US20190171999A1 - Methods of and systems for suppressing wildfire embers from entering into the interior spaces of buildings during wildfires - Google Patents

Methods of and systems for suppressing wildfire embers from entering into the interior spaces of buildings during wildfires Download PDF

Info

Publication number
US20190171999A1
US20190171999A1 US16/055,001 US201816055001A US2019171999A1 US 20190171999 A1 US20190171999 A1 US 20190171999A1 US 201816055001 A US201816055001 A US 201816055001A US 2019171999 A1 US2019171999 A1 US 2019171999A1
Authority
US
United States
Prior art keywords
wildfire
ember
fire
misting
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/055,001
Inventor
Stephen Conboy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mighty Fire Breaker LLC
Original Assignee
M Fire Suppression Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/829,914 external-priority patent/US10260232B1/en
Priority claimed from US15/866,451 external-priority patent/US10653904B2/en
Priority claimed from US15/866,454 external-priority patent/US10332222B1/en
Priority claimed from US15/866,456 external-priority patent/US10311444B1/en
Priority claimed from US15/925,793 external-priority patent/US20190169841A1/en
Priority claimed from US16/039,291 external-priority patent/US20190168410A1/en
Priority to US16/055,001 priority Critical patent/US20190171999A1/en
Application filed by M Fire Suppression Inc filed Critical M Fire Suppression Inc
Priority to US16/104,130 priority patent/US10814150B2/en
Priority to US16/107,473 priority patent/US20190168047A1/en
Assigned to M-Fire Suppression, Inc. reassignment M-Fire Suppression, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CONBOY, STEPHEN
Publication of US20190171999A1 publication Critical patent/US20190171999A1/en
Assigned to M-FIRE HOLDINGS LLC reassignment M-FIRE HOLDINGS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: M-Fire Suppression, Inc.
Assigned to MIGHTY FIRE BREAKER LLC reassignment MIGHTY FIRE BREAKER LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: M-FIRE HOLDINGS LLC
Assigned to MIGHTY FIRE BREAKER LLC reassignment MIGHTY FIRE BREAKER LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: M-FIRE HOLDINGS LLC
Assigned to MIGHTY FIRE BREAKER LLC reassignment MIGHTY FIRE BREAKER LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: M-FIRE HOLDINGS LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/10Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/942Building elements specially adapted therefor slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/70Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of wood
    • E04B2/706Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of wood with supporting function
    • E04B2/707Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of wood with supporting function obturation by means of panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/24Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06018Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding
    • G06K19/06028Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding using bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/0023Building characterised by incorporated canalisations

Definitions

  • the present Patent Application is a Continuation-in-Part (CIP) of: copending application Ser. No. 15/866,451 filed Jan. 9, 2018; co-pending application Ser. No. 16/039,291 filed Jul. 18, 2018 which is a Continuation-in-Part (CIP) of copending patent application Ser. No. 15/874,874 filed Jan. 18, 2018, which is a Continuation-in-Part (CIP) of copending patent application Ser. No. 15/866,454 filed Jan. 9, 2018 which is a Continuation-in-Part (CIP) of copending patent application Ser. No. 15/829,914 filed Dec. 2, 2017; copending U.S. patent application Ser. No. 15/925,793 filed Mar.
  • the present invention is directed towards improvements in science and technology applied in the defense of private and public property, and human and animal life, against the ravaging and destructive forces of wildfires whether caused by lightening, accident, arson or terrorism.
  • this mobile application is to provide users with (i) notifications on where wildfires are burning at a given moment in time, (ii) notifications on the risks of wildfire in certain regions, (iii) helpful ways of preparing for wildfires, and (iv) other useful information to help people stay out of harms way during a wildfire.
  • this wildfire notification system does little to help home and business owners to proactively defend their homes and business against raging forces of wildfires and wildfire ember storms, in any meaningful way.
  • a primary object of the present is to provide a new and improved wildfire ember suppressing filter system adapted for refitting into the standard size holes formed in the air-flow board mounted between each set of rafter beams in the roof structure of a wood-framed building, wherein the wildfire ember suppressing filter comprises a filter fabric infused with a anti-fire (AF) liquid that breaks or interferes with the free-radical chemical reactions of the combustion phase of fire burning on the outer surface of a combusting wildfire ember.
  • AF anti-fire
  • Another object of the present invention is to provide a novel system and devices for filtering and extinguishing wildfire embers from entering into the attics of wood-framed buildings when exposed to ember storms generated during a wildfire, and a kit and method for installing the same.
  • Another object of the present invention is to provide a new and improved method of and apparatus for automatically producing a cloud of wildfire ember suppressing mist about or in the vicinity of air-inflow entry points in a wood-framed building during a wildfire storm, wherein the cloud of wildfire ember suppressing mist consists of billions of wildfire ember suppressing microscopic droplets continuously generated by forcing environmentally clean aqueous-based anti-fire (AF) liquid through one or more misting nozzles under a predetermined hydraulic pressure so that clouds of wildfire ember suppressing mist are generated for suppressing and extinguishing wildfire embers flying about the building and into the air-inflow entry points, to reduce the risk that such flying wildfire embers do not enter the building and start a fire within the building during the wildfire storm, while avoiding the shortcomings and drawbacks of prior methods and apparatus.
  • AF aqueous-based anti-fire
  • Another object of the present invention is to provide a new and improved automated wildfire ember misting-type suppression system for installation about a wood-framed building so as to automatically detect when a wildfire is in the vicinity of the building and generate a cloud of wildfire ember suppressing mist about the building so as to suppress and/or extinguish flying wildfire embers seeking to find a point of entry into the building during an active wildfire storm.
  • Another object of the present invention is to provide a new and improved automated wildfire ember misting-type suppression system that employs an electronic wildfire ember detection device using infra-red (IR) and other thermal-imaging sensors, and relative humidity sensors, to automatically detect the presence of a wildfire in the vicinity of the wood-framed building and automatically generate a cloud of wildfire ember suppressing mist consisting of microscopic droplets of clean anti-fire (AF) liquid that (i) instantly evaporates into vapor when contacting a flying wildfire ember and (ii) breaks and/or interferes with free-radical chemical reactions supported on the surface of each combusting wildfire ember flying in the wildfire storm moving about the wood-framed building.
  • IR infra-red
  • AF clean anti-fire
  • Another object of the present invention is to provide a new and improved automated wildfire suppression system having a lawn misting subsystem that supports two modes of operation: wherein when no wildfire storm is detected, the lawn misting subsystem automatically mists the lawn with water supplied from a local water supply; and when a wildfire storm is detected, the lawn misting subsystem automatically mists the lawn with an environmentally anti-fire (AF) liquid supplied from a local supply of anti-fire (AF) liquid.
  • AF environmentally anti-fire
  • Another object of the present invention is to provide a novel method of suppressing hot combusting wildfire embers flying above ground in a wildfire ember storm encircling a wood-framed building, by automatically detecting the presence of a wildfire storm in the vicinity of the wood-framed building, and in response thereto, automatically generating clouds of wildfire ember suppressing mist about the an-inflow entry points of the wood-framed building, wherein the wildfire ember suppressing mist consists of billions of microscopic droplets of environmentally anti-fire (AF) liquid, mixed with water, and forced through misting nozzles under hydraulic pressure to support suitable flow rates required to suppress and extinguish flying wildfire embers seeking to enter into the wood-framed building during the wildfire ember storm, by way of the microscopic misting droplets (i) instantly evaporating into vapor when contacting a flying wildfire ember and (ii) breaking and/or interferes with free-radical chemical reactions supported on the surface of each combusting wildfire ember flying in the
  • Another object of the present invention is to provide a new and improved system for wildfire ember suppression and home defense system, wherein each home defense system includes a GPS-tracking and radio-controlled circuit to automatically monitor the anti-fire (AF) liquid level in its storage tank, and automatically generate electronic refill orders sent to a command center, so that a third-party service can automatically replenish the tanks of such home-based systems with anti-fire liquid when the fluid level falls below a certain level in the GPS-tracked tank.
  • AF anti-fire
  • Another object of the present invention is to provide method of and system and network for managing the supply, delivery and spraying/misting of environmentally-clean anti-fire (AF) liquid material on private and public properties to reduce the risks of damage and/or destruction to property and life caused by wildfires.
  • AF environmentally-clean anti-fire
  • Another object of the present is to provide method of reducing the risks of damage to private property due to wildfires by centrally managed application of anti-fire chemical liquid spray to ground cover and building surfaces prior to arrival of the wildfires.
  • Another object of the present is to provide method of reducing the risks of damage to private property due to wildfires using a global positioning satellite (GPS) system and mobile communication messaging techniques, to direct the spray application of clean anti-fire chemical liquid prior to the arrival of a wildfire on a specific parcel of property, and the automated misting application of clean anti-fire chemical liquid during the presence of the wildfire storm on the property.
  • GPS global positioning satellite
  • Another object of the present invention is to provide a new and improved system for wildfire suppression and home defense system, wherein each home defense spray system includes a GPS-tracking and radio-controlled circuit board to remotely monitor the location of each location-deployed home defense spray system and automatically monitor the anti-fire chemical liquid level in its storage tank, and automatically generate electronic refill orders sent to the command center, so that a third-party service can automatically replenish the tanks of such home-based systems with anti-fire liquid when the fluid level falls below a certain level in the GPS-tracked tank.
  • Another object of the present invention is to provide a new and improved system for wildfire suppression and home defense system, wherein the mobile application supporting the following functions: (i) sends automatic notifications from the command center to home owners with the mobile application, instructing them to spray their property and home at certain times with anti-fire chemical liquid in their tanks; (ii) the system will automatically monitor consumption of sprayed anti-fire chemical liquid and generate auto-replenish order via its onboard GSM-circuits so as to achieve compliance with the home spray-based wildfire-defense program, and report anti-fire liquid levels in each home-owner tank; and (iii) show status of wildfire risk in the region, and actions to the taken before wildfire outbreak.
  • Another object of the present invention is to provide an electronic wildfire ember detection network comprising a wireless network of wildfire ember detectors mounted on a network of buildings covering a significantly large area, so that early detection of a GPS-specified wildfire can be transmitted to other electronic wirefire ember detectors on other houses to provide an awareness of a wirefire present in the vicinity and automated preparation for the wildfire, in terms of automated cloud misting operations of clean anti-fire (AF) chemical liquid to inhibit and suppress wildfire embers and fire when they arrived on the premises of the protected building.
  • AF clean anti-fire
  • Another object of the present invention is to provide a wireless system for managing the supply, delivery, spraying/misting-application of environmentally-clean anti-fire (AF) liquid over the surfaces of private and public property to reduce the risks of damage and/or destruction caused by wildfires and wildfire embers.
  • AF environmentally-clean anti-fire
  • Another object of the present invention is to provide a new and improved system for spraying a defensive path around a wood-framed building out in front of wildfires to make sure that an environmentally-safe fire break, created by the spray application of anti-fire (AF) liquid, defends homes from the destructive forces of raging wildfires.
  • AF anti-fire
  • Another object of the present invention is to provide a new and improved system and method of mitigating the damaging effects of wildfires by spraying environmentally-clean anti-fire (AF) chemical liquid in advance of wildfires, that do not depend on water to extinguish fire, such that, even after a month or two after spray application on dry brush around the neighborhood, the anti-fire chemical continues to work by stalling the ability of a fire to advance and consume homes.
  • AF environmentally-clean anti-fire
  • Another object of the present invention is to provide a new wildfire-protected storage shed for installation near a building for storing and protecting the pumping system, CFIC liquid storage tank, and controller associated with the automatic wildfire ember suppression system of the present invention, during wildfire ember storms.
  • Another object of the present invention is to provide an environmentally-clean anti-fire chemical lawn spray paint that provides a significant defense against wildfires (i.e. a chemical wildfire break) by providing the dried grass with clean chemicals that break the free-radical chemical reactions in the combustion phase of a burning wildfire, thereby reducing the risks of wildfires to neighboring homes and buildings.
  • wildfires i.e. a chemical wildfire break
  • Another object of the present invention is to provide an environmentally-clean anti-fire chemical mulch or ground spray paint that provides a significant defense against wildfires (i.e. a chemical wildfire break) by providing the dried mulch and other organic material with clean chemicals that break the free-radical chemical reactions in the combustion phase of a burning wildfire, thereby reducing the risks of wildfires to neighboring homes and buildings.
  • wildfires i.e. a chemical wildfire break
  • FIG. 1 is a graphical image showing a wood-framed house on a parcel of private property surrounded by brush and trees, and vulnerable to a wildfire outbreak;
  • FIG. 2A is perspective view of a wood-framed house during construction showing the rafter beams, and the attic air-inflow baffle board with a set of drilled air holes covered by a mesh screen, and mounted between the rafter beams to prevent small animals from entering the attic area of the building, through the soffit region, after construction is completed;
  • FIG. 2B is a perspective view of the attic air-inflow baffle board shown in FIG. 2A , showing its drilled air holes, covered by mesh screen on the rear surface of the board;
  • FIG. 3A is a conventional closable attic louver vent system that can be opened and closed as required during a wildfire ember storm;
  • FIG. 3B is a front view of the closable attic louver vent system shown in FIG. 3A ;
  • FIG. 3C is a rear view of the closable attic louver vent system shown in FIGS. 3B and 3C ;
  • FIG. 4 is a perspective view of a conventional soffit provided with air vents for roof and attic ventilation;
  • FIG. 5A is a perspective view of a conventional soffit structure on a wood-framed house, showing the installation of a closable soffit vent device;
  • FIG. 5B is a perspective view of the conventional closable soffit vent of FIG. 5A , shown arranged in its opened vent configuration;
  • FIG. 5C is a perspective view of the conventional closable soffit vent of FIG. 5A , shown arranged in its closed vent configuration;
  • FIG. 6A is a graphical illustration showing the impact and dynamics of a wildfire being driven by prevailing wind, with radiant heat and direct flames coming into contact with a conventional wood-framed building, while burning debris including wildfire embers are flying all around and into the wood-frame building during a wildfire storm;
  • FIG. 6B is a graphical illustration of a wildfire ember storm generated by a wildfire ranging across a wooded field, producing streams of burning/combusting embers of organic material that are flying through the air currents generated by the heat of the wildfire and prevailing winds;
  • FIG. 8 is a perspective view of the wildfire ember filtering and suppression system of the present invention shown being installed in the air-inflow baffle board mounted between each pair of roof rafter boards of a wood-framed building, wherein the wildfire ember filtering and suppression system of the present invention comprises a thin cylindrical shaped piece of air-passing cloth, fabric or thermally-resistant material, infused with an environmentally anti-fire (AF) chemical liquid which when dried, provides a Class-A fire protective air filtering mechanism through which air can flow, but blocking and suppressing any combusting wildfire embers flowing into the air-vent filter during a wildfire storm;
  • AF environmentally anti-fire
  • FIG. 8A is a cross-sectional view of the wildfire ember filtering system installed in wood-framed roof rafter air-vent assembly of the building illustrated in FIG. 8 ;
  • FIG. 9 is a schematic representation of the wireless automated wildfire detection and suppression system network of the present invention designed for managing the supply, delivery and misting-application of environmentally-clean anti-fire (AF) chemical liquid on private and public property to reduce the risks of property damage and/or destruction and harm to life caused by wildfires as disclosed on copending U.S. patent application Ser. No. 15/866,451 filed Jan. 9, 2018, incorporated herein by reference, in its entirety;
  • AF environmentally-clean anti-fire
  • FIG. 10 is a schematic representation of the automated wireless wildfire ember detection and suppression system of present invention, showing a wildfire ember detection module mounted on the top of each building in the wireless network receiving wirefire alerts and messages from neighboring modules which can scout for wildfires and alert other modules in the network in terms of GPS coordinates so that the individual properties can timely prepare for any such wildfire outbreaks in the vicinity, using the hybrid wildfire misting system of the present invention shown in FIGS. 13A and 13B ;
  • FIG. 11 is a schematic representation of the wireless GPS-tracked wirefire ember detection and notification network of the present invention integrated with the automated wirefire ember detection and suppression system of the present invention depicted in FIGS. 9 and 10 ;
  • FIG. 12A is a perspective view of a wireless automated GPS-tracked wildfire ember detection module of the present invention, deployed in the wireless GPS-tracked wirefire ember detection and notification network of the present invention, shown in FIGS. 10 and 11 ;
  • FIG. 12B is a perspective view of a wireless GPS-tracked wildfire ember detection module of FIG. 12A , with its fire-protective housing cover removed, showing its various sensors and signal and data processing and storage components represented in FIG. 12C ;
  • FIG. 12C is a schematic block diagram showing the components used to construct the wireless GPS-tracked wildfire ember detection module of the present invention, shown in FIGS. 10, 11, 12A and 12B ;
  • FIGS. 13A and 13B taken together, set forth a schematic diagram showing automated hybrid clean wildfire inhibitor misting system of the present invention, providing both an anti-fire chemical misting system for suppressing wildfire embers impacting a building as shown in FIG. 13A and a lawn and ground anti-fire chemical liquid misting system impacting the law and ground around the building as shown in FIG. 13A , both automatically controlled by an automated wildfire ember detection and notification network shown in FIGS. 10 through 12C , all being integrated into the system network shown in FIG. 9 ;
  • FIG. 14 is a perspective view of a section of piping and misting nozzles used in the automated hybrid wildfire inhibitor misting system shown in FIGS. 13A and 13B ;
  • FIG. 15 is a schematic illustration describing a method of suppressing combusting wildfire embers using a hydraulic misting nozzle supplied with a pressurized supply of anti-fire (AF) liquid to produce a cloud of microscopic droplets for suppressing flying wildfire embers during a wildfire ember storm;
  • AF anti-fire
  • FIG. 16A is a schematic diagram of an UltraMist(R) misting nozzle from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15 ;
  • FIG. 16B is a schematic representation of an exemplary misting pattern produced from the nozzle specified in FIG. 16A ;
  • FIG. 17A is a schematic diagram of a fine atomization misting nozzle from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15 ;
  • FIG. 17B is a schematic representation of an exemplary misting pattern produced from the nozzle specified in FIG. 17A ;
  • FIG. 18 is a schematic diagram of a low flow misting nozzle from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15 , comprising a stainless steel tip with small spiral nozzles orifice diameters of 0.04′′ to 0.12′′ for producing a fine fog-like mist consisting of droplets over a hollow cone, medium angle at flow rates between 0.14 gallons per minute at 10 PSI to 3.84 gallons per minute at 100 PSI, supplied using 1 ⁇ 8′′ male pipe sizes;
  • FIG. 18B is a schematic representation of an exemplary misting pattern produced from the nozzle specified in FIG. 18A ;
  • FIG. 19A is a schematic diagram of a MicroWhirl® fine atomization misting nozzle from Bete Fog Nozzle, Inc., described in U.S. Pat. No. 7 , 198 , 201 , incorporated herein by reference, that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15 ;
  • FIG. 19B is a schematic representation of an exemplary misting pattern produced from the nozzle specified in FIG. 19A ;
  • FIG. 20 is a schematic illustration of the wood-framed building shown in FIG. 10 , about which is installed the hybrid clean wildfire misting system of the present invention shown in FIGS. 13A and 13B , controlled by the automated wildfire ember detection and suppression system of the present invention;
  • FIG. 20A is a schematic illustration of a wood deck system associated with the rear portion of the wood-framed building being protected by the automated wildfire ember detection and suppression system of the present invention
  • FIG. 21A is a perspective view of a mobile GPS-tracked anti-fire (AF) liquid misting system supported on a set of wheels, with integrated supply tank and rechargeable-battery operated electric spray pump, for deployment at private and public properties having building structures, for spraying the same with environmentally-clean anti-fire (AF) liquid in accordance with the principles of the present invention;
  • AF environmentally-clean anti-fire
  • FIG. 21B is a schematic representation of the GPS-tracked mobile anti-fire (AF) chemical liquid misting system shown in FIG. 21A , comprising a GPS-tracked and remotely-monitored anti-fire (AF) liquid spray control subsystem interfaced with a micro-computing platform for monitoring the spraying of anti-fire chemical liquid from the system when located at specific GPS-indexed location coordinates, and automatically logging and recording such anti-fire liquid spraying application operations within the network database system;
  • AF GPS-tracked mobile anti-fire
  • FIG. 22A is a perspective view of an exemplary mobile computing device deployed on the system network of the present invention, supporting (i) the mobile anti-fire spray management application of the present invention deployed as a component of the system network of the present invention as shown in FIG. 9 , as well as (ii) conventional wildfire alert and notification systems as shown in FIGS. 10 through 12C ; and
  • FIG. 22B shows a system diagram for an exemplary mobile client computer system deployed on the system network of the present invention.
  • FIGS. 8 and 8A show the wildfire ember filtering and suppression system of the present invention 17 shown being installed in the air-inflow board mounted between each pair of roof rafter boards 17 A 1 and 17 A 2 of a wood-framed building.
  • the wildfire ember filtering and suppression system 17 comprises: a thin cylindrical shaped piece of air-pervious cloth, fabric or thermally-resistant material 17 C infused with a clean-environmentally anti-fire (AF) liquid (i.e.
  • AF clean-environmentally anti-fire
  • Hartindo AF21 fire inhibitor chemical liquid from Hartindo Chemical, Indonesia that dries to provide a Class-A fire-protective air filtering mechanism 17 D, through which air can freely flow through the filtered vent holes 17 C, while blocking and suppressing any combusting/burning wildfire embers 17 E during a wildfire storm.
  • This wildfire ember filtering block 17 D can serve as a second tier of defense against a raging wildfire in the event that certain flying embers pass through anti-fire chemical misting clouds, as taught herein, without being adequately suppressed or extinguished, as the case may be.
  • FIG. 9 describes the wireless system network of the present invention 1 designed for managing the supply, delivery and misting of environmentally-clean anti-fire (AF) liquid on private and public property to reduce the risks of property damage and/or destruction and harm to life caused by wildfires.
  • the network 1 comprises: GPS-tracked anti-fire (AF) liquid spray ground vehicles 2 ; GPS-tracked anti-fire liquid spray air vehicles 3 ; GPS-tracked anti-fire liquid misting systems 5 for spraying private real property and buildings 17 ; GPS-tracked liquid misting systems 5 for spraying public real property and buildings 18 ; mobile computing systems 11 running the mobile application of the present invention and used by property owners, residents, fire departments, insurance underwriters, government officials, medical personal and others, remote data sensing and capturing systems for remotely monitoring land and wildfires wherever they may break out; a GPS system 100 for providing GPS-location services to each and every system components in the system network; and one or more data centers 8 each containing clusters of web, application and database servers 9 A, 9 B, 9 C for supporting
  • FIG. 9 shows the wireless system network of the present invention 1 designed for managing the supply, delivery and spray-application of environmentally-clean anti-fire (AF) liquid on private and public property to reduce the risks of damage and/or destruction caused by wildfires.
  • the wireless system network 1 comprises a distribution of system components, namely: GPS-tracked anti-fire (AF) liquid spray ground vehicles 2 (e.g. all terrain vehicles or ATVs) for applying anti-fire chemical liquid spray (e.g. Hartindo AF31 fire inhibitor chemical from Hartindo Chemical, Indonesia) from the ground to ground surfaces, brush, and other forms of organic material; GPS-tracked anti-fire liquid misting and misting air-based vehicles 3 for applying anti-fire chemical liquid spray (e.g.
  • AF GPS-tracked anti-fire
  • ATVs all terrain vehicles or ATVs
  • anti-fire chemical liquid spray e.g. Hartindo AF31 fire inhibitor chemical from Hartindo Chemical, Indonesia
  • Hartindo AF31 fire inhibitor chemical liquid from the air to ground surfaces, brush, bushes and other forms of organic material; GPS-tracked automated wildfire (and wildfire ember) detection and notification network 4 for automatically detecting wildfires and wildfire embers 17 E in wildfire ember storms passing through a given surrounding vicinity, as shown in FIGS. 10, 11, 12A, 12B and 12C ; GPS-tracked/GSM-linked anti-fire liquid misting systems 5 for applying anti-fire chemical liquid spray (e.g. Hartindo AF31 fire inhibitor chemical liquid) to private real property, buildings and surrounding areas; GPS-tracked/GSM-linked liquid misting systems 6 for applying anti-fire chemical liquid spray (e.g.
  • Hartindo AF31 fire inhibitor chemical liquid) to public real property and buildings and surrounding properties an automated wildfire ember misting suppression system 6 for protecting buildings from wildfire embers, as shown in FIGS. 13A, 13B, 14, 15, 16A, 16B, 17A, 17B, 18A, 18B, 19A and 19B ; a GPS-indexed real-property (land) database system 7 for storing the GPS coordinates of the vertices and maps of all land parcels, including private property and building 17 and public property and building 18 , situated in every town, county and state in the region over which the system network 1 is used to manage wildfires as they may occur; a cellular phone, GSM, and SMS messaging systems and email servers, collectively 16 ; and one or more data centers 8 for monitoring and managing GPS-tracking/GSM-linked anti-fire (AF) liquid supply and spray systems, including web servers 9 A, application servers 9 B and database servers 9 C (e.g.
  • AF GPS-tracking/GSM-linked anti-fire
  • each data center 8 also includes an SMS server 9 D and an email message server 9 E for communicating with registered users on the system network 1 who use a mobile computing device (e.g. an Apple® iPhone or iPad tablet) 11 with the mobile application 12 installed thereon and configured for the purposes described herein.
  • a mobile computing device e.g. an Apple® iPhone or iPad tablet
  • Such communication services will include SMS/text, email and push-notification services known in the mobile communications arts.
  • the GPS-indexed real-property (land) database system 7 will store the GPS coordinates of the vertices and maps of all land parcels contained in every town, county and state of the region over which the system network is deployed and used to manage wildfires as they may occur.
  • databases and data processing methods, equipment and services known in the GPS mapping art will be used to construct and maintain such GPS-indexed databases 7 for use by the system network of the present invention, when managing GPS-controlled application of clean anti-fire (AF) chemical liquid spray and mist over GPS-specified parcels of land, at any given time and date, under the management of the system network of the present invention.
  • Examples of such GPS-indexed maps of land parcels are reflected by the task report shown in FIG. 16 , and examples of GPS-indexed maps are shown in the schematic illustrations depicted in FIGS. 18, 20, 22 and 24 .
  • the system network 1 also includes a GPS system 100 for transmitting GPS reference signals transmitted from a constellation of GPS satellites deployed in orbit around the Earth, to GPS transceivers installed aboard each GPS-tracking ground-based or air-based anti-fire (AF) liquid misting system of the present invention, as part of the illustrative embodiments. From the GPS signals it receives, each GPS transceiver aboard such AF liquid misting/misting systems is capable of computing in real-time the GPS location of its host system, in terms of longitude and latitude.
  • GPS system 100 for transmitting GPS reference signals transmitted from a constellation of GPS satellites deployed in orbit around the Earth, to GPS transceivers installed aboard each GPS-tracking ground-based or air-based anti-fire (AF) liquid misting system of the present invention, as part of the illustrative embodiments. From the GPS signals it receives, each GPS transceiver aboard such AF liquid misting/misting systems is capable of computing in real-time the GPS location of its host system, in terms of longitude and la
  • the system network 1 further includes multi-spectral imaging (MSI) systems and/or hyper-spectral-imaging (HSI) systems 14 for remotely data sensing and gathering data about wildfires, their location and progress.
  • MSI and HSI systems may be space/satellite-based and/or drone-based (supported on an unmanned airborne vehicle or UAV).
  • Drone-based systems 14 can be deployed and remotely-controlled by a human operator, or guided under an artificial intelligence (AI) navigation system.
  • AI-based navigation systems may be deployed anywhere, provided access is given to such remote navigation system the system network and its various systems.
  • the flight time will be limited to under 1 hour using currently available battery technology, so there will be a need to provide provisions for recharging the batteries of such drones/UASs in the field, necessitating the presence of human field personnel to support the flight and remote data sensing and mapping missions of each such deployed drone, flying about raging wildfires, in connection with the system network of the present invention.
  • a series of MSI images and HSI images can be captured during a wildfire, and mapped to GPS-specific coordinates, and this mapped data can be transmitted back to the system network for storage, analysis and generation of GPS-specified flight plans for anti-fire (AF) chemical liquid spray and misting operations to stall and suppress such wildfires, and mitigate risk of damage to property and harm to human and animal life.
  • AF anti-fire
  • a suite of MSI and HSI remote sensing and mapping instruments and technology 14 can be used to collect, monitor, analyze, and provide science about natural resource conditions, issues, and problems on Earth. It is an object of the present invention to exploit such instruments and technology when carrying out and practicing the various methods of the present invention disclosed herein.
  • MSI/HSI remote sensing technologies 14 include: MODIS (Moderate Resolution Imaging Spectro-radiometer) satellite system for generating MODIS imagery subsets from MODIS direct readout data acquired by the USDA Forest Service Remote Sensing Applications Center, to produce satellite fire detection data maps and the like https://fsapps.nwcg.gov/afm/activefiremaps.php; the World View 2 Satellite System manufacture from the Ball Aerospace & Technologies and operated by DigitalGlobe, for providing commercially available panchromatic (B/W) imagery of 0.46 meter resolution, and eight-band multi-spectral imagery with 1.84 meter resolution; Octocopter UAS (e.g.
  • OnyxStar Hyra-12 heavy lifting drone supporting MSI and HSI camera systems for spectral imaging applications, http://www.onyxstar.net and http://www.genidrone.com; and SenseFly eBee SQ UAS for capturing and mapping high-resolution aerial multi-spectral images https://www.sensefly.com/drones/ebee-sq.html.
  • any one or more of these types of remote data sensing and capture instruments, tools and technologies can be integrated into and used by the system network 1 for the purpose of (i) determining GPS-specified flight/navigation plans for GPS-tracked anti-fire (AF) chemical liquid spraying and misting aircraft, and ground-based spraying vehicle systems, and (ii) practicing the various GPS-guided methods of wildfire suppression described in detail in pending U.S. patent application Ser. No. 15/866,451, incorporated herein by reference.
  • AF GPS-tracked anti-fire
  • each wildfire ember detection module 4 A in the network illustrated in FIG. 11 is readily adapted to generate and transmit electronic control signals to activate the automated hybrid misting system 6 to begin (i) automatically misting the lawn and surround ground cover with anti-fire (AF) chemical liquid if and as needed, and/or (ii) automatically misting anti-fire chemical liquid about all airflow entry points of the building (e.g. gables, soffits, rafters, turbines on roof etc), and all other building surfaces as may required or desired to adequately protect the building during a raging wildfire ember storm.
  • AF anti-fire
  • the automatic wildfire ember detection module 4 A will have received notifications from the surrounding network about the presence of a raging wildfire, and in response, the module 4 A will automatically command the local AF chemical liquid misting equipment to operate based on locally detected wildfire ember conditions, to dispense AF chemical liquid in a strategic manner so that misting clouds are generated when wildfire embers are flying through the air about the module 4 A, striking the building and trying to find a way into the interior space of the wood framed building, via air vents and other passageways, to ignite a fire inside the building and burn it down to the ground.
  • the wildfire defense system 6 of the present invention will be programmed with artificial intelligence (AI) programs running inside the wildfire ember misting controller 6 B, safely mounted within the wildfire-protected shed 50 or inside the building in a safe location.
  • AI artificial intelligence
  • One control strategy might involve the wildfire ember misting controller 6 B working in conjunction with the automated wildfire ember detection module 4 A automatically monitor and confirm that wildfire embers 17 E are flying through the air around the building (e.g. date-stamped local wildfire ember alert) before it automatically commands the liquid pump system 6 F to hydraulically pump anti-fire chemical liquid from supply tank 6 E into the pipe manifold 6 G and to the misting nozzles 6 H located all about the building for generating a fog-like misting cloud, thereby providing unprecedented wildfire protection to the building as it is actually being attacked by a fierce and energetic wildfire ember storm.
  • the liquid pump system 6 F to hydraulically pump anti-fire chemical liquid from supply tank 6 E into the pipe manifold 6 G and to the misting nozzles 6 H located all about the building for generating a fog-like misting cloud, thereby providing unprecedented wildfire protection to the building as it is actually being attacked by a fierce and energetic wildfire ember storm.
  • Another control strategy might involve the wildfire ember misting controller 6 B working in conjunction with the automated wildfire ember detection module 4 A automatically monitor and confirm that flying wildfire embers have been detected by a neighboring wildfire ember detection module 4 A, on a neighboring building located some predetermined distance away and occurring some time ago (e.g. date-stamped neighboring wildfire ember alert or event), before it automatically commands the liquid pump system 6 F to hydraulically pump anti-fire chemical liquid from supply tank 6 E into the pipe manifold 6 G and to the misting nozzles 6 H located all about the building for generating a fog-like misting cloud, thereby providing unprecedented wildfire protection to the building before it is actually attached by a fierce and energetic wildfire ember storm moving in the direction of the building under protection.
  • the liquid pump system 6 F to hydraulically pump anti-fire chemical liquid from supply tank 6 E into the pipe manifold 6 G and to the misting nozzles 6 H located all about the building for generating a fog-like misting cloud, thereby providing unprecedented wildfire protection to the
  • each automated wildfire ember detection module 4 A (encased in a fire-protected housing) will support (i) real-time digital IR, thermal, and pyrometric image capture from its 360 degrees of viewing optics (i.e. 360 fields of view) supported by its image formation optics within its fire-protected housing 4 A 1 , and (ii) real-time pixel processing of these digital (multi-spectral/color) images so as to automatically recognize the presence of fire, wildfire, and flying wild-fire ember using various image processing techniques performed in module 4 A in a manner known in the image-processing based fire recognition arts.
  • the module 4 A Upon such automated recognition of a “wildfire” or “flying wildfire ember” event, the module 4 A will automatically generate and transmit a GPS-indexed message and command to the local wildfire ember misting controller 6 B, as well as to other neighboring modules 4 A active and operating on the wireless wildfire ember detection network 4 (provided it has not been disrupted by the wildfire storm) so as to assist other automated wildfire ember detection modules 4 A in the neighboring region, in efforts to protect their designated properties against any particular wildfire storm moving through their regions.
  • the lithium-ion battery pack and controller 6 C will have adequate charge to operate the system 6 for at least 24 hours without interruption, or recharging by its PV solar panel 6 D, or external power supply, as the case may be.
  • the system 6 of the present invention will be prepared to operate under very dangerous conditions created by a wildfire storming through a specified region, and provide the required degree of protection to save the building from the wildfire.
  • FIG. 9 illustrates the network architecture of the system network 1 implemented as a stand-alone platform deployed on the Internet.
  • the Internet-based system network 1 comprises: cellular phone and SMS messaging systems and email servers 16 operably connected to the TCP/IP infrastructure of the Internet 10 ; a network of mobile computing systems 11 running enterprise-level mobile application software 12 , operably connected to the TCP/IP infrastructure of the Internet 10 ; an array of mobile GPS-tracked anti-fire (AF) liquid spraying/misting, each provided with GPS-tracking and having wireless internet connectivity with the TCP/IP infrastructure of the Internet 10 , using various communication technologies (e.g.
  • AF mobile GPS-tracked anti-fire
  • GSM Global System for Mobile communications
  • WIFI Wireless Fidelity
  • other wireless networking protocols well known in the wireless communications arts
  • one or more industrial-strength data center(s) 8 preferably mirrored with each other and running Border Gateway Protocol (BGP) between its router gateways, and operably connected to the TCP/IP infrastructure of the Internet.
  • Border Gateway Protocol BGP
  • each data center 8 comprises: the cluster of communication servers 9 A for supporting http and other TCP/IP based communication protocols on the Internet (and hosting Web sites); a cluster of application servers 9 B; the cluster of RDBMS servers 9 C configured within a distributed file storage and retrieval ecosystem/system, and interfaced around the TCP/IP infrastructure of the Internet well known in the art; the SMS gateway server 9 D supporting integrated email and SMS messaging, handling and processing services that enable flexible messaging across the system network, supporting push notifications; and the cluster of email processing servers 9 E.
  • the cluster of communication servers 9 A is accessed by web-enabled mobile computing clients 11 (e.g. smart phones, wireless tablet computers, desktop computers, computer workstations, etc) used by many stakeholders accessing services supported by the system network 1 .
  • the cluster of application servers 9 A implement many core and compositional object-oriented software modules supporting the system network 1 .
  • the cluster of RDBMS servers 9 C use SQL to query and manage datasets residing in its distributed data storage environment, although non-relational data storage methods and technologies such as Apache's HaDoop non-relational distributed data storage system may be used as well.
  • the system network architecture shows many different kinds of users supported by mobile computing devices 11 running the mobile application 12 of the present invention, namely: the plurality of mobile computing devices 11 running the mobile application 12 , used by fire departments and firemen to access services supported by the system network 1 ; the plurality of mobile computing systems 11 running mobile application 12 , used by insurance underwriters and agents to access services on the system network 1 ; the plurality of mobile computing systems 11 running mobile application 12 , used by building architects and their firms to access the services supported by the system network 1 ; the plurality of mobile client systems 11 (e.g.
  • a mobile computers such as iPad, and other Internet-enabled computing devices with graphics display capabilities, etc) used by spray-project technicians and administrators, and running a native mobile application 12 supported by server-side modules, and various GUIs, supporting client-side and server-side processes on the system network of the present invention; and a GPS-tracked anti-fire (AF) liquid misting systems 5 for spraying buildings and ground cover to provide protection and defense against wildfires.
  • AF anti-fire
  • the system network 1 will be realized as an industrial-strength, carrier-class Internet-based network of object-oriented system design, deployed over a global data packet-switched communication network comprising numerous computing systems and networking components, as shown.
  • the information network of the present invention is often referred to herein as the “system” or “system network”.
  • the Internet-based system network can be implemented using any object-oriented integrated development environment (IDE) such as for example: the Java Platform, Enterprise Edition, or Java EE (formerly J2EE); Websphere IDE by IBM; Weblogic IDE by BEA; a non-Java IDE such as Microsoft's .NET IDE; or other suitably configured development and deployment environment well known in the art.
  • IDE object-oriented integrated development environment
  • the entire system of the present invention would be designed according to object-oriented systems engineering (DOSE) methods using UML-based modeling tools such as ROSE by Rational Software, Inc. using an industry-standard Rational Unified Process (RUP) or Enterprise Unified Process (EUP), both well known in the art.
  • DOSE object-oriented systems engineering
  • UML-based modeling tools such as ROSE by Rational Software, Inc. using an industry-standard Rational Unified Process (RUP) or Enterprise Unified Process (EUP), both well known in the art.
  • ROSE Rational Unified Process
  • EUP Enterprise Unified Process
  • Implementation programming languages can include C, Objective C, C, Java, PHP, Python, Google's GO, and other computer programming languages known in the art.
  • the system network is deployed as a three-tier server architecture with a double-firewall, and appropriate network switching and routing technologies well known in the art.
  • private/public/hybrid cloud service providers such Amazon Web Services (AWS) may be used to deploy Kubernetes, an open-source software container/cluster management/orchestration system, for automating deployment, scaling, and management of containerized software applications, such as the mobile enterprise-level application 12 of the present invention, described above.
  • AWS Amazon Web Services
  • FIG. 10 shows a wildfire ember detection module 4 A mounted on the top of each building 300 .
  • Each wildfire ember detection module 4 A is configured in the wireless wildfire ember detection and notification network 4 , for (i) receiving wirefire alerts and messages from neighboring modules 4 A, (ii) sensing and processing IR thermal images for automated detection of wildfires and wildfire embers in the field of views (FOVs) of the module, (iii) sending and recording the CO2 levels in the ambient air, (iv) measuring and recording the relative humidity (%) in the ambient air, (v) measuring and recording the temperature of the ambient air, and measuring and recording other parameters relating to the ambient environment which may be helpful in automated detection of wildfires and wildfire ember storms, so the anti-fire misting systems installed on property can be timely triggered to protect the building and property when a wildfire storm rages across the property.
  • the advantage of being part of this network is that each module 4 A can scout for wildfires and alert other modules in the network in
  • FIG. 11 shows the wireless GPS-tracked wirefire ember detection and notification network 4 employing with the wirefire ember detection and suppression systems 4 A depicted in FIGS. 9 and 10 .
  • each wireless GPS-tracked wildfire ember detection module 4 A deployed in the wireless wirefire ember detection and notification network 4 , shown in FIGS. 10 and 11 , comprises: a fire-protective housing cover 4 A 1 ; and various sensors and signal and data processing and storage components 4 A 2 through 4 A 19 , shown in schematic block diagram of FIG. 12C .
  • the sensors and signal and data processing and storage components arranged and configured about a microprocessor 4 A 20 and flash memory (i.e. control subsystem) 4 A 21 include: one or more passive infra-red (PIR) thermal-imaging sensors 4 A 2 connected together with suitable IR optics to project IR signal reception field of view (FOV) before the IR receiving array; multiple pyrometric sensors 4 A 3 for detecting the spectral radiation of burning, organic substances such as wood, natural gas, gasoline and various plastics; a GPS antenna 4 A 4 ; a GPS signal receiver 4 A 5 ; voltage regulator 4 A 6 ; an Xbee antenna 4 A 7 ; an Xbee radio transceiver 4 A 8 ; a voltage regulator 4 A 9 ; an external power connector 4 A 10 ; a charge controller 4 A 11 ; a battery 4 Al 2 ; thermistors 4 A 13 ; a power switch 4 A 14 ; a voltage regulator 4 A 15 ; external and internal temperature sensors 4 A
  • PIR passive infr
  • the wildfire ember detection system 4 A supports a computing platform, network-connectivity (i.e. IP Address), and is provided with native application software installed on the system as client application software designed to communicate over the system network and cooperate with application server software running on the application servers of the system network, thereby fully enabling the functions and services supported by the system, as described above.
  • a wireless mess network is implemented using conventional IEEE 802.15.4-based networking technologies to interconnect these wireless subsystems into subnetworks and connect these subnetworks to the internet infrastructure of the system of the present invention.
  • the optical bandwidth of the IR sensing arrays 4 A 2 used in the thermal sensors will be adequate to perform 360 degrees thermal-activity analysis operations, and automated detection of wildfire and wildfire embers.
  • thermal sensing in the range of the sensor can be similar to the array sensors installed in forward-looking infrared (FLIR) cameras, as well as those of other thermal imaging cameras, use detection of infrared radiation, typically emitted from a heat source (thermal radiation) such as fire, to create an image assembled for video output and other image processing operations to generate signals for use in early fire detection and elimination system of the present invention.
  • FLIR forward-looking infrared
  • thermal imaging cameras use detection of infrared radiation, typically emitted from a heat source (thermal radiation) such as fire, to create an image assembled for video output and other image processing operations to generate signals for use in early fire detection and elimination system of the present invention.
  • Pixel processing algorithms known to those skilled in the art will be used to automatically process captured and buffered pixels from different color channels and automatically determine the presence of fire, wildfire and flying embers within the field of view (FOV) of the wildfire ember detection module 4 A.
  • FOV field of view
  • the pyroelectric detectors 4 A 3 detect the typical spectral radiation of burning, organic substances such as wood, natural gas, gasoline and various plastics. To distinguish a flame from the sun or other intense light source such as light emissions from arc welding, and thus exclude a false alarm, the following independent criteria are considered: a typical flame has a flicker frequency of (1 . . . 5) Hz; a hydrocarbon flame produces the combustion gases carbon monoxide (CO) and carbon dioxide (CO 2 ); and in addition, burning produces water which can also be detected in the infrared range.
  • Each pyroelectric detector 4 A 3 is an infrared sensitive optoelectronic component specifically used for detecting electromagnetic radiation in a wavelength range from (2 to 14) ⁇ m.
  • a receiver chip of a pyroelectric infrared detector consists of single-crystalline lithium tantalite.
  • an absorbing layer black layer
  • JFET extremely low-noise and low leakage current field-effect transistors
  • Pomp operational amplifier
  • most streams of digital intelligence captured by the wireless network 4 will be time and data stamped, as well as GPS-indexed by a local GPS receiver within the sensing module, so that the time and source of origin of each data package is recorded within the system database.
  • the GPS referencing system supporting the system transmits GPS signals from satellites to the Earth's surface, and local GPS receivers located on each networked device or machine on the system network receive the GPS signals and compute locally GPS coordinates indicating the location of the networked device within the GPS referencing system.
  • any low power wireless networking protocol of sufficient bandwidth can be used.
  • a Zigbee® wireless network would be deployed inside the wood-framed or mass timber building under construction, so as to build a wireless internetwork of a set of wireless PIR thermal-imaging fire outbreak detection systems deployed as a wireless subnetwork deployed within the building under construction.
  • Zigbee® technology using the IEEE 802.15.1 standard, is illustrated in this schematic drawing, it is understood that any variety of wireless networking protocols including Zigbee®, WIFI and other wireless protocols can be used to practice various aspects of the present invention.
  • Zigbee® offers low-power, redundancy and low cost which will be preferred in many, but certainly not all applications of the present invention.
  • those skilled in the art will know how to make use of various conventional networking technologies to interconnect the various wireless subsystems and systems of the present invention, with the internet infrastructure employed by the system of the present invention.
  • AF aqueous-based anti-fire
  • mist producing apparatus While most mist producing apparatus disclosed herein operates on the principle of transmitting an anti-fire chemical liquid through a misting nozzle under low, medium or high hydraulic pressure, it is understood that when spraying anti-fire chemical liquids over the surfaces of organic material during fire-protection treating operations, then spray-type nozzles will be often used as provided on the mobile spraying apparatus 5 shown in FIGS. 21A and 21B .
  • spray-type nozzles it is possible to quickly deposit and form sufficient coatings of anti-fire chemical material on the treated surfaces, because spray-type nozzles produce liquid drops substantially larger in size than microscopic droplets formed by misting nozzles during misting operations, illustrated in FIGS. 15 through 19B .
  • FIGS. 13A and 13B shows automated hybrid clean wildfire inhibitor misting system of the present invention 6 , providing both an anti-fire chemical misting system for suppressing wildfire embers impacting a building as shown in FIG. 13A and a lawn and ground anti-fire chemical liquid misting system impacting the law and ground around the building as shown in FIG. 13A , both automatically controlled by an automated wildfire ember detection and notification network shown in FIGS. 10 through 12C . All of these system components are integrated into the system network shown in FIG. 9 .
  • FIG. 14 shows a piping manifold 6 G, a network of piping, and a set of misting nozzles 6 H used to supply and produce anti-fire chemical misting droplets from the automated hybrid clean wildfire misting system 6 shown in FIGS. 13A and 13B .
  • automated multi-mode hybrid clean wildfire inhibitor misting system 6 comprises: an dual-mode anti-fire lawn and ground misting system 6 A shown in FIG. 13B for either misting water from a main water supply, or misting environmentally-clean anti-fire chemical liquid (e.g. AF31 anti-fire chemical liquid from Hartindo Chemical) over lawns (e.g. dried out grass) and ground surfaces covered with organic material; a wildfire ember misting controller 6 B (e.g. programmable microcontroller supported by a memory architecture) for controlling the various modes of the system 6 ; lithium battery pack and controller 6 C for supplying electrical power to the electronic components in the system 6 including the DC or AC electric motor of hydraulic (e.g.
  • misting environmentally-clean anti-fire chemical liquid e.g. AF31 anti-fire chemical liquid from Hartindo Chemical
  • a wildfire ember misting controller 6 B e.g. programmable microcontroller supported by a memory architecture
  • lithium battery pack and controller 6 C for supplying electrical power to the electronic components in the
  • a diaphragm-type liquid pumping system 6 F a photovoltaic solar cell panel 6 D for recharging the lithium-ion battery back 6 C while collecting sunlight with the PV solar panel 6 D as solar conditions allow; a supply tank containing an adequate supply (e.g. 100 gallons) of a liquid anti-fire chemical liquid realizable using AF21 anti-fire chemical liquid from Hartindo Chemical; a liquid spray misting pump system 6 F (e.g. self-priming DC or AC electrical-motor powered diaphragm liquid pump) for hydraulically pumping the anti-fire chemical liquid 6 E from its supply tank (e.g.
  • a liquid spray misting pump system 6 F e.g. self-priming DC or AC electrical-motor powered diaphragm liquid pump
  • misting nozzles 6 H mounted all around a building being protected, and connected through adequate heat-resistant piping (e.g. 1 ⁇ 8′′, 1 ⁇ 4′′ or 1 ⁇ 2′′ metal tubing, or high-heat resistant plastic tubing such as PET) extending over relatively short distances under adequate hydraulic pressure, to support sufficient flow rates of anti-fire chemical liquid during a wildfire ember storm, determined in a manner well known in the fluid hydraulic arts; a piping manifold 6 G and piping network including a set of misting nozzles 6 H as shown in FIGS. 14 through 19B for producing clean anti-fire (AF) chemical mist according to the method described in FIG.
  • AF clean anti-fire
  • FOVs field of views
  • the lawn misting system 6 A comprises: a water supply 6 Q connected to a network of underground piping 6 R; misting-type sprinklers 6 O (e.g. misting nozzles) connected to the underground piping 6 R; misting-type rotors 6 P connected to the piping 6 R; valves 6 N connected to the underground piping 6 R, the local water supply 6 Q, and the liquid pumping system 6 F, which is operably connected to the supply of clean wildfire inhibitor liquid 6 E using piping; and a timer/controller 6 M connected to the controllable valves 6 N, and controlled by the wildfire ember misting controller 6 B, which is managed by the automated wildfire ember detection and notification network 4 , shown in FIG. 13A .
  • misting-type sprinklers 6 O e.g. misting nozzles
  • misting-type rotors 6 P connected to the piping 6 R
  • valves 6 N connected to the underground piping 6 R, the local water supply 6 Q, and the liquid pumping system 6 F,
  • the dual-mode lawn misting system 6 A shown in FIG. 6B has two modes of operation. During its first mode of operation, when no wildfire storm is detected, the lawn misting system 6 A automatically mists the lawn with water supplied from the local water supply 6 Q. During its second mode, when a wildfire storm is detected, the law misting system 6 A automatically mists the lawn with an environmentally anti-fire (AF) liquid 6 E supplied from a local supply of anti-fire (AF) liquid pumped from a pumping system 6 F.
  • AF environmentally anti-fire
  • the hybrid wildfire misting system 6 also has at least two modes operation: (i) a manual mode where a building/home owner or manager can manually activate and operate the anti-fire chemical liquid misting system 6 to protect either the building 17 and/or the lawn and ground surfaces around the building 17 , as desired or required, based on intelligence in the possession of the human operator or manager; and (ii) an automated mode where the wildfire ember misting controller 6 B, in cooperation with the local electronic wildfire and ember detection module 4 A and associated wireless wildfire detection network 4 , shown in FIGS.
  • modules 6 I, 6 K, 6 B, 6 C, 6 E and 6 F shown in FIG. 13A will be mounted and safely protected in the wildfire-protected shed or closet structure 50 , disclosed in great technical detail in Applicant's copending U.S. patent application Ser. No. 15/925,796, incorporated herein by reference.
  • a touch-screen or touch-type control panel associated with the controller 6 B is used by the operator to simply operate the system 6 in its manual mode, or automatically arm the system 6 to operate in its automated, artificial intelligence (AI) mode of operation.
  • AI artificial intelligence
  • the system 6 will be remotely controllable by the building manger/home-owner using a mobile computing system 11 running the mobile application 12 , as shown and described in FIGS. 22A and 22B .
  • Suitable graphical user interfaces will be supported on the mobile application 12 to enable the user to monitor and control the system 6 locally, or from a remote location, in real-time, provided the wireless communication infrastructure is not disrupted by a wildfire.
  • GUIs graphical user interfaces
  • the wildfire detection and notification network 4 should be accessible by a remote user provided with the mobile application 12 .
  • the system 4 will continuously collect, record and monitor intelligence about specific regions of land and any wildfires detected in such regions, and advise any specific home/building owner of the status of any specific building before, during and after a wildfire.
  • the system 6 will include and supported automated mechanisms for remotely monitoring and reporting the amount of anti-fire chemical liquid 6 E available and remaining for use in supporting anti-fire misting operations, as illustrated in FIG. 15 , during an automatically detected wildfire ember storm.
  • adequate reserves of anti-fire chemical liquid 6 E will be stored on each property before any given wildfire strike, to support several hours of wildfire ember suppression misting operations, which is typically expected during a wildfire storm before passes through and consumes the organic material that is urgent seeks to fuel its combustion process.
  • the misting nozzles 64 will be mounted about the building 17 so as to provide adequate coverage over all air-inlet vents provided on the specific building being equipment with the wildfire misting system of the present invention, as well as on wood and other organic surfaces that might be vulnerable to hot wildfire embers during a wildfire ember storm, as illustrated in FIG. 6B .
  • the misting or fog patterns of each misting nozzle 6 H being used in the misting system 6 will be considered and exploited to provide the adequate misting protection required by the wildfire protection application at hand.
  • Computer software tools may be developed and distributed to installers to assist in the design and installation of a hybrid wildfire misting system in accordance with the principles of the present invention.
  • the clean anti-fire (AF) liquid to be used for wildfire ember misting operations is preferably Hartindo AF31 Total Fire Inhibitor, developed by Hartindo Chemicatama Industri of Jakarta, Indonesia, and commercially available from Newstar Chemicals (M) SDN BHD of Selangor Darul Ehsan, Malaysia, http://newstarchemicals.com/products.html. It is expected that service-oriented businesses will support the rapid design, installation and installation of the automated wildfire detection and misting suppression systems of the present invention, as well as the supplying and replenishing of clean anti-fire chemical liquid on each GPS—indexed property. It is expected that this can occur with the efficiency currently provided by conventional liquid propane supply companies around the country.
  • FIG. 15 describes a method of suppressing combusting wildfire embers using a hydraulic misting nozzle supplied with a pressurized supply of anti-fire (AF) chemical liquid so as to produce a cloud of microscopic droplets for suppressing flying wildfire embers, as described above.
  • AF anti-fire
  • the method comprises the steps of: (a) hydraulically pressurizing a supply of anti-fire chemical liquid 6 E (e.g. AF31 anti-fire liquid from Hartindo Chemical) through the orifice or opening of a low, medium or high pressure misting nozzle 6 H as shown, for example in FIGS. 16 through 19 , thereby forming a cloud of fine fog-like mist comprising billions of microscopic droplets generated each second, for real-time fire suppression in the vicinity of the cloud; (b) when the anti-fire chemical liquid droplets approach and encounter a burning wildfire ember, the anti-fire chemical liquid droplets flash evaporating, changing from a liquid to a gas state, causing the fire (i.e.
  • anti-fire chemical liquid 6 E e.g. AF31 anti-fire liquid from Hartindo Chemical
  • This method of wildfire ember suppression has the advantage of attacking flying wildfire embers in three different ways: (i) lowering the temperature of the burning ember; (ii) displacing O2 from the burning ember required during combustion; and (iii) breaking the free-radical chemical reactions within the combustion phase of each burning wildfire ember.
  • This method ensures that embers during a wildfire storm are effectively extinguished within the cloud of microscopic anti-fire (AF) liquid droplets supported outside the air vents provided in the building 17 , and those embers that may pass through this cloud of mist, will be filtered out by the ember filter blocks 17 D mounted in each rafter bridge beam 17 B shown in FIGS. 8 and 8A .
  • AF microscopic anti-fire
  • misting nozzles 6 H can be used in the system and method of suppressing wildfire embers according to the principles of the present invention.
  • FIGS. 16A through 19B several exemplary misting nozzle designs are shown and described. While these misting nozzles are implemented typically using stainless steel because this is a durable and rugged material capable of handling high pressured with corrosive effects, alternatively, these misting nozzle designs can be realized using plastic material as well, in a manner well known in the art.
  • FIG. 16A shows an UltraMist® misting nozzle 6 H 1 commercially available from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15 .
  • the nozzle comprises: a stainless steel tip with a brass adapter body and 100 mess strainer for producing a very fine fog-like mist consisting of droplets under 60 microns over a hollow cone, medium angle at flow rates between 0.37 gallons per hour at 40 PSI to 16.4 gallons per hour at 1200 PSI, supplied using 1 ⁇ 8′′ and 1 ⁇ 4′′ pipe sizes.
  • FIG. 16B illustrates an exemplary misting pattern produced from the nozzle specified in FIG. 16A .
  • FIG. 17A shows a fine atomization misting nozzle commercially available from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15 , comprising a stainless body producing a laminar jet that impinges on a target pin generating a fine fog-like mist consisting of droplets under 60 microns over a cone shaped pattern, medium angle at flow rates between 0.034 gallons per hour at 10 PSI to 0.034 gallons per hour at 1200 PSI, supplied using 1 ⁇ 8′′ and 1 ⁇ 4′′ males pipe sizes.
  • FIG. 17B illustrates an exemplary misting pattern produced from the nozzle specified in FIG. 17A .
  • FIG. 18 shows a low flow misting nozzle commercially available from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15 , comprising a stainless steel tip with small spiral nozzles orifice diameters of 0.04′′ to 0.12′′ for producing a fine fog-like mist consisting of droplets over a hollow cone, medium angle at flow rates between 0.14 gallons per minute at 10 PSI to 3.84 gallons per minute at 100 PSI, supplied using 1 ⁇ 8′′ male pipe sizes.
  • FIG. 18B illustrates an exemplary misting pattern produced from the nozzle specified in FIG. 18A .
  • FIG. 19A shows a MicroWhirl® fine atomization misting nozzle commercially available from Bete Fog Nozzle, Inc., described in U.S. Pat. No. 7,198,201, incorporated herein by reference, that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15 , comprising a stainless steel for producing a very fine mist at low pressure or fog-like mist at high pressure, medium angle at flow rates between 0.009 gallons per minute at 100 PSI to 0.380 gallons per minute at 3000 PSI, supplied using 1 ⁇ 8′′ and 1 ⁇ 4′′ male pipe sizes.
  • FIG. 19B illustrates an exemplary misting pattern produced from the nozzle specified in FIG. 19A .
  • FIG. 20 is a schematic illustration of the wood-framed building shown in FIG. 10 , about which is installed the hybrid clean wildfire inhibitor misting system 6 shown in FIGS. 13A and 13B , controlled by the automated wildfire ember detection and suppression system 4 .
  • FIG. 20A shows a wood deck system 17 A associated with the rear portion of the wood-framed building 17 being protected by the automated wildfire ember detection and suppression system of the present invention.
  • FIG. 21A shows the mobile GPS-tracked anti-fire (AF) liquid misting system 5 supported on a set of wheels, with an integrated supply tank 20 B and rechargeable-battery operated electric spray pump 20 C, for deployment at private and public properties having building structures, for misting the same with environmentally-clean anti-fire (AF) chemical liquid in accordance with the principles of the present invention.
  • AF environmentally-clean anti-fire
  • FIG. 21B shows the GPS-tracked mobile anti-fire (AF) chemical liquid misting system shown in FIG. 21A , comprising a GPS-tracked and remotely-monitored anti-fire (AF) liquid spray control subsystem interfaced with a micro-computing platform for monitoring the misting of anti-fire chemical liquid from the system when located at specific GPS-indexed location coordinates, and automatically logging and recording such clean AF misting application operations within the network database system 9 C 1 .
  • AF mobile anti-fire
  • FIG. 21A shows mobile GPS-tracked anti-fire (AF) liquid misting system 5 supported on a set of wheels 20 A, having an integrated supply tank 20 B and rechargeable-battery operated electric spray pump 20 C, for deployment at private and public properties having building structures, for spraying the same with environmentally-clean anti-fire (AF) liquid using a spray nozzle assembly 20 D connected to the spray pump 20 C by way of a flexible 20 E.
  • AF environmentally-clean anti-fire
  • FIG. 21B shows the GPS-tracked mobile anti-fire liquid spraying/misting system 5 of FIG. 6A as comprising a number of subcomponents, namely: a GPS-tracked and remotely-monitored anti-fire chemical liquid spray control subsystem 20 F; a micro-computing platform or subsystem 20 G interfaced with the GPS-tracked and remotely-monitored anti-fire chemical liquid spray control subsystem 20 F by way of a system bus 201 ; and a wireless communication subsystem 20 H interfaced to the micro-computing platform 20 G via the system bus 201 .
  • the GPS-tracked mobile anti-fire liquid misting system 20 enables and supports (i) the remote monitoring of the spraying of anti-fire (AF) chemical liquid from the system 5 when located at specific GPS-indexed location coordinates, and (ii) the logging of all such GPS-indexed spray application operations, and recording the data transactions thereof within a local database maintained within the micro-computing platform 20 G, as well as in the remote network database 9 C 1 maintained at the data center 8 of the system network 1 .
  • AF anti-fire
  • the micro-computing platform 20 G comprises: data storage memory 20 G 1 ; flash memory (firmware storage) 20 G 2 ; a programmable microprocessor 20 G 3 ; a general purpose I/O (GPIO) interface 20 G 4 ; a GPS transceiver circuit/chip with matched antenna structure 20 G 5 ; and the system bus 20 I which interfaces these components together and provides the necessary addressing, data and control signal pathways supported within the system 5 .
  • GPIO general purpose I/O
  • the wireless communication subsystem 20 H comprises: an RF-GSM modem transceiver 20 H 1 ; a T/X amplifier 20 H 2 interfaced with the RF-GSM modem transceiver 20 H 1 ; and a WIFI and Bluetooth wireless interfaces 20 H 3 .
  • the GPS-tracked and remotely-controllable anti-fire (AF) chemical liquid spray control subsystem 20 F comprises: anti-fire chemical liquid supply sensor(s) 20 F 1 installed in or on the anti-fire chemical liquid supply tank 20 B to produce an electrical signal indicative of the volume or percentage of the AF liquid supply tank containing anti-fire chemical liquid at any instant in time, and providing such signals to the AF liquid misting system control interface 20 F 4 ; a power supply and controls 20 F 2 interfaced with the liquid pump spray subsystem 20 C, and also the AF liquid misting system control interface 20 F 4 ; manually-operated spray pump controls interface 20 F 3 , interfaced with the AF liquid misting system control interface 20 F 4 ; and the AF liquid misting system control interface 20 F 4 interfaced with the micro-computing subsystem 20 G, via the system bus 201 .
  • the flash memory storage 20 G 2 contains microcode that represents a control program that runs on the microprocessor 20 G 3 and realizes the various GPS-specified anti-fire chemical liquid
  • the environmentally-clean anti-fire (AF) chemical liquid is preferably Hartindo AF31 Total Fire Inhibitor, developed by Hartindo Chemicatama Industri of Jakarta, Indonesia, and commercially-available from Newstar Chemicals (M) SDN. BHD of Selangor Darul Ehsan, Malaysia, http://newstarchemicals.com/products.html.
  • AF environmentally-clean anti-fire
  • M Newstar Chemicals
  • the mobile liquid spraying system 5 described above can be filled with the environmentally clean anti-fire (AF) liquid 6 E (i.e. AF21 AF liquid from Hartindo Chemical) and used to spray clean anti-fire (AF) chemical liquid over the dried out lawn.
  • the environmentally-clean anti-fire (AF) chemical liquid is preferably Hartindo AF31 Total Fire Inhibitor, developed by Hartindo Chemicatama Industri of Jakarta, Indonesia, and commercially-available from Newstar Chemicals (M) SDN.
  • a bio-degradable, environmentally-clean (i.e. non-toxic) green-colored “grass paint” concentrate e.g. commercially available as EnviroColor (TM) grass paint from EnviroColor of Cumming, Ga.
  • TM EnviroColor
  • AF anti-fire
  • This clean anti-fire chemical lawn spray treatment should provide a significant defense against wildfires (i.e.
  • a chemical wildfire break by providing the dried grass with chemicals that break the free-radical chemical reactions in the combustion phase of a burning wildfire.
  • the clean green paint spray coating may need to be reapplied every 4-8 weeks depending on the weather and moisture conditions.
  • Different mixing ratios of Hartindo AF31 anti-fire chemical liquid to EnviroColorTM green paint concentrate (other than 7/1) may be used to provide dried out grass, with a stronger or weaker defense to wildfires and flying wildfire embers, without significantly compromising color while reducing the risks of wildfires to neighboring homes and buildings.
  • Hartindo AF31 anti-fire chemical liquid can be mixed with EnviroColor brown mulch paint using similarly mixing ratios (e.g. 7/1) to provide mulch paint coverings that provide dried out grass with a stronger or weaker defense to wildfires and flying wildfire embers, and thereby reducing the risks of wildfires to neighboring homes and buildings.
  • FIG. 22A shows an exemplary mobile computing device deployed on the system network of the present invention, supporting (i) the mobile anti-fire spray management application of the present invention deployed as a component of the system network of the present invention as shown in FIG. 9 , as well as (ii) conventional wildfire alert and notification systems as shown in FIGS. 10 through 12C .
  • FIG. 22B shows a system diagram for an exemplary mobile client computer system 11 deployed on the system network 1 of the present invention.
  • FIG. 22B shows the system architecture of an exemplary mobile client computing system 11 that is deployed on the system network 1 and supporting the many services offered by system network servers 9 A, 9 B, 9 C, 9 D, 9 E.
  • the mobile smartphone device 11 can include a memory interface 202 , one or more data processors, image processors and/or central processing units 204 , and a peripherals interface 206 .
  • the memory interface 202 , the one or more processors 204 and/or the peripherals interface 206 can be separate components or can be integrated in one or more integrated circuits.
  • the various components in the mobile device can be coupled by one or more communication buses or signal lines. Sensors, devices, and subsystems can be coupled to the peripherals interface 206 to facilitate multiple functionalities.
  • a motion sensor 210 can be coupled to the peripherals interface 206 to facilitate the orientation, lighting, and proximity functions.
  • Other sensors 216 can also be connected to the peripherals interface 206 , such as a positioning system (e.g. GPS receiver), a temperature sensor, a biometric sensor, a gyroscope, or other sensing device, to facilitate related functionalities.
  • a camera subsystem 220 and an optical sensor 222 e.g. a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, can be utilized to facilitate camera functions, such as recording photographs and video clips.
  • CCD charged coupled device
  • CMOS complementary metal-oxide semiconductor
  • Communication functions can be facilitated through one or more wireless communication subsystems 224 , which can include radio frequency receivers and transmitters and/or optical (e.g. infrared) receivers and transmitters.
  • the specific design and implementation of the communication subsystem 224 can depend on the communication network(s) over which the mobile device is intended to operate.
  • the mobile device 11 may include communication subsystems 224 designed to operate over a GSM network, a GPRS network, an EDGE network, a Wi-Fi or WiMax network, and a BluetoothTM network.
  • the wireless communication subsystems 224 may include hosting protocols such that the device 11 may be configured as a base station for other wireless devices.
  • An audio subsystem 226 can be coupled to a speaker 228 and a microphone 230 to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and telephony functions.
  • the I/O subsystem 240 can include a touch screen controller 242 and/or other input controller(s) 244 .
  • the touch-screen controller 242 can be coupled to a touch screen 246 .
  • the touch screen 246 and touch screen controller 242 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen 246 .
  • the other input controller(s) 244 can be coupled to other input/control devices 248 , such as one or more buttons, rocker switches, thumb-wheel, infrared port, USB port, and/or a pointer device such as a stylus.
  • the one or more buttons can include an up/down button for volume control of the speaker 228 and/or the microphone 230 .
  • Such buttons and controls can be implemented as a hardware objects, or touch-screen graphical interface objects, touched and controlled by the system user. Additional features of mobile smartphone device 11 can be found in U.S. Pat. No. 8,631,358 incorporated herein by reference in its entirety.
  • the enterprise-level system network is realized as a robust suite of hosted services delivered to Web-based client subsystems 1 using an application service provider (ASP) model.
  • the Web-enabled mobile application 12 can be realized using a web-browser application running on the operating system (OS) (e.g. Linux, Application IOS, etc) of a mobile computing device 11 to support online modes of system operation, only.
  • OS operating system
  • the native mobile application 12 would have access to local memory (e.g.
  • a local RDBMS on the client device 11 , accessible during off-line modes of operation to enable consumers to use certain or many of the system functions supported by the system network during off-line/off-network modes of operation. It is also possible to store in the local RDBMS of the mobile computing device 11 most if not all relevant data collected by the mobile application for any particular fire-protection spray project, and to automatically synchronize the dataset for user's projects against the master datasets maintained in the system network database 9 C 1 , within the data center 8 shown in FIG. 4 . This way, when using an native application, during off-line modes of operation, the user will be able to access and review relevant information regarding any building spray project, and make necessary decisions, even while off-line (i.e. not having access to the system network).
  • the system network 1 has been designed for several different kinds of user roles including, for example, but not limited to: (i) public and private property owners, residents, fire departments, local, county, state and federal officials; and (ii) wildfire suppression administrators, contractors, technicians et al registered on the system network.
  • the system network will request different sets of registration information, including name of user, address, contact information, etc.
  • the system network will automatically serve a native client GUI, or an HTML5 GUI, adapted for the registered user. Thereafter, when the user logs into the system network, using his/her account name and password, the system network will automatically generate and serve GUI screens described below for the role that the user has been registered with the system network.
  • the client-side of the system network 1 can be realized as mobile web-browser application, or as a native application, each having a “responsive-design” and adapted to run on any client computing device (e.g. iPhone, iPad, Android or other Web-enabled computing device) 11 and designed for use by anyone interested in managing, monitoring and working to defend against the threat of wildfires.
  • client computing device e.g. iPhone, iPad, Android or other Web-enabled computing device
  • the illustrative embodiments disclose the use of clean anti-fire chemicals from Hartindo Chemicatama Industri, particular Hartindo AAF31, for clinging to the surfaces of wood, lumber, and timber, and other combustible matter, wherever wildfires may travel.
  • Hartindo Chemicatama Industri particular Hartindo AAF31
  • alternative clean anti-fire chemical liquids may be used to practice the various wildfire suppression methods according to the principles of the present invention.
  • shed structure shown herein was of a general trapezoidal geometry, it is understood that the size and dimensions of the shed structure can be virtually any size that may fit on ones yard, and transported using conventional means and/or carriers.

Abstract

An automated wildfire ember misting-type suppression system and method that employs an electronic wildfire ember detection device using infra-red (IR) and other thermal-imaging sensors, and relative humidity sensors, to automatically detect the presence of a wildfire in the vicinity of the wood-framed building and automatically generate a cloud of wildfire ember suppressing mist consisting of microscopic droplets of clean anti-fire (AF) liquid that (i) instantly evaporates into vapor when contacting a flying wildfire ember and (ii) breaks and/or interferes with free-radical chemical reactions supported on the surface of each combusting wildfire ember flying in the wildfire storm moving about the wood-framed building.

Description

    RELATED CASES
  • The present Patent Application is a Continuation-in-Part (CIP) of: copending application Ser. No. 15/866,451 filed Jan. 9, 2018; co-pending application Ser. No. 16/039,291 filed Jul. 18, 2018 which is a Continuation-in-Part (CIP) of copending patent application Ser. No. 15/874,874 filed Jan. 18, 2018, which is a Continuation-in-Part (CIP) of copending patent application Ser. No. 15/866,454 filed Jan. 9, 2018 which is a Continuation-in-Part (CIP) of copending patent application Ser. No. 15/829,914 filed Dec. 2, 2017; copending U.S. patent application Ser. No. 15/925,793 filed Mar. 20, 2018; and copending patent application Ser. No. 15/866,456 filed Jan. 9, 2018 which is a Continuation-in-Part (CIP) of copending patent application Ser. No. 15/829,914 filed Dec. 2, 2017, each said Patent Application being commonly owned by M-Fire Suppression, Inc., and incorporated herein by reference as if fully set forth herein.
  • BACKGROUND OF INVENTION Field of Invention
  • The present invention is directed towards improvements in science and technology applied in the defense of private and public property, and human and animal life, against the ravaging and destructive forces of wildfires whether caused by lightening, accident, arson or terrorism.
  • Brief Description of The State of Knowledge in The Art
  • The US federal government is spending billions of US dollars annually on wildfire defense, only to lose record numbers of acreage and homes.
  • In 2017, over 8 million acres were scorched by wildfires. The fires killed more than 40 people and destroyed 8000 structures. Some estimates of the property damage in Northern California fires exceed $3 billion. Governor Brown of California has asked President Trump for $7.5 billion dollars to rebuild Santa Rosa.
  • Despite extensive news coverage, few recognize that wildfire embers fly long distances based on the relative humidity of the air. If there is low humidity, then these embers can fly from dry grass hillsides, like outside Santa Rosa, and ignite and destroy entire neighborhoods of homes. A primary reason this is possible is because most production houses have attic-ventilation screens, designed as illustrated in FIGS. 2A and 2B, to allow wind-driven hot wildfire embers to fly into hot combustible attics, and burn the entire house down from the attic to the ground.
  • In recent years, some measures have been made to provide closable attic vents as shown in FIGS. 3A, 3B and 3C, and closable soffit air vents as shown in FIGS. 5A, 5B and 5C. Even attic and roof sprinkler systems as disclosed in US Patent Application Publication No. 2018/0078801, for example, are being proposed for buildings to provide defense against wildfires.
  • However, even with such measures, most homes and buildings are still very vulnerable to wildfire ember storms when they strike a neighborhood. This is especially true when wildfires are driven by strong prevailing winds, as illustrated in FIG. 6A, attacking homes and buildings by radiant heat, direct flame contact, burning debris (e.g. wildfire embers) and wind. As illustrated in FIG. 6B, the energy and turbulence of a wildfire ember storm will rage furiously especially in very dry, low relative-humidly climates.
  • Various conventional methods have been used for fighting and defending against wildfires, namely: aerial water dropping; aerial fire retardant chemical (e.g. Phos-chek(R) Fire Retardant) dropping; physical fire break by bulldozing, to stall the advance of wildfire; physical fire break by pre-burning, to stall the advance of wildfire; and chemical fire break by dropping fire retardant chemical such as Phos-chek(R) chemical over land, to stall the advance of wildfire. While these methods are used, the results have not been adequate in most instances where wildfires are raging across land under strong winds. And millions of homes have been left completed undefended and vulnerable against wildfire ember storms.
  • Recently, the State of California deployed its CAL FIRE™ mobile application for smartphones and other mobile computing devices. The purpose of this mobile application is to provide users with (i) notifications on where wildfires are burning at a given moment in time, (ii) notifications on the risks of wildfire in certain regions, (iii) helpful ways of preparing for wildfires, and (iv) other useful information to help people stay out of harms way during a wildfire. However, in its current state, this wildfire notification system does little to help home and business owners to proactively defend their homes and business against raging forces of wildfires and wildfire ember storms, in any meaningful way.
  • Clearly, conventional fire suppression methods are not working as needed to protect neighborhoods, homes, businesses and human life from the raging forces of wildfires. While more money is being spent and more people are being deployed to fight wildfires using conventional methods and technologies, the benefits are not being realized.
  • Therefore, there is a great need for new and improved methods of and apparatus for suppressing wildfires and providing improved defense and protection to property and life alike, while overcoming the shortcomings and drawbacks of prior art methods and apparatus.
  • OBJECTS AND SUMMARY OF THE PRESENT INVENTION
  • Accordingly, a primary object of the present is to provide a new and improved wildfire ember suppressing filter system adapted for refitting into the standard size holes formed in the air-flow board mounted between each set of rafter beams in the roof structure of a wood-framed building, wherein the wildfire ember suppressing filter comprises a filter fabric infused with a anti-fire (AF) liquid that breaks or interferes with the free-radical chemical reactions of the combustion phase of fire burning on the outer surface of a combusting wildfire ember.
  • Another object of the present invention is to provide a novel system and devices for filtering and extinguishing wildfire embers from entering into the attics of wood-framed buildings when exposed to ember storms generated during a wildfire, and a kit and method for installing the same.
  • Another object of the present invention is to provide a new and improved method of and apparatus for automatically producing a cloud of wildfire ember suppressing mist about or in the vicinity of air-inflow entry points in a wood-framed building during a wildfire storm, wherein the cloud of wildfire ember suppressing mist consists of billions of wildfire ember suppressing microscopic droplets continuously generated by forcing environmentally clean aqueous-based anti-fire (AF) liquid through one or more misting nozzles under a predetermined hydraulic pressure so that clouds of wildfire ember suppressing mist are generated for suppressing and extinguishing wildfire embers flying about the building and into the air-inflow entry points, to reduce the risk that such flying wildfire embers do not enter the building and start a fire within the building during the wildfire storm, while avoiding the shortcomings and drawbacks of prior methods and apparatus.
  • Another object of the present invention is to provide a new and improved automated wildfire ember misting-type suppression system for installation about a wood-framed building so as to automatically detect when a wildfire is in the vicinity of the building and generate a cloud of wildfire ember suppressing mist about the building so as to suppress and/or extinguish flying wildfire embers seeking to find a point of entry into the building during an active wildfire storm.
  • Another object of the present invention is to provide a new and improved automated wildfire ember misting-type suppression system that employs an electronic wildfire ember detection device using infra-red (IR) and other thermal-imaging sensors, and relative humidity sensors, to automatically detect the presence of a wildfire in the vicinity of the wood-framed building and automatically generate a cloud of wildfire ember suppressing mist consisting of microscopic droplets of clean anti-fire (AF) liquid that (i) instantly evaporates into vapor when contacting a flying wildfire ember and (ii) breaks and/or interferes with free-radical chemical reactions supported on the surface of each combusting wildfire ember flying in the wildfire storm moving about the wood-framed building.
  • Another object of the present invention is to provide a new and improved automated wildfire suppression system having a lawn misting subsystem that supports two modes of operation: wherein when no wildfire storm is detected, the lawn misting subsystem automatically mists the lawn with water supplied from a local water supply; and when a wildfire storm is detected, the lawn misting subsystem automatically mists the lawn with an environmentally anti-fire (AF) liquid supplied from a local supply of anti-fire (AF) liquid.
  • Another object of the present invention is to provide a novel method of suppressing hot combusting wildfire embers flying above ground in a wildfire ember storm encircling a wood-framed building, by automatically detecting the presence of a wildfire storm in the vicinity of the wood-framed building, and in response thereto, automatically generating clouds of wildfire ember suppressing mist about the an-inflow entry points of the wood-framed building, wherein the wildfire ember suppressing mist consists of billions of microscopic droplets of environmentally anti-fire (AF) liquid, mixed with water, and forced through misting nozzles under hydraulic pressure to support suitable flow rates required to suppress and extinguish flying wildfire embers seeking to enter into the wood-framed building during the wildfire ember storm, by way of the microscopic misting droplets (i) instantly evaporating into vapor when contacting a flying wildfire ember and (ii) breaking and/or interferes with free-radical chemical reactions supported on the surface of each combusting wildfire ember flying in the wildfire storm moving about the wood-framed building.
  • Another object of the present invention is to provide a new and improved system for wildfire ember suppression and home defense system, wherein each home defense system includes a GPS-tracking and radio-controlled circuit to automatically monitor the anti-fire (AF) liquid level in its storage tank, and automatically generate electronic refill orders sent to a command center, so that a third-party service can automatically replenish the tanks of such home-based systems with anti-fire liquid when the fluid level falls below a certain level in the GPS-tracked tank.
  • Another object of the present invention is to provide method of and system and network for managing the supply, delivery and spraying/misting of environmentally-clean anti-fire (AF) liquid material on private and public properties to reduce the risks of damage and/or destruction to property and life caused by wildfires.
  • Another object of the present is to provide method of reducing the risks of damage to private property due to wildfires by centrally managed application of anti-fire chemical liquid spray to ground cover and building surfaces prior to arrival of the wildfires.
  • Another object of the present is to provide method of reducing the risks of damage to private property due to wildfires using a global positioning satellite (GPS) system and mobile communication messaging techniques, to direct the spray application of clean anti-fire chemical liquid prior to the arrival of a wildfire on a specific parcel of property, and the automated misting application of clean anti-fire chemical liquid during the presence of the wildfire storm on the property.
  • Another object of the present invention is to provide a new and improved system for wildfire suppression and home defense system, wherein each home defense spray system includes a GPS-tracking and radio-controlled circuit board to remotely monitor the location of each location-deployed home defense spray system and automatically monitor the anti-fire chemical liquid level in its storage tank, and automatically generate electronic refill orders sent to the command center, so that a third-party service can automatically replenish the tanks of such home-based systems with anti-fire liquid when the fluid level falls below a certain level in the GPS-tracked tank.
  • Another object of the present invention is to provide a new and improved system for wildfire suppression and home defense system, wherein the mobile application supporting the following functions: (i) sends automatic notifications from the command center to home owners with the mobile application, instructing them to spray their property and home at certain times with anti-fire chemical liquid in their tanks; (ii) the system will automatically monitor consumption of sprayed anti-fire chemical liquid and generate auto-replenish order via its onboard GSM-circuits so as to achieve compliance with the home spray-based wildfire-defense program, and report anti-fire liquid levels in each home-owner tank; and (iii) show status of wildfire risk in the region, and actions to the taken before wildfire outbreak.
  • Another object of the present invention is to provide an electronic wildfire ember detection network comprising a wireless network of wildfire ember detectors mounted on a network of buildings covering a significantly large area, so that early detection of a GPS-specified wildfire can be transmitted to other electronic wirefire ember detectors on other houses to provide an awareness of a wirefire present in the vicinity and automated preparation for the wildfire, in terms of automated cloud misting operations of clean anti-fire (AF) chemical liquid to inhibit and suppress wildfire embers and fire when they arrived on the premises of the protected building.
  • Another object of the present invention is to provide a wireless system for managing the supply, delivery, spraying/misting-application of environmentally-clean anti-fire (AF) liquid over the surfaces of private and public property to reduce the risks of damage and/or destruction caused by wildfires and wildfire embers.
  • Another object of the present invention is to provide a new and improved system for spraying a defensive path around a wood-framed building out in front of wildfires to make sure that an environmentally-safe fire break, created by the spray application of anti-fire (AF) liquid, defends homes from the destructive forces of raging wildfires.
  • Another object of the present invention is to provide a new and improved system and method of mitigating the damaging effects of wildfires by spraying environmentally-clean anti-fire (AF) chemical liquid in advance of wildfires, that do not depend on water to extinguish fire, such that, even after a month or two after spray application on dry brush around the neighborhood, the anti-fire chemical continues to work by stalling the ability of a fire to advance and consume homes.
  • Another object of the present invention is to provide a new wildfire-protected storage shed for installation near a building for storing and protecting the pumping system, CFIC liquid storage tank, and controller associated with the automatic wildfire ember suppression system of the present invention, during wildfire ember storms.
  • Another object of the present invention is to provide an environmentally-clean anti-fire chemical lawn spray paint that provides a significant defense against wildfires (i.e. a chemical wildfire break) by providing the dried grass with clean chemicals that break the free-radical chemical reactions in the combustion phase of a burning wildfire, thereby reducing the risks of wildfires to neighboring homes and buildings.
  • Another object of the present invention is to provide an environmentally-clean anti-fire chemical mulch or ground spray paint that provides a significant defense against wildfires (i.e. a chemical wildfire break) by providing the dried mulch and other organic material with clean chemicals that break the free-radical chemical reactions in the combustion phase of a burning wildfire, thereby reducing the risks of wildfires to neighboring homes and buildings.
  • These and other benefits and advantages to be gained by using the features of the present invention will become more apparent hereinafter and in the appended Claims to Invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following Objects of the Present Invention will become more fully understood when read in conjunction of the Detailed Description of the Illustrative Embodiments, and the appended Drawings, wherein:
  • FIG. 1 is a graphical image showing a wood-framed house on a parcel of private property surrounded by brush and trees, and vulnerable to a wildfire outbreak;
  • FIG. 2A is perspective view of a wood-framed house during construction showing the rafter beams, and the attic air-inflow baffle board with a set of drilled air holes covered by a mesh screen, and mounted between the rafter beams to prevent small animals from entering the attic area of the building, through the soffit region, after construction is completed;
  • FIG. 2B is a perspective view of the attic air-inflow baffle board shown in FIG. 2A, showing its drilled air holes, covered by mesh screen on the rear surface of the board;
  • FIG. 3A is a conventional closable attic louver vent system that can be opened and closed as required during a wildfire ember storm;
  • FIG. 3B is a front view of the closable attic louver vent system shown in FIG. 3A; FIG. 3C is a rear view of the closable attic louver vent system shown in FIGS. 3B and 3C;
  • FIG. 4 is a perspective view of a conventional soffit provided with air vents for roof and attic ventilation;
  • FIG. 5A is a perspective view of a conventional soffit structure on a wood-framed house, showing the installation of a closable soffit vent device;
  • FIG. 5B is a perspective view of the conventional closable soffit vent of FIG. 5A, shown arranged in its opened vent configuration;
  • FIG. 5C is a perspective view of the conventional closable soffit vent of FIG. 5A, shown arranged in its closed vent configuration;
  • FIG. 6A is a graphical illustration showing the impact and dynamics of a wildfire being driven by prevailing wind, with radiant heat and direct flames coming into contact with a conventional wood-framed building, while burning debris including wildfire embers are flying all around and into the wood-frame building during a wildfire storm;
  • FIG. 6B is a graphical illustration of a wildfire ember storm generated by a wildfire ranging across a wooded field, producing streams of burning/combusting embers of organic material that are flying through the air currents generated by the heat of the wildfire and prevailing winds;
  • FIG. 8 is a perspective view of the wildfire ember filtering and suppression system of the present invention shown being installed in the air-inflow baffle board mounted between each pair of roof rafter boards of a wood-framed building, wherein the wildfire ember filtering and suppression system of the present invention comprises a thin cylindrical shaped piece of air-passing cloth, fabric or thermally-resistant material, infused with an environmentally anti-fire (AF) chemical liquid which when dried, provides a Class-A fire protective air filtering mechanism through which air can flow, but blocking and suppressing any combusting wildfire embers flowing into the air-vent filter during a wildfire storm;
  • FIG. 8A is a cross-sectional view of the wildfire ember filtering system installed in wood-framed roof rafter air-vent assembly of the building illustrated in FIG. 8;
  • FIG. 9 is a schematic representation of the wireless automated wildfire detection and suppression system network of the present invention designed for managing the supply, delivery and misting-application of environmentally-clean anti-fire (AF) chemical liquid on private and public property to reduce the risks of property damage and/or destruction and harm to life caused by wildfires as disclosed on copending U.S. patent application Ser. No. 15/866,451 filed Jan. 9, 2018, incorporated herein by reference, in its entirety;
  • FIG. 10 is a schematic representation of the automated wireless wildfire ember detection and suppression system of present invention, showing a wildfire ember detection module mounted on the top of each building in the wireless network receiving wirefire alerts and messages from neighboring modules which can scout for wildfires and alert other modules in the network in terms of GPS coordinates so that the individual properties can timely prepare for any such wildfire outbreaks in the vicinity, using the hybrid wildfire misting system of the present invention shown in FIGS. 13A and 13B;
  • FIG. 11 is a schematic representation of the wireless GPS-tracked wirefire ember detection and notification network of the present invention integrated with the automated wirefire ember detection and suppression system of the present invention depicted in FIGS. 9 and 10;
  • FIG. 12A is a perspective view of a wireless automated GPS-tracked wildfire ember detection module of the present invention, deployed in the wireless GPS-tracked wirefire ember detection and notification network of the present invention, shown in FIGS. 10 and 11;
  • FIG. 12B is a perspective view of a wireless GPS-tracked wildfire ember detection module of FIG. 12A, with its fire-protective housing cover removed, showing its various sensors and signal and data processing and storage components represented in FIG. 12C;
  • FIG. 12C is a schematic block diagram showing the components used to construct the wireless GPS-tracked wildfire ember detection module of the present invention, shown in FIGS. 10, 11, 12A and 12B;
  • FIGS. 13A and 13B, taken together, set forth a schematic diagram showing automated hybrid clean wildfire inhibitor misting system of the present invention, providing both an anti-fire chemical misting system for suppressing wildfire embers impacting a building as shown in FIG. 13A and a lawn and ground anti-fire chemical liquid misting system impacting the law and ground around the building as shown in FIG. 13A, both automatically controlled by an automated wildfire ember detection and notification network shown in FIGS. 10 through 12C, all being integrated into the system network shown in FIG. 9;
  • FIG. 14 is a perspective view of a section of piping and misting nozzles used in the automated hybrid wildfire inhibitor misting system shown in FIGS. 13A and 13B;
  • FIG. 15 is a schematic illustration describing a method of suppressing combusting wildfire embers using a hydraulic misting nozzle supplied with a pressurized supply of anti-fire (AF) liquid to produce a cloud of microscopic droplets for suppressing flying wildfire embers during a wildfire ember storm;
  • FIG. 16A is a schematic diagram of an UltraMist(R) misting nozzle from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15;
  • FIG. 16B is a schematic representation of an exemplary misting pattern produced from the nozzle specified in FIG. 16A;
  • FIG. 17A is a schematic diagram of a fine atomization misting nozzle from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15;
  • FIG. 17B is a schematic representation of an exemplary misting pattern produced from the nozzle specified in FIG. 17A;
  • FIG. 18 is a schematic diagram of a low flow misting nozzle from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15, comprising a stainless steel tip with small spiral nozzles orifice diameters of 0.04″ to 0.12″ for producing a fine fog-like mist consisting of droplets over a hollow cone, medium angle at flow rates between 0.14 gallons per minute at 10 PSI to 3.84 gallons per minute at 100 PSI, supplied using ⅛″ male pipe sizes;
  • FIG. 18B is a schematic representation of an exemplary misting pattern produced from the nozzle specified in FIG. 18A;
  • FIG. 19A is a schematic diagram of a MicroWhirl® fine atomization misting nozzle from Bete Fog Nozzle, Inc., described in U.S. Pat. No. 7,198,201, incorporated herein by reference, that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15;
  • FIG. 19B is a schematic representation of an exemplary misting pattern produced from the nozzle specified in FIG. 19A;
  • FIG. 20 is a schematic illustration of the wood-framed building shown in FIG. 10, about which is installed the hybrid clean wildfire misting system of the present invention shown in FIGS. 13A and 13B, controlled by the automated wildfire ember detection and suppression system of the present invention;
  • FIG. 20A is a schematic illustration of a wood deck system associated with the rear portion of the wood-framed building being protected by the automated wildfire ember detection and suppression system of the present invention;
  • FIG. 21A is a perspective view of a mobile GPS-tracked anti-fire (AF) liquid misting system supported on a set of wheels, with integrated supply tank and rechargeable-battery operated electric spray pump, for deployment at private and public properties having building structures, for spraying the same with environmentally-clean anti-fire (AF) liquid in accordance with the principles of the present invention;
  • FIG. 21B is a schematic representation of the GPS-tracked mobile anti-fire (AF) chemical liquid misting system shown in FIG. 21A, comprising a GPS-tracked and remotely-monitored anti-fire (AF) liquid spray control subsystem interfaced with a micro-computing platform for monitoring the spraying of anti-fire chemical liquid from the system when located at specific GPS-indexed location coordinates, and automatically logging and recording such anti-fire liquid spraying application operations within the network database system;
  • FIG. 22A is a perspective view of an exemplary mobile computing device deployed on the system network of the present invention, supporting (i) the mobile anti-fire spray management application of the present invention deployed as a component of the system network of the present invention as shown in FIG. 9, as well as (ii) conventional wildfire alert and notification systems as shown in FIGS. 10 through 12C; and
  • FIG. 22B shows a system diagram for an exemplary mobile client computer system deployed on the system network of the present invention.
  • DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS OF THE PRESENT INVENTION
  • Referring to the accompanying Drawings, like structures and elements shown throughout the figures thereof shall be indicated with like reference numerals.
  • Specification of the Wildfire Ember Filtering and Suppression System of the Present Invention
  • FIGS. 8 and 8A show the wildfire ember filtering and suppression system of the present invention 17 shown being installed in the air-inflow board mounted between each pair of roof rafter boards 17A1 and 17A2 of a wood-framed building. As shown, the wildfire ember filtering and suppression system 17 comprises: a thin cylindrical shaped piece of air-pervious cloth, fabric or thermally-resistant material 17C infused with a clean-environmentally anti-fire (AF) liquid (i.e. Hartindo AF21 fire inhibitor chemical liquid from Hartindo Chemical, Indonesia) that dries to provide a Class-A fire-protective air filtering mechanism 17D, through which air can freely flow through the filtered vent holes 17C, while blocking and suppressing any combusting/burning wildfire embers 17E during a wildfire storm. This wildfire ember filtering block 17D can serve as a second tier of defense against a raging wildfire in the event that certain flying embers pass through anti-fire chemical misting clouds, as taught herein, without being adequately suppressed or extinguished, as the case may be.
  • Specification of the Wireless System Network of the Present Invention Designed for Managing the Supply, Delivery and Misting of Environmentally-Clean Anti-Fire (AF) Liquid on Private and Public Property
  • FIG. 9 describes the wireless system network of the present invention 1 designed for managing the supply, delivery and misting of environmentally-clean anti-fire (AF) liquid on private and public property to reduce the risks of property damage and/or destruction and harm to life caused by wildfires. As shown, the network 1 comprises: GPS-tracked anti-fire (AF) liquid spray ground vehicles 2; GPS-tracked anti-fire liquid spray air vehicles 3; GPS-tracked anti-fire liquid misting systems 5 for spraying private real property and buildings 17; GPS-tracked liquid misting systems 5 for spraying public real property and buildings 18; mobile computing systems 11 running the mobile application of the present invention and used by property owners, residents, fire departments, insurance underwriters, government officials, medical personal and others, remote data sensing and capturing systems for remotely monitoring land and wildfires wherever they may break out; a GPS system 100 for providing GPS-location services to each and every system components in the system network; and one or more data centers 8 each containing clusters of web, application and database servers 9A, 9B, 9C for supporting wire wild alert and notification systems, and microservices configured for monitoring and managing the system and network of GPS-tracking anti-fire liquid misting systems and mobile computing and communication devices configured in accordance with the principles of the present invention.
  • FIG. 9 shows the wireless system network of the present invention 1 designed for managing the supply, delivery and spray-application of environmentally-clean anti-fire (AF) liquid on private and public property to reduce the risks of damage and/or destruction caused by wildfires. As shown, the wireless system network 1 comprises a distribution of system components, namely: GPS-tracked anti-fire (AF) liquid spray ground vehicles 2 (e.g. all terrain vehicles or ATVs) for applying anti-fire chemical liquid spray (e.g. Hartindo AF31 fire inhibitor chemical from Hartindo Chemical, Indonesia) from the ground to ground surfaces, brush, and other forms of organic material; GPS-tracked anti-fire liquid misting and misting air-based vehicles 3 for applying anti-fire chemical liquid spray (e.g. Hartindo AF31 fire inhibitor chemical liquid) from the air to ground surfaces, brush, bushes and other forms of organic material; GPS-tracked automated wildfire (and wildfire ember) detection and notification network 4 for automatically detecting wildfires and wildfire embers 17E in wildfire ember storms passing through a given surrounding vicinity, as shown in FIGS. 10, 11, 12A, 12B and 12C; GPS-tracked/GSM-linked anti-fire liquid misting systems 5 for applying anti-fire chemical liquid spray (e.g. Hartindo AF31 fire inhibitor chemical liquid) to private real property, buildings and surrounding areas; GPS-tracked/GSM-linked liquid misting systems 6 for applying anti-fire chemical liquid spray (e.g. Hartindo AF31 fire inhibitor chemical liquid) to public real property and buildings and surrounding properties; an automated wildfire ember misting suppression system 6 for protecting buildings from wildfire embers, as shown in FIGS. 13A, 13B, 14, 15, 16A, 16B, 17A, 17B, 18A, 18B, 19A and 19B; a GPS-indexed real-property (land) database system 7 for storing the GPS coordinates of the vertices and maps of all land parcels, including private property and building 17 and public property and building 18, situated in every town, county and state in the region over which the system network 1 is used to manage wildfires as they may occur; a cellular phone, GSM, and SMS messaging systems and email servers, collectively 16; and one or more data centers 8 for monitoring and managing GPS-tracking/GSM-linked anti-fire (AF) liquid supply and spray systems, including web servers 9A, application servers 9B and database servers 9C (e.g. RDBMS) operably connected to the TCP/IP infrastructure of the Internet 10, and including a network database 9C1, for monitoring and managing the system and network of GPS-tracking anti-fire liquid misting systems and various functions supported by the command center 19, including the management of wildfire suppression and the GPS-guided application of anti-fire (AF) chemical liquid over public and private property, as will be described in greater technical detail hereinafter. As shown, each data center 8 also includes an SMS server 9D and an email message server 9E for communicating with registered users on the system network 1 who use a mobile computing device (e.g. an Apple® iPhone or iPad tablet) 11 with the mobile application 12 installed thereon and configured for the purposes described herein. Such communication services will include SMS/text, email and push-notification services known in the mobile communications arts.
  • As shown in FIG. 9, the GPS-indexed real-property (land) database system 7 will store the GPS coordinates of the vertices and maps of all land parcels contained in every town, county and state of the region over which the system network is deployed and used to manage wildfires as they may occur. Typically, databases and data processing methods, equipment and services known in the GPS mapping art, will be used to construct and maintain such GPS-indexed databases 7 for use by the system network of the present invention, when managing GPS-controlled application of clean anti-fire (AF) chemical liquid spray and mist over GPS-specified parcels of land, at any given time and date, under the management of the system network of the present invention. Examples of such GPS-indexed maps of land parcels are reflected by the task report shown in FIG. 16, and examples of GPS-indexed maps are shown in the schematic illustrations depicted in FIGS. 18, 20, 22 and 24.
  • As shown in FIG. 9, the system network 1 also includes a GPS system 100 for transmitting GPS reference signals transmitted from a constellation of GPS satellites deployed in orbit around the Earth, to GPS transceivers installed aboard each GPS-tracking ground-based or air-based anti-fire (AF) liquid misting system of the present invention, as part of the illustrative embodiments. From the GPS signals it receives, each GPS transceiver aboard such AF liquid misting/misting systems is capable of computing in real-time the GPS location of its host system, in terms of longitude and latitude. In the case of the Empire State Building in NYC, NY, its GPS location is specified as: N40° 44.9064′, W073° 59.0735′; and in number only format, as: 40.748440, −73.984559, with the first number indicating latitude, and the second number representing longitude (the minus sign indicates “west”).
  • As shown, the system network 1 further includes multi-spectral imaging (MSI) systems and/or hyper-spectral-imaging (HSI) systems 14 for remotely data sensing and gathering data about wildfires, their location and progress. Such MSI and HSI systems may be space/satellite-based and/or drone-based (supported on an unmanned airborne vehicle or UAV). Drone-based systems 14 can be deployed and remotely-controlled by a human operator, or guided under an artificial intelligence (AI) navigation system. Such AI-based navigation systems may be deployed anywhere, provided access is given to such remote navigation system the system network and its various systems. Typically, the flight time will be limited to under 1 hour using currently available battery technology, so there will be a need to provide provisions for recharging the batteries of such drones/UASs in the field, necessitating the presence of human field personnel to support the flight and remote data sensing and mapping missions of each such deployed drone, flying about raging wildfires, in connection with the system network of the present invention.
  • During each wildfire data sensing and mapping mission, carried out by such UAS, a series of MSI images and HSI images can be captured during a wildfire, and mapped to GPS-specific coordinates, and this mapped data can be transmitted back to the system network for storage, analysis and generation of GPS-specified flight plans for anti-fire (AF) chemical liquid spray and misting operations to stall and suppress such wildfires, and mitigate risk of damage to property and harm to human and animal life.
  • A suite of MSI and HSI remote sensing and mapping instruments and technology 14, currently being used by the US Geological Survey (USGS) Agency, can be used to collect, monitor, analyze, and provide science about natural resource conditions, issues, and problems on Earth. It is an object of the present invention to exploit such instruments and technology when carrying out and practicing the various methods of the present invention disclosed herein. These MSI/HSI remote sensing technologies 14 include: MODIS (Moderate Resolution Imaging Spectro-radiometer) satellite system for generating MODIS imagery subsets from MODIS direct readout data acquired by the USDA Forest Service Remote Sensing Applications Center, to produce satellite fire detection data maps and the like https://fsapps.nwcg.gov/afm/activefiremaps.php; the World View 2 Satellite System manufacture from the Ball Aerospace & Technologies and operated by DigitalGlobe, for providing commercially available panchromatic (B/W) imagery of 0.46 meter resolution, and eight-band multi-spectral imagery with 1.84 meter resolution; Octocopter UAS (e.g. OnyxStar Hyra-12 heavy lifting drone) supporting MSI and HSI camera systems for spectral imaging applications, http://www.onyxstar.net and http://www.genidrone.com; and SenseFly eBee SQ UAS for capturing and mapping high-resolution aerial multi-spectral images https://www.sensefly.com/drones/ebee-sq.html.
  • Any one or more of these types of remote data sensing and capture instruments, tools and technologies can be integrated into and used by the system network 1 for the purpose of (i) determining GPS-specified flight/navigation plans for GPS-tracked anti-fire (AF) chemical liquid spraying and misting aircraft, and ground-based spraying vehicle systems, and (ii) practicing the various GPS-guided methods of wildfire suppression described in detail in pending U.S. patent application Ser. No. 15/866,451, incorporated herein by reference.
  • Spatial intelligence captured using these remote data capture systems can be transmitted back to the automated wireless wildfire detection and notification network 4 shown in FIGS. 10 and 11 so that each automated wildfire ember detection module 4A is informed, and armed to control local anti-fire chemical misting equipment provided to the building on which the wildfire ember detection module 4A is mounted. In turn, each wildfire ember detection module 4A in the network illustrated in FIG. 11 is readily adapted to generate and transmit electronic control signals to activate the automated hybrid misting system 6 to begin (i) automatically misting the lawn and surround ground cover with anti-fire (AF) chemical liquid if and as needed, and/or (ii) automatically misting anti-fire chemical liquid about all airflow entry points of the building (e.g. gables, soffits, rafters, turbines on roof etc), and all other building surfaces as may required or desired to adequately protect the building during a raging wildfire ember storm.
  • During such wildfire storms, it is expected that electrical power will be disrupted in the neighborhood, as will telecommunication network services, but that the automatic wildfire ember detection module 4A will have received notifications from the surrounding network about the presence of a raging wildfire, and in response, the module 4A will automatically command the local AF chemical liquid misting equipment to operate based on locally detected wildfire ember conditions, to dispense AF chemical liquid in a strategic manner so that misting clouds are generated when wildfire embers are flying through the air about the module 4A, striking the building and trying to find a way into the interior space of the wood framed building, via air vents and other passageways, to ignite a fire inside the building and burn it down to the ground.
  • The wildfire defense system 6 of the present invention will be programmed with artificial intelligence (AI) programs running inside the wildfire ember misting controller 6B, safely mounted within the wildfire-protected shed 50 or inside the building in a safe location.
  • One control strategy might involve the wildfire ember misting controller 6B working in conjunction with the automated wildfire ember detection module 4A automatically monitor and confirm that wildfire embers 17E are flying through the air around the building (e.g. date-stamped local wildfire ember alert) before it automatically commands the liquid pump system 6F to hydraulically pump anti-fire chemical liquid from supply tank 6E into the pipe manifold 6G and to the misting nozzles 6H located all about the building for generating a fog-like misting cloud, thereby providing unprecedented wildfire protection to the building as it is actually being attacked by a fierce and energetic wildfire ember storm.
  • Another control strategy might involve the wildfire ember misting controller 6B working in conjunction with the automated wildfire ember detection module 4A automatically monitor and confirm that flying wildfire embers have been detected by a neighboring wildfire ember detection module 4A, on a neighboring building located some predetermined distance away and occurring some time ago (e.g. date-stamped neighboring wildfire ember alert or event), before it automatically commands the liquid pump system 6F to hydraulically pump anti-fire chemical liquid from supply tank 6E into the pipe manifold 6G and to the misting nozzles 6H located all about the building for generating a fog-like misting cloud, thereby providing unprecedented wildfire protection to the building before it is actually attached by a fierce and energetic wildfire ember storm moving in the direction of the building under protection.
  • Regardless of AI control strategy running on the wildfire ember misting controller 6B, each automated wildfire ember detection module 4A (encased in a fire-protected housing) will support (i) real-time digital IR, thermal, and pyrometric image capture from its 360 degrees of viewing optics (i.e. 360 fields of view) supported by its image formation optics within its fire-protected housing 4A1, and (ii) real-time pixel processing of these digital (multi-spectral/color) images so as to automatically recognize the presence of fire, wildfire, and flying wild-fire ember using various image processing techniques performed in module 4A in a manner known in the image-processing based fire recognition arts. Upon such automated recognition of a “wildfire” or “flying wildfire ember” event, the module 4A will automatically generate and transmit a GPS-indexed message and command to the local wildfire ember misting controller 6B, as well as to other neighboring modules 4A active and operating on the wireless wildfire ember detection network 4 (provided it has not been disrupted by the wildfire storm) so as to assist other automated wildfire ember detection modules 4A in the neighboring region, in efforts to protect their designated properties against any particular wildfire storm moving through their regions.
  • It is also understood that the lithium-ion battery pack and controller 6C will have adequate charge to operate the system 6 for at least 24 hours without interruption, or recharging by its PV solar panel 6D, or external power supply, as the case may be. This way the system 6 of the present invention will be prepared to operate under very dangerous conditions created by a wildfire storming through a specified region, and provide the required degree of protection to save the building from the wildfire.
  • Specification of the Network Architecture of the System Network of the Present Invention
  • FIG. 9 illustrates the network architecture of the system network 1 implemented as a stand-alone platform deployed on the Internet. As shown, the Internet-based system network 1 comprises: cellular phone and SMS messaging systems and email servers 16 operably connected to the TCP/IP infrastructure of the Internet 10; a network of mobile computing systems 11 running enterprise-level mobile application software 12, operably connected to the TCP/IP infrastructure of the Internet 10; an array of mobile GPS-tracked anti-fire (AF) liquid spraying/misting, each provided with GPS-tracking and having wireless internet connectivity with the TCP/IP infrastructure of the Internet 10, using various communication technologies (e.g. GSM, BlueTooth, WIFI, and other wireless networking protocols well known in the wireless communications arts); and one or more industrial-strength data center(s) 8, preferably mirrored with each other and running Border Gateway Protocol (BGP) between its router gateways, and operably connected to the TCP/IP infrastructure of the Internet.
  • As shown in FIG. 9, each data center 8 comprises: the cluster of communication servers 9A for supporting http and other TCP/IP based communication protocols on the Internet (and hosting Web sites); a cluster of application servers 9B; the cluster of RDBMS servers 9C configured within a distributed file storage and retrieval ecosystem/system, and interfaced around the TCP/IP infrastructure of the Internet well known in the art; the SMS gateway server 9D supporting integrated email and SMS messaging, handling and processing services that enable flexible messaging across the system network, supporting push notifications; and the cluster of email processing servers 9E.
  • Referring to FIG. 9, the cluster of communication servers 9A is accessed by web-enabled mobile computing clients 11 (e.g. smart phones, wireless tablet computers, desktop computers, computer workstations, etc) used by many stakeholders accessing services supported by the system network 1. The cluster of application servers 9A implement many core and compositional object-oriented software modules supporting the system network 1. Typically, the cluster of RDBMS servers 9C use SQL to query and manage datasets residing in its distributed data storage environment, although non-relational data storage methods and technologies such as Apache's HaDoop non-relational distributed data storage system may be used as well.
  • As shown in FIG. 9, the system network architecture shows many different kinds of users supported by mobile computing devices 11 running the mobile application 12 of the present invention, namely: the plurality of mobile computing devices 11 running the mobile application 12, used by fire departments and firemen to access services supported by the system network 1; the plurality of mobile computing systems 11 running mobile application 12, used by insurance underwriters and agents to access services on the system network 1; the plurality of mobile computing systems 11 running mobile application 12, used by building architects and their firms to access the services supported by the system network 1; the plurality of mobile client systems 11 (e.g. mobile computers such as iPad, and other Internet-enabled computing devices with graphics display capabilities, etc) used by spray-project technicians and administrators, and running a native mobile application 12 supported by server-side modules, and various GUIs, supporting client-side and server-side processes on the system network of the present invention; and a GPS-tracked anti-fire (AF) liquid misting systems 5 for spraying buildings and ground cover to provide protection and defense against wildfires.
  • In general, the system network 1 will be realized as an industrial-strength, carrier-class Internet-based network of object-oriented system design, deployed over a global data packet-switched communication network comprising numerous computing systems and networking components, as shown. As such, the information network of the present invention is often referred to herein as the “system” or “system network”. The Internet-based system network can be implemented using any object-oriented integrated development environment (IDE) such as for example: the Java Platform, Enterprise Edition, or Java EE (formerly J2EE); Websphere IDE by IBM; Weblogic IDE by BEA; a non-Java IDE such as Microsoft's .NET IDE; or other suitably configured development and deployment environment well known in the art. Preferably, although not necessary, the entire system of the present invention would be designed according to object-oriented systems engineering (DOSE) methods using UML-based modeling tools such as ROSE by Rational Software, Inc. using an industry-standard Rational Unified Process (RUP) or Enterprise Unified Process (EUP), both well known in the art. Implementation programming languages can include C, Objective C, C, Java, PHP, Python, Google's GO, and other computer programming languages known in the art. Preferably, the system network is deployed as a three-tier server architecture with a double-firewall, and appropriate network switching and routing technologies well known in the art. In some deployments, private/public/hybrid cloud service providers, such Amazon Web Services (AWS), may be used to deploy Kubernetes, an open-source software container/cluster management/orchestration system, for automating deployment, scaling, and management of containerized software applications, such as the mobile enterprise-level application 12 of the present invention, described above.
  • Specification of the Automated Wildfire Ember Detection and Suppression System/Module of Present Invention
  • FIG. 10 shows a wildfire ember detection module 4A mounted on the top of each building 300. Each wildfire ember detection module 4A is configured in the wireless wildfire ember detection and notification network 4, for (i) receiving wirefire alerts and messages from neighboring modules 4A, (ii) sensing and processing IR thermal images for automated detection of wildfires and wildfire embers in the field of views (FOVs) of the module, (iii) sending and recording the CO2 levels in the ambient air, (iv) measuring and recording the relative humidity (%) in the ambient air, (v) measuring and recording the temperature of the ambient air, and measuring and recording other parameters relating to the ambient environment which may be helpful in automated detection of wildfires and wildfire ember storms, so the anti-fire misting systems installed on property can be timely triggered to protect the building and property when a wildfire storm rages across the property. The advantage of being part of this network is that each module 4A can scout for wildfires and alert other modules in the network in terms of GPS coordinates so that the specific properties can timely prepare for any such wildfire outbreaks in the vicinity.
  • Specification of the Wireless GPS-Tracked Wirefire Ember Detection and Notification Network Employing the Wirefire Ember Detection and Suppression Systems of the Present Invention
  • FIG. 11 shows the wireless GPS-tracked wirefire ember detection and notification network 4 employing with the wirefire ember detection and suppression systems 4A depicted in FIGS. 9 and 10. As shown in FIGS. 12A and 12B, each wireless GPS-tracked wildfire ember detection module 4A, deployed in the wireless wirefire ember detection and notification network 4, shown in FIGS. 10 and 11, comprises: a fire-protective housing cover 4A1; and various sensors and signal and data processing and storage components 4A2 through 4A19, shown in schematic block diagram of FIG. 12C.
  • As shown in FIG. 12C, the sensors and signal and data processing and storage components arranged and configured about a microprocessor 4A20 and flash memory (i.e. control subsystem) 4A21 include: one or more passive infra-red (PIR) thermal-imaging sensors 4A2 connected together with suitable IR optics to project IR signal reception field of view (FOV) before the IR receiving array; multiple pyrometric sensors 4A3 for detecting the spectral radiation of burning, organic substances such as wood, natural gas, gasoline and various plastics; a GPS antenna 4A4; a GPS signal receiver 4A5; voltage regulator 4A6; an Xbee antenna 4A7; an Xbee radio transceiver 4A8; a voltage regulator 4A9; an external power connector 4A10; a charge controller 4A11; a battery 4Al2; thermistors 4A13; a power switch 4A14; a voltage regulator 4A15; external and internal temperature sensors 4A16; power and status indicator LEDs 4A17; programming ports 4A18; a digital/video camera 4A19; and other environment sensors adapted for collecting and assessing building intelligence, in accordance with the spirit of the present invention. Alternatively, the wildfire detection module 4A and wireless wildfire intelligence network 4 can be realized using the technical disclosure of U.S. Pat. No. 8,907,799, incorporated herein by reference.
  • In the illustrative embodiment, the wildfire ember detection system 4A supports a computing platform, network-connectivity (i.e. IP Address), and is provided with native application software installed on the system as client application software designed to communicate over the system network and cooperate with application server software running on the application servers of the system network, thereby fully enabling the functions and services supported by the system, as described above. In the illustrative embodiment, a wireless mess network is implemented using conventional IEEE 802.15.4-based networking technologies to interconnect these wireless subsystems into subnetworks and connect these subnetworks to the internet infrastructure of the system of the present invention.
  • Preferably, the optical bandwidth of the IR sensing arrays 4A2 used in the thermal sensors will be adequate to perform 360 degrees thermal-activity analysis operations, and automated detection of wildfire and wildfire embers. Specifically, thermal sensing in the range of the sensor can be similar to the array sensors installed in forward-looking infrared (FLIR) cameras, as well as those of other thermal imaging cameras, use detection of infrared radiation, typically emitted from a heat source (thermal radiation) such as fire, to create an image assembled for video output and other image processing operations to generate signals for use in early fire detection and elimination system of the present invention.
  • Pixel processing algorithms known to those skilled in the art will be used to automatically process captured and buffered pixels from different color channels and automatically determine the presence of fire, wildfire and flying embers within the field of view (FOV) of the wildfire ember detection module 4A. Reference can be made to “Automatic Fire Pixel Detection Using Image Processing: A Comparative Analysis of Rule-based and Machine Learning Methods” by Tom Loulouse et al, 2015, University of Corsica, France; and “Fast Detection of Deflagrations Using Image Processing” by Thomas Schroeder et al, Helmut Schmidt University, Hamburg, Germany, 2014.
  • The pyroelectric detectors 4A3 detect the typical spectral radiation of burning, organic substances such as wood, natural gas, gasoline and various plastics. To distinguish a flame from the sun or other intense light source such as light emissions from arc welding, and thus exclude a false alarm, the following independent criteria are considered: a typical flame has a flicker frequency of (1 . . . 5) Hz; a hydrocarbon flame produces the combustion gases carbon monoxide (CO) and carbon dioxide (CO2); and in addition, burning produces water which can also be detected in the infrared range. Each pyroelectric detector 4A3 is an infrared sensitive optoelectronic component specifically used for detecting electromagnetic radiation in a wavelength range from (2 to 14) μm. A receiver chip of a pyroelectric infrared detector consists of single-crystalline lithium tantalite. On the upper electrode of the crystal, an absorbing layer (black layer) is applied. When this layer interacts with infrared radiation, the pyroelectric layer heats up and surface charge arises. If the radiation is switched off, a charge of the opposite polarity originates. However, the charge is very low. Before the finite internal resistance of the crystal can equalize the charges, extremely low-noise and low leakage current field-effect transistors (JFET) or operational amplifier (Pomp) convert the charges into a signal voltage.
  • In general, most streams of digital intelligence captured by the wireless network 4 will be time and data stamped, as well as GPS-indexed by a local GPS receiver within the sensing module, so that the time and source of origin of each data package is recorded within the system database. The GPS referencing system supporting the system transmits GPS signals from satellites to the Earth's surface, and local GPS receivers located on each networked device or machine on the system network receive the GPS signals and compute locally GPS coordinates indicating the location of the networked device within the GPS referencing system.
  • When practicing the wireless network of the present invention, any low power wireless networking protocol of sufficient bandwidth can be used. In one illustrative embodiment, a Zigbee® wireless network would be deployed inside the wood-framed or mass timber building under construction, so as to build a wireless internetwork of a set of wireless PIR thermal-imaging fire outbreak detection systems deployed as a wireless subnetwork deployed within the building under construction. While Zigbee® technology, using the IEEE 802.15.1 standard, is illustrated in this schematic drawing, it is understood that any variety of wireless networking protocols including Zigbee®, WIFI and other wireless protocols can be used to practice various aspects of the present invention. Notably, Zigbee® offers low-power, redundancy and low cost which will be preferred in many, but certainly not all applications of the present invention. In connection therewith, it is understood that those skilled in the art will know how to make use of various conventional networking technologies to interconnect the various wireless subsystems and systems of the present invention, with the internet infrastructure employed by the system of the present invention.
  • The Automated Hybrid Clean Wildfire Inhibitor Misting System of the Present Invention, Controlled by the Wireless Automated Wildfire Ember Detection and Notification Network
  • As disclosed in Applicant's prior US Patent Applications, when treating combustible organic materials so they will not burn in the presence of a wildfire, it will be helpful in many instances to spray clean anti-fire chemical liquid over the target surfaces so that the droplets are relatively large and an adequate coating of anti-fire chemical dries over the treated surface. This way, when the chemically treated organic material is exposed to fire, the treated surface has adequate chemicals to break the free-radical chain reactions of the fire and thereby quickly suppress and/or extinguish the fire.
  • However, during wildfire storms, producing burning wildfire embers flying through dried heated air, driven by strong prevailing winds, it has been discovered that clean aqueous-based anti-fire (AF) chemical liquid, such as Hartindo AF31 clean anti-fire liquid, will perform as a more effective fire suppressant if provided to the burning fire in the form of a mist cloud, so that it can work on a wildfire and its embers, as described in the wildfire ember suppression process described in FIG. 15.
  • While most mist producing apparatus disclosed herein operates on the principle of transmitting an anti-fire chemical liquid through a misting nozzle under low, medium or high hydraulic pressure, it is understood that when spraying anti-fire chemical liquids over the surfaces of organic material during fire-protection treating operations, then spray-type nozzles will be often used as provided on the mobile spraying apparatus 5 shown in FIGS. 21A and 21B. Using spray-type nozzles, it is possible to quickly deposit and form sufficient coatings of anti-fire chemical material on the treated surfaces, because spray-type nozzles produce liquid drops substantially larger in size than microscopic droplets formed by misting nozzles during misting operations, illustrated in FIGS. 15 through 19B.
  • FIGS. 13A and 13B shows automated hybrid clean wildfire inhibitor misting system of the present invention 6, providing both an anti-fire chemical misting system for suppressing wildfire embers impacting a building as shown in FIG. 13A and a lawn and ground anti-fire chemical liquid misting system impacting the law and ground around the building as shown in FIG. 13A, both automatically controlled by an automated wildfire ember detection and notification network shown in FIGS. 10 through 12C. All of these system components are integrated into the system network shown in FIG. 9.
  • FIG. 14 shows a piping manifold 6G, a network of piping, and a set of misting nozzles 6H used to supply and produce anti-fire chemical misting droplets from the automated hybrid clean wildfire misting system 6 shown in FIGS. 13A and 13B.
  • As shown in FIG. 13A, automated multi-mode hybrid clean wildfire inhibitor misting system 6 comprises: an dual-mode anti-fire lawn and ground misting system 6A shown in FIG. 13B for either misting water from a main water supply, or misting environmentally-clean anti-fire chemical liquid (e.g. AF31 anti-fire chemical liquid from Hartindo Chemical) over lawns (e.g. dried out grass) and ground surfaces covered with organic material; a wildfire ember misting controller 6B (e.g. programmable microcontroller supported by a memory architecture) for controlling the various modes of the system 6; lithium battery pack and controller 6C for supplying electrical power to the electronic components in the system 6 including the DC or AC electric motor of hydraulic (e.g. diaphragm-type) liquid pumping system 6F; a photovoltaic solar cell panel 6D for recharging the lithium-ion battery back 6C while collecting sunlight with the PV solar panel 6D as solar conditions allow; a supply tank containing an adequate supply (e.g. 100 gallons) of a liquid anti-fire chemical liquid realizable using AF21 anti-fire chemical liquid from Hartindo Chemical; a liquid spray misting pump system 6F (e.g. self-priming DC or AC electrical-motor powered diaphragm liquid pump) for hydraulically pumping the anti-fire chemical liquid 6E from its supply tank (e.g. 50-100 gallons) to a plurality of misting nozzles 6H mounted all around a building being protected, and connected through adequate heat-resistant piping (e.g. ⅛″, ¼″ or ½″ metal tubing, or high-heat resistant plastic tubing such as PET) extending over relatively short distances under adequate hydraulic pressure, to support sufficient flow rates of anti-fire chemical liquid during a wildfire ember storm, determined in a manner well known in the fluid hydraulic arts; a piping manifold 6G and piping network including a set of misting nozzles 6H as shown in FIGS. 14 through 19B for producing clean anti-fire (AF) chemical mist according to the method described in FIG. 15; a GPRS/GSM transceiver 6I with suitable antennas 6J, connected to the controller 6B, and adapted for transmitting and receiving digital data packets using GPRS and GSM communication protocols, over the system network 1 shown in FIG. 9, to support a suite of digital communication services and protocols specified herein; a suite of communication services and protocols 6L (e.g. email, SMS alert, PUSH protocol, XML, PDMS, and CALL alert) supported by GSM, for sending and receiving messages; and at least one electronic wirefire ember detection module 4A, with 360 degrees of sensing and associated field of views (FOVs), and in wireless communication with the wireless wildfire ember detection and notification network 4 of the present invention shown in FIGS. 1-, 11, 12A, 12B, and 12C.
  • As shown in FIG. 13B, the lawn misting system 6A comprises: a water supply 6Q connected to a network of underground piping 6R; misting-type sprinklers 6O (e.g. misting nozzles) connected to the underground piping 6R; misting-type rotors 6P connected to the piping 6R; valves 6N connected to the underground piping 6R, the local water supply 6Q, and the liquid pumping system 6F, which is operably connected to the supply of clean wildfire inhibitor liquid 6E using piping; and a timer/controller 6M connected to the controllable valves 6N, and controlled by the wildfire ember misting controller 6B, which is managed by the automated wildfire ember detection and notification network 4, shown in FIG. 13A.
  • The dual-mode lawn misting system 6A shown in FIG. 6B has two modes of operation. During its first mode of operation, when no wildfire storm is detected, the lawn misting system 6A automatically mists the lawn with water supplied from the local water supply 6Q. During its second mode, when a wildfire storm is detected, the law misting system 6A automatically mists the lawn with an environmentally anti-fire (AF) liquid 6E supplied from a local supply of anti-fire (AF) liquid pumped from a pumping system 6F.
  • In the preferred embodiment the hybrid wildfire misting system 6 also has at least two modes operation: (i) a manual mode where a building/home owner or manager can manually activate and operate the anti-fire chemical liquid misting system 6 to protect either the building 17 and/or the lawn and ground surfaces around the building 17, as desired or required, based on intelligence in the possession of the human operator or manager; and (ii) an automated mode where the wildfire ember misting controller 6B, in cooperation with the local electronic wildfire and ember detection module 4A and associated wireless wildfire detection network 4, shown in FIGS. 10, 11, 12A, 12B and 12C, automatically activate and operate the anti-fire chemical liquid misting system 6 to protect both the building 17 and/or the lawn and ground surfaces around the building 17, as required, based on intelligence automatically collected by the wireless wildfire detection and notification network 4.
  • Preferably, modules 6I, 6K, 6B, 6C, 6E and 6F shown in FIG. 13A will be mounted and safely protected in the wildfire-protected shed or closet structure 50, disclosed in great technical detail in Applicant's copending U.S. patent application Ser. No. 15/925,796, incorporated herein by reference. In the manual mode, a touch-screen or touch-type control panel associated with the controller 6B is used by the operator to simply operate the system 6 in its manual mode, or automatically arm the system 6 to operate in its automated, artificial intelligence (AI) mode of operation.
  • The system 6 will be remotely controllable by the building manger/home-owner using a mobile computing system 11 running the mobile application 12, as shown and described in FIGS. 22A and 22B. Suitable graphical user interfaces (GUIs) will be supported on the mobile application 12 to enable the user to monitor and control the system 6 locally, or from a remote location, in real-time, provided the wireless communication infrastructure is not disrupted by a wildfire. In the case of active wildfires, the wildfire detection and notification network 4 should be accessible by a remote user provided with the mobile application 12. As the system 4 will continuously collect, record and monitor intelligence about specific regions of land and any wildfires detected in such regions, and advise any specific home/building owner of the status of any specific building before, during and after a wildfire.
  • The system 6 will include and supported automated mechanisms for remotely monitoring and reporting the amount of anti-fire chemical liquid 6E available and remaining for use in supporting anti-fire misting operations, as illustrated in FIG. 15, during an automatically detected wildfire ember storm. Preferably, adequate reserves of anti-fire chemical liquid 6E will be stored on each property before any given wildfire strike, to support several hours of wildfire ember suppression misting operations, which is typically expected during a wildfire storm before passes through and consumes the organic material that is desperately seeks to fuel its combustion process.
  • To provide adequate protection against flying wildfire embers combusting in a low humidity environment, the misting nozzles 64 will be mounted about the building 17 so as to provide adequate coverage over all air-inlet vents provided on the specific building being equipment with the wildfire misting system of the present invention, as well as on wood and other organic surfaces that might be vulnerable to hot wildfire embers during a wildfire ember storm, as illustrated in FIG. 6B. The misting or fog patterns of each misting nozzle 6H being used in the misting system 6 will be considered and exploited to provide the adequate misting protection required by the wildfire protection application at hand. Computer software tools may be developed and distributed to installers to assist in the design and installation of a hybrid wildfire misting system in accordance with the principles of the present invention.
  • In the illustrative embodiment, the clean anti-fire (AF) liquid to be used for wildfire ember misting operations is preferably Hartindo AF31 Total Fire Inhibitor, developed by Hartindo Chemicatama Industri of Jakarta, Indonesia, and commercially available from Newstar Chemicals (M) SDN BHD of Selangor Darul Ehsan, Malaysia, http://newstarchemicals.com/products.html. It is expected that service-oriented businesses will support the rapid design, installation and installation of the automated wildfire detection and misting suppression systems of the present invention, as well as the supplying and replenishing of clean anti-fire chemical liquid on each GPS—indexed property. It is expected that this can occur with the efficiency currently provided by conventional liquid propane supply companies around the country. Because of the reduced risk of loss of wood-framed or other buildings to wildfire, which the systems and method of the present invention will provide, while advancing the best practices for home and building property protection against wildfires, it is expected that fire insurance companies will embrace the best practices represented by the present invention, for reason of the great benefits such inventions will provide, predicted by Benjamin Franklin's time-honored principle of fire protection: “An ounce of prevention is worth a pound of cure.”
  • When encountering the cloud of anti-fire liquid droplets, combustible wildfire embers will be suppressed or readily extinguished. The chemical molecules in the droplets formed with Hartindo AF31 liquid will interfere with the free radicals (H+, OH—, O) involved in the free-radical chemical reactions within the combustion phase of a fire, or wildfire embers, breaking these free-radical chemical reactions and extinguishing the fire's flames. Also, the droplets will vaporize when absorbing the radiant heat energy of the hot wildfire ember(s), rapidly expanding into a vapor, cooling down the embers, and displaying oxygen, causing the combustion phase of the embers to be suppressed if not extinguished, as illustrated in FIG. 15.
  • Specification of the Method of Suppressing Wildfire Embers in Accordance with the Present Invention Using a Misting Nozzle Supplied with a Hydraulically Pressurized Supply of Anti-Fire (AF) Liquid
  • FIG. 15 describes a method of suppressing combusting wildfire embers using a hydraulic misting nozzle supplied with a pressurized supply of anti-fire (AF) chemical liquid so as to produce a cloud of microscopic droplets for suppressing flying wildfire embers, as described above.
  • As described in FIG. 15, the method comprises the steps of: (a) hydraulically pressurizing a supply of anti-fire chemical liquid 6E (e.g. AF31 anti-fire liquid from Hartindo Chemical) through the orifice or opening of a low, medium or high pressure misting nozzle 6H as shown, for example in FIGS. 16 through 19, thereby forming a cloud of fine fog-like mist comprising billions of microscopic droplets generated each second, for real-time fire suppression in the vicinity of the cloud; (b) when the anti-fire chemical liquid droplets approach and encounter a burning wildfire ember, the anti-fire chemical liquid droplets flash evaporating, changing from a liquid to a gas state, causing the fire (i.e. combustion phase) of the burning embers to flash cool, and displacing oxygen around the burning ember as the vapor rapidly expands near the burning ember; and (c) the anti-fire (AF) chemical vapor breaking (i.e. inhibiting) the free-radical chemical reactions within the combustion phase of each burning wildfire ember entering the cloud during a wildfire storm.
  • This method of wildfire ember suppression has the advantage of attacking flying wildfire embers in three different ways: (i) lowering the temperature of the burning ember; (ii) displacing O2 from the burning ember required during combustion; and (iii) breaking the free-radical chemical reactions within the combustion phase of each burning wildfire ember. This method ensures that embers during a wildfire storm are effectively extinguished within the cloud of microscopic anti-fire (AF) liquid droplets supported outside the air vents provided in the building 17, and those embers that may pass through this cloud of mist, will be filtered out by the ember filter blocks 17D mounted in each rafter bridge beam 17B shown in FIGS. 8 and 8A.
  • Many different types of misting nozzles 6H can be used in the system and method of suppressing wildfire embers according to the principles of the present invention. In FIGS. 16A through 19B, several exemplary misting nozzle designs are shown and described. While these misting nozzles are implemented typically using stainless steel because this is a durable and rugged material capable of handling high pressured with corrosive effects, alternatively, these misting nozzle designs can be realized using plastic material as well, in a manner well known in the art.
  • FIG. 16A shows an UltraMist® misting nozzle 6H1 commercially available from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15. As shown, the nozzle comprises: a stainless steel tip with a brass adapter body and 100 mess strainer for producing a very fine fog-like mist consisting of droplets under 60 microns over a hollow cone, medium angle at flow rates between 0.37 gallons per hour at 40 PSI to 16.4 gallons per hour at 1200 PSI, supplied using ⅛″ and ¼″ pipe sizes. FIG. 16B illustrates an exemplary misting pattern produced from the nozzle specified in FIG. 16A.
  • FIG. 17A shows a fine atomization misting nozzle commercially available from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15, comprising a stainless body producing a laminar jet that impinges on a target pin generating a fine fog-like mist consisting of droplets under 60 microns over a cone shaped pattern, medium angle at flow rates between 0.034 gallons per hour at 10 PSI to 0.034 gallons per hour at 1200 PSI, supplied using ⅛″ and ¼″ males pipe sizes. FIG. 17B illustrates an exemplary misting pattern produced from the nozzle specified in FIG. 17A.
  • FIG. 18 shows a low flow misting nozzle commercially available from Bete Fog Nozzle, Inc. that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15, comprising a stainless steel tip with small spiral nozzles orifice diameters of 0.04″ to 0.12″ for producing a fine fog-like mist consisting of droplets over a hollow cone, medium angle at flow rates between 0.14 gallons per minute at 10 PSI to 3.84 gallons per minute at 100 PSI, supplied using ⅛″ male pipe sizes. FIG. 18B illustrates an exemplary misting pattern produced from the nozzle specified in FIG. 18A.
  • FIG. 19A shows a MicroWhirl® fine atomization misting nozzle commercially available from Bete Fog Nozzle, Inc., described in U.S. Pat. No. 7,198,201, incorporated herein by reference, that can be used to practice the method of wildfire ember suppression illustrated in FIG. 15, comprising a stainless steel for producing a very fine mist at low pressure or fog-like mist at high pressure, medium angle at flow rates between 0.009 gallons per minute at 100 PSI to 0.380 gallons per minute at 3000 PSI, supplied using ⅛″ and ¼″ male pipe sizes. FIG. 19B illustrates an exemplary misting pattern produced from the nozzle specified in FIG. 19A.
  • Specification of Wood-Framed Building about which the Hybrid Clean Wildfire Inhibitor Misting System of the Present Invention is Installed
  • FIG. 20 is a schematic illustration of the wood-framed building shown in FIG. 10, about which is installed the hybrid clean wildfire inhibitor misting system 6 shown in FIGS. 13A and 13B, controlled by the automated wildfire ember detection and suppression system 4. FIG. 20A shows a wood deck system 17A associated with the rear portion of the wood-framed building 17 being protected by the automated wildfire ember detection and suppression system of the present invention.
  • Specification of the Mobile GPS-Tracked Anti-Fire (AF) Liquid misting System of the Present Invention
  • FIG. 21A shows the mobile GPS-tracked anti-fire (AF) liquid misting system 5 supported on a set of wheels, with an integrated supply tank 20B and rechargeable-battery operated electric spray pump 20C, for deployment at private and public properties having building structures, for misting the same with environmentally-clean anti-fire (AF) chemical liquid in accordance with the principles of the present invention.
  • FIG. 21B shows the GPS-tracked mobile anti-fire (AF) chemical liquid misting system shown in FIG. 21A, comprising a GPS-tracked and remotely-monitored anti-fire (AF) liquid spray control subsystem interfaced with a micro-computing platform for monitoring the misting of anti-fire chemical liquid from the system when located at specific GPS-indexed location coordinates, and automatically logging and recording such clean AF misting application operations within the network database system 9C1.
  • FIG. 21A shows mobile GPS-tracked anti-fire (AF) liquid misting system 5 supported on a set of wheels 20A, having an integrated supply tank 20B and rechargeable-battery operated electric spray pump 20C, for deployment at private and public properties having building structures, for spraying the same with environmentally-clean anti-fire (AF) liquid using a spray nozzle assembly 20D connected to the spray pump 20C by way of a flexible 20E.
  • FIG. 21B shows the GPS-tracked mobile anti-fire liquid spraying/misting system 5 of FIG. 6A as comprising a number of subcomponents, namely: a GPS-tracked and remotely-monitored anti-fire chemical liquid spray control subsystem 20F; a micro-computing platform or subsystem 20G interfaced with the GPS-tracked and remotely-monitored anti-fire chemical liquid spray control subsystem 20F by way of a system bus 201; and a wireless communication subsystem 20H interfaced to the micro-computing platform 20G via the system bus 201. As configured, the GPS-tracked mobile anti-fire liquid misting system 20 enables and supports (i) the remote monitoring of the spraying of anti-fire (AF) chemical liquid from the system 5 when located at specific GPS-indexed location coordinates, and (ii) the logging of all such GPS-indexed spray application operations, and recording the data transactions thereof within a local database maintained within the micro-computing platform 20G, as well as in the remote network database 9C1 maintained at the data center 8 of the system network 1.
  • As shown in FIG. 21B, the micro-computing platform 20G comprises: data storage memory 20G1; flash memory (firmware storage) 20G2; a programmable microprocessor 20G3; a general purpose I/O (GPIO) interface 20G4; a GPS transceiver circuit/chip with matched antenna structure 20G5; and the system bus 20I which interfaces these components together and provides the necessary addressing, data and control signal pathways supported within the system 5.
  • As shown in FIG. 21B, the wireless communication subsystem 20H comprises: an RF-GSM modem transceiver 20H1; a T/X amplifier 20H2 interfaced with the RF-GSM modem transceiver 20H1; and a WIFI and Bluetooth wireless interfaces 20H3.
  • As shown in FIG. 13, the GPS-tracked and remotely-controllable anti-fire (AF) chemical liquid spray control subsystem 20F comprises: anti-fire chemical liquid supply sensor(s) 20F1 installed in or on the anti-fire chemical liquid supply tank 20B to produce an electrical signal indicative of the volume or percentage of the AF liquid supply tank containing anti-fire chemical liquid at any instant in time, and providing such signals to the AF liquid misting system control interface 20F4; a power supply and controls 20F2 interfaced with the liquid pump spray subsystem 20C, and also the AF liquid misting system control interface 20F4; manually-operated spray pump controls interface 20F3, interfaced with the AF liquid misting system control interface 20F4; and the AF liquid misting system control interface 20F4 interfaced with the micro-computing subsystem 20G, via the system bus 201. The flash memory storage 20G2 contains microcode that represents a control program that runs on the microprocessor 20G3 and realizes the various GPS-specified anti-fire chemical liquid spray control, monitoring, data logging and management functions supported by the system 5.
  • In the preferred embodiment, the environmentally-clean anti-fire (AF) chemical liquid is preferably Hartindo AF31 Total Fire Inhibitor, developed by Hartindo Chemicatama Industri of Jakarta, Indonesia, and commercially-available from Newstar Chemicals (M) SDN. BHD of Selangor Darul Ehsan, Malaysia, http://newstarchemicals.com/products.html. When so treated, combustible products will prevent flames from spreading, and confine fire to the ignition source which can be readily extinguished, or go out by itself. In the presence of a flame, the chemical molecules in both dry and wet coatings, formed with Hartindo AF31 liquid, interferes with the free radicals (H+, OH—, O) involved in the free-radical chemical reactions within the combustion phase of a fire, and breaks these free-radical chemical reactions and extinguishes the fire's flames.
  • Specification of Method of Spraying Dried-Out/Burned-Out Lawn with Class-A Fire-Protected Green-Colored Lawn Spray to Prevent Lawn Combustion During Wildfire Storm Appearing on Parcel of Property with Building
  • To prevent a burned-out/dried-out lawn from combusting during an approaching wildfire, the mobile liquid spraying system 5 described above can be filled with the environmentally clean anti-fire (AF) liquid 6E (i.e. AF21 AF liquid from Hartindo Chemical) and used to spray clean anti-fire (AF) chemical liquid over the dried out lawn. In the preferred embodiment, the environmentally-clean anti-fire (AF) chemical liquid is preferably Hartindo AF31 Total Fire Inhibitor, developed by Hartindo Chemicatama Industri of Jakarta, Indonesia, and commercially-available from Newstar Chemicals (M) SDN.
  • Alternatively, a bio-degradable, environmentally-clean (i.e. non-toxic) green-colored “grass paint” concentrate (e.g. commercially available as EnviroColor (TM) grass paint from EnviroColor of Cumming, Ga.) can be used to make an anti-fire (AF) green spray paint by adding 7 gallons of Hartindo AF31 anti-fire chemical liquid to 1 gallon of green-colored non-toxic biodegradable lawn paint concentrate, to produce a green-colored liquid formulation that can then be sprayed on the a dried-out lawn using the portable liquid spraying system 5 or like system. This clean anti-fire chemical lawn spray treatment should provide a significant defense against wildfires (i.e. a chemical wildfire break) by providing the dried grass with chemicals that break the free-radical chemical reactions in the combustion phase of a burning wildfire. The clean green paint spray coating may need to be reapplied every 4-8 weeks depending on the weather and moisture conditions. Different mixing ratios of Hartindo AF31 anti-fire chemical liquid to EnviroColor™ green paint concentrate (other than 7/1) may be used to provide dried out grass, with a stronger or weaker defense to wildfires and flying wildfire embers, without significantly compromising color while reducing the risks of wildfires to neighboring homes and buildings.
  • Similarly, Hartindo AF31 anti-fire chemical liquid can be mixed with EnviroColor brown mulch paint using similarly mixing ratios (e.g. 7/1) to provide mulch paint coverings that provide dried out grass with a stronger or weaker defense to wildfires and flying wildfire embers, and thereby reducing the risks of wildfires to neighboring homes and buildings.
  • Specification of System Architecture of an Exemplary Mobile Smartphone System Deployed on the System Network of the Present Invention
  • FIG. 22A shows an exemplary mobile computing device deployed on the system network of the present invention, supporting (i) the mobile anti-fire spray management application of the present invention deployed as a component of the system network of the present invention as shown in FIG. 9, as well as (ii) conventional wildfire alert and notification systems as shown in FIGS. 10 through 12C. FIG. 22B shows a system diagram for an exemplary mobile client computer system 11 deployed on the system network 1 of the present invention.
  • FIG. 22B shows the system architecture of an exemplary mobile client computing system 11 that is deployed on the system network 1 and supporting the many services offered by system network servers 9A, 9B, 9C, 9D, 9E. As shown, the mobile smartphone device 11 can include a memory interface 202, one or more data processors, image processors and/or central processing units 204, and a peripherals interface 206. The memory interface 202, the one or more processors 204 and/or the peripherals interface 206 can be separate components or can be integrated in one or more integrated circuits. The various components in the mobile device can be coupled by one or more communication buses or signal lines. Sensors, devices, and subsystems can be coupled to the peripherals interface 206 to facilitate multiple functionalities. For example, a motion sensor 210, a light sensor 212, and a proximity sensor 214 can be coupled to the peripherals interface 206 to facilitate the orientation, lighting, and proximity functions. Other sensors 216 can also be connected to the peripherals interface 206, such as a positioning system (e.g. GPS receiver), a temperature sensor, a biometric sensor, a gyroscope, or other sensing device, to facilitate related functionalities. A camera subsystem 220 and an optical sensor 222, e.g. a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, can be utilized to facilitate camera functions, such as recording photographs and video clips. Communication functions can be facilitated through one or more wireless communication subsystems 224, which can include radio frequency receivers and transmitters and/or optical (e.g. infrared) receivers and transmitters. The specific design and implementation of the communication subsystem 224 can depend on the communication network(s) over which the mobile device is intended to operate. For example, the mobile device 11 may include communication subsystems 224 designed to operate over a GSM network, a GPRS network, an EDGE network, a Wi-Fi or WiMax network, and a Bluetooth™ network. In particular, the wireless communication subsystems 224 may include hosting protocols such that the device 11 may be configured as a base station for other wireless devices. An audio subsystem 226 can be coupled to a speaker 228 and a microphone 230 to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and telephony functions. The I/O subsystem 240 can include a touch screen controller 242 and/or other input controller(s) 244. The touch-screen controller 242 can be coupled to a touch screen 246. The touch screen 246 and touch screen controller 242 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen 246. The other input controller(s) 244 can be coupled to other input/control devices 248, such as one or more buttons, rocker switches, thumb-wheel, infrared port, USB port, and/or a pointer device such as a stylus. The one or more buttons (not shown) can include an up/down button for volume control of the speaker 228 and/or the microphone 230. Such buttons and controls can be implemented as a hardware objects, or touch-screen graphical interface objects, touched and controlled by the system user. Additional features of mobile smartphone device 11 can be found in U.S. Pat. No. 8,631,358 incorporated herein by reference in its entirety.
  • Different Ways of Implementing the Mobile Client Machines and Devices on the System Network of the Present Invention
  • In one illustrative embodiment, the enterprise-level system network is realized as a robust suite of hosted services delivered to Web-based client subsystems 1 using an application service provider (ASP) model. In this embodiment, the Web-enabled mobile application 12 can be realized using a web-browser application running on the operating system (OS) (e.g. Linux, Application IOS, etc) of a mobile computing device 11 to support online modes of system operation, only. However, it is understood that some or all of the services provided by the system network 1 can be accessed using Java clients, or a native client application, running on the operating system of a client computing device, to support both online and limited off-line modes of system operation. In such embodiments, the native mobile application 12 would have access to local memory (e.g. a local RDBMS) on the client device 11, accessible during off-line modes of operation to enable consumers to use certain or many of the system functions supported by the system network during off-line/off-network modes of operation. It is also possible to store in the local RDBMS of the mobile computing device 11 most if not all relevant data collected by the mobile application for any particular fire-protection spray project, and to automatically synchronize the dataset for user's projects against the master datasets maintained in the system network database 9C1, within the data center 8 shown in FIG. 4. This way, when using an native application, during off-line modes of operation, the user will be able to access and review relevant information regarding any building spray project, and make necessary decisions, even while off-line (i.e. not having access to the system network).
  • As shown and described herein, the system network 1 has been designed for several different kinds of user roles including, for example, but not limited to: (i) public and private property owners, residents, fire departments, local, county, state and federal officials; and (ii) wildfire suppression administrators, contractors, technicians et al registered on the system network. Depending on which role, for which the user requests registration, the system network will request different sets of registration information, including name of user, address, contact information, etc. In the case of a web-based responsive application on the mobile computing device 11, once a user has successfully registered with the system network, the system network will automatically serve a native client GUI, or an HTML5 GUI, adapted for the registered user. Thereafter, when the user logs into the system network, using his/her account name and password, the system network will automatically generate and serve GUI screens described below for the role that the user has been registered with the system network.
  • In the illustrative embodiment, the client-side of the system network 1 can be realized as mobile web-browser application, or as a native application, each having a “responsive-design” and adapted to run on any client computing device (e.g. iPhone, iPad, Android or other Web-enabled computing device) 11 and designed for use by anyone interested in managing, monitoring and working to defend against the threat of wildfires.
  • Modifications to the Present Invention Which Readily Come to Mind
  • The illustrative embodiments disclose the use of clean anti-fire chemicals from Hartindo Chemicatama Industri, particular Hartindo AAF31, for clinging to the surfaces of wood, lumber, and timber, and other combustible matter, wherever wildfires may travel. However, it is understood that alternative clean anti-fire chemical liquids may be used to practice the various wildfire suppression methods according to the principles of the present invention.
  • While the shed structure shown herein was of a general trapezoidal geometry, it is understood that the size and dimensions of the shed structure can be virtually any size that may fit on ones yard, and transported using conventional means and/or carriers.
  • These and other variations and modifications will come to mind in view of the present invention disclosure.
  • While several modifications to the illustrative embodiments have been described above, it is understood that various other modifications to the illustrative embodiment of the present invention will readily occur to persons with ordinary skill in the art. All such modifications and variations are deemed to be within the scope and spirit of the present invention as defined by the accompanying Claims to Invention.

Claims (6)

1. A wildfire ember suppressing filter system adapted for refitting into the standard size holes formed in the air-flow baffle board mounted between each set of rafter beams in the roof structure of a wood-framed building, comprising:
a filter fabric infused with an anti-fire (AF) chemical liquid that breaks or interferes with the free-radical chemical reactions of the combustion phase of fire burning on the outer surface of a combusting wildfire ember.
2. (canceled)
3. A method of producing a cloud of wildfire ember suppressing mist about or in the vicinity of air-inflow entry points in a wood-framed building during a wildfire storm, wherein the cloud of wildfire ember suppressing mist consists of billions of wildfire ember suppressing microscopic droplets continuously generated, said method comprising the steps of:
forcing environmentally clean aqueous-based anti-fire (AF) liquid through one or more misting nozzles under a predetermined hydraulic pressure so that clouds of wildfire ember suppressing mist are generated;
said wildfire ember suppressing mist suppressing and extinguishing wildfire embers flying about the building and into the air-inflow entry points; and
thereby reducing the risk that such flying wildfire embers do not enter the building and start a fire within the building during the wildfire storm.
4. An automated wildfire ember misting-type suppression system for installation about a wood-framed building comprising:
an electronic wildfire ember detection device for automatically detecting when a wildfire is in the vicinity of the building, and
misting apparatus for generating a cloud of wildfire ember suppressing mist about the building and suppress and/or extinguish flying wildfire embers seeking to find a point of entry into the building during an active wildfire storm.
5. The automated wildfire ember misting-type suppression system of claim 4, wherein said electronic wildfire ember detection device comprises infra-red (IR) and other thermal-imaging sensors, and relative humidity sensors, to automatically detect the presence of a wildfire in the vicinity of the wood-framed building, and wherein said misting apparatus comprises automatically produces said a cloud of wildfire ember suppressing mist consisting of microscopic droplets of clean anti-fire (AF) liquid that (i) instantly evaporates into vapor when contacting a flying wildfire ember and (ii) breaks and/or interferes with free-radical chemical reactions supported on the surface of each combusting wildfire ember flying in the wildfire storm moving about the wood-framed building.
6-16. (canceled)
US16/055,001 2017-12-02 2018-08-03 Methods of and systems for suppressing wildfire embers from entering into the interior spaces of buildings during wildfires Abandoned US20190171999A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/055,001 US20190171999A1 (en) 2017-12-02 2018-08-03 Methods of and systems for suppressing wildfire embers from entering into the interior spaces of buildings during wildfires
US16/104,130 US10814150B2 (en) 2017-12-02 2018-08-16 Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires
US16/107,473 US20190168047A1 (en) 2017-12-02 2018-08-21 Method of and system for suppressing fire using anenvironmentally-clean free-radical chemical-reaction interrupting water mist so as to reduce water damage and smoke production and the risk of fire re-ignition

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US15/829,914 US10260232B1 (en) 2017-12-02 2017-12-02 Methods of designing and constructing Class-A fire-protected multi-story wood-framed buildings
US15/866,451 US10653904B2 (en) 2017-12-02 2018-01-09 Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques
US15/866,454 US10332222B1 (en) 2017-12-02 2018-01-09 Just-in-time factory methods, system and network for prefabricating class-A fire-protected wood-framed buildings and components used to construct the same
US15/866,456 US10311444B1 (en) 2017-12-02 2018-01-09 Method of providing class-A fire-protection to wood-framed buildings using on-site spraying of clean fire inhibiting chemical liquid on exposed interior wood surfaces of the wood-framed buildings, and mobile computing systems for uploading fire-protection certifications and status information to a central database and remote access thereof by firefighters on job site locations during fire outbreaks on construction sites
US15/874,874 US10430757B2 (en) 2017-12-02 2018-01-18 Mass timber building factory system for producing prefabricated class-A fire-protected mass timber building components for use in constructing prefabricated class-A fire-protected mass timber buildings
US15/925,793 US20190169841A1 (en) 2017-12-02 2018-03-20 Wild-fire protected shed for storage and protection of personal property during wild-fires
US16/039,291 US20190168410A1 (en) 2017-12-02 2018-07-18 Automated factory systems and methods for producing class-a fire-protected prefabricated mass timber and wood-framed building components using clean fire inhibiting chemical (cfic) liquid spraying robots and machine vision systems
US16/055,001 US20190171999A1 (en) 2017-12-02 2018-08-03 Methods of and systems for suppressing wildfire embers from entering into the interior spaces of buildings during wildfires

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/874,874 Continuation US10430757B2 (en) 2017-12-02 2018-01-18 Mass timber building factory system for producing prefabricated class-A fire-protected mass timber building components for use in constructing prefabricated class-A fire-protected mass timber buildings
US16/104,130 Continuation US10814150B2 (en) 2017-12-02 2018-08-16 Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/925,793 Continuation-In-Part US20190169841A1 (en) 2017-12-02 2018-03-20 Wild-fire protected shed for storage and protection of personal property during wild-fires
US16/039,291 Continuation-In-Part US20190168410A1 (en) 2017-12-02 2018-07-18 Automated factory systems and methods for producing class-a fire-protected prefabricated mass timber and wood-framed building components using clean fire inhibiting chemical (cfic) liquid spraying robots and machine vision systems

Publications (1)

Publication Number Publication Date
US20190171999A1 true US20190171999A1 (en) 2019-06-06

Family

ID=66659317

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/874,874 Expired - Fee Related US10430757B2 (en) 2017-12-02 2018-01-18 Mass timber building factory system for producing prefabricated class-A fire-protected mass timber building components for use in constructing prefabricated class-A fire-protected mass timber buildings
US16/055,001 Abandoned US20190171999A1 (en) 2017-12-02 2018-08-03 Methods of and systems for suppressing wildfire embers from entering into the interior spaces of buildings during wildfires

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/874,874 Expired - Fee Related US10430757B2 (en) 2017-12-02 2018-01-18 Mass timber building factory system for producing prefabricated class-A fire-protected mass timber building components for use in constructing prefabricated class-A fire-protected mass timber buildings

Country Status (1)

Country Link
US (2) US10430757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210285206A1 (en) * 2018-08-21 2021-09-16 J. David Wright LLC Insulatable, insulative framework apparatus and methods of making and using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200181905A1 (en) * 2018-12-10 2020-06-11 Timtek, Llc Multi-story building construction using long strand timber panels
CN110439156B (en) * 2019-08-15 2020-12-01 重庆建工第三建设有限责任公司 Construction method of two-dimensional code curtain wall of building
CN115087697A (en) * 2020-01-30 2022-09-20 诺德特利特芬兰公司 Flame retardant chemical composition

Family Cites Families (433)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US25358A (en) 1859-09-06 Fibe-extingtjishee
US1185154A (en) 1915-02-17 1916-05-30 Frank M Polhamius Fire-extinguisher.
US1293377A (en) * 1917-09-27 1919-02-04 Donaldson Engineering Company System of fireproof building construction.
US1504454A (en) * 1920-07-31 1924-08-12 Tyson Thomas Calvin Building construction
US1634462A (en) 1925-11-02 1927-07-05 Frank J Hallauer Composition board and method of making the same
US1978807A (en) 1932-03-08 1934-10-30 Laminating Patents Corp Method of producing laminated products
US2150188A (en) 1937-09-04 1939-03-14 Laucks I F Inc Process for treatment of porous materials and product thereof
US2336648A (en) 1938-11-19 1943-12-14 Standard Oil Dev Co Preparation of synthetic resins
US3501419A (en) 1962-06-07 1970-03-17 Tee Pak Inc Cellulose microspherical product
NL128707C (en) * 1963-09-20
GB1109051A (en) 1965-01-06 1968-04-10 Courtaulds Ltd Floor coverings
NL6702119A (en) 1966-02-14 1967-08-15
US3509083A (en) 1967-03-15 1970-04-28 Us Plywood Champ Papers Inc Protective repellent solution
US3511748A (en) 1967-06-27 1970-05-12 Formica Corp Decorative laminate having superior fire retardant properties
US3508872A (en) 1967-09-01 1970-04-28 Celanese Corp Production of graphite fibrils
US3470062A (en) 1967-10-04 1969-09-30 Armstrong Cork Co Ceramic acoustical water-laid sheet
NO118878B (en) 1967-12-13 1970-02-23 Norsk Spraengstofindustri As
US3650820A (en) 1969-02-17 1972-03-21 Michigan Chem Corp Production of flame retardant cellulosic materials
US3703394A (en) 1969-09-19 1972-11-21 Champion Int Corp Form board coated with a porous polymer film and a form oil,said film characterized by having solid particles distributed therethrough
BE758667A (en) 1969-11-10 1971-05-10 Knapsack Ag FIRE RETARDANTS FOR POLYURETHANES
US3755448A (en) 1969-12-09 1973-08-28 Millmaster Onyx Corp N-(pentachlorobiphenyl)-diethylene triamine
US3663267A (en) 1970-09-09 1972-05-16 Beatrice Foods Co Article coated with intumescent undercoat of a synthetic resin, inorganic foam forming agent and carbon forming agent and water-insoluble organic solvent based resin overcoat
US3984334A (en) 1971-01-20 1976-10-05 Petrolite Corporation High internal phase ratio emulsion fire extinguishing agent
BE788653A (en) * 1971-11-15 1973-01-02 Us Fire Control Corp SPRINKLER HEAD
US3935343A (en) 1972-02-07 1976-01-27 United States Gypsum Company Molten salt method of producing fire resistant wood articles
US4013599A (en) 1973-03-28 1977-03-22 Hoechst Aktiengesellschaft Fire-retardant coating composition comprising etherified and non-etherified amino-formaldehyde resin
US3934066A (en) 1973-07-18 1976-01-20 W. R. Grace & Co. Fire-resistant intumescent laminates
US3944688A (en) 1973-10-23 1976-03-16 Pennwalt Corporation Method for the manufacture of water-repellent, fire-resistant nonwoven fabrics
CS210623B2 (en) 1974-07-12 1982-01-29 Labofina Sa Polymere heat resistant mixture
AU497271B2 (en) 1975-05-16 1978-12-07 Dainichi-Nippon Cables Ltd. Intumescent compound
US4176115A (en) 1975-09-15 1979-11-27 Champion International Corporation Fire-resistant construction material
US4065413A (en) 1975-10-08 1977-12-27 Gte Sylvania Incorporated Fire resistance wood-based boards, process for producing same and compositions useful therefor
DE2708447A1 (en) 1976-03-06 1977-09-08 Ciba Geigy Ag FLAME RETARDANT POLYMER COMPOSITIONS
US4049849A (en) 1976-04-14 1977-09-20 The Dow Chemical Company Inhibiting leaching of fire retardant salts from wood with cyclic sulfonium zwitterion solution impregnant
GB1603085A (en) 1977-06-03 1981-11-18 Ciba Geigy Uk Ltd Fire protection means
IT1087952B (en) 1977-10-10 1985-06-04 Montedison Spa FLAME RETARDANT PAINTS.
SE7904708L (en) 1978-06-16 1979-12-17 Tjernberg Bo Otto Erland WAY TO MAKE A CELLULOSIZED MATERIAL FLAMMABLE
US4197913A (en) 1978-07-10 1980-04-15 Olin Corporation Use of phosphogypsum for fire suppression
US4209561A (en) 1978-07-28 1980-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Structural wood panels with improved fire resistance
US4237182A (en) 1978-11-02 1980-12-02 W. R. Grace & Co. Method of sealing interior mine surface with a fire retardant hydrophilic polyurethane foam and resulting product
US4265963A (en) 1979-01-26 1981-05-05 Arco Polymers, Inc. Flameproof and fireproof products containing monoethanolamine, diethylamine or morpholine
US4254177A (en) 1979-05-07 1981-03-03 W. R. Grace & Co. Fire-retardant product and method of making
US4266384A (en) 1979-06-22 1981-05-12 United States Gypsum Company Fire resistant ceiling furring system
DE3164979D1 (en) 1980-06-30 1984-08-30 Ciba Geigy Ag Intumescent fire-retarding composition and its use in the fireproofing of substrates and as fire-tighting agent
US4392994A (en) 1980-10-29 1983-07-12 The Sherwin-Williams Company Corrosion inhibitor for cellulosic insulation
CA1174903A (en) 1981-05-14 1984-09-25 Walter A. Goodwin Fire door construction
US4530877A (en) 1981-10-22 1985-07-23 Cyclops Corporation Fire resistant foam insulated building panels
JPS5932471A (en) 1982-08-16 1984-02-21 ダイキン工業株式会社 Aqueous composition for fire extinguishment
US4666960A (en) 1982-12-16 1987-05-19 Spain Raymond G Fire retardant coating for combustible substrates
US4514327A (en) 1983-01-10 1985-04-30 Rock James E Fire retardant means and method
DE3302044C3 (en) 1983-01-22 1993-11-18 August Eich Fire protection partition
US4871477A (en) 1983-02-15 1989-10-03 Firestop Chemical Corporation Fire protected foamed polymeric materials
HU201478B (en) 1983-04-21 1990-11-28 Magyar Szenhidrogenipari Fire-fighting powder
US4661398A (en) 1984-04-25 1987-04-28 Delphic Research Laboratories, Inc. Fire-barrier plywood
US5130184A (en) 1984-04-25 1992-07-14 Pyrotite Corporation Fire barrier coating and fire barrier plywood
US4572862A (en) 1984-04-25 1986-02-25 Delphic Research Laboratories, Inc. Fire barrier coating composition containing magnesium oxychlorides and high alumina calcium aluminate cements or magnesium oxysulphate
IT1178955B (en) 1984-06-06 1987-09-16 Cortan Spa PROCEDURE FOR MAKING A SYNTHETIC MATERIAL VACUULATED IN A SHEET, IN PARTICULARLY A SYNTHETIC LEATHER, INCOMBUSTIBLE
US4690859A (en) 1985-04-09 1987-09-01 United Merchants & Manufacturers Inc. Fire barrier fabrics
DE3541687A1 (en) 1985-11-26 1987-05-27 Bayer Ag POROESE INTUMESCENT MEASURES, IF NECESSARY
JPS62132991A (en) 1985-12-03 1987-06-16 金 在運 Refractory agent and fire retardant agent for building interior material and its production
AU592408B2 (en) 1986-01-07 1990-01-11 Ausmintec Corp. Limited Magnesium cement
DE3609696C1 (en) 1986-03-19 1987-07-30 Mankiewicz Gebr & Co Molding compound
US4756839A (en) 1986-03-26 1988-07-12 Curzon Jon L Fire extinguishing composition
US4659381A (en) 1986-03-28 1987-04-21 Manville Corporation Flame retarded asphalt blend composition
US4824483A (en) 1986-06-12 1989-04-25 Bumpus Patrick D U.V. Detectable flame retardant treatment
US4737406A (en) 1986-06-12 1988-04-12 Bumpus Patrick D Flame retardant treatment
US4720414A (en) 1986-06-25 1988-01-19 Burga Roque F Fire-resistant material
US4770794A (en) 1986-07-07 1988-09-13 Wormald Canada Inc. Foam fire extinguishing compositions for aerial fire extinguishing
US4663226A (en) 1986-07-25 1987-05-05 Helena Vajs Fire retardant
US4743625A (en) 1986-07-25 1988-05-10 Lubomir Vajs Fire retardant mixture for protection of suitable composite products
DE3714051A1 (en) * 1987-04-28 1988-11-17 Desowag Materialschutz Gmbh AGENTS FOR THE PRESERVATION OF WOOD AND WOOD MATERIAL
BE1000930A6 (en) 1987-09-18 1989-05-16 Recticel Flexible polyurethane foam with high fire resistance.
US5284700A (en) 1987-11-09 1994-02-08 Owens-Corning Fiberglas Corporation Fire-resistant mineral fibers, structures employing such mineral fibers and processes for forming same
US4861397A (en) 1988-03-09 1989-08-29 The United States Of America As Represented By The Secretary Of The Army Fire-resistant explosives
US4888136A (en) 1988-05-02 1989-12-19 Witco Corporation New flame retardant compositions of matter and cellulosic products containing same
DE58909626D1 (en) 1988-07-18 1996-04-25 Gurit Essex Ag Resins curable to flame retardant and high temperature resistant plastics and process for their production
US4879320A (en) 1989-03-15 1989-11-07 Hastings Otis Intumescent fire-retardant coating material
US4965296A (en) 1989-03-15 1990-10-23 No Fire Engineering, Inc. Intumescent fire-retardant and electrically-conductive coating material
US5060445A (en) 1989-03-23 1991-10-29 Jong Slosson B Roof construction
WO1991000327A1 (en) 1989-06-28 1991-01-10 Oberley William J Fire retardants and products produced therewith
US5032446A (en) 1989-07-10 1991-07-16 United States Of America As Represented By The Secretary Of The Army Fire protective blanket
US5053147A (en) 1990-04-20 1991-10-01 Jannette Gomez Kaylor Methods and compositions for extinguishing fires
US5039454A (en) 1990-05-17 1991-08-13 Policastro Peter P Zinc-containing magnesium oxychloride cements providing fire resistance and an extended pot-life
FR2662945B1 (en) 1990-06-08 1995-03-24 Atochem USE OF A HYDROGENOFLUOROALKANE AS AN EXTINGUISHING AGENT.
DE4023310A1 (en) 1990-07-21 1992-01-23 Bayer Ag INTUMESCENT CARRIERS AND THEIR USE
US5023019A (en) 1990-08-15 1991-06-11 Bumpus Patrick D U.V. detectable flame retardant
US5162394A (en) 1990-09-18 1992-11-10 501 Chemco Inc. Fire-retardant chemical compositions
US5356568A (en) 1990-10-29 1994-10-18 Levine Harvey S Intumescent heat- and fire-resistant composition and substrate coated therewith
US5055208A (en) 1991-01-02 1991-10-08 Powsus, Inc. Fire extinguishing compositions
CH682758A5 (en) 1991-02-01 1993-11-15 Erika Brigitta Glesser Lott Wall structure of a non-load-bearing building exterior wall.
US5185214A (en) 1991-06-12 1993-02-09 Levan Susan L One step process for imparting decay resistance and fire retardancy to wood products
US5156775A (en) 1991-10-17 1992-10-20 Blount David H Flame retardant compositions
US5391246A (en) 1991-12-09 1995-02-21 Stephens; William G. Fire prevention in the application of roofing
DE69230342T2 (en) 1992-03-10 2000-07-27 Tag Investments Inc NON-TOXIC, ENVIRONMENTALLY SAFE FIRE EXTINGUISHING MEDIA
US5405661A (en) 1992-08-14 1995-04-11 The Dow Chemical Company Fire resistant panel
US5333426A (en) * 1993-01-06 1994-08-02 Forintek Canada Corporation Wood frame construction system with prefabricated components
DE69429089T2 (en) 1993-06-09 2002-06-06 Triangle Pacific Corp HARDENED AND FIRE-RESISTANT WOOD PRODUCTS
US5840413A (en) 1993-07-13 1998-11-24 Johns Manville International, Inc. Fire retardant nonwoven mat and method of making
US5491022A (en) 1993-09-24 1996-02-13 Lakeland Industries, Inc. Protective fabrics and garments
JPH09508329A (en) 1994-01-26 1997-08-26 シング,ピーター Sandwich construction materials
US5393437A (en) 1994-05-31 1995-02-28 Chemguard, Inc. Fire extinguishing material
US6146544A (en) 1994-11-18 2000-11-14 Lacovia N.V. Environmentally benign non-toxic fire flooding agents
EP0732388B1 (en) 1995-01-23 2000-04-12 Bayer Ag Gel former, fire-resistant gel and fire-resistant glass units
US5534301A (en) 1995-05-10 1996-07-09 Echochem International, Inc. Method for producing cellulose insulation materials using liquid fire retardant compositions
GB2301122A (en) 1995-05-24 1996-11-27 Cyril Glass Flame retardant compositions
US8141649B2 (en) 2000-04-17 2012-03-27 Firepass Corporation Hypoxic fire suppression system for aerospace applications
US7900709B2 (en) 2000-12-28 2011-03-08 Kotliar Igor K Hypoxic aircraft fire prevention and suppression system with automatic emergency oxygen delivery system
US6314754B1 (en) 2000-04-17 2001-11-13 Igor K. Kotliar Hypoxic fire prevention and fire suppression systems for computer rooms and other human occupied facilities
US5834535A (en) 1995-08-21 1998-11-10 General Motors Corporation Moldable intumescent polyethylene and chlorinated polyethylene compositions
US5631047A (en) 1995-09-19 1997-05-20 American Fire Retardant Corp. Combination fire retardant, anti-soiling and biocidal agent
US5729936A (en) 1995-10-03 1998-03-24 Maxwell; James F. Prefab fiber building construction
US5833874A (en) 1995-12-05 1998-11-10 Powsus Inc. Fire extinguishing gels and methods of preparation and use thereof
US6303234B1 (en) 1996-03-15 2001-10-16 K. M. Slimak Process of using sodium silicate to create fire retardant products
US5765333A (en) * 1996-04-03 1998-06-16 Cunningham; Dale W. Unitized post and panel building system
DE19620893A1 (en) 1996-05-23 1997-11-27 Wolman Gmbh Dr Fire-resistant ventilated facades
GR1002734B (en) 1996-07-22 1997-07-11 Non-combustible coating compounds.
US6422319B2 (en) 1996-09-06 2002-07-23 Haase, Iii Franz P. Water distribution network for domestic water and fire protection application
US6464903B1 (en) 1996-09-30 2002-10-15 David H. Blount Urea condensate salt of sulfur oxyacid for fire control
US6444718B1 (en) 1996-09-30 2002-09-03 David H. Blount Aquerous urea for fire control
US6423251B1 (en) 1996-09-30 2002-07-23 David H. Blount Urea and borates for fire and termite control
FR2755973B1 (en) 1996-11-19 1999-01-29 Chavanoz Ind HALOGEN-FREE FLAME RETARDANT COMPOSITION, FLAME RETARDANT THREAD, AND FLAME RETARDANT TEXTILE STRUCTURE COMPRISING SAME
NO303725B1 (en) 1996-12-04 1998-08-24 Fireguard Scandinavia As Flame retardant mixture and method of impregnating combustible material
US6029751A (en) 1997-02-07 2000-02-29 Ford; Wallace Wayne Automatic fire suppression apparatus and method
EP0877048A3 (en) 1997-05-09 1998-12-30 Tokuyama Corporation Fire resistant resin composition
CA2212076A1 (en) 1997-07-30 1999-01-30 Elio F. Guglielmi Monobromoalkane fire extinguishing agents
WO1999028125A1 (en) 1997-12-03 1999-06-10 Innovative Coatings Corporation Novel synthetic finishing and coating systems
US6024889A (en) 1998-01-29 2000-02-15 Primex Technologies, Inc. Chemically active fire suppression composition
US6713411B2 (en) 1998-04-20 2004-03-30 Precision Fabric Group Chemical resistant, water and dry particle impervious, flame resistant laminate
US5968669A (en) 1998-06-23 1999-10-19 J. M. Huber Corporation Fire retardant intumescent coating for lignocellulosic materials
US6306317B1 (en) 1998-08-13 2001-10-23 S-T-N Holdings, Inc. Phosphate free fire retardant composition
US6271156B1 (en) 1998-09-22 2001-08-07 Lydall, Inc. Fire-resistant core for a combustible fire-rated panel
US6073410A (en) 1998-10-14 2000-06-13 Eco Buliding Systems, Inc. Structure and formulation for manufacture of prefabricated buildings
US6153682A (en) 1998-11-02 2000-11-28 Bannat; Salah M. Fire-resistant composition for use as a wood-replacement material
FR2789996B1 (en) 1999-02-24 2001-04-13 Rhodia Eng Plastics Srl FLAME RETARDANT POLYAMIDE COMPOSITION
US6202755B1 (en) 1999-06-03 2001-03-20 Fidelity Holdings Inc. Fire extinguishing agent and method of preparation and use thereof
US6398136B1 (en) 1999-08-16 2002-06-04 Edward V. Smith Penetrating and misting fire-fighting tool with removably attachable wands and nozzles
US7273634B2 (en) 1999-10-15 2007-09-25 Fitzgibbons Jr Robert T Coatings and additives containing ceramic material
US6423129B1 (en) 1999-10-15 2002-07-23 Robert T. Fitzgibbons, Jr. Coatings and additives containing ceramic material
US6736989B2 (en) 1999-10-26 2004-05-18 Powsus, Inc. Reduction of HF
WO2001030451A1 (en) 1999-10-26 2001-05-03 Powsus, Inc. Reduction of hf
US6613391B1 (en) 2000-01-27 2003-09-02 Henry Gang Flame inhibiting and retarding chemical process and system for general use on multiple solid surfaces
DE10007980B4 (en) 2000-02-22 2007-07-12 Hilti Ag Two-component local foam system and its use for foaming openings for the purpose of fire protection
US20030168225A1 (en) 2000-02-26 2003-09-11 Denne Phillip Raymond Michael Apparatus and method for suppressing fires
DE10010881B4 (en) 2000-02-29 2006-09-07 Torsten Dipl.-Ing. Clauß Method and device for discharging liquid media
US6245842B1 (en) 2000-03-03 2001-06-12 Trus Joist Macmillan A Limited Partnership Flame-retardant coating and building product
US7018571B1 (en) 2000-03-07 2006-03-28 Avtec Industries Flame retardant and smoke supressive additive powder for polymeric thermoplastics and thermoset resins
US20050009966A1 (en) 2000-03-07 2005-01-13 Rowen John B. Aqueous fire resistant and smoke suppressing surface coatings
FR2806402B1 (en) 2000-03-17 2002-10-25 Saint Gobain Isover COMPOSITION OF MINERAL WOOL
US20010025712A1 (en) 2000-03-30 2001-10-04 Pagan Jorge A. Waterloons
US6385931B1 (en) 2000-04-11 2002-05-14 Keith B. Risser Fire retardant deck waterproof system
US6557374B2 (en) 2000-12-28 2003-05-06 Igor K. Kotliar Tunnel fire suppression system and methods for selective delivery of breathable fire suppressant directly to fire site
ATE335526T1 (en) 2000-04-17 2006-09-15 Igor K Kotliar HYPOXIC FIRE FIGHTING SYSTEMS AND BREATHABLE FIRE EXTINGUISHING MEDIA
US6560991B1 (en) 2000-12-28 2003-05-13 Kotliar Igor K Hyperbaric hypoxic fire escape and suppression systems for multilevel buildings, transportation tunnels and other human-occupied environments
US6502421B2 (en) 2000-12-28 2003-01-07 Igor K. Kotliar Mobile firefighting systems with breathable hypoxic fire extinguishing compositions for human occupied environments
YU86502A (en) 2000-05-18 2003-08-29 Edwards, Paul Fire retardant delivery system
US20040194657A1 (en) 2000-06-22 2004-10-07 Thomas Lally Fire-retardant coating, method for producing fire-retardant building materials
US7429290B2 (en) 2000-06-22 2008-09-30 Thomas Joseph Lally Fire-retardant coating, method for producing fire-retardant building materials
US6889776B2 (en) 2000-08-08 2005-05-10 The University Of Hong Kong Airborne water diffuser
US6524653B1 (en) 2000-11-01 2003-02-25 Niponi, Llc Cellulose-based fire retardant composition
US6881367B1 (en) 2000-11-06 2005-04-19 Elk Composite Building Products, Inc. Composite materials, articles of manufacture produced therefrom, and methods for their manufacture
US6401830B1 (en) 2000-11-21 2002-06-11 David B. Romanoff Fire extinguishing agent and method
US6802994B1 (en) 2000-11-28 2004-10-12 Astaris Llc Fire retardant compositions containing ammonium polyphosphate and iron additives for corrosion inhibition
US6846437B2 (en) 2000-11-28 2005-01-25 Astaris, Llc Ammonium polyphosphate solutions containing multi-functional phosphonate corrosion inhibitors
US6905639B2 (en) 2000-11-28 2005-06-14 Astaris Llc Fire retardant compositions with reduced aluminum corrosivity
US6810964B1 (en) 2000-12-15 2004-11-02 General Dynamics Ots (Aerospace) Inc. Pressurization system for fire extinguishers
CN1306973C (en) 2001-02-16 2007-03-28 米亚科工程有限公司 Method and device for extinguishing fire
US6652633B2 (en) 2001-03-01 2003-11-25 Arch Wood Protection, Inc. Fire retardant
US20020139056A1 (en) 2001-03-05 2002-10-03 Finnell Lee M. Fire protection system
US20020125016A1 (en) 2001-03-12 2002-09-12 Cofield Phillip Lorenzo Aerial fire suppression system
US20040163825A1 (en) 2001-03-29 2004-08-26 Dunster Robert George Fire and explosion suppression
US6581878B1 (en) 2001-04-17 2003-06-24 The United States Of America As Represented By The Secretary Of The Air Force Airborne fire fighting system
US20030159836A1 (en) 2001-04-20 2003-08-28 Keizou Kashiki Fire-extingushing agent, water for fire extinguishing and method of fire extinguishing
US6869669B2 (en) 2001-11-14 2005-03-22 Advanced Wall Systems Llc Fiber-reinforced sandwich panel
US6796382B2 (en) 2001-07-02 2004-09-28 Siam Safety Premier Co., Ltd. Fire extinguishing ball
US20030047723A1 (en) 2001-09-05 2003-03-13 Dario Santoro Dry powdered fire retardant composition for mixing with water on-site for elimination of corrosion inhibitors required if pre-mixed and stored
WO2003024618A1 (en) 2001-09-19 2003-03-27 Adiga Kayyani C Fire suppression using water mist with ultrafine size droplets
US20070193753A1 (en) 2006-02-21 2007-08-23 Adiga Kayyani C A method and device for suppression of fire by local flooding with ultra-fine water mist
US20050235598A1 (en) * 2001-10-23 2005-10-27 Andrew Liggins Wall construction method
DE10152964C1 (en) 2001-10-26 2003-08-21 Airbus Gmbh Extinguishing system for extinguishing a fire that has broken out inside the cabin or cargo hold of a passenger aircraft
US6800352B1 (en) 2001-11-05 2004-10-05 Potlach Corporation Wood-based composite panel having foil overlay and methods for manufacturing
US20030132425A1 (en) 2002-01-16 2003-07-17 Curzon Jon Lee Application of a flame retardant and mold inhibitor penetrant composition to porous interior building material surfaces
US8715540B2 (en) 2002-01-16 2014-05-06 MG3 Technologies Inc. Aqueous and dry duel-action flame and smoke retardant and microbe inhibiting compositions, and related methods
US20030170317A1 (en) 2002-01-16 2003-09-11 Smt, Inc. Flame retardant and microbe inhibiting methods and compositions
US7767010B2 (en) 2002-01-16 2010-08-03 Smt, Inc. Flame retardant and microbe inhibiting methods and compositions
US7210537B1 (en) 2002-01-23 2007-05-01 Mcneil Steven D Method of controlling fires
DE10204384C1 (en) 2002-02-04 2003-07-17 Preussag Ag Minimax Control method, for stationary fire extinguishing installation, has sensitivity of fire detector sensors switched to match progression of fire
US6889774B2 (en) 2002-02-27 2005-05-10 The Reliable Automatic Sprinkler Co., Inc. Fire protection sprinkler system for metal buildings
US6881247B2 (en) 2003-01-09 2005-04-19 Vernon H. Batdorf Protective barrier coating composition
CN1397613A (en) 2002-03-20 2003-02-19 许勇 Fire-proof water paint for wood and its preparing process
GB2386835B (en) 2002-03-28 2005-04-27 Kidde Plc Fire and explosion suppression
US20040040245A1 (en) 2002-04-11 2004-03-04 Sinclair Robert F. Building block and system for manufacture
US20040003569A1 (en) 2002-07-08 2004-01-08 Frederickson Scott J. Metal and wood composite framing member
US20050058689A1 (en) 2003-07-03 2005-03-17 Reactive Surfaces, Ltd. Antifungal paints and coatings
US20040109853A1 (en) 2002-09-09 2004-06-10 Reactive Surfaces, Ltd. Biological active coating components, coatings, and coated surfaces
AU2002952373A0 (en) 2002-10-31 2002-11-14 Commonwealth Scientific And Industrial Research Organisation Fire resistant material
AT412279B (en) 2003-04-14 2004-12-27 Intumex Gmbh In the event of a fire, a second expansion of flexible foams based on styrenebutadiene, polyvinyl alcohol or neoprene
NL1024770C2 (en) 2003-04-28 2004-11-24 Beele Eng Bv Fire-resistant foam, structural elements thereof, system for flame-proof sealing of an opening, as well as a method for sealing of an opening in a wall.
DE602004022297D1 (en) 2003-05-19 2009-09-10 James Hardie Int Finance Bv Structure of a building part
ATE519673T1 (en) 2003-06-11 2011-08-15 Evergreen Internat Aviat Inc METHOD FOR AERIAL MATERIAL DISCHARGE
CA2469534A1 (en) 2003-06-18 2004-12-18 Hilti Aktiengesellschaft The use of thermally expandable graphite intercalation compounds for producing fire-protection seals and method for their production
US7462589B2 (en) 2003-06-27 2008-12-09 The Procter & Gamble Company Delivery system for uniform deposition of fabric care actives in a non-aqueous fabric treatment system
US20050011652A1 (en) 2003-07-17 2005-01-20 Jinsong Hua Spray head and nozzle arrangement for fire suppression
PT1651315E (en) 2003-07-23 2007-06-12 Basf Ag Fire control composition and method
US20050139363A1 (en) 2003-07-31 2005-06-30 Thomas Michael S. Fire suppression delivery system
DK175918B1 (en) 2003-08-21 2005-06-27 Vid Aps Liquid atomizer with dual nozzle arrangement for fire extinguishing
US20050066619A1 (en) 2003-09-25 2005-03-31 Mcdonald Mike Building cladding panel
US6929072B2 (en) 2003-11-19 2005-08-16 Wes Brown Roof soaking device and method
US7560041B2 (en) 2003-11-28 2009-07-14 Wook Yeal Yoon Composition for action of resist-fire and fire-extinguishing
US6982049B1 (en) 2003-12-03 2006-01-03 No-Burn Investments, L.L.C. Fire retardant with mold inhibitor
US7341113B2 (en) 2004-02-03 2008-03-11 United States Of America As Represented By The Secretary Of The Navy Apparatus and method for fire suppression
DE102004006033B3 (en) 2004-02-06 2005-09-08 Eads Deutschland Gmbh Method for detection and control of forest and wildfires
US7323248B2 (en) 2004-03-13 2008-01-29 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating composites, coated composites therefrom, and methods, processes and assemblages for coating thereof
CA2561824C (en) 2004-03-31 2013-01-15 Ceram Polymerik Pty Ltd Ceramifying composition for fire protection
US20060019568A1 (en) 2004-07-26 2006-01-26 Toas Murray S Insulation board with air/rain barrier covering and water-repellent covering
US20050269109A1 (en) 2004-06-03 2005-12-08 Maguire James Q Method of extinguishing fires
US20050279972A1 (en) 2004-06-16 2005-12-22 Dario Santoro Dry powdered fire retardant composition for mixing with water on-site
US7832492B1 (en) 2004-07-13 2010-11-16 Eldridge John P Portable fire fighting apparatus and method
KR100563741B1 (en) 2004-07-14 2006-04-04 김진호 Composition of reinforced liquid extinguishing agent
DE102004037044A1 (en) 2004-07-29 2006-03-23 Degussa Ag Agent for equipping cellulose-based and / or starch-based substrates with water-repellent and, at the same time, fungus, bacteria, insect and algae-deficient properties
DE102004037627A1 (en) 2004-08-02 2006-03-16 Pas-Herzog Engineering & Fireprotection Gmbh & Co. Kg Extinguishing system and method for reducing and / or preventing the spread of smoke and / or fire
US7921603B2 (en) 2004-09-09 2011-04-12 Duane Darnell Systems for a fire-resistant door jamb
CA2479653C (en) 2004-09-20 2006-10-24 Robert S. Taylor Methods and compositions for extinguishing fires using aqueous gelled fluids
US7587875B2 (en) 2004-10-04 2009-09-15 No-Burn Investments, L.L.C. Fire resistance rating system
US20050022466A1 (en) * 2004-10-04 2005-02-03 No-Burn Investments, L.L.C. Fire resistance rating system
DE102004050479A1 (en) 2004-10-15 2006-04-27 Chemische Fabrik Budenheim Kg Molding composition for the production of flame-retardant articles, pigment therefor and its use
US7785712B2 (en) 2004-10-21 2010-08-31 Graftech International Holdings Inc. Carbon foam structural insulated panel
DE602005009401D1 (en) 2004-10-26 2008-10-09 Gates Corp
DE102004056830A1 (en) 2004-11-24 2006-06-08 Basf Ag Fire extinguishing composition, comprises at least one water absorbing polymer and at least one alkaline salt
EP1672116A1 (en) 2004-12-16 2006-06-21 Ciba Spezialitätenchemie Pfersee GmbH Compositions for flame proofing fibrous materials
US20060131035A1 (en) 2004-12-20 2006-06-22 Kenneth French Self-contained modular fire extinguishing system
BRPI0519342B1 (en) 2004-12-30 2015-07-21 Syngenta Ltd Aqueous coating compositions, barrier against pest invasion
FI117792B (en) 2005-01-10 2007-02-28 Kemira Oyj Wood treatment products, wood treatment and wood product processing
EP3542872A1 (en) 2005-01-12 2019-09-25 Eclipse Aerospace, Inc. Fire suppression system and method
US7478680B2 (en) 2005-01-24 2009-01-20 Vinayagamurthy Sridharan Fire extinguishing by explosive pulverisation of projectile based frozen gases and compacted solid extinguishing agents
US7482395B2 (en) 2005-01-24 2009-01-27 No-Burn Investments, L.L.C. Intumescent fire retardant latex paint with mold inhibitor
US7849650B2 (en) 2005-01-27 2010-12-14 United States Gypsum Company Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies
AT505954A1 (en) 2005-02-04 2009-05-15 Berger Johann BOARD OD. DGL.
JP2008538730A (en) 2005-02-22 2008-11-06 マタースミスス テクノロジーズ リミテッド Composition for treating organic substances
ITCO20050010A1 (en) 2005-03-14 2006-09-15 Giovanni Cenci APPLICABLE PROCEDURE BETWEEN PRODUCTION IN THE FACTORY AND CONSTRUCTION OF COMPOSITE STRUCTURAL ELEMENTS OBTAINED FROM THE BONDED UNION OF WOOD OR ITS DERIVATIVES WITH CONCRETE IN THE FRESH MIXING STATE
US7766090B2 (en) 2005-03-22 2010-08-03 The United States Of America As Represented By The Secretary Of The Navy Fire fighting system
US8291990B1 (en) 2005-03-22 2012-10-23 The United States Of America As Represented By The Secretary Of The Navy Fire fighting system
US20060213672A1 (en) 2005-03-22 2006-09-28 Mohr John A Weather adjustment system for fighting fires
US7837009B2 (en) 2005-04-01 2010-11-23 Buckeye Technologies Inc. Nonwoven material for acoustic insulation, and process for manufacture
US7147061B2 (en) 2005-05-13 2006-12-12 Future Innovation Trading, Inc. Fire extinguisher kit, device and method of using same
ITVI20050160A1 (en) 2005-05-27 2006-11-28 Giampaolo Benussi INTUMESCENT GASKET
US8226017B2 (en) 2005-08-30 2012-07-24 Fire Away Technologies Multipurpose fluid distribution system
WO2007027114A1 (en) 2005-09-01 2007-03-08 Instytut Wlokien Naturalnych (Institute Of Natural Fibres) An intumescent fire retardant and the method of its manufacture
CN1931396B (en) 2005-09-15 2011-02-09 泉耀新材料科技(上海)有限公司 High efficiency hydroxide/oxide aerosol gel extinguishant
AU2005220194A1 (en) 2005-10-05 2007-04-19 Jaafar Radey Mashat Fire Extingushing Agent & Retardant from Sugar Cane Molasses
AU2005220196A1 (en) 2005-10-05 2007-04-19 Jaafar Radey Mashat Fire Extingushing Agent & Retardant from Date Molasses
WO2007044561A1 (en) 2005-10-07 2007-04-19 Knauf Insulation Gmbh Fire resistant encapsulated fiberglass products
AT503236B1 (en) 2005-10-28 2009-01-15 Berger Johann BOARD OD. DGL., THEIR MANUFACTURE AND USE
WO2007065112A2 (en) 2005-11-29 2007-06-07 Prisum Coatings Canada, Inc. Fire-resistant ground cover and fire-resistant coatings for biomass, wood and organic mulches
US20110091713A1 (en) 2005-12-21 2011-04-21 Miller Douglas J Fire Resistant Composite Panel
US9005642B2 (en) 2006-01-24 2015-04-14 No-Burn Investments, L.L.C. Intumescent fire retardant paint with insecticide
US20070176156A1 (en) 2006-02-02 2007-08-02 No-Burn Investments, Llc Fire retardant composition with insecticide
GB2435479A (en) 2006-02-23 2007-08-29 Bromine Compounds Ltd Formulations comprising pentabromobenzylbromide and their use as flame retardants
US7897070B2 (en) 2006-03-24 2011-03-01 Envirotrol, Inc. Amorphous silica coating for heat reflectivity and heat resistance
US20070227085A1 (en) * 2006-04-04 2007-10-04 Mader Henry J Fire-retardant treated wood building structures
US7744687B2 (en) 2006-04-10 2010-06-29 International Resin S.A. Inorganic aqueous putty or liquid suspension, thermally insulating, non toxic, fire retardant
WO2007139560A1 (en) 2006-06-01 2007-12-06 Google, Inc. Modular computing environments
FR2901799B1 (en) 2006-06-02 2008-08-01 Arkema France HIGH THERMOMECHANICAL, FALSE-FREE THERMOPLASTIC THERMOPLASTIC COMPOSITIONS WITHOUT HALOGEN
US20080000649A1 (en) 2006-06-08 2008-01-03 Fire Quench Pty Ltd. Method, system and sprinkler head for fire protection
CN101085897A (en) 2006-06-09 2007-12-12 徐州正菱涂装有限公司 Steel structure fireproof powder coating and preparing method thereof
CN1864956A (en) 2006-06-15 2006-11-22 庄启程 Method for manufacturing flame-retardant recombined decorative material
US7849542B2 (en) 2006-06-21 2010-12-14 Dreamwell, Ltd. Mattresses having flame resistant panel
US7261165B1 (en) 2006-09-13 2007-08-28 Benjamin Black Appartus for fighting forest fires
ES2269008B1 (en) 2006-09-14 2008-02-01 Buma Advanced Technologies, S.L. FLAME DELAY COMPOSITION.
GB0618196D0 (en) 2006-09-15 2006-10-25 Pursuit Dynamics Plc An improved mist generating apparatus and method
US8586657B2 (en) 2006-09-22 2013-11-19 Richard A. Lopez Aqueous fire-retardant non-corrosive composition for topical application to products and articles
WO2008100348A2 (en) 2006-10-20 2008-08-21 Ada Technologies, Inc. Fine water mist multiple orientation discharge fire extinguisher
AR062764A1 (en) 2006-11-06 2008-12-03 Victaulic Co Of America METHOD AND APPARATUS FOR DRYING CANARY NETWORKS EQUIPPED WITH SPRAYERS
WO2008063411A2 (en) 2006-11-10 2008-05-29 Cal-West Specialty Coatings, Inc. Peel-off coating compositions
US20080115949A1 (en) 2006-11-20 2008-05-22 Air Products And Chemicals, Inc. Method For Fire Suppression
US7886837B1 (en) 2006-11-27 2011-02-15 Helfgott Hans E W Roof-mounted fire suppression system
DE102006056403B4 (en) 2006-11-29 2010-08-19 Hilti Aktiengesellschaft Intumescent multi-component epoxy resin coating for fire protection and its use
DE102006056401A1 (en) 2006-11-29 2008-06-05 Hilti Ag Two-component polyurethane / vinyl ester hybrid foam system and its use as a flame retardant material and material for filling openings in buildings
US20080179067A1 (en) 2007-01-31 2008-07-31 Chia-Chun Ho Central control chemical fire extinguishing system
US20080184642A1 (en) 2007-02-05 2008-08-07 Laura Sebastian Latex foam insulation and method of making and using same
US7614456B2 (en) 2007-02-28 2009-11-10 Thomas Twum Fire retardant delivery system for fighting wild fires
NL1033957C2 (en) 2007-06-08 2008-12-09 Finifire B V Fire retardant and fire resistant composition.
ES2288442B1 (en) 2007-06-20 2009-04-01 Budenheim Iberica, S.L. Sociedad En Comandita "FLAME DELAY COMPOSITION".
US7588087B2 (en) 2007-06-22 2009-09-15 Lois Ashford Helicopter water bucket improvements
AU2007257649A1 (en) 2007-07-20 2009-02-05 Radix Assessoria E Consultoria Ltda Compositions to protect against fire action and advance in various surfaces, manufacturing and application process thereof
CA2693986A1 (en) 2007-07-20 2009-01-29 Radix Assessoria E Consultoria Ltda. Blocking composition against fire action and advance in diverse surfaces, manufacturing and application process thereof
WO2009020251A1 (en) 2007-08-07 2009-02-12 Chang Young Choi Nonflammable paint composition
US7789165B1 (en) 2007-08-17 2010-09-07 Ping Li Yen Industrial oil cooker fire protection system
US7828069B2 (en) 2007-10-08 2010-11-09 Allan Wayne Lee Fire extinguishing roof soaker
US20090107064A1 (en) * 2007-10-31 2009-04-30 Bowman David J Fire, acoustic, and thermal resistant construction
US20100267853A1 (en) 2007-11-01 2010-10-21 E.M.A.T. Technologies Ltd. Polymer-based fire-retarding formulations
GB0803959D0 (en) 2008-03-03 2008-04-09 Pursuit Dynamics Plc An improved mist generating apparatus
CN101434760A (en) 2007-11-13 2009-05-20 华夏海湾塑胶股份有限公司 Transparent halogen-free fire-resisting paint constituent
US20090145075A1 (en) * 2007-12-08 2009-06-11 Colin Michael Oakley Timber-framed building structures, and method of constructing same
EP2227298B1 (en) 2008-01-04 2014-08-06 Danfoss Semco A/S A water mist head for a fire fighting system
US20110120049A1 (en) 2008-01-08 2011-05-26 Ano Leo Prefabricated Building Components and Assembly Equipment
US20090188567A1 (en) 2008-01-28 2009-07-30 Agf Manufacturing, Inc. Fire suppression fluid circulation system
US7673696B1 (en) 2008-02-27 2010-03-09 Tim Gunn Fire protection rooftop sprinkler system
US9016002B2 (en) * 2008-03-06 2015-04-28 Stuart Charles Segall Relocatable habitat unit having interchangeable panels
US8677698B2 (en) * 2008-03-06 2014-03-25 Stuart C. Segall Relocatable habitat unit
US20100314138A1 (en) 2008-04-14 2010-12-16 Gary Weatherspoon Humidity modifier system
AU2008356854B2 (en) 2008-05-30 2014-04-03 Kidde-Fenwal, Inc. Fire extinguishing composition
CN101293752B (en) 2008-06-03 2012-11-28 傅梅 Acoustic absorption, noise insulation, thermal insulation, condensation resistant building material, preparation method and application thereof
EP2138965A1 (en) 2008-06-23 2009-12-30 YDREAMS - Informática, S.A. Integrated system for multichannel monitoring and communication in the management of rescue teams
US20090313931A1 (en) 2008-06-24 2009-12-24 Porter William H Multilayered structural insulated panel
US20100032175A1 (en) 2008-08-07 2010-02-11 Boyd Joseph J Bubble Fire Extinguisher
AT507249A2 (en) 2008-08-19 2010-03-15 Berger Johann WOODEN BOARD, ITS MANUFACTURE AND USE IN BAUPLATTEN AND DGL.
US20100069488A1 (en) 2008-09-17 2010-03-18 Michael John Mabey Fire retardant composition
US7934564B1 (en) 2008-09-29 2011-05-03 Williams-Pyro, Inc. Stovetop fire suppression system and method
NL1036050C (en) 2008-10-10 2010-04-13 Serge Albert Marie-Rose Surmont FIRE-DELAYING AND FIRE-RESISTING COMPOSITION.
GB0819436D0 (en) 2008-10-23 2008-12-03 Kurawood Plc Lignocellulosic material and modification of lignocellosic material
GB0821388D0 (en) 2008-11-21 2008-12-31 Plumis Ltd Spray Head
FI121917B (en) 2008-11-25 2011-06-15 Bt Wood Oy Composition and process for processing wood-based material and wood-based material treated with the composition
EP2384230B1 (en) 2009-01-02 2020-12-09 Tyco Fire Products LP Mist type fire protection devices, systems and methods
US20100176353A1 (en) 2009-01-12 2010-07-15 Rinoud Hanna Fire retardant composition
US20100175897A1 (en) 2009-01-13 2010-07-15 Stephen Douglas Crump Self-sustaining compressed air foam system
GB0901910D0 (en) 2009-02-06 2009-03-11 Kurawood Plc Chemical modification of lignocellulosic material
US20110061336A1 (en) 2009-03-04 2011-03-17 Michael Robert Thomas Building system, concrete or OSB, pour molded or pressed molded, composite panels, trusses, and products, with engineering methods and fasteners, and related transportation, erection, and materials processing equipment
NO329252B1 (en) 2009-04-21 2010-09-20 Ylikangas Atle Means for controlling snails comprising ammonium polyphosphate (APP), process for their preparation and use thereof.
CN101559270B (en) 2009-06-04 2010-10-13 段国民 Environment-friendly water-based extinguishing agent
US8344055B1 (en) 2009-07-01 2013-01-01 No-Burn Investments, L.L.C. Ammonium phosphate fire retardant with water resistance
US8893814B2 (en) 2009-07-06 2014-11-25 My Bui Roof top and attic vent water misting system
US8276679B2 (en) 2009-07-06 2012-10-02 My Bui Roof top and attic vent water misting system
SE534276C2 (en) 2009-08-06 2011-06-28 Miljoeslaeckning I Alingsaas Ab Aqueous composition and method of fire control
US8206620B1 (en) 2009-08-11 2012-06-26 Agp Plastics, Inc. Optically clear fire resistant windows
US8286405B1 (en) 2009-08-11 2012-10-16 Agp Plastics, Inc. Fire and impact resistant window and building structures
US10717929B2 (en) 2009-08-11 2020-07-21 Ionic Flame Retardant Inc. Ionic liquid flame retardants
US8281550B1 (en) 2009-08-11 2012-10-09 Agp Plastics, Inc. Impact and fire resistant windows
FI20096037A0 (en) 2009-10-08 2009-10-08 Upm Kymmene Wood Oy Impregnation of chemicals into wood
GB2466392B (en) 2009-10-15 2010-10-20 Michael Trevor Berry Phase change materials with improved fire-retardant properties
US8403070B1 (en) 2009-10-16 2013-03-26 Ryan Lowe Automated exterior fire protective system
US8088310B2 (en) 2009-10-22 2012-01-03 Orr Charles L Orr formular
MX2009011437A (en) 2009-10-23 2011-04-22 Jose Luis Rueda Nunez Chemical composition and the process for obtaining said composition for fighting forest fires.
DE102009053186A1 (en) 2009-11-08 2011-05-12 Caldic Deutschland Chemie Bv Fire-extinguishing compositions, in particular dry powder mixtures, process for their preparation and use
KR100958736B1 (en) 2009-12-07 2010-05-18 주식회사 삼공사 Organic-inorganic hybrid transparent hydrogel complex for fire-retardant glass and fire-retardant glass assembly using the same, and the preparation method of said fire-retardant glass assembly
US8322096B2 (en) 2009-12-22 2012-12-04 VISSER Michael Wall system for a building
RU2510754C2 (en) 2009-12-25 2014-04-10 Григорий Константинович Ивахнюк Fire-extinguishing solution and method for fire fighting with this solution
US8820421B2 (en) 2010-01-02 2014-09-02 Naser Rahgozar Fire fighting system and method for fires in jungles, refineries and oil pipelines
WO2011100288A2 (en) 2010-02-09 2011-08-18 Latitude 18, Inc. Phosphate bonded composites and methods
CA2794568C (en) 2010-03-26 2014-06-10 Blmh Technologies Inc. Method for forming a fire resistant cellulose product, and associated apparatus
PL2560817T3 (en) 2010-04-23 2021-04-06 Unifrax I Llc Multi-layer thermal insulation composite
JPWO2011158340A1 (en) 2010-06-16 2013-08-22 日本ファイヤープロテクト株式会社 Extinguishing agent manufacturing method and throwing-type fire extinguishing tool
US8646540B2 (en) 2010-07-20 2014-02-11 Firetrace Usa, Llc Methods and apparatus for passive non-electrical dual stage fire suppression
US8663427B2 (en) 2011-04-07 2014-03-04 International Paper Company Addition of endothermic fire retardants to provide near neutral pH pulp fiber webs
WO2012018749A1 (en) 2010-08-03 2012-02-09 International Paper Company Fire retardant treated fluff pulp web and process for making same
CA2719511C (en) 2010-08-17 2012-01-03 Cano Coatings Inc. Fire resistant timber coating compositions and methods of manufacture
WO2012031345A1 (en) 2010-09-07 2012-03-15 Flamehalt Technologies, Inc. Method for forming a fire resistant cellulose product, and associated apparatus
DE202010018124U1 (en) 2010-09-09 2014-04-24 Crupe International (Ip) Gmbh Aqueous gypsum-cement mixture and its use
CN102179027B (en) 2010-09-16 2012-06-27 陕西坚瑞消防股份有限公司 Ferrocene extinguishing composition
CN102179026B (en) 2010-09-16 2012-06-27 陕西坚瑞消防股份有限公司 Fire extinguishing composition generating extinguishant by pyrolysis
US20120073228A1 (en) * 2010-09-28 2012-03-29 Owens Corning Intellectual Capital, Llc Synthetic building panel
US20120121809A1 (en) 2010-10-27 2012-05-17 Mark Vuozzo Formulation and process for treating wood substrates
KR101192453B1 (en) 2010-11-04 2012-10-18 제너럴바이오(주) Flame retardant composition soluble in water
US8080186B1 (en) 2010-11-16 2011-12-20 Pennartz Edmund R J Fire mitigation and moderating agents
GB201019841D0 (en) 2010-11-23 2011-01-05 Bpb Ltd Calcium sulphate-bases products and methods for the manufacture thereof
AU2011332834B2 (en) 2010-11-25 2016-02-04 Zzakey Technologies Ltd. Biodegradable fire-fighting formulation
US8746355B2 (en) 2010-12-03 2014-06-10 Christopher Joseph Demmitt Fire extinguishing bomb
US20120145418A1 (en) 2010-12-06 2012-06-14 Kuojui Su Misting blanket fire protection system
GB201021000D0 (en) 2010-12-10 2011-01-26 Dartex Coatings Ltd Fire retardance
EP2463083B1 (en) 2010-12-13 2016-06-29 The Boeing Company Green aircraft interior panels and method of fabrication
US20120168185A1 (en) 2010-12-29 2012-07-05 John Charles Yount Remote Automated Wildfire Protection System
CN103649406B (en) 2011-01-13 2015-11-25 Blmh科技股份有限公司 Form method and the relevant device thereof of refractory fibre element product
BR112013024092A2 (en) 2011-03-21 2016-12-06 Ada Technologies Inc mist delivery and water atomization system
CN202045944U (en) 2011-03-28 2011-11-23 上海宜瓷龙新材料科技有限公司 Wooden board with fireproof and flame retardant functions
GB2489701A (en) 2011-04-04 2012-10-10 Le Group Of Companies Ltd Elastomer coated wooden pallet
CA2736682A1 (en) 2011-04-08 2012-10-08 Smart Choice Fire Protection Inc. Fire retardant composition
US9187674B2 (en) 2011-04-11 2015-11-17 Crosslink Technology Inc. Fire resistant coating
CN102337770A (en) 2011-04-12 2012-02-01 上海亮世国际贸易有限公司 Building sheet material and its manufacture method
US20120301703A1 (en) 2011-05-27 2012-11-29 Joseph Labock Labock fire resistant paint
US8668988B2 (en) 2011-06-15 2014-03-11 Nicola Schoots Polyurethane panel
US8458971B2 (en) 2011-06-29 2013-06-11 Weyerhaeuser Nr Company Fire resistant wood products
WO2013015241A1 (en) 2011-07-22 2013-01-31 株式会社カネカ Fire extinguishing agent and fire extinguishing method using same
MY172624A (en) 2011-08-25 2019-12-06 Pyrogen Mfg Sdn Bhd Fire extinguishing system
WO2013032447A1 (en) 2011-08-30 2013-03-07 Empire Technology Development Llc Ferrocene /carbon dioxide releasing system
US20130149548A1 (en) * 2011-10-07 2013-06-13 Llewellyn Angelo Williams Fire Retardant
KR101573230B1 (en) 2011-10-24 2015-12-02 주식회사 케이씨씨 Solvent-free epoxy fire resistive paint composition having improved gas toxicity on fire
US8808850B2 (en) 2011-10-25 2014-08-19 Arclin Water resistant intumescent fire retardant coating
US9328317B2 (en) 2011-11-04 2016-05-03 The Chemours Company Fc, Llc Fluorophosphate surfactants
DE102011055188A1 (en) 2011-11-09 2013-05-16 Volker Fritz Aqueous solution
JP2015507562A (en) 2011-12-27 2015-03-12 ダウ グローバル テクノロジーズ エルエルシー Fireproof composite structure
MX348906B (en) 2012-04-03 2017-05-30 Manuel Medina Ruiz Juan Toxic fume injector for extinguishing forest fires.
WO2013179218A1 (en) 2012-05-28 2013-12-05 L-M-J Nation Security Llc Fire resistant paint for application to an outdoor or indoor surface, articles of manufacture, an apparatus for manufacture and a process for manufacture thereof
EP2679653A1 (en) 2012-06-26 2014-01-01 Solvay Sa Fungicidal and parasiticidal fire-retardant powder
ES2724201T3 (en) 2012-06-28 2019-09-09 Marioff Corp Oy Thermal expansion set for water fire extinguishing system
US9382703B2 (en) * 2012-08-14 2016-07-05 Premium Steel Building Systems, Inc. Systems and methods for constructing temporary, re-locatable structures
US20140079942A1 (en) 2012-09-18 2014-03-20 Thomas Jospeh Lally Fire-retardant coating, method for producing fire-retardant and heat-resistnat building materials
CN102824715A (en) 2012-09-21 2012-12-19 陕西坚瑞消防股份有限公司 Phosphate fire extinguishing composition
CN102861409B (en) 2012-09-27 2015-12-09 西安坚瑞安全应急设备有限责任公司 A kind of metal oxyacid salts class fire-extinguishing composite
US20140202717A1 (en) 2013-01-22 2014-07-24 Miraculum Applications AB Flame retardant and fire extinguishing product for fires in solid materials
US9265978B2 (en) 2013-01-22 2016-02-23 Miraculum Applications, Inc. Flame retardant and fire extinguishing product for fires in liquids
US20140206767A1 (en) 2013-01-22 2014-07-24 Miraculum Applications AB Product for mold prevention and treatment
US20140202716A1 (en) 2013-01-22 2014-07-24 Miraculum Applications AB Flame retardant and fire extinguishing product for fires in liquids
US20150224352A1 (en) 2013-01-22 2015-08-13 Miraculum Applications AB Flame retardant and fire extinguishing product for fires in solid materials
US9586070B2 (en) 2013-01-22 2017-03-07 Miraculum, Inc. Flame retardant and fire extinguishing product for fires in solid materials
US9597538B2 (en) 2013-01-22 2017-03-21 Miraculum, Inc. Flame retardant and fire extinguishing product for fires in liquids
US8534370B1 (en) 2013-01-28 2013-09-17 Wasmeyyah M. A. S. Al Azemi Roof mounted remotely controlled fire fighting tower
US9120570B2 (en) 2013-02-26 2015-09-01 The Boeing Company Precision aerial delivery system
US20140245696A1 (en) 2013-03-04 2014-09-04 Boise Cascade Company Fire resistant construction members
FR3003283B1 (en) * 2013-03-12 2021-03-19 Sas Dhomino MODULAR CONSTRUCTION SYSTEM
US10828521B2 (en) 2013-03-15 2020-11-10 Tyco Fire Products Lp Fire extinguishing composition
US20140295164A1 (en) 2013-03-27 2014-10-02 Weyerhaeuser Nr Company Water resistant low flame-spread intumescent fire retardant coating
US20150020476A1 (en) 2013-07-17 2015-01-22 Weyerhaeuser Nr Company Fire resistant coating and wood products
KR101346190B1 (en) 2013-08-06 2014-01-03 한미르 주식회사 Composition for eco-friendly neutral reinforced fire extinguishing agent
DE102013111142A1 (en) 2013-10-09 2015-04-09 Jens Volker Habermann Method for increasing the efficiency of a fire-extinguishing liquid
US20150111052A1 (en) 2013-10-18 2015-04-23 Weyerhaeuser Nr Company Water-resistant flame-resistant compositions
CA2928929C (en) 2013-10-31 2017-09-12 Blh Technologies Inc. Fire resistant article, and associated production method
US20150147478A1 (en) 2013-11-25 2015-05-28 Nature Tech Llc Fire-Resistant Cellulose Material
WO2015076842A1 (en) 2013-11-25 2015-05-28 Nature Tech Llc Fire-resistant cellulose material
CN106164207B (en) 2013-12-02 2020-01-07 设计粘合剂公司 Adhesive material and method of forming lignocellulosic composite using the same
US20150175841A1 (en) 2013-12-23 2015-06-25 Weyerhaeuser Nr Company Fire-Resistant Coating and Wood Products
US10518120B2 (en) 2014-02-18 2019-12-31 Hydraᴺᵀ International Trading Co., Ltd. Fire extinguishing compositions
US10335624B2 (en) 2014-04-02 2019-07-02 Tyco Fire Products Lp Fire extinguishing compositions and method
US10487218B2 (en) 2014-04-10 2019-11-26 Gcp Applied Technologies Inc. Fire retardant coating composition
US11312038B2 (en) 2014-05-02 2022-04-26 Arch Wood Protection, Inc. Wood preservative composition
US20150314564A1 (en) 2014-05-05 2015-11-05 Chicago Flameproof & Wood Specialties Corp. Laminated magnesium cement wood fiber construction materials
CN103933694B (en) 2014-05-13 2015-01-07 湖南省湘电试研技术有限公司 Rapid fire extinguishing agent for power transmission lines
US9851718B2 (en) 2014-09-26 2017-12-26 Steven R. Booher Intelligent control apparatus, system, and method of use
US20160137853A1 (en) 2014-11-14 2016-05-19 Richard A. Lopez Aqueous fire-retardant water-resistant non-corrosive composition for topical application to products and articles
GB201420251D0 (en) 2014-11-14 2014-12-31 Angus Fire Armour Ltd Fire fighting foaming compositions
WO2016086290A1 (en) * 2014-12-02 2016-06-09 THIBAULT, Réal Fire-resistant construction panel
US10202752B2 (en) * 2014-12-24 2019-02-12 Zero Bills Home Limited Building construction
WO2017014782A1 (en) 2015-07-23 2017-01-26 Nature Tech Llc Fire-resistant cellulose material
KR101575299B1 (en) 2015-05-18 2015-12-08 주식회사 가온바이오 Flame-retardant treatment method using eco-friendly fire retardant composition for wood containing construction material and fire retardant coating wood containing construction material
WO2017015585A1 (en) 2015-07-22 2017-01-26 Miraculum Applications, Inc. Flame retardant and fire extinguishing product
CN105148429B (en) 2015-07-29 2018-04-10 成都煦华鳌龙科技有限公司 A kind of wind-force froth fire extinguishing system
US9663943B2 (en) * 2015-09-23 2017-05-30 Weyerhaeuser Nr Company Building products with fire-resistant claddings
US20170120089A1 (en) * 2015-10-30 2017-05-04 Firetrace Usa, Llc Methods and apparatus for fire suppression system for transportable container
CA2947301C (en) 2015-11-04 2020-07-14 Pinkwood Ltd. Fire-resistant wooden i-joist
US10041251B2 (en) 2015-11-13 2018-08-07 Mid-Columbia Lumber Floor joist
CA3006989A1 (en) 2015-11-30 2017-06-08 Louisiana-Pacific Corporation Permeable elastomeric membrane adhered to fire-rated structural osb panels
CN108367186A (en) 2015-12-05 2018-08-03 森田準 The manufacturing method and extinguishing chemical of extinguishing chemical
US9920250B1 (en) 2016-08-16 2018-03-20 Eco Building Products, Inc. Fire inhibitor formulation
US10066392B2 (en) * 2016-09-29 2018-09-04 United States Gypsum Company One hour fire rated wooden frame members using lightweight gypsum wallboard
US10066390B2 (en) * 2016-11-02 2018-09-04 United States Gypsum Company Two-hour fire-rated modular floor/ceiling assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210285206A1 (en) * 2018-08-21 2021-09-16 J. David Wright LLC Insulatable, insulative framework apparatus and methods of making and using same
US11808031B2 (en) * 2018-08-21 2023-11-07 J. David Wright LLC Insulatable, insulative framework apparatus and methods of making and using same

Also Published As

Publication number Publication date
US10430757B2 (en) 2019-10-01
US20190171998A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US10814150B2 (en) Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires
US11697041B2 (en) Method of proactively defending combustible property against fire ignition and flame spread in the presence of wild fire
US20190171999A1 (en) Methods of and systems for suppressing wildfire embers from entering into the interior spaces of buildings during wildfires
US11395931B2 (en) Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
US20190168033A1 (en) Method of and apparatus for applying fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
US8907799B2 (en) Fire detection
US11865390B2 (en) Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire
US20190168036A1 (en) Systems and methods for automated early fire-outbreak and arson-attack detection and elimination in wood-framed and mass timber buildings
KR101463964B1 (en) Forest fire managing system
CA2629779A1 (en) Method and device for detecting forest fires
US11865394B2 (en) Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires
US20190169837A1 (en) Wild-fire protected shed for storage and protection of personal property during wild-fires
US20190169841A1 (en) Wild-fire protected shed for storage and protection of personal property during wild-fires
US11826592B2 (en) Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire
CA2770661A1 (en) Fire detection
US11532050B1 (en) Unmanned vehicle service delivery
Shosholovski et al. Application of a hybrid system for early detection of forest fire
WO2022169917A1 (en) Environmentally-clean water-based fire inhibiting and extinguishing compositions, and methods of and apparatus for applying the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: M-FIRE SUPPRESSION, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONBOY, STEPHEN;REEL/FRAME:047563/0658

Effective date: 20181117

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: M-FIRE HOLDINGS LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:M-FIRE SUPPRESSION, INC.;REEL/FRAME:051690/0863

Effective date: 20200130

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MIGHTY FIRE BREAKER LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:M-FIRE HOLDINGS LLC;REEL/FRAME:059825/0479

Effective date: 20220427

AS Assignment

Owner name: MIGHTY FIRE BREAKER LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:M-FIRE HOLDINGS LLC;REEL/FRAME:061462/0649

Effective date: 20220427

AS Assignment

Owner name: MIGHTY FIRE BREAKER LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:M-FIRE HOLDINGS LLC;REEL/FRAME:065842/0512

Effective date: 20220427