • A masking pressure-sensitive adhesive tape was obtained in the same manner as in Example 7 except that the thickness of the pressure-sensitive adhesive layer was changed to 4 μm.
  • <Evaluation>
  • The pressure-sensitive adhesive tapes for masking obtained in Examples and Comparative Examples were subjected to the following evaluations. The results are shown in Table 1.
  • (1) Measurement of Adhesive Strength
  • The adhesive strength of each of the resultant pressure-sensitive adhesive tapes for masking was measured in conformity to JIS Z 0237: 2000. Specifically, the pressure-sensitive adhesive tape was bonded onto a stainless-steel plate (arithmetic average surface roughness Ra: 50±25 nm) by turning a 2 kg roller one round, left to stand at 23° C. for 30 minutes, and then peeled off under the conditions of a peel angle of 180° and a peel rate (tension rate) of 300 mm/min to measure the adhesive strength of the masking pressure-sensitive adhesive tape.
  • (2) Measurement of Adhesive Strength after Heat Treatment
  • Each of the resultant pressure-sensitive adhesive tapes for masking was bonded onto a stainless-steel plate (arithmetic average surface roughness Ra: 50±25 nm) and left to stand in an environment of 200° C. for 1 hour. After that, the stainless-steel plate including the pressure-sensitive adhesive tape was naturally cooled at ordinary temperature, and the adhesive strength of the masking pressure-sensitive adhesive tape after the heat treatment was measured by the same method as that described in the item (1).
  • (3) Evaluation by Sputtering
  • As electronic parts, 100 NAND flash memories each having a size of length 12 mm×width 17 mm×thickness 0.5 mm and each having, on one side, a plurality of concave parts (electrodes for bump formation) each having a depth of 20 μm and a diameter of 7 mm were prepared.
  • Each of the resultant pressure-sensitive adhesive tapes for masking was attached to an 8-inch ring frame, and the electrode surfaces (the surfaces having the concave parts) of the electronic parts were bonded onto the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape by vacuum bonding. 50 of the electronic parts were bonded onto one 8-inch ring frame to prepare a measurement sample, and two such measurement samples (two measurement samples each having the 50 electronic parts mounted thereon) were prepared.
  • The measurement samples were placed in a chamber of a sputtering apparatus, and a thin film (thickness: 6 μm) of a copper-based alloy was formed. Further, a thin film (thickness: 1 μm) of a nickel-based alloy was formed on the thin film of the copper-based alloy. During sputtering, the vacuum degree in the chamber was set to 10−5 Pa or less, and then argon gas was supplied to maintain a vacuum degree of 2 Pa.
  • After that, the electronic parts were peeled off from the masking pressure-sensitive adhesive tape, and the surfaces to be masked were observed by a light microscope (100 times magnification) to confirm the presence or absence of a metal thin film formed by entering into the surfaces to be masked. A sample in which entering of the metal thin film into the concave parts (electrodes for bump formation) was not observed was evaluated as an acceptable product, and a sample in which entering of the metal thin film into one or more concave parts (electrodes for bump formation) was observed was evaluated as a rejected product. In Table 1, the numbers of acceptable products with respect to 100 electronic parts are shown.
  • TABLE 1
    Thickness of Adhesive
    Pressure- pressure-sensitive Adhesive strength after
    sensitive adhesive layer strength heat treatment Evaluation by
    adhesive (μm) (N/20 mm) (N/20 mm) sputtering
    Example 1 Pressure- 7 0.41 1.55 100
    Example 2 sensitive 10 0.45 1.75 100
    Example 3 adhesive A 50 0.8 2.3 100
    Example 4 Pressure- 5 0.88 3.2 100
    Example 5 sensitive 10 1.1 4.4 100
    Example 6 adhesive B 50 1.95 5.4 100
    Example 7 Pressure- 8 0.42 1.65 100
    Example 8 sensitive 10 0.45 1.7 100
    Example 9 adhesive C 50 0.85 2.9 100
    Example 10 Pressure- 5 2.4 3.6 100
    Example 11 sensitive 10 3.2 5.1 100
    Example 12 adhesive D 50 5 8.5 100
    Comparative Pressure- 4 0.31 1.3 87
    Example 1 sensitive
    adhesive A
    Comparative Pressure- 4 0.25 1.3 90
    Example 2 sensitive
    adhesive C
  • The masking pressure-sensitive adhesive tape of the present invention can be suitably used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part as a masking pressure-sensitive adhesive tape a surface on which formation of the metal layer is not required.

Claims (4)

What is claimed is:
1. A masking pressure-sensitive adhesive tape to be used in formation of a metal layer by a vacuum film formation method on part of a surface of an electronic part,
the masking pressure-sensitive adhesive tape comprising:
a base material; and
a pressure-sensitive adhesive layer arranged on one side of the base material,
wherein the pressure-sensitive adhesive layer has a thickness of 5 μm or more,
wherein the pressure-sensitive adhesive layer is formed of an acrylic pressure-sensitive adhesive and
wherein the masking pressure-sensitive adhesive tape has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of 0.4 N/20 mm or more.
2. The masking pressure-sensitive adhesive tape according to claim 1, wherein the masking pressure-sensitive adhesive tape has a 180° peeling adhesive strength at 23° C. with respect to a stainless-steel plate of 10 N/20 mm or less after the masking pressure-sensitive adhesive tape is bonded onto the stainless-steel plate and left to stand at 200° C. for 1 hour.
3. The masking pressure-sensitive adhesive tape according to claim 1,
wherein a 5% weight loss temperature of the pressure-sensitive adhesive layer is 250° C. or more, and
wherein the 5% weight loss temperature is a temperature at the time when the weight of the pressure-sensitive adhesive layer is reduced by 5% with respect to an initial weight in thermogravimetric (TG) measurement under the following conditions;
(TG measurement conditions)
Measurement temperature range: from room temperature to 850° C.
Temperature rising rate: 10° C./min
Atmospheric gas: atmosphere
Gas flow rate: 200 ml/min.
4. The masking pressure-sensitive adhesive tape according to claim 1, wherein the base material formed of a polyether sulfone-based resin, a polyether imide-based resin, a polysulfone-based resin, a polyether ether ketone-based resin, a polyarylate-based resin, an aramid-based resin, or a polyimide-based resin.
US17/080,954 2015-06-03 2020-10-27 Masking pressure-sensitive adhesive tape Abandoned US20210040359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/080,954 US20210040359A1 (en) 2015-06-03 2020-10-27 Masking pressure-sensitive adhesive tape

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-112963 2015-06-03
JP2015112963A JP6605846B2 (en) 2015-06-03 2015-06-03 Masking adhesive tape
US15/147,044 US10858552B2 (en) 2015-06-03 2016-05-05 Masking pressure-sensitive adhesive tape
US17/080,954 US20210040359A1 (en) 2015-06-03 2020-10-27 Masking pressure-sensitive adhesive tape

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/147,044 Continuation US10858552B2 (en) 2015-06-03 2016-05-05 Masking pressure-sensitive adhesive tape

Publications (1)

Publication Number Publication Date
US20210040359A1 true US20210040359A1 (en) 2021-02-11

Family

ID=57451966

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/147,044 Active 2036-10-02 US10858552B2 (en) 2015-06-03 2016-05-05 Masking pressure-sensitive adhesive tape
US17/080,954 Abandoned US20210040359A1 (en) 2015-06-03 2020-10-27 Masking pressure-sensitive adhesive tape

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/147,044 Active 2036-10-02 US10858552B2 (en) 2015-06-03 2016-05-05 Masking pressure-sensitive adhesive tape

Country Status (5)

Country Link
US (2) US10858552B2 (en)
JP (1) JP6605846B2 (en)
KR (1) KR102627197B1 (en)
CN (1) CN106244034A (en)
TW (1) TWI704206B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6584245B2 (en) * 2015-09-08 2019-10-02 三井化学東セロ株式会社 Film for manufacturing electronic parts and method for manufacturing electronic parts
KR102235066B1 (en) * 2017-02-21 2021-04-01 가부시키가이샤 아루박 Resin film formation method and mask
JP7079609B2 (en) * 2018-01-19 2022-06-02 日東電工株式会社 Masking tape for forming electromagnetic wave shield
CN113004826A (en) * 2019-12-20 2021-06-22 3M创新有限公司 Conductive adhesive tape, laminate and method for producing the same
CN111117515A (en) * 2019-12-24 2020-05-08 珠海市视之高新材料有限公司 Bionic pressure-sensitive vacuum film and preparation method thereof
CN112662335B (en) * 2020-12-22 2022-05-17 烟台德邦科技股份有限公司 Ultraviolet-resistant low-temperature non-transfer strapping tape and preparation method thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1029288A (en) * 1973-05-29 1978-04-11 William J. O'malley Silicone pressure-sensitive adhesive
US5464692A (en) * 1993-06-17 1995-11-07 Quality Manufacturing Incorporated Flexible masking tape
JP2002226797A (en) * 2001-01-29 2002-08-14 Nitto Denko Corp Heat resistant adhesive tape and method for manufacturing semiconductor device
JP4716604B2 (en) 2001-05-30 2011-07-06 日東電工株式会社 Strong adhesive pressure-sensitive adhesive composition and strong adhesive sheet
JP4784720B2 (en) 2001-09-25 2011-10-05 信越化学工業株式会社 Adhesive tape
JP3849978B2 (en) * 2002-06-10 2006-11-22 日東電工株式会社 Semiconductor device manufacturing method and heat-resistant adhesive tape used therefor
JP4073293B2 (en) * 2002-11-05 2008-04-09 日東電工株式会社 Adhesive tape or sheets
JP2005187686A (en) * 2003-12-26 2005-07-14 Shin Etsu Polymer Co Ltd Silicone adhesive
US7799853B2 (en) * 2005-09-05 2010-09-21 Nitto Denko Corporation Adhesive composition, adhesive sheet, and surface protective film
JP2007224188A (en) * 2006-02-24 2007-09-06 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive sheet, aqueous pressure-sensitive adhesive, and method for producing the same
KR100910672B1 (en) * 2007-08-03 2009-08-04 도레이새한 주식회사 Heat-resistant adhesive sheet
JP5231815B2 (en) 2008-01-15 2013-07-10 日東電工株式会社 Manufacturing method of masking adhesive tape and sputtering target
JP5289007B2 (en) * 2008-11-20 2013-09-11 日東電工株式会社 Masking pressure-sensitive adhesive sheet and tape, and sputtering target manufacturing method
US20120256326A1 (en) 2009-11-13 2012-10-11 Kazuyuki Mitsukura Adhesive composition, semiconductor device making use thereof, and production method thereof
JP5477389B2 (en) 2009-11-13 2014-04-23 日立化成株式会社 Adhesive composition for semiconductor, semiconductor device, and method for manufacturing semiconductor device
WO2011058999A1 (en) 2009-11-13 2011-05-19 日立化成工業株式会社 Method for manufacturing film-like adhesive, adhesive sheet, semiconductor device, and method for manufacturing semiconductor device
US20120263946A1 (en) 2009-11-13 2012-10-18 Kazuyuki Mitsukura Semiconductor device, method for manufacturing semiconductor device, and semiconductor wafer provided with adhesive layer
JP2011178879A (en) * 2010-03-01 2011-09-15 Nitto Denko Corp Protective sheet and use thereof
JP2012164581A (en) * 2011-02-08 2012-08-30 Nitto Denko Corp Method for manufacturing organic electroluminescent element
KR101209552B1 (en) * 2011-10-07 2012-12-06 도레이첨단소재 주식회사 Adhesive composition for masking tape for mold underfill process and masking tape using the same
CN102399511A (en) 2011-11-29 2012-04-04 常熟市富邦胶带有限责任公司 Electroplated shielding protective tape
CN103305138A (en) 2012-03-08 2013-09-18 日东电工株式会社 Pressure-sensitive adhesive tape for resin sealing and production method for resin sealing type semiconductor device
JP2014047310A (en) * 2012-09-03 2014-03-17 Shin Etsu Chem Co Ltd Adhesive film and method for manufacturing the same
JP5954583B2 (en) * 2012-11-20 2016-07-20 東レフィルム加工株式会社 Method for producing metallized porous sheet, and laminate comprising metallized porous sheet
JP2014183180A (en) 2013-03-19 2014-09-29 Tdk Corp Electronic component module, and method for manufacturing the same

Also Published As

Publication number Publication date
US10858552B2 (en) 2020-12-08
JP2016222863A (en) 2016-12-28
TWI704206B (en) 2020-09-11
KR20160142776A (en) 2016-12-13
JP6605846B2 (en) 2019-11-13
US20160355703A1 (en) 2016-12-08
KR102627197B1 (en) 2024-01-22
TW201708465A (en) 2017-03-01
CN106244034A (en) 2016-12-21

Similar Documents

Publication Publication Date Title
US20210040359A1 (en) Masking pressure-sensitive adhesive tape
TWI667323B (en) Adhesive sheet and manufacturing method thereof
JP4717085B2 (en) Dicing die bond film
CN106957611B (en) Single-sided adhesive pressure-sensitive adhesive sheet
KR101825337B1 (en) Pressure-sensitive adhesive sheet for graphite sheet
CN106916543B (en) Adhesive sheet for graphite sheet
CN106795396B (en) Adhesive sheet and method for producing processed product
JP2010062542A (en) Dicing/die-bonding film
EP2363439A1 (en) Protective sheet and use thereof
KR20180020218A (en) Pressure-sensitive adhesive tape, heat-radiating sheet, electronic device, and manufacturing method of pressure-sensitive adhesive tape
KR20060056362A (en) Heat resistant masking tape
JP5548077B2 (en) Resin-sealing adhesive tape and method for manufacturing resin-sealed semiconductor device
KR102376559B1 (en) Adhesive sheet
JP2012012545A (en) Active energy ray-curable pressure-sensitive adhesive for re-release
JP6145560B1 (en) Colored adhesive tape and method for producing colored adhesive tape
JP4718640B2 (en) Dicing die bond film
JP4412597B2 (en) Manufacturing method of semiconductor device, heat resistant adhesive tape and heat resistant adhesive composition used therefor
US20230107095A1 (en) Backgrinding tape
US20230108829A1 (en) Pressure-sensitive adhesive composition to be used in pressure-sensitive adhesive tape for semiconductor processing and pressure-sensitive adhesive tape using the pressure-sensitive adhesive composition
JP2012017350A (en) Active energy ray-curable pressure-sensitive adhesive for re-release
JP2021118330A (en) Masking material
JP2017008262A (en) Heat dissipation adhesive sheet and information display device
TW202308850A (en) Protective film forming film, protective film forming composite sheet, manufacturing method of workpiece with protective film, and manufacturing method of processed object of workpiece with protective film for the damage/scratches on the surface of the protective film after thermal curing to become less noticeable
JP2012017378A (en) Active energy ray-curable pressure-sensitive adhesive for re-release

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION