US20200235303A1 - Organic light-emitting device and display apparatus including the same - Google Patents

Organic light-emitting device and display apparatus including the same Download PDF

Info

Publication number
US20200235303A1
US20200235303A1 US16/546,041 US201916546041A US2020235303A1 US 20200235303 A1 US20200235303 A1 US 20200235303A1 US 201916546041 A US201916546041 A US 201916546041A US 2020235303 A1 US2020235303 A1 US 2020235303A1
Authority
US
United States
Prior art keywords
group
substituted
electron
terphenyl
biphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/546,041
Other languages
English (en)
Inventor
Seulong KIM
Tsuyoshi Naijo
Sungsoo BAE
Dongchan LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Assigned to SAMSUNG DISPLAY CO., LTD. reassignment SAMSUNG DISPLAY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAE, SUNGSOO, Kim, Seulong, Lee, Dongchan, NAIJO, TSUYOSHI
Publication of US20200235303A1 publication Critical patent/US20200235303A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • H01L51/0054
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H01L27/3241
    • H01L51/0056
    • H01L51/0065
    • H01L51/0067
    • H01L51/0068
    • H01L51/0072
    • H01L51/0073
    • H01L51/0074
    • H01L51/008
    • H01L51/0094
    • H01L51/5056
    • H01L51/5072
    • H01L51/5092
    • H01L51/5096
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • One or more embodiments relate to an organic light-emitting device and a display apparatus including the same.
  • Organic light-emitting devices are self-emission devices that have wide viewing angles, high contrast ratios, short response times, as well as excellent characteristics in terms of brightness, driving voltage, and response speed, and produce full-color images.
  • organic light-emitting devices may include a first electrode on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode, which are sequentially on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons transit (e.g., transition or relax) from an excited state to a ground state, thereby generating light.
  • One or more embodiments include an organic light-emitting device and a display apparatus including the same.
  • An aspect of an embodiment of the present disclosure provides an organic light-emitting device including: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, wherein the organic layer includes an emission layer, the emission layer includes a first compound, a second compound, and a third compound, the first compound is represented by Formula 1, the second compound is represented by Formula 2, the third compound is represented by Formula 3, and the first compound and the second compound are different from each other:
  • L 11 may be selected from:
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 ),
  • a11 may be selected from 0, 1, 2, and 3,
  • Y 11 may be a group represented by Formula 1A,
  • Y 12 may be selected from:
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 );
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with a ⁇ electron-depleted nitrogen-free cyclic group that is substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 21 )(Q 22 )(Q 23 ),
  • c11 and c12 may each independently be selected from 1, 2, and 3,
  • X 11 may be selected from a single bond, C(R 13 )(R 14 ), N(R 13 ), O, and S,
  • X 12 may be selected from a single bond, C(R 15 )(R 16 ), N(R 15 ), O, and S,
  • X 11 and X 12 may not be a single bond simultaneously (e.g., X 11 and X 12 may not both be a single bond),
  • a 11 and A 12 may each independently be a ⁇ electron-depleted nitrogen-free cyclic group
  • R 11 to R 16 may each independently be selected from:
  • a binding site hydrogen, deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 1 )(Q 2 )(Q 3 );
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 );
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with a ⁇ electron-depleted nitrogen-free cyclic group that is substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 21 )(Q 22 )(Q 23 ), wherein one selected from R 11 to R 13 and R 15 may be a binding site,
  • b11 and b12 may each independently be selected from 1, 2, 3, 4, 5, and 6,
  • L 21 may be selected from:
  • a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from deuterium, —F, a cyano group, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 ) (Q 33 ),
  • a21 may be selected from 0, 1, 2, and 3,
  • Y 21 may be a group represented by Formula 2A or 2B,
  • Y 22 may be selected from:
  • a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from deuterium, —F, a cyano group, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 ); and
  • a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group that are each substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 21 )(Q 22 )(Q 23 ),
  • c21 and c22 may each independently be selected from 1, 2, 3, 4, 5, and 6,
  • a 21 may be selected from a C 5 -C 60 carbocyclic group and a C 1 -C 60 heterocyclic group,
  • X 21 may be selected from C(R 21 ) and N
  • X 22 may be selected from C(R 22 ) and N
  • X 23 may be selected from C(R 23 ) and N
  • X 24 may be selected from C(R 24 ) and N
  • X 25 may be selected from C(R 25 ) and N
  • X 26 may be selected from C(R 26 ) and N
  • X 27 may be selected from C(R 27 ) and N
  • X 28 may be selected from C(R 28 ) and N
  • X 29 may be selected from C(R 29 ) and N, wherein at least one selected from X 21 to X 25 may be N, and at least one selected from X 26 to X 29 may be N,
  • R 21 to R 30 may each independently be selected from:
  • a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from deuterium, —F, a cyano group, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 ); and
  • a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group that are each substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 21 )(Q 22 )(Q 23 ), wherein R 21 to R 25 may optionally be linked to form a substituted or unsubstituted C 5 -C 60 carbocyclic group or a substituted or unsubstituted C 1 -C 60 heterocyclic group, and R 26 to R 30 may optionally be linked to form a substituted or unsubstituted C 5 -C 60 carbocyclic group or a
  • b30 may be selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10,
  • X 31 may be selected from B and N, and X 32 and X 33 may each independently be selected from B(R 34 ), N(R 34 ), O, S, C(R 34 )(R 35 ), and Si(R 34 )(R 35 ), wherein, when X 31 is B, X 32 and X 33 may each independently be selected from N(R 34 ), O, S, C(R 34 )(R 35 ), and Si(R 34 )(R 35 ), and when X 31 is N, X 32 and X 33 may each independently be selected from B(R 34 ), O, S, C(R 34 )(R 35 ), and Si(R 34 )(R 35 ),
  • a 31 to A 33 may each independently be selected from a C 5 -C 60 carbocyclic group and a C 1 -C 60 heterocyclic group,
  • L 31 to L 33 may each independently be selected from a substituted or unsubstituted C 5 -C 60 carbocyclic group and a substituted or unsubstituted C 1 -C 60 heterocyclic group,
  • a31 to a33 may each independently be selected from 0, 1, 2, and 3,
  • R 31 to R 35 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C 1 -C 60 alkyl group, a substituted or unsubstituted C 2 -C 60 alkenyl group, a substituted or unsubstituted C 2 -C 60 alkynyl group, a substituted or unsubstituted C 1 -C 60 alkoxy group, a substituted or unsubstituted C 3 -C 10 cycloalkyl group, a substituted or unsubstituted C 1 -
  • c31 to c33 may each independently be selected from 1, 2, 3, 4, 5, and 6,
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C 1 -C 60 alkyl group, a C 2 -C 60 alkenyl group, a C 2 -C 60 alkynyl group, a C 1 -C 60 alkoxy group, a C 3 -C 10 cycloalkyl group, a C 1 -C 10 heterocycloalkyl group, a C 3 -C 10 cycloalkenyl group, a C 1 -C 10 heterocycloalkenyl group, a C 6 -C 60 aryl group, a C 6 -C 60 aryloxy group, a C 6 -C 60 arylthi
  • * indicates a binding site to a neighboring atom.
  • a display apparatus including: a thin-film transistor including a source electrode, a drain electrode, and an active layer; and the organic light-emitting device described above, wherein the first electrode of the organic light-emitting device is electrically coupled to one selected from the source electrode and the drain electrode of the thin-film transistor.
  • FIG. 1 is a schematic cross-sectional view of an organic light-emitting device according to an embodiment
  • FIG. 2 is a schematic cross-sectional view of an organic light-emitting device according to an embodiment
  • FIG. 3 is a schematic cross-sectional view of an organic light-emitting device according to an embodiment.
  • FIG. 4 is a schematic cross-sectional view of an organic light-emitting device according to an embodiment.
  • a layer, region, or component when referred to as being “on” or “onto” another layer, region, or component, it may be directly or indirectly formed on the other layer, region, or component. For example, intervening layers, regions, or components may be present.
  • intervening layers, regions, or components may be present.
  • an element or layer when referred to as being “between” two elements or layers, it can be the only element or layer between the two elements or layers, or one or more intervening elements or layers may also be present.
  • organic layer refers to a single layer and/or a plurality of layers between the first electrode and the second electrode of the organic light-emitting device.
  • a material included in the “organic layer” is not limited to an organic material.
  • the “organic layer” may include an inorganic material.
  • An organic light-emitting device may include: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, wherein the organic layer may include an emission layer, the emission layer may include a first compound, a second compound, and a third compound, the first compound may be represented by Formula 1, the second compound may be represented by Formula 2, the third compound may be represented by Formula 3, and the first compound and the second compound may be different from each other:
  • L 11 may be selected from:
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 ),
  • a11 may be selected from 0, 1, 2, and 3,
  • Y 11 may be a group represented by Formula 1A,
  • Y 12 may be selected from:
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 );
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with a ⁇ electron-depleted nitrogen-free cyclic group that is substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 21 )(Q 22 )(Q 23 ),
  • c11 and c12 may each independently be selected from 1, 2, and 3,
  • X 11 may be selected from a single bond, C(R 13 )(R 14 ), N(R 13 ), O, and S,
  • X 12 may be selected from a single bond, C(R 15 )(R 16 ), N(R 15 ), O, and S,
  • X 11 and X 12 may not be a single bond simultaneously (e.g., X 11 and X 12 may not both be a single bond),
  • a 11 and A 12 may each independently be a ⁇ electron-depleted nitrogen-free cyclic group
  • R 11 to R 16 may each independently be selected from:
  • a binding site hydrogen, deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 1 )(Q 2 )(Q 3 );
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 );
  • a ⁇ electron-depleted nitrogen-free cyclic group substituted with a ⁇ electron-depleted nitrogen-free cyclic group that is substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 21 )(Q 22 )(Q 23 ), wherein one selected from R 11 to R 13 and R 15 may be a binding site,
  • b11 and b12 may each independently be selected from 1, 2, 3, 4, 5, and 6,
  • L 21 may be selected from:
  • a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from deuterium, —F, a cyano group, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 ) (Q 33 ),
  • a21 may be selected from 0, 1, 2, and 3,
  • Y 21 may be a group represented by Formula 2A or 2B,
  • Y 22 may be selected from:
  • a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from deuterium, —F, a cyano group, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 ); and
  • a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group that are each substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 21 )(Q 22 )(Q 23 ),
  • c21 and c22 may each independently be selected from 1, 2, 3, 4, 5, and 6,
  • a 21 may be selected from a C 5 -C 60 carbocyclic group and a C 1 -C 60 heterocyclic group,
  • X 21 may be selected from C(R 21 ) and N
  • X 22 may be selected from C(R 22 ) and N
  • X 23 may be selected from C(R 23 ) and N
  • X 24 may be selected from C(R 24 ) and N
  • X 25 may be selected from C(R 25 ) and N
  • X 26 may be selected from C(R 26 ) and N
  • X 27 may be selected from C(R 27 ) and N
  • X 28 may be selected from C(R 28 ) and N
  • X 29 may be selected from C(R 29 ) and N, wherein at least one selected from X 21 to X 25 may be N, and at least one selected from X 26 to X 29 may be N,
  • R 21 to R 30 may each independently be selected from:
  • a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from deuterium, —F, a cyano group, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 31 )(Q 32 )(Q 33 ); and
  • a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group each substituted with at least one selected from a ⁇ electron-depleted nitrogen-containing cyclic group and a ⁇ electron-depleted nitrogen-free cyclic group that are each substituted with at least one selected from deuterium, a C 1 -C 60 alkyl group, a ⁇ electron-depleted nitrogen-containing cyclic group, a ⁇ electron-depleted nitrogen-free cyclic group, and —Si(Q 21 )(Q 22 )(Q 23 ),
  • R 21 to R 25 may optionally be linked to form a substituted or unsubstituted C 5 -C 60 carbocyclic group or a substituted or unsubstituted C 1 -C 60 heterocyclic group, and
  • R 26 to R 30 may optionally be linked to form a substituted or unsubstituted C 5 -C 60 carbocyclic group or a substituted or unsubstituted C 1 -C 60 heterocyclic group,
  • b30 may be selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10,
  • X 31 may be selected from B and N, and X 32 and X 33 may each independently be selected from B(R 34 ), N(R 34 ), O, S, C(R 34 )(R 35 ), and Si(R 34 )(R 35 ),
  • X 32 and X 33 are each independently selected from N(R 34 ), O, S, C(R 34 )(R 35 ), and Si(R 34 )(R 35 ), and when X 31 is N, X 32 and X 33 are each independently selected from B(R 34 ), O, S, C(R 34 )(R 35 ), and Si(R 34 )(R 35 ),
  • a 31 to A 33 may each independently be selected from a C 5 -C 60 carbocyclic group and a C 1 -C 60 heterocyclic group,
  • L 31 to L 33 may each independently be selected from a substituted or unsubstituted C 5 -C 60 carbocyclic group, and a substituted or unsubstituted C 1 -C 60 heterocyclic group,
  • a31 to a33 may each independently be selected from 0, 1, 2, and 3,
  • R 31 to R 35 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C 1 -C 60 alkyl group, a substituted or unsubstituted C 2 -C 60 alkenyl group, a substituted or unsubstituted C 2 -C 60 alkynyl group, a substituted or unsubstituted C 1 -C 60 alkoxy group, a substituted or unsubstituted C 3 -C 10 cycloalkyl group, a substituted or unsubstituted C 1 -
  • R 31 to R 33 may optionally be linked to form a substituted or unsubstituted C 5 -C 60 carbocyclic group or a substituted or unsubstituted C 1 -C 60 heterocyclic group,
  • c31 to c33 may each independently be selected from 1, 2, 3, 4, 5, and 6,
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C 1 -C 60 alkyl group, a C 2 -C 60 alkenyl group, a C 2 -C 60 alkynyl group, a C 1 -C 60 alkoxy group, a C 3 -C 10 cycloalkyl group, a C 1 -C 10 heterocycloalkyl group, a C 3 -C 10 cycloalkenyl group, a C 1 -C 10 heterocycloalkenyl group, a C 6 -C 60 aryl group, a C 6 -C 60 aryloxy group, a C 6 -C 60 arylthi
  • * indicates a binding site to a neighboring atom.
  • L 11 in Formula 1 may be selected from a benzene group, a naphthalene group, a phenalene group, an anthracene group, a fluoranthene group, a triphenylene group, a phenanthrene group, a pyrene group, a chrysene group, a perylene group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group; and
  • a benzene group a naphthalene group, a phenalene group, an anthracene group, a fluoranthene group, a triphenylene group, a phenanthrene group, a pyrene group, a chrysene group, a perylene group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group, each substituted with at least one selected from deuterium, a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzo
  • L 21 and L 31 to L 33 in Formulae 2 and 3 may each independently be selected from:
  • a benzene group a naphthalene group, a phenalene group, an anthracene group, a fluoranthene group, a triphenylene group, a phenanthrene group, a pyrene group, a chrysene group, a perylene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group; and
  • a benzene group a naphthalene group, a phenalene group, an anthracene group, a fluoranthene group, a triphenylene group, a phenanthrene group, a pyrene group, a chrysene group, a perylene group, a pyridine group, a pyrimidine group, a pyrazine group, a pyridazine group, a triazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a benzoisoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a benzoquinoxaline group, a quinazoline group, a benzoquinazoline group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group, each substituted with
  • a11, a21, and a31 to a33 may each independently be selected from 0 and 1, but embodiments of the present disclosure are not limited thereto.
  • X 11 may be selected from N(R 13 ), O, and S, and X 12 may be a single bond, but embodiments of the present disclosure are not limited thereto.
  • a 11 and A 12 may each independently be selected from a benzene group, a naphthalene group, a fluorene group, a carbazole group, a dibenzofuran group, a dibenzothiophene group, an indolofluorene group, an indolocarbazole group, an indolodibenzofuran group, an indolodibenzothiophene group, an indenofluorene group, an indenocarbazole group, an indenodibenzofuran group, an indenodibenzothiophene group, a benzofuranofluorene group, a benzofuranocarbazole group, a benzofuranodibenzofuran group, a benzofuranodibenzothiophene group, a benzothienofluorene group, a benzothienocarbazole group, a benzo
  • a 11 and A 12 may each independently be selected from a benzene group, a naphthalene group, a fluorene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group, but embodiments of the present disclosure are not limited thereto.
  • R 11 to R 16 may each independently be selected from:
  • a binding site hydrogen, deuterium, a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, and —Si(Q 1 )
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, and a dinaphthothiophenyl group, each substituted with at least one selected from deuterium, a C 1 -C 20 alkyl group, a phenyl group
  • R 11 to R 13 and R 15 may be a binding site
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, and a dinaphtho
  • R 11 to R 16 may each independently be selected from:
  • a binding site hydrogen, deuterium, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and —Si(Q 1 )(Q 2 )(Q 3 ); and
  • R 11 to R 13 and R 15 may be a binding site
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, but embodiments of the present disclosure are not limited thereto.
  • Y 12 may be selected from:
  • a C 1 -C 20 alkyl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, an indenofluorenyl group, an indolofluoreny
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, an indenofluorenyl group, an indolofluorenyl group, a benzofurofluoreny
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, an indenofluorenyl group, an indolofluorenyl group, a benzofurofluoreny
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, and a dinaphtho
  • Y 12 may be selected from:
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an indenofluorenyl group, an indolofluorenyl group, a benzofurofluorenyl group, a benzothienofluorenyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, an indenodibenzofuranyl group, an indolodibenzofuranyl group, a benzofurodibenzofuranyl group, a benzothienodibenzofuranyl group, an indenodibenzothiophenyl group,
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an indenofluorenyl group, an indolofluorenyl group, a benzofurofluorenyl group, a benzothienofluorenyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, an indenodibenzofuranyl group, an indolodibenzofuranyl group, a benzofurodibenzofuranyl group, a benzothienodibenzofuranyl group, an indenodibenzothiophenyl group,
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, but embodiments of the present disclosure are not limited thereto.
  • c11 and c12 may be 1, but embodiments of the present disclosure are not limited thereto.
  • Y 22 may be selected from:
  • —F a cyano group, a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothi
  • a C 1 -C 20 alkyl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, an indenoflu
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, an indenofluorenyl group, an indoloflu
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothi
  • Y 22 may be selected from:
  • a cyano group a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an indenofluorenyl group, an indolofluorenyl group, a benzofurofluorenyl group, a benzothienoflu
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an indenofluorenyl group, an indolofluorenyl group, a benzofurofluorenyl group, a benzothienofluorenyl group, an indenocarbazolyl group, an indolocarbazolyl group, a benzofurocarbazolyl group, a benzothienocarbazolyl group, an indenodibenzofuranyl group, an indolodibenzofuranyl
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a pyridinyl group, a pyrazinyl group, a pyridazinyl group, a pyrimidinyl group, a tri
  • c21 and c22 may each independently be 1 and 2, but embodiments of the present disclosure are not limited thereto.
  • a 21 may be selected from a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a thiophene group, a furan group, a silole group, a carbazole group, an indole group, an isoindole group, a benzofuran group, a benzothiophene group, a benzosilole group, a dibenzofuran group, a dibenzothiophene group, a benzocarbazole group, a dibenzocarbazole group, a dibenzocarbazole group,
  • a 21 may be selected from a benzene group, a naphthalene group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a triazine group, a quinoline group, and an isoquinoline group, but embodiments of the present disclosure are not limited thereto.
  • X 21 may be N
  • X 22 may be C(R 22 )
  • X 23 may be C(R 23 )
  • X 24 may be C(R 24 )
  • X 25 may be C(R 25 );
  • X 21 may be C(R 21 ), X 22 may be N, X 23 may be C(R 23 ), X 24 may be C(R 24 ), and X 25 may be C(R 25 );
  • X 21 may be C(R 21 ), X 22 may be C(R 22 ), X 23 may be N, X 24 may be C(R 24 ), and X 25 may be C(R 25 );
  • X 21 may be N
  • X 22 may be C(R 22 )
  • X 23 may be N
  • X 24 may be C(R 24 )
  • X 25 may be C(R 25 );
  • X 21 may be C(R 21 ), X 22 may be N, X 23 may be C(R 23 ), X 24 may be N, and X 25 may be C(R 25 );
  • X 21 may be N
  • X 22 may be C(R 22 )
  • X 23 may be C(R 23 )
  • X 24 may be N
  • X 25 may be C(R 25 );
  • X 21 may be N
  • X 22 may be C(R 22 )
  • X 23 may be N
  • X 24 may be C(R 24 )
  • X 25 may be N, but embodiments of the present disclosure are not limited thereto.
  • X 26 may be N
  • X 27 may be C(R 27 )
  • X 28 may be C(R 28 )
  • X 29 may be C(R 29 );
  • X 26 may be C(R 26 ), X 27 may be N, X 28 may be C(R 28 ), and X 29 may be C(R 29 );
  • X 26 may be N, X 27 may be C(R 27 ), X 28 may be N, and X 29 may be C(R 29 ); or
  • X 26 may be N
  • X 27 may be C(R 27 )
  • X 28 may be C(R 28 )
  • X 29 may be N, but embodiments of the present disclosure are not limited thereto.
  • R 21 to R 30 may each independently be selected from:
  • a C 1 -C 20 alkyl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a pyridinyl group, a pyrazinyl group,
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a pyridinyl group, a pyrazinyl group, a pyridazinyl group, a
  • Q 1 to Q 3 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from a C 1 -C 20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothi
  • X 31 may be B, and X 32 and X 33 may be N(R 34 ); or X 31 may be N, and X 32 and X 33 may be B(R 34 ), but embodiments of the present disclosure are not limited thereto.
  • a 31 to A 33 may each independently be selected from a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a thiophene group, a furan group, a silole group, a carbazole group, an indole group, an isoindole group, a benzofuran group, a benzothiophene group, a benzosilole group, a dibenzofuran group, a dibenzothiophene group, a benzocarbazole group, a dibenzocarbazole group, and
  • a 31 to A 33 may be a benzene group, but embodiments of the present disclosure are not limited thereto.
  • a31 to a33 may each independently be selected from 0 and 1, but embodiments of the present disclosure are not limited thereto.
  • R 31 to R 35 may each independently be selected from:
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a pyridinyl group, a pyrazinyl group, a pyridazinyl group, a
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a pyridinyl group, a pyrazinyl group, a pyridazinyl group, a
  • Q 1 and Q 2 may each independently be selected from:
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a pyridinyl group, a pyrazinyl group, a pyridazinyl group, a
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzofluorenyl group, a benzocarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothiophenyl group, a dibenzofluorenyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a pyridinyl group, a pyrazinyl group, a pyridazinyl group, a
  • R 31 to R 35 may each independently be selected from:
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a phenyl group
  • Q 1 and Q 2 may each independently be selected from:
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a chrysenyl group, a fluoranthenyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;
  • the first compound may be selected from compounds of Group I:
  • the second compound may be selected from compounds of Group II:
  • the third compound may be selected from compounds of Group III:
  • the first compound may be easily used for controlling hole transporting characteristics of the organic light-emitting device.
  • the first compound is free of an electron transporting moiety.
  • the third compound has relatively high hole trap characteristics (e.g., high hole trapping characteristics)
  • an emission region may be biased to a set or specific region in the emission layer based on the presence of the third compound. Therefore, in order to uniformly (e.g., substantially uniformly) distribute the emission region of the organic light-emitting device including the third compound throughout the emission layer, characteristics of the hole transporting host may be important.
  • the emission region may be widened throughout the emission layer through by way of the hole transport capability of the first compound. Therefore, the efficiency and/or lifespan of the organic light-emitting device including the first compound may be improved.
  • the second compound may improve or optimize charge balance in the emission layer. If electrons are not smoothly injected from the electron transport layer to the emission layer, charges are accumulated at an interface between the emission layer and the electron transport layer, and, as a result, the interface may be deteriorated. Therefore, the lifespan of the organic light-emitting device may be deteriorated. Because the first compound has a relatively high hole transporting characteristics, the lowest unoccupied molecular orbital (LUMO) energy level is not suitable for electron injection. Therefore, the second compound is included in the emission layer so as to adjust electrons injected into the emission layer. Consequently, an organic light-emitting device having improved lifespan may be provided.
  • LUMO lowest unoccupied molecular orbital
  • the third compound may be a thermally activated delayed fluorescence (TADF) emitter.
  • TADF thermally activated delayed fluorescence
  • the third compound may have a maximum emission wavelength in a range of about 450 nm to about 650 nm, but embodiments of the present disclosure are not limited thereto.
  • the third compound in the emission layer does not directly participate in the formation of excitons, and may receive energy from the formed excitons and emit red delayed fluorescence.
  • the organic light-emitting device may emit delayed fluorescence in a range of about 450 nm to about 650 nm, but embodiments of the present disclosure are not limited thereto.
  • the third compound may satisfy Condition 1 below:
  • ⁇ E ST (C 3 ) is a difference between a lowest excitation singlet energy level (E S1 (C 3 )) and a lowest excitation triplet energy level (E T1 (C 3 )) of the third compound.
  • E S1 (C 3 ) and E T1 (C 3 ) may be evaluated by a density functional theory (DFT) method, utilizing any suitable version of the “Gaussian” software program, for example, where the compound is structurally optimized utilizing a B3LYP hybrid functional and a 6-31G(d,p) basis set.
  • DFT density functional theory
  • RISC reverse intersystem crossing
  • the organic light-emitting device has an energy level sufficient to emit fluorescence at or from the third compound, an organic light-emitting device with high color purity may be provided.
  • the second compound has suitably or sufficiently high RISC efficiency even at room temperature, the triplet energy of the first compound that may not participate in light emission may all (or substantially all) transfer to the third compound, and excitons that would otherwise disappear or dissociate without participating in light emission may be minimized or reduced, thereby improving the efficiency of the organic light-emitting device.
  • An amount of the first compound in the emission layer may be in a range of about 10 wt % to about 90 wt % based on the total weight of the emission layer, but embodiments of the present disclosure are not limited thereto.
  • An amount of the second compound in the emission layer may be in a range of about 10 wt % to about 90 wt % based on the total weight of the emission layer, but embodiments of the present disclosure are not limited thereto.
  • An amount of the third compound in the emission layer may be in a range of about 0.5 wt % to about 5 wt % based on the total weight of the emission layer, but embodiments of the present disclosure are not limited thereto.
  • An amount of the third compound may be in a range of about 0.01 parts by weight to about 30 parts by weight based on 100 parts by weight of the first compound and the second compound, but embodiments of the present disclosure are not limited thereto.
  • an organic light-emitting device having both improved efficiency and improved lifespan may be provided.
  • the emission layer may include (or consist of) the first compound, the second compound, and the third compound, but embodiments of the present disclosure are not limited thereto.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the organic layer may further include a hole transport region between the first electrode and the emission layer and/or an electron transport region between the emission layer and the second electrode
  • the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof
  • the electron transport region may include a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof, but embodiments of the present disclosure are not limited thereto.
  • FIG. 1 is a schematic view of an organic light-emitting device 10 according to an embodiment.
  • the organic light-emitting device 10 includes a first electrode 110 , an organic layer 150 , and a second electrode 190 .
  • a substrate may be additionally under the first electrode 110 or above the second electrode 190 .
  • the substrate may be a glass substrate or a plastic substrate, each having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water resistance.
  • the first electrode 110 may be formed by depositing or sputtering a material for forming the first electrode 110 on the substrate.
  • the material for a first electrode may be selected from materials having a high work function to facilitate hole injection.
  • the first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode.
  • a material for forming a first electrode may be selected from indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO), and any combinations thereof, but embodiments of the present disclosure are not limited thereto.
  • a material for forming a first electrode may be selected from magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), and any combinations thereof, but embodiments of the present disclosure are not limited thereto.
  • the first electrode 110 may have a single-layered structure, or a multi-layered structure including two or more layers.
  • the first electrode 110 may have a three-layered structure of ITO/Ag/ITO, but the structure of the first electrode 110 is not limited thereto.
  • the organic layer 150 is on the first electrode 110 .
  • the organic layer 150 may include an emission layer.
  • the organic layer 150 may further include a hole transport region between the first electrode 110 and the emission layer, and an electron transport region between the emission layer and the second electrode 190 .
  • the hole transport region may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.
  • the hole transport region may include at least one layer selected from a hole injection layer, a hole transport layer, an emission auxiliary layer, and an electron blocking layer.
  • the hole transport region may have a single-layered structure including a single layer including a plurality of different materials, or a multi-layered structure having a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein for each structure, constituting layers are sequentially stacked from the first electrode 110 in this stated order, but the structure of the hole transport region is not limited thereto.
  • the hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB (NPD), p-NPB, TPD, spiro-TPD, spiro-NPB, methylated-NPB, TAPC, HMTPD, 4,4′,4′′-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201, and a compound represented by Formula 202:
  • L 201 to L 204 may each independently be selected from a substituted or unsubstituted C 3 -C 10 cycloalkylene group, a substituted or unsubstituted C 1 -C 10 heterocycloalkylene group, a substituted or unsubstituted C 3 -C 10 cycloalkenylene group, a substituted or unsubstituted C 1 -C 10 heterocycloalkenylene group, a substituted or unsubstituted C 6 -C 60 arylene group, a substituted or unsubstituted C 1 -C 60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,
  • L 205 may be selected from *—O—*′, *—S—*′, *—N(Q 201 )-*′, a substituted or unsubstituted C 1 -C 20 alkylene group, a substituted or unsubstituted C 2 -C 20 alkenylene group, a substituted or unsubstituted C 3 -C 10 cycloalkylene group, a substituted or unsubstituted C 1 -C 10 heterocycloalkylene group, a substituted or unsubstituted C 3 -C 10 cycloalkenylene group, a substituted or unsubstituted C 1 -C 10 heterocycloalkenylene group, a substituted or unsubstituted C 6 -C 60 arylene group, a substituted or unsubstituted C 1 -C 60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a
  • xa1 to xa4 may each independently be an integer from 0 to 3,
  • xa5 may be an integer from 1 to 10, and
  • R 201 to R 204 and Q 201 may each independently be selected from a substituted or unsubstituted C 3 -C 10 cycloalkyl group, a substituted or unsubstituted C 1 -C 10 heterocycloalkyl group, a substituted or unsubstituted C 3 -C 10 cycloalkenyl group, a substituted or unsubstituted C 1 -C 10 heterocycloalkenyl group, a substituted or unsubstituted C 6 -C 60 aryl group, a substituted or unsubstituted C 6 -C 60 aryloxy group, a substituted or unsubstituted C 6 -C 60 arylthio group, a substituted or unsubstituted C 1 -C 60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aro
  • R 201 and R 202 may optionally be linked via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group
  • R 203 and R 204 may optionally be linked via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group.
  • L 201 to L 205 may each independently be selected from:
  • Q 31 to Q 33 may each independently be selected from a C 1 -C 10 alkyl group, a C 1 -C 10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.
  • xa1 to xa4 may each independently be 0, 1, or 2.
  • xa5 may be 1, 2, 3, or 4.
  • R 201 to R 204 and Q 201 may each independently be selected from:
  • a phenyl group a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacen
  • a phenyl group a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacen
  • At least one selected from R 201 to R 203 may be selected from:
  • a fluorenyl group a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group;
  • R 201 and R 202 may be linked via a single bond, and/or ii) R 203 and R 204 may be linked via a single bond.
  • At least one selected from R 201 to R 204 may be selected from:
  • a carbazolyl group substituted at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C 1 -C 10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl
  • the compound represented by Formula 201 may be represented by Formula 201A:
  • the compound represented by Formula 201 may be represented by Formula 201A(1) below, but embodiments of the present disclosure are not limited thereto:
  • the compound represented by Formula 201 may be represented by Formula 201A-1 below, but embodiments of the present disclosure are not limited thereto:
  • the compound represented by Formula 202 may be represented by Formula 202A:
  • the compound represented by Formula 202 may be represented by Formula 202A-1:
  • L 201 to L 203 xa1 to xa3, xa5, and R 202 to R 204 are the same as described above,
  • R 211 and R 212 may be the same as defined in connection with R 203 , and
  • R 213 to R 217 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C 1 -C 10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulen
  • the hole transport region may include at least one compound selected from Compounds HT1 to HT39, but embodiments of the present disclosure are not limited thereto:
  • a thickness of the hole transport region may be in a range of about 100 ⁇ to about 10,000 ⁇ , for example, about 100 ⁇ to about 1,000 ⁇ .
  • a thickness of the hole injection layer may be in a range of about 100 ⁇ to about 9,000 ⁇ , for example, about 100 ⁇ to about 1,000 ⁇
  • a thickness of the hole transport layer may be in a range of about 50 ⁇ to about 2,000 ⁇ , for example about 100 ⁇ to about 1,500 ⁇ .
  • the emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by an emission layer, and the electron blocking layer may block the flow of electrons from an electron transport region.
  • the emission auxiliary layer and the electron blocking layer may include the materials as described above.
  • the hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties.
  • the charge-generation material may be homogeneously or non-homogeneously dispersed in the hole transport region.
  • the charge-generation material may be, for example, a p-dopant.
  • the p-dopant may have a LUMO level in a range of about ⁇ 3.5 eV or less.
  • the p-dopant may include at least one selected from a quinone derivative, a metal oxide, and a cyano group-containing compound, but embodiments of the present disclosure are not limited thereto.
  • the p-dopant may include at least one selected from:
  • a quinone derivative such as tetracyanoquinodimethane (TCNQ) or 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ);
  • a metal oxide such as tungsten oxide or molybdenum oxide
  • R 221 to R 223 may each independently be selected from a substituted or unsubstituted C 3 -C 10 cycloalkyl group, a substituted or unsubstituted C 1 -C 10 heterocycloalkyl group, a substituted or unsubstituted C 3 -C 10 cycloalkenyl group, a substituted or unsubstituted C 1 -C 10 heterocycloalkenyl group, a substituted or unsubstituted C 6 -C 60 aryl group, a substituted or unsubstituted C 1 -C 60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, wherein at least one selected from R 221 to R 223 may have at least one substituent selected from a cyano group, —F, —Cl,
  • the emission layer may be patterned into a red emission layer, a green emission layer, or a blue emission layer, according to a sub-pixel.
  • the emission layer may have a stacked structure of two or more layers selected from a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other.
  • the emission layer may include two or more materials selected from a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.
  • a thickness of the emission layer may be in a range of about 100 ⁇ to about 1,000 ⁇ , for example, about 200 ⁇ to about 600 ⁇ . When the thickness of the emission layer is within this range, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.
  • the electron transport region may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.
  • the electron transport region may include at least one selected from a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, and an electron injection layer, but embodiments of the present disclosure are not limited thereto.
  • the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein for each structure, constituting layers are sequentially stacked from an emission layer.
  • embodiments of the structure of the electron transport region are not limited thereto.
  • the electron transport region (for example, a buffer layer, a hole blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may include a metal-free compound containing at least one ⁇ electron-depleted nitrogen-containing ring.
  • Examples of the ⁇ electron-depleted nitrogen-containing ring include an imidazole, a pyrazole, a thiazole, an isothiazole, an oxazole, an isoxazole, a pyridine, a pyrazine, a pyrimidine, a pyridazine, an indazole, a purine, a quinoline, an isoquinoline, a benzoquinoline, a phthalazine, a naphthyridine, a quinoxaline, a quinazoline, a cinnoline, a phenanthridine, an acridine, a phenanthroline, a phenazine, a benzimidazole, an isobenzothiazole, a benzoxazole, an isobenzoxazole, a triazole, a tetrazole, an oxadiazole, a triazine
  • the electron transport region may include a compound represented by Formula 601:
  • Ar 601 may be a substituted or unsubstituted C 5 -C 60 carbocyclic group or a substituted or unsubstituted C 1 -C 60 heterocyclic group,
  • xe11 may be 1, 2, or 3,
  • L 601 may be selected from a substituted or unsubstituted C 3 -C 10 cycloalkylene group, a substituted or unsubstituted C 1 -C 10 heterocycloalkylene group, a substituted or unsubstituted C 3 -C 10 cycloalkenylene group, a substituted or unsubstituted C 1 -C 10 heterocycloalkenylene group, a substituted or unsubstituted C 6 -C 60 arylene group, a substituted or unsubstituted C 1 -C 60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,
  • xe1 may be an integer from 0 to 5
  • R 601 may be selected from a substituted or unsubstituted C 3 -C 10 cycloalkyl group, a substituted or unsubstituted C 1 -C 10 heterocycloalkyl group, a substituted or unsubstituted C 3 -C 10 cycloalkenyl group, a substituted or unsubstituted C 1 -C 10 heterocycloalkenyl group, a substituted or unsubstituted C 6 -C 60 aryl group, a substituted or unsubstituted C 6 -C 60 aryloxy group, a substituted or unsubstituted C 6 -C 60 arylthio group, a substituted or unsubstituted C 1 -C 60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group,
  • Q 601 to Q 603 may each independently be a C 1 -C 10 alkyl group, a C 1 -C 10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and
  • xe21 may be an integer from 1 to 5.
  • At least one of Ar 601 (S) in the number of xe11 and R 601 (s) in the number of xe21 may include the ⁇ electron-depleted nitrogen-containing ring.
  • ring Ar 601 in Formula 601 may be selected from:
  • a benzene group a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group
  • a benzene group a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group
  • Q 31 to Q 33 may each independently be selected from a C 1 -C 10 alkyl group, a C 1 -C 10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.
  • xe11 in Formula 601 is two or more, two or more Ar 601 (S) may be linked via a single bond.
  • Ar 601 in Formula 601 may be an anthracene group.
  • a compound represented by Formula 601 may be represented by Formula 601-1:
  • X 614 may be N or C(R 614 ), X 615 may be N or C(R 615 ), X 616 may be N or C(R 616 ), and at least one selected from X 614 to X 616 may be N,
  • L 611 to L 613 may each independently be defined in connection with L 601 ,
  • xe611 to xe613 may each independently be defined in connection with xe1,
  • R 611 to R 613 may each independently be defined in connection with R 601 ,
  • R 614 to R 616 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.
  • L 601 and L 611 to L 613 in Formulae 601 and 601-1 may each independently be selected from:
  • xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.
  • R 601 and R 611 to R 613 in Formulae 601 and 601-1 may each independently be selected from:
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group,
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group,
  • Q 601 and Q 602 are the same as described above.
  • the electron transport region may include at least one compound selected from Compounds ET1 to ET36, but embodiments of the present disclosure are not limited thereto:
  • the electron transport region may include at least one compound selected from 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq 3 , BAIq, 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), NTAZ, and diphenyl(4-(tprihenysilyl)phenlyl)-phosphile oxide (TSPO1)
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • Bphen 4,7-diphenyl-1,10-phenanthroline
  • Alq 3 BAIq
  • BAIq 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), NTAZ
  • a thickness of the buffer layer, the hole blocking layer, or the electron control layer may be in a range of about 20 ⁇ to about 1,000 ⁇ , for example, about 30 ⁇ to about 300 ⁇ .
  • the electron transport region may have excellent hole blocking characteristics or electron control characteristics without a substantial increase in driving voltage.
  • a thickness of the electron transport layer may be in a range of about 100 ⁇ to about 1,000 ⁇ , for example, about 150 ⁇ to about 500 ⁇ . When the thickness of the electron transport layer is within the range described above, the electron transport layer may have suitable or satisfactory electron transport characteristics without a substantial increase in driving voltage.
  • the electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.
  • the metal-containing material may include at least one selected from an alkali metal complex and an alkaline earth-metal complex.
  • the alkali metal complex may include a metal ion selected from a Li ion, a Na ion, a K ion, a Rb ion, and a Cs ion
  • the alkaline earth-metal complex may include a metal ion selected from a Be ion, a Mg ion, a Ca ion, a Sr ion, and a Ba ion.
  • a ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may be selected from a hydroxy quinoline, a hydroxy isoquinoline, a hydroxy benzoquinoline, a hydroxy acridine, a hydroxy phenanthridine, a hydroxy phenyloxazole, a hydroxy phenylthiazole, a hydroxy diphenyloxadiazole, a hydroxy diphenylthiadiazole, a hydroxy phenylpyridine, a hydroxy phenylbenzimidazole, a hydroxy phenylbenzothiazole, a bipyridine, a phenanthroline, and a cyclopentadiene, but embodiments of the present disclosure are not limited thereto.
  • the metal-containing material may include a Li complex.
  • the Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) or ET-D2.
  • the electron transport region may include an electron injection layer that facilitates injection of electrons from the second electrode 190 .
  • the electron injection layer may directly contact the second electrode 190 .
  • the electron injection layer may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.
  • the electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof.
  • the alkali metal may be selected from Li, Na, K, Rb, and Cs. In one embodiment, the alkali metal may be Li, Na, or Cs. In one or more embodiments, the alkali metal may be Li or Cs, but embodiments of the present disclosure are not limited thereto.
  • the alkaline earth metal may be selected from Mg, Ca, Sr, and Ba.
  • the rare earth metal may be selected from Sc, Y, Ce, Tb, Yb, and Gd.
  • the alkali metal compound, the alkaline earth-metal compound, and the rare earth metal compound may be selected from oxides and halides (for example, fluorides, chlorides, bromides, or iodides) of the alkali metal, the alkaline earth-metal, and the rare earth metal.
  • oxides and halides for example, fluorides, chlorides, bromides, or iodides
  • the alkali metal compound may be selected from alkali metal oxides, such as Li 2 O, Cs 2 O, or K 2 O, and alkali metal halides, such as LiF, NaF, CsF, KF, Lil, Nal, Csl, or KI.
  • the alkali metal compound may be selected from LiF, Li 2 O, NaF, Lil, Nal, Csl, and KI, but embodiments of the present disclosure are not limited thereto.
  • the alkaline earth-metal compound may be selected from alkaline earth-metal oxides, such as BaO, SrO, CaO, Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1).
  • the alkaline earth-metal compound may be selected from BaO, SrO, and CaO, but embodiments of the present disclosure are not limited thereto.
  • the rare earth metal compound may be selected from YbF 3 , ScF 3 , ScO 3 , Y 2 O 3 , Ce 2 O 3 , GdF 3 , and TbF 3 .
  • the rare earth metal compound may be selected from YbF 3 , ScF 3 , TbF 3 , Ybl 3 , Scl 3 , and Tbl 3 , but embodiments of the present disclosure are not limited thereto.
  • the alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include an ion of alkali metal, alkaline earth-metal, and rare earth metal as described above, and a ligand coordinated with a metal ion of the alkali metal complex, the alkaline earth-metal complex, or the rare earth metal complex may be selected from hydroxy quinoline, hydroxy isoquinoline, hydroxy benzoquinoline, hydroxy acridine, hydroxy phenanthridine, hydroxy phenyloxazole, hydroxy phenylthiazole, hydroxy diphenyloxadiazole, hydroxy diphenylthiadiazole, hydroxy phenylpyridine, hydroxy phenylbenzimidazole, hydroxy phenylbenzothiazole, bipyridine, phenanthroline, and cyclopentadiene, but embodiments of the present disclosure are not limited thereto.
  • the electron injection layer may consist of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof, as described above.
  • the electron injection layer may further include an organic material.
  • an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.
  • a thickness of the electron injection layer may be in a range of about 1 ⁇ to about 100 ⁇ , for example, about 3 ⁇ to about 90 ⁇ . When the thickness of the electron injection layer is within the range described above, the electron injection layer may have suitable or satisfactory electron injection characteristics without a substantial increase in driving voltage.
  • the second electrode 190 may be on the organic layer 150 having such a structure.
  • the second electrode 190 may be a cathode which is an electron injection electrode, and in this regard, a material for forming the second electrode 190 may be selected from metal, an alloy, an electrically conductive compound, and a combination thereof, which have a relatively low work function.
  • the second electrode 190 may include at least one selected from lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), indium tin oxide (ITO), and indium zinc oxide (IZO), but embodiments of the present disclosure are not limited thereto.
  • the second electrode 190 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.
  • the second electrode 190 may have a single-layered structure, or a multi-layered structure including two or more layers.
  • An organic light-emitting device 20 of FIG. 2 includes a first capping layer 210 , a first electrode 110 , an organic layer 150 , and a second electrode 190 which are sequentially stacked in this stated order
  • an organic light-emitting device 30 of FIG. 3 includes a first electrode 110 , an organic layer 150 , a second electrode 190 , and a second capping layer 220 which are sequentially stacked in this stated order
  • an organic light-emitting device 40 of FIG. 4 includes a first capping layer 210 , a first electrode 110 , an organic layer 150 , a second electrode 190 , and a second capping layer 220 .
  • the first electrode 110 , the organic layer 150 , and the second electrode 190 may be understood by referring to the description presented in connection with FIG. 1 .
  • the organic layer 150 of each of the organic light-emitting devices 20 and 40 light generated in an emission layer may pass through the first electrode 110 , which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer 210 toward the outside, and in the organic layer 150 of each of the organic light-emitting devices 30 and 40 , light generated in an emission layer may pass through the second electrode 190 , which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer 220 toward the outside.
  • the first capping layer 210 and the second capping layer 220 may increase external luminescent efficiency according to the principle of constructive interference.
  • the first capping layer 210 and the second capping layer 220 may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or a composite capping layer including an organic material and an inorganic material.
  • At least one selected from the first capping layer 210 and the second capping layer 220 may each independently include at least one material selected from carbocyclic compounds, heterocyclic compounds, amine-based compounds, porphyrine derivatives, phthalocyanine derivatives, a naphthalocyanine derivatives, alkali metal complexes, and alkaline earth-based complexes.
  • the carbocyclic compound, the heterocyclic compound, and the amine-based compound may be optionally substituted with a substituent containing at least one element selected from O, N, S, Se, Si, F, Cl, Br, and I.
  • At least one selected from the first capping layer 210 and the second capping layer 220 may each independently include an amine-based compound.
  • At least one selected from the first capping layer 210 and the second capping layer 220 may each independently include the compound represented by Formula 201 or the compound represented by Formula 202.
  • At least one selected from the first capping layer 210 and the second capping layer 220 may each independently include a compound selected from Compounds HT28 to HT33 and Compounds CP1 to CP5, but embodiments of the present disclosure are not limited thereto.
  • Layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.
  • suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.
  • the deposition may be performed at a deposition temperature in a range of about 100° C. to about 500° C., a vacuum degree in a range of about 10 ⁇ 8 torr to about 10 ⁇ 3 torr, and a deposition speed in a range of about 0.01 ⁇ /sec to about 100 ⁇ /sec by taking into account a material to be included in a layer to be formed, and the structure of a layer to be formed.
  • the spin coating may be performed at a coating speed in a range of about 2,000 rpm to about 5,000 rpm and at a heat treatment temperature in a range of about 80° C. to 200° C. by taking into account a material to be included in a layer to be formed, and the structure of a layer to be formed.
  • the organic light-emitting device may be included in a display device including a thin-film transistor.
  • the thin-film transistor may include a source electrode, a drain electrode, and an active layer, and one of the source electrode and the drain electrode may electrically contact a first electrode of the organic light-emitting device.
  • the thin-film transistor may further include a gate electrode, a gate insulation layer, or the like.
  • the active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, or the like, but embodiments of the present disclosure are not limited thereto.
  • the display apparatus may further include a sealing member that seals the organic light-emitting device.
  • the sealing member may enable to implement an image from the organic light-emitting device, and may prevent or reduce penetration of external air and moisture into the organic light-emitting device.
  • the sealing member may be a sealing substrate made of glass or plastic.
  • the sealing member may be a thin-film encapsulation layer including a plurality of organic layers and/or a plurality of inorganic layers. When sealing member is a thin-film encapsulation layer, the whole flat display apparatus may be made flexible.
  • examples of the ⁇ electron-depleted nitrogen-containing ring include an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyridazine group, a pyrimidine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phena
  • ⁇ electron-depleted nitrogen-free cyclic group refers to a cyclic group that does not include nitrogen, and examples of the ⁇ electron-depleted nitrogen-free cyclic group may include a benzene group, a heptalene group, an indene group, a naphthalene group, an azulene group, a heptalene group, an indacene group, acenaphthylene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a
  • C 1 -C 60 alkyl group refers to a linear or branched saturated aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group.
  • C 1 -C 60 alkylene group refers to a divalent group having substantially the same structure as the C 1 -C 60 alkyl group.
  • C 2 -C 60 alkenyl group refers to a hydrocarbon group having at least one carbon-carbon double bond at a main chain (e.g., in the middle) or at a terminal end (e.g., at the terminus) of the C 2 -C 60 alkyl group, and examples thereof include an ethenyl group, a propenyl group, and a butenyl group.
  • C 2 -C 60 alkenylene group refers to a divalent group having substantially the same structure as the C 2 -C 60 alkenyl group.
  • C 2 -C 60 alkynyl group refers to a hydrocarbon group having at least one carbon-carbon triple bond at a main chain (e.g., in the middle) or at a terminal end (e.g., at the terminus) of the C 2 -C 60 alkyl group, and examples thereof include an ethynyl group, and a propynyl group.
  • C 2 -C 60 alkynylene group refers to a divalent group having substantially the same structure as the C 2 -C 60 alkynyl group.
  • C 1 -C 60 alkoxy group refers to a monovalent group represented by —OA 101 (wherein A 101 is the C 1 -C 60 alkyl group), and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.
  • C 3 -C 10 cycloalkyl group refers to a monovalent saturated hydrocarbon monocyclic group having 3 to 10 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • C 3 -C 10 cycloalkylene group refers to a divalent group having substantially the same structure as the C 3 -C 10 cycloalkyl group.
  • C 1 -C 10 heterocycloalkyl group refers to a monovalent monocyclic group having at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom and 1 to 10 carbon atoms, and examples thereof include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group.
  • C 1 -C 10 heterocycloalkylene group refers to a divalent group having substantially the same structure as the C 1 -C 10 heterocycloalkyl group.
  • C 3 -C 10 cycloalkenyl group refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group.
  • C 3 -C 10 cycloalkenylene group refers to a divalent group having substantially the same structure as the C 3 -C 10 cycloalkenyl group.
  • C 1 -C 10 heterocycloalkenyl group refers to a monovalent monocyclic group that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, 1 to 10 carbon atoms, and at least one carbon-carbon double bond in its ring.
  • Non-limiting examples of the C 1 -C 10 heterocycloalkenyl group include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group.
  • C 1 -C 10 heterocycloalkenylene group refers to a divalent group having substantially the same structure as the C 1 -C 10 heterocycloalkenyl group.
  • C 6 -C 60 aryl group refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms
  • a C 6 -C 60 arylene group used herein refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms.
  • Examples of the C 6 -C 60 aryl group are a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group.
  • the C 6 -C 60 aryl group and the C 6 -C 60 arylene group each include two or more rings, the rings may be fused to each other (e.g., combined together).
  • C 1 -C 60 heteroaryl group refers to a monovalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, in addition to 1 to 1 carbon atoms.
  • C 1 -C 60 heteroarylene group refers to a divalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, in addition to 1 to 60 carbon atoms.
  • Examples of the C 1 -C 60 heteroaryl group are a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group.
  • the C 1 -C 60 heteroaryl group and the C 1 -C 60 heteroarylene group each include two or more rings, the rings may be fused to each other (e.g., combined together).
  • C 6 -C 60 aryloxy group indicates —OA 102 (wherein A 102 is the C 6 -C 60 aryl group), and a C 6 -C 60 arylthio group indicates —SA 103 (wherein A 103 is the C 6 -C 60 aryl group).
  • C 1 -C 60 heteroaryloxy group indicates —OA 104 (wherein A 104 is the C 1 -C 60 heteroaryl group), and the term “C 6 -C 60 heteroarylthio group,” as used herein, indicates —SA105 (wherein A 105 is the C 1 -C 60 heteroaryl group).
  • An example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group.
  • divalent non-aromatic condensed polycyclic group refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed polycyclic group.
  • An example of the monovalent non-aromatic condensed heteropolycyclic group is a carbazolyl group.
  • divalent non-aromatic condensed heteropolycyclic group refers to a divalent group having substantially the same structure as the monovalent non-aromatic condensed heteropolycyclic group.
  • C 5 -C 60 carbocyclic group refers to a monocyclic or polycyclic group having 5 to 60 carbon atoms in which a ring-forming atom is a carbon atom only.
  • the C 5 -C 60 carbocyclic group may be an aromatic carbocyclic group or a non-aromatic carbocyclic group.
  • the C 5 -C 60 carbocyclic group may be a ring, such as benzene, a monovalent group, such as a phenyl group, or a divalent group, such as a phenylene group.
  • the C 5 -C 60 carbocyclic group may be a trivalent group or a quadrivalent group.
  • C 1 -C 60 heterocyclic group refers to a group having substantially the same structure as the C 5 -C 60 carbocyclic group, except that as a ring-forming atom, at least one heteroatom selected from N, O, Si, P, and S is used in addition to carbon (the number of carbon atoms may be in a range of 1 to 60).
  • deuterium —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C 1 -C 60 alkyl group, a C 2 -C 60 alkenyl group, a C 2 -C 60 alkynyl group, and a C 1 -C 60 alkoxy group;
  • Q 11 to Q 13 , Q 21 to Q 23 , and Q 31 to Q 33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C 1 -C 60 alkyl group, a C 2 -C 60 alkenyl group, a C 2 -C 60 alkynyl group, a C 1 -C 60 alkoxy group, a C 3 -C 10 cycloalkyl group, a C 1 -C 10 heterocycloalkyl group, a C 3 -C 10 cycloalkenyl group, a C 1 -C 10 heterocycloalkenyl group, a C 6 -C 60 aryl group, a C 1 -C 60 heteroaryl group, a C 1 -C 60 heteroaryloxy group
  • Ph refers to a phenyl group
  • Me refers to a methyl group
  • Et refers to an ethyl group
  • ter-Bu refers to a tert-butyl group
  • OMe refers to a methoxy group
  • biphenyl group refers to “a phenyl group substituted with a phenyl group.”
  • the “biphenyl group” is a substituted phenyl group having a C 6 -C 60 aryl group as a substituent.
  • terphenyl group refers to “a phenyl group substituted with a biphenyl group.”
  • the “terphenyl group” is a phenyl group having, as a substituent, a C 6 -C 60 aryl group substituted with a C 6 -C 60 aryl group.
  • an ITO substrate on which ITO/Ag/ITO were deposited, was cut to a size of 50 mm ⁇ 50 mm ⁇ 0.7 mm, sonicated with isopropyl alcohol and pure water each for 5 minutes, and then cleaned by exposure to ultraviolet rays and ozone for 30 minutes. Then, the ITO substrate was provided to a vacuum deposition apparatus.
  • Compound HT3 and F4-TCNQ were vacuum-deposited on the ITO substrate to a weight ratio of 98:2 to form a hole injection layer having a thickness of 100 ⁇
  • Compound HT3 was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 1,200 ⁇
  • Compounds 1-1, 2-27, and 3-29 were co-deposited on the hole transport layer to a weight ratio of 50:50:3 to form an emission layer having a thickness of 200 ⁇ .
  • Compound ET-1 and LiQ were co-deposited on the emission layer to a weight ratio of 50:50 to form an electron transport layer having a thickness of 310 ⁇ .
  • LiQ was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 ⁇ , and Mg and Ag were co-deposited on the electron injection layer to a weight ratio of 130:10 to form a cathode having a thickness of 130 ⁇ , thereby completing the manufacture of an organic light-emitting device.
  • Organic light-emitting devices were manufactured in substantially the same manner as in Example 1, except that Compounds shown in Table 1 were each used in forming an emission layer.
  • an ITO substrate on which ITO/Ag/ITO were deposited, was cut to a size of 50 mm ⁇ 50 mm ⁇ 0.7 mm, sonicated with isopropyl alcohol and pure water each for 5 minutes, and then cleaned by exposure to ultraviolet rays and ozone for 30 minutes. Then, the ITO substrate was provided to a vacuum deposition apparatus.
  • Compound HT3 and F4-TCNQ were vacuum-deposited on the ITO substrate to a weight ratio of 98:2 to form a hole injection layer having a thickness of 100 ⁇
  • Compound HT3 was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 1,400 ⁇
  • Compounds 1-1, 2-30, and 3-20 were co-deposited on the hole transport layer to a weight ratio of 50:50:3 to form an emission layer having a thickness of 400 ⁇ .
  • Compound ET-1 and LiQ were co-deposited on the emission layer to a weight ratio of 50:50 to form an electron transport layer having a thickness of 310 ⁇ .
  • LiQ was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 ⁇
  • Mg and Ag were co-deposited on the electron injection layer to a weight ratio of 130:10 to form a cathode having a thickness of 130 ⁇ , thereby completing the manufacture of an organic light-emitting device.
  • Organic light-emitting devices were manufactured in substantially the same manner as in Example 15, except that Compounds shown in Table 2 were each used in forming an emission layer.
  • the organic light-emitting device may have high efficiency and a long lifespan.
  • spatially relative terms such as “beneath,” “below,” “lower,” “under,” “above,” “upper,” and the like, may be used herein for ease of explanation to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or in operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” or “under” other elements or features would then be oriented “above” the other elements or features. Thus, the example terms “below” and “under” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein should be interpreted accordingly.
  • the terms “substantially,” “about,” and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art. Further, the use of “may” when describing embodiments of the present disclosure refers to “one or more embodiments of the present disclosure.” As used herein, the terms “use,” “using,” and “used” may be considered synonymous with the terms “utilize,” “utilizing,” and “utilized,” respectively. Also, the term “exemplary” is intended to refer to an example or illustration.
  • any numerical range recited herein is intended to include all sub-ranges of the same numerical precision subsumed within the recited range.
  • a range of “1.0 to 10.0” is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6.
  • Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein, and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
US16/546,041 2019-01-22 2019-08-20 Organic light-emitting device and display apparatus including the same Pending US20200235303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0008342 2019-01-22
KR1020190008342A KR102541446B1 (ko) 2019-01-22 2019-01-22 유기 발광 소자 및 이를 포함하는 표시 장치

Publications (1)

Publication Number Publication Date
US20200235303A1 true US20200235303A1 (en) 2020-07-23

Family

ID=67850937

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/546,041 Pending US20200235303A1 (en) 2019-01-22 2019-08-20 Organic light-emitting device and display apparatus including the same

Country Status (5)

Country Link
US (1) US20200235303A1 (de)
EP (1) EP3686947B1 (de)
JP (2) JP7250589B2 (de)
KR (1) KR102541446B1 (de)
CN (1) CN111463352A (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210210694A1 (en) * 2018-09-20 2021-07-08 Lg Chem, Ltd. Organic light emitting diode
EP4033558A1 (de) * 2021-01-26 2022-07-27 Samsung Display Co., Ltd. Lichtemittierende vorrichtung und elektronische einrichtung damit
EP4230630A4 (de) * 2021-01-04 2024-05-22 Lg Chemical Ltd Neuartige verbindung und organische lichtemittierende vorrichtung damit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021008374A1 (zh) * 2019-07-18 2021-01-21 清华大学 一种新型化合物及其应用及采用该化合物的有机电致发光器件
KR20220161338A (ko) * 2020-03-31 2022-12-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
TW202138543A (zh) * 2020-03-31 2021-10-16 日商日鐵化學材料股份有限公司 有機電場發光元件
EP4206301A1 (de) 2020-08-28 2023-07-05 NIPPON STEEL Chemical & Material Co., Ltd. Organisches elektrolumineszenzelement
CN112174992B (zh) * 2020-09-30 2023-05-02 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN114621270B (zh) * 2020-12-09 2024-04-12 清华大学 一种稠环芳香族化合物及其在电致发光器件中的应用
WO2022146123A1 (ko) * 2021-01-04 2022-07-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN112939985B (zh) * 2021-01-22 2021-11-16 陕西莱特光电材料股份有限公司 一种有机化合物以及使用其的电子元件和电子装置
CN114171692B (zh) * 2021-11-26 2023-09-01 昆山国显光电有限公司 一种有机电致发光器件及显示装置
CN114853725B (zh) * 2022-05-26 2024-03-05 武汉天马微电子有限公司 有机光电化合物、显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086745A1 (en) * 2002-03-22 2004-05-06 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
KR20120029751A (ko) * 2010-09-17 2012-03-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120078301A (ko) * 2010-12-31 2012-07-10 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
US20150340618A1 (en) * 2013-05-16 2015-11-26 Cheil Industries Inc. Luminescent material for organic optoelectric device and organic optoelectric device and display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649683B1 (ko) * 2013-09-06 2016-08-19 제일모직 주식회사 유기광전자소자용 조성물, 유기 광전자 소자 및 표시 장치
KR102417121B1 (ko) * 2014-10-17 2022-07-06 삼성디스플레이 주식회사 유기 발광 소자
TWI688137B (zh) * 2015-03-24 2020-03-11 學校法人關西學院 有機電場發光元件、顯示裝置以及照明裝置
KR102615636B1 (ko) * 2016-01-13 2023-12-20 삼성디스플레이 주식회사 유기 발광 소자
US20190058124A1 (en) * 2016-02-10 2019-02-21 Kwansei Gakuin Educational Fondation Delayed fluorescence organic electroluminescent element
KR20220084200A (ko) * 2016-04-26 2022-06-21 가꼬우 호징 관세이 가쿠잉 유기 전계 발광 소자
KR20180000384A (ko) * 2016-06-22 2018-01-03 삼성디스플레이 주식회사 유기 발광 소자
WO2018150832A1 (ja) * 2017-02-16 2018-08-23 学校法人関西学院 有機電界発光素子
WO2018181188A1 (ja) * 2017-03-31 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
KR20210050537A (ko) * 2018-08-23 2021-05-07 가꼬우 호징 관세이 가쿠잉 유기전계 발광소자, 표시장치, 조명장치, 발광층형성용 조성물, 및 화합물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086745A1 (en) * 2002-03-22 2004-05-06 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
KR20120029751A (ko) * 2010-09-17 2012-03-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120078301A (ko) * 2010-12-31 2012-07-10 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
US20150340618A1 (en) * 2013-05-16 2015-11-26 Cheil Industries Inc. Luminescent material for organic optoelectric device and organic optoelectric device and display device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Huh et al., machine translation of KR-20120078301-A (2012) pp. 1-51. (Year: 2012) *
Shin et al., machine translation of KR-20120029751-A (2012) pp. 1-26. (Year: 2012) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210210694A1 (en) * 2018-09-20 2021-07-08 Lg Chem, Ltd. Organic light emitting diode
US11968892B2 (en) * 2018-09-20 2024-04-23 Lg Chem, Ltd. Organic light emitting device containing a light emitting layer an anthracene derivative, and an organic material layer containing a compound including as sustituents a cyano group and a nitrogen-containing heteroring
EP4230630A4 (de) * 2021-01-04 2024-05-22 Lg Chemical Ltd Neuartige verbindung und organische lichtemittierende vorrichtung damit
EP4033558A1 (de) * 2021-01-26 2022-07-27 Samsung Display Co., Ltd. Lichtemittierende vorrichtung und elektronische einrichtung damit

Also Published As

Publication number Publication date
KR102541446B1 (ko) 2023-06-09
JP2023093452A (ja) 2023-07-04
EP3686947B1 (de) 2023-04-12
CN111463352A (zh) 2020-07-28
EP3686947A1 (de) 2020-07-29
KR20200091544A (ko) 2020-07-31
JP7250589B2 (ja) 2023-04-03
JP2020120096A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
US11690287B2 (en) Organic light-emitting device and display apparatus including the same
US20200235303A1 (en) Organic light-emitting device and display apparatus including the same
US10367147B2 (en) Organic light-emitting device
US20190115538A1 (en) Organic light-emitting device and flat display apparatus including the same
US10680195B2 (en) Organic light-emitting device
US20180158881A1 (en) Organic light-emitting device
US20160351817A1 (en) Organic light-emitting device
US11329230B2 (en) Organic light-emitting device
US11316125B2 (en) Organic light-emitting device and display apparatus including the same
US20200308209A1 (en) Organic light-emitting device and electronic apparatus
US10720473B2 (en) Organic light-emitting device
US20220393114A1 (en) Organic light-emitting device
US11569454B2 (en) Organic light-emitting device and display apparatus including the same
US20230157046A1 (en) Organic light-emitting device and electronic apparatus including the same
US10693076B2 (en) Condensed-cyclic compound and organic light-emitting device comprising the same
US20170373267A1 (en) Organic light-emitting device
US20170170405A1 (en) Organic light-emitting device
US11417865B2 (en) Organic light-emitting device
US11283037B2 (en) Organic light-emitting device
US20200013961A1 (en) Organic light-emitting device
US20240023356A1 (en) Organic light-emitting device and electronic apparatus including the same
US11462703B2 (en) Organic light-emitting device and apparatus including the same
US20170170403A1 (en) Organic light-emitting device
US20170179204A1 (en) Organic light-emitting device
US20210399233A1 (en) Organic light-emitting device and apparatus including the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, SEULONG;NAIJO, TSUYOSHI;BAE, SUNGSOO;AND OTHERS;REEL/FRAME:050110/0762

Effective date: 20190613

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED