US20190292785A1 - Method for connecting precast segments tendon ducts and resulting structure - Google Patents

Method for connecting precast segments tendon ducts and resulting structure Download PDF

Info

Publication number
US20190292785A1
US20190292785A1 US16/361,533 US201916361533A US2019292785A1 US 20190292785 A1 US20190292785 A1 US 20190292785A1 US 201916361533 A US201916361533 A US 201916361533A US 2019292785 A1 US2019292785 A1 US 2019292785A1
Authority
US
United States
Prior art keywords
ducts
segments
recesses
segment
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/361,533
Other languages
English (en)
Inventor
Paul Arthur Bottomley
Boris COUSIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche Freyssinet SA
Original Assignee
Soletanche Freyssinet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche Freyssinet SA filed Critical Soletanche Freyssinet SA
Assigned to SOLETANCHE FREYSSINET reassignment SOLETANCHE FREYSSINET ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOTTOMLEY, PAUL ARTHUR, COUSIN, Boris
Publication of US20190292785A1 publication Critical patent/US20190292785A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/10Ducts
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing

Definitions

  • the present invention relates to the assembly of precast construction segments (PCS) for building pre-stressed structures such as post-tensioned concrete segmental structures.
  • PCS precast construction segments
  • These segments are preferably made in accordance with a match cast method to ensure a very closely fitting joint.
  • connection of ducts at the joint of two adjacent segments is exposed to a risk of infiltrations of various corroding substances such as deicing solutions and achieving a good seal at the joint if required.
  • grout is often injected into the ducts to create a mechanical bound between the tendons and the concrete of the segments and help protect the tendons from corrosion. This grout must not escape from the ducts during injection.
  • the joint between two consecutive segments can be made according to a so-called “dry joint” process where the segments are placed side by side without any interface product or according to a so-called “glued joint” process where an adhesive such as epoxy paste is introduced between the segments.
  • dry joint process where the segments are placed side by side without any interface product
  • glued joint process where an adhesive such as epoxy paste is introduced between the segments.
  • the sealing at the junction of ducts also needs to prevent the adhesive from penetrating into the ducts and hinder the further introduction of the tendons.
  • pneumatic tests are carried out to check the quality of the sealing before installing the tendons and injecting the grout. If leaks are detected in some ducts, the injection of grout is rendered more difficult and some extra work is needed to guarantee the tendons will be preserved from corrosion.
  • Some existing duct couplers are formed of many components and are expensive and complex to use.
  • FR-A-2 596 439 discloses a device to insert between sections of pre-stressing ducts, comprising a cylindrical sleeve engaged between the openings of two adjacent sections to ensure the continuity of the ducts, and an elastic seal surrounding the cylindrical sleeve to ensure sealing and compensate for the positioning variations and dimensional deviations of the adjacent segments which are assembled against each other.
  • WO 99/043910 discloses a device to engage in the ducts to connect the adjacent sections in a sealed manner.
  • An object of the present invention is thus to propose a simple and efficient solution to the problem of achieving a duct continuity that would pass the air tightness test mentioned above with repeatability and even in situations when the tendons are inclined in the webs.
  • a further object of the invention is to provide a solution that is reliable and easy to implement.
  • the invention achieves this goal thanks to a method for establishing an air-tight connection between post-tensioning tendon ducts of two consecutive precast segments of a structure, each segment being cast with a recess (also called a “box-out”) opening out on a jointing face of the segment leaving an access to duct ends, the method comprising:
  • air tight connection it is meant a connection that passes a pneumatic test usually performed for testing the quality of the connection for this type of structure and preferably a connection that passes the 0.1 bar test referred to above.
  • the sealing material is preferably a High Performance Concrete (HPC) and most preferably an Ultra High Performance Fibre Reinforced Concrete (UHPFRC).
  • HPC High Performance Concrete
  • UHPFRC Ultra High Performance Fibre Reinforced Concrete
  • UHPFRC provides an air-tight, long term durable “coupling” between the ducts which will not crack nor allow ingress of any contaminant due to its complete lack of porosity and extreme durability.
  • the method provides a simple way to obtain the air tightness connection at a similar or lower cost compared to the use of known couplers.
  • the invention allows obtaining an air tightness connection even for tendons that are significantly deviated at the joints.
  • connection of the duct ends of a pair at step a) does not need to provide air-tightness as if suffices it prevents ingress of the UHPFRC into the ducts during filling of the recesses with that material.
  • thermo-retractable sleeve that is pre-fixed on one of the duct ends of a pair of ducts.
  • the length of such sleeve ranges for example from 70 mm to 130 mm.
  • the sleeve is slid over and sealed onto the pair of ducts before UHPFRC is poured.
  • This sleeve is a non-structural element that aims to prevent ingress of the UHPFRC into the ducts when UHPFRC is poured into the recesses.
  • the sliding and sealing of the sleeve may take place or not after the tendons are threaded into the ducts.
  • an adhesive tape wounded around the duct ends may also be used.
  • the segments are deprived of reinforcement bars protruding out into the recesses, as the use of UHPFRC negates the need to reinforce the infill concrete connection.
  • Step b) may take place concurrently with tendon threading.
  • HPC concrete is a concrete with a compressive strength equal or exceeding 70 MPa.
  • UHPRFC concrete is a concrete with a compressive strength usually exceeding 150 MPa, and of at least 120 MPa.
  • the UHPRFC comprises fibres that ensure tensile strength with a ductile behavior.
  • the UHPRFC has a relatively high content of binder, which leads to the absence of capillary porosity.
  • the UHPRFC Compared to conventional concrete mix, the UHPRFC has a dense matrix.
  • the water/binder ratio (w/b) of UHPFRC typically lies between 0.16 and 0.2.
  • the recesses are provided in a lower slab and/or an upper slab of the segments and open out into the top surface of the lower slab and/or upper slab. These recesses may be adjacent the lateral walls (also called “webs”) of the segments.
  • the segments are made using match casting technique.
  • the segments may be box segments, for example one-cell box segments.
  • the method may comprise testing the air-tightness of the connection of the ducts.
  • a further aspect of the invention is a method for casting a segment, comprising:
  • the reinforcing bars may be curtailed so as not to extend within the recesses.
  • a further aspect of the invention is a method for building a segmental structure comprising assembling precast segments, preferably segments with match cast joints, in the continuity of each other, each segment comprising post-tensioning tendon ducts, the method comprising implementing the method as defined above for connecting the ducts.
  • a further aspect of the invention is a segmental structure, in particular a structure made in accordance with the method as defined above, preferably a bridge deck, comprising at least two precast segments incorporating ducts in which tensioning tendons are threaded, the ducts being connected together at the joint of the segments by at least one block of a sealing material, preferably Ultra High Performance Fibre Reinforced Concrete (UHPFRC), extending around duct ends of the two adjacent segments, this block extending into adjacent recesses of the segments each opening out on a jointing face of the segments.
  • UHPFRC Ultra High Performance Fibre Reinforced Concrete
  • the joint between the two consecutive segments preferably comprise two such blocks. These blocks preferably each extend inwardly of the adjacent lateral wall (or web) of the segments, in the bottom slab. The blocks preferably open out on top of the bottom slab, in the corner thereof.
  • FIG. 1 is a partial perspective view of a segmental structure made in accordance with the present invention
  • FIG. 2 is a front view along arrow II of FIG. 1 ;
  • FIG. 3 shows detail III of FIG. 2 ;
  • FIG. 4 represents a joint between two consecutive segments with a bundle of tendon ducts shown in transparency
  • FIG. 5 is a partial longitudinal section view of a joint taken where the ducts connect
  • FIG. 6 shows a jointing face of a precast segment before assembly with a next segment
  • FIGS. 7A, 7B, and 7C each illustrate the formation of a connection between a pair of ducts.
  • segmental structure 1 such as a bridge deck made of several precast segments 10 with match-cast coupling surfaces.
  • Each segment 10 is in this example a one-cell box concrete segment comprising a bottom slab 11 , two symmetrically inclined lateral walls (or webs) 12 and a top slab 13 extending in cantilever fashion beyond the walls (or webs) 12 to define a width of the bridge deck.
  • each segment 10 is delimited by a rear face 14 and a front face 15 .
  • the rear face 14 is intended to come into contact against the front face 15 of the previous segment installed on the structure during construction.
  • the front face 15 of each segment 10 is intended to receive the rear face 14 of the next segment 10 .
  • the jointing faces 14 , 15 of the adjacent segments 10 are provided with a number of interlocking reliefs 17 ensuring a good shear resistance of the joint and helping relative positioning of the segments as well when they are brought together.
  • these reliefs 17 are located on the end faces of the lateral walls (or webs) 12 of the segments 10 .
  • the interlocking reliefs 17 may comprise raised keys each in the shape of a rectangular prism with tapered sides to provide mechanical interlock for accurate location and shear resistance.
  • the segments 10 are match cast, which means that when casting a segment, the jointing face is match cast against its previously cast mating segment so that this segment can act as a former or as part of the mould for this new segment.
  • Each segment 10 comprises a number of longitudinal tendon ducts 20 , intended to receive post tensioning tendons. These tendons are anchored at their ends by means of any appropriate anchoring devices (not shown).
  • the ducts 20 are connected through blocks 30 of a sealing material that prevents ingress of corrosive substances and provides mechanical resistance.
  • this sealing material is UHPFRC.
  • the blocks 30 extend at the joint of two consecutive segments 10 on the bottom slab 11 near the lateral walls (or webs) 12 .
  • Each segment 10 is cast with a recess 40 opening out in the jointing face of the segment 10 and in the top face of the bottom slab 11 , as shown in FIG. 6 .
  • an insert (not shown) with appropriate shape is placed in the mould used to cast the segment 10 .
  • This insert is preferably reusable.
  • the bottom slab 11 comprises reinforcing bars (not shown) but these bars are curtailed not to extend into the recess 40 . This facilitates the casting thereof.
  • each recess 40 may taper inwardly going upward as shown in FIG. 7A . This helps retain the block 30 in the bottom slab 11 , as the two rear faces 43 converge upward.
  • the outer side face 44 of the recess 40 may extend in the continuity and alignment of the inner face of the adjacent wall (or web) 12 , as shown in FIG. 3 .
  • thermo-retractable sleeve 21 may be pre-fixed (for example threaded or installed otherwise) on one duct end of each pair, as shown, and slid over the other duct end as shown in FIG. 7B . Then the sleeve 21 is sealed on the ducts 20 . This connection prevents ingress of UHPFRC into the ducts 20 .
  • UHPFRC is then poured into the space 47 to fill in the recesses 40 and make the block 30 extending around the duct ends 20 , as shown in FIG. 7C .
  • UHPFRC is expected to reach a strength of far more than 50 MPa in less than 24 hours and exhibit a stiffness at least equal to that of equivalent strength normal concrete so the stressing operation is not impacted.
  • the filling in of the recesses 40 takes place concurrently with tendon threading inside the ducts.
  • Each block 30 connects the incorporated ducts 20 in an air-tight fashion and enables the connection to pass the 0.1 bar pneumatic test defined above. Furthermore, each block 30 provides the required mechanical resistance at the junction.
  • Each block 30 may have a depth d 7 (measured along the longitudinal axis of the structure) ranging between 150 and 350 mm, for example of about 250 mm.
  • the thickness d 1 of UHPFRC extending below the ducts 20 may range from 40 to 60 mm, being for example of about 50 mm.
  • the thickness d 2 of the bottom slab 11 below each recess 40 may range from 25 to 35 mm, being for example of about 30 mm.
  • the thickness d 3 of UHPFRC above the ducts 20 where the blocks 30 are thinner, i.e. at their inner side, may range from 75 to 85 mm, being for example of about 80 mm.
  • the width d 4 of the blocks 30 may range from 750 to 1250 mm, being for example of about 1050 mm.
  • the blocks 30 may have a bottom face 41 that is inclined downwards toward the jointing face.
  • the upper edge of the face 41 may be spaced from the ducts 20 by a distance d 6 as shown in FIG. 5 that ranges from 15 to 25 mm, being for example of about 20 mm.
  • the thickness d 5 of UHPFRC at the lower edge of face 41 below the ducts 20 is higher and may range from 50 to 60 mm, being for example of about 55 mm.
  • the volume of infill UHPFRC may be about 0.2 m 3 per joint and may be prepared easily on site.
  • the invention applies to other segmental structures, for example to two-cell box segments 10 .
  • tendon ducts may be provided elsewhere on the segments, for example in the top slab and/or in the lateral walls (or webs).
  • the number of pairs of ducts 20 connected by each block 30 may vary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
US16/361,533 2018-03-23 2019-03-22 Method for connecting precast segments tendon ducts and resulting structure Abandoned US20190292785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18305330.5A EP3543418B1 (de) 2018-03-23 2018-03-23 Verfahren zum verbinden von spanngliedern von vorgefertigten segmenten und resultierende struktur
EP18305330.5 2018-03-23

Publications (1)

Publication Number Publication Date
US20190292785A1 true US20190292785A1 (en) 2019-09-26

Family

ID=61868481

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/361,533 Abandoned US20190292785A1 (en) 2018-03-23 2019-03-22 Method for connecting precast segments tendon ducts and resulting structure

Country Status (2)

Country Link
US (1) US20190292785A1 (de)
EP (1) EP3543418B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326345B2 (en) * 2018-11-23 2022-05-10 Korea Institute Of Civil Engineering And Building Technology Hollow composite beam using dual-web and construction method thereof
JP7428613B2 (ja) 2020-08-20 2024-02-06 三井住友建設株式会社 プレキャストコンクリート壁内埋設管の継手部材及びその使用方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248269B (de) * 1963-01-16 1967-08-24 Hochtief Ag Hoch Tiefbauten Laengenveraenderliche Huellrohrmanschette fuer Spanngliedkanaele
US3897619A (en) * 1973-05-08 1975-08-05 Campenon Bernard Europe Method for placing a connecting sleeve between two pipe sections
US4895480A (en) * 1987-09-11 1990-01-23 Signode Corporation Method and apparatus for formation of a tunnel lining
JPH07127304A (ja) * 1993-10-30 1995-05-16 Hatsumi Sangyo Kk Pcコンクリートパネルおよびその施工方法
US6389764B1 (en) * 1998-02-27 2002-05-21 Freyssinet International (Stup) Method for making prefabricated structural elements, and prestressed structure produced with the structural
US7104017B1 (en) * 1999-05-17 2006-09-12 Anderson Technology Corporation Box girder structure for bridge provided with outer cable and method of building the box girder
US20100088985A1 (en) * 2008-10-06 2010-04-15 Soletanche Freyssinet Connection Of Prestressing Sheath Sections Of A Structure Having A Series Of Precast Elements
JP2017078268A (ja) * 2015-10-19 2017-04-27 鹿島建設株式会社 プレキャスト部材の接合方法
US20170275901A1 (en) * 2014-07-31 2017-09-28 Pgpi - Marcas E Patentes, S.A Construction process of structures with empty segments and construction system of structures with empty segments
US20170350122A1 (en) * 2016-05-11 2017-12-07 Joel Foderberg System for insulated concrete composite wall panels
US9988775B1 (en) * 2017-12-04 2018-06-05 The Florida International University Board Of Trustees Concrete i-beam for bridge construction
US20180363290A1 (en) * 2017-06-13 2018-12-20 Tindall Corporation Methods and apparatuses for connecting concrete structural elements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1559491B1 (de) * 1965-03-12 1970-06-04 Walter Dipl Ing Christmann Fugenausbildung zwischen betonfertigbauteilen mit querlaufendem spanngliedkanal sowie verfahren zu ihrer herstellung
DE3824107A1 (de) * 1988-06-27 1990-03-15 Werner Zapf Aus mehreren stahlbetonfertigteilen zusammengefuegter baukoerper in einer spannbetonbauweise
US7686347B1 (en) * 2007-09-25 2010-03-30 Sorkin Felix L Couplers for use with ducts of concrete segmental construction
WO2012011915A1 (en) 2010-07-22 2012-01-26 Hewlett-Packard Development Company, L.P. Sql enumerator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248269B (de) * 1963-01-16 1967-08-24 Hochtief Ag Hoch Tiefbauten Laengenveraenderliche Huellrohrmanschette fuer Spanngliedkanaele
US3897619A (en) * 1973-05-08 1975-08-05 Campenon Bernard Europe Method for placing a connecting sleeve between two pipe sections
US4895480A (en) * 1987-09-11 1990-01-23 Signode Corporation Method and apparatus for formation of a tunnel lining
JPH07127304A (ja) * 1993-10-30 1995-05-16 Hatsumi Sangyo Kk Pcコンクリートパネルおよびその施工方法
US6389764B1 (en) * 1998-02-27 2002-05-21 Freyssinet International (Stup) Method for making prefabricated structural elements, and prestressed structure produced with the structural
US7104017B1 (en) * 1999-05-17 2006-09-12 Anderson Technology Corporation Box girder structure for bridge provided with outer cable and method of building the box girder
US20100088985A1 (en) * 2008-10-06 2010-04-15 Soletanche Freyssinet Connection Of Prestressing Sheath Sections Of A Structure Having A Series Of Precast Elements
US20170275901A1 (en) * 2014-07-31 2017-09-28 Pgpi - Marcas E Patentes, S.A Construction process of structures with empty segments and construction system of structures with empty segments
US10513858B2 (en) * 2014-07-31 2019-12-24 Pgpi—Marcas E Patentes, S.A Construction process of structures with empty segments and construction system of structures with empty segments
JP2017078268A (ja) * 2015-10-19 2017-04-27 鹿島建設株式会社 プレキャスト部材の接合方法
US20170350122A1 (en) * 2016-05-11 2017-12-07 Joel Foderberg System for insulated concrete composite wall panels
US20190284805A1 (en) * 2016-05-11 2019-09-19 Joel Foderberg System for insulated concrete composite wall panels
US20180363290A1 (en) * 2017-06-13 2018-12-20 Tindall Corporation Methods and apparatuses for connecting concrete structural elements
US10519659B2 (en) * 2017-06-13 2019-12-31 Tindall Corporation Methods and apparatuses for connecting concrete structural elements
US9988775B1 (en) * 2017-12-04 2018-06-05 The Florida International University Board Of Trustees Concrete i-beam for bridge construction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326345B2 (en) * 2018-11-23 2022-05-10 Korea Institute Of Civil Engineering And Building Technology Hollow composite beam using dual-web and construction method thereof
JP7428613B2 (ja) 2020-08-20 2024-02-06 三井住友建設株式会社 プレキャストコンクリート壁内埋設管の継手部材及びその使用方法

Also Published As

Publication number Publication date
EP3543418B1 (de) 2021-05-12
EP3543418A1 (de) 2019-09-25

Similar Documents

Publication Publication Date Title
US8806820B2 (en) Segments for building spliced prestressed concrete girder and method of manufacturing the segments
US9988775B1 (en) Concrete i-beam for bridge construction
KR100696441B1 (ko) 프리캐스트 프리스트레스트 철근콘크리트 바닥판, 이를구비한 교량 및 그 시공방법
US9644369B2 (en) Post-tension concrete leave out splicing system and method
KR100323825B1 (ko) 내부긴장재를갖는프리캐스트콘크리트바닥판을이용한교량바닥판시스템
KR100860591B1 (ko) Pc블럭을 이용한 수직구조물 축조공법
CN108385505B (zh) 一种用于uhpc节段预制箱梁的接缝体系及其施工方法、箱梁桥
KR102025048B1 (ko) 프리캐스트 콘크리트 바닥판 모듈
JP2007239301A (ja) 間詰めコンクリートを介在させたプレキャストコンクリート部材間一体化方法
US20190292785A1 (en) Method for connecting precast segments tendon ducts and resulting structure
US20100088985A1 (en) Connection Of Prestressing Sheath Sections Of A Structure Having A Series Of Precast Elements
JP5718133B2 (ja) プレキャスト床版と、その継手構造
KR100909277B1 (ko) 강관이 구비된 교각 기초 및 이를 이용한 교각의 조립 구조
CN211368347U (zh) 桥面板及钢混组合梁
CN210067139U (zh) 一种装配式建筑墙体构件
CN112681117A (zh) 连接装置及桥梁墩柱与承台连接处的施工方法
CN109137727B (zh) 一种基于早强uhpc的干湿组合节段预制拼装接缝系统及方法
KR100951670B1 (ko) 분절형 프리캐스트 프리스트레스트 콘크리트 거더 및 그 시공방법
CN107288024B (zh) 装配式梁体及其施工方法
KR101023172B1 (ko) 측면에서의 긴장이 가능한 분절형 프리캐스트 프리스트레스트 콘크리트 거더 및 그 시공방법
KR101642049B1 (ko) 프리캐스트 콘크리트 구조물의 쉬스 연결용 부재 및 이를 이용한 프리캐스트 콘크리트 구조물의 시공 방법
KR100540373B1 (ko) 세그먼트 프리플렉스 합성빔의 가설 공법을 이용한교량시공방법
KR20060112874A (ko) 분절 프리스트레스트 콘크리트 거더의 세그먼트 이음 방법
CN110747735A (zh) 钢-混凝土组合梁预制混凝土桥面板的锚固连接装置
CN110539398A (zh) 预制桥面板钢混组合梁的施工方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLETANCHE FREYSSINET, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOTTOMLEY, PAUL ARTHUR;COUSIN, BORIS;REEL/FRAME:049475/0954

Effective date: 20190604

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION