US20190021322A9 - Use of an insecticidal carboxamide compound against pests on cultivated plants - Google Patents

Use of an insecticidal carboxamide compound against pests on cultivated plants Download PDF

Info

Publication number
US20190021322A9
US20190021322A9 US15/563,120 US201615563120A US2019021322A9 US 20190021322 A9 US20190021322 A9 US 20190021322A9 US 201615563120 A US201615563120 A US 201615563120A US 2019021322 A9 US2019021322 A9 US 2019021322A9
Authority
US
United States
Prior art keywords
spp
plant
maize
carboxamide compound
mon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/563,120
Other versions
US11064696B2 (en
US20180199570A1 (en
Inventor
Tatjana Sikuljak
Robert Reinhard
Klaus Daeschner
Alejandro Arevalo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Agrochemical Products BV
BASF Agrochemical Products BV Puerto Rico
Original Assignee
BASF Agrochemical Products BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Agrochemical Products BV filed Critical BASF Agrochemical Products BV
Priority to US15/563,120 priority Critical patent/US11064696B2/en
Assigned to BASF SE reassignment BASF SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAESCHNER, KLAUS, REINHARD, ROBERT, SIKULJAK, TATJANA
Assigned to BASF CORPORATION reassignment BASF CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AREVALO, Alejandro
Assigned to BASF AGROCHEMICAL PRODUCTS B.V. reassignment BASF AGROCHEMICAL PRODUCTS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASF CORPORATION
Assigned to BASF AGROCHEMICAL PRODUCTS B.V. reassignment BASF AGROCHEMICAL PRODUCTS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASF SE
Publication of US20180199570A1 publication Critical patent/US20180199570A1/en
Publication of US20190021322A9 publication Critical patent/US20190021322A9/en
Application granted granted Critical
Publication of US11064696B2 publication Critical patent/US11064696B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives

Definitions

  • the present invention relates to a method for controlling pests on and/or increasing the plant health of a cultivated plant with at least one modification (hereinafter abbreviated as “cultivated plant”) as compared to a respective non-modified control plant.
  • the method comprises the application of a pesticidal carboxamide compound (alone or in the form of a mixture comprising such pesticidal carboxamide compound) to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth.
  • a pesticidal carboxamide compound (alone or in the form of a mixture comprising such pesticidal carboxamide compound)
  • the present invention relates to a method for controlling pests and/or increasing the plant health of a cultivated plant with at least one modification as compared to the respective non-modified control plant, comprising the application of an pesticidal carboxamide compound (again, alone or in the form a mixture comprising such pesticidal carboxamide compound) to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth, wherein said cultivated plant is selected from a group of certain plants with specific modifications as defined further below.
  • the methods of the invention relating to cultivated plants are particularly suitable for efficiently controlling arthropodal pests such as arachnids, myriapedes and insects as well as nematodes on cultivated plants.
  • pests embrace animal pests (such as insects, acarids or nematodes). Relevant animal pests of different genera and species are provided further below.
  • the present invention relates to the use of a pesticidal carboxamide compound alone or in the form of a pesticidal mixture comprising such pesticidal carboxamide compound for protecting a cultivated plant, modified plant propagation material, or its locus of growth, against the attack or infestation by pests.
  • the present invention relates to the use of a pesticidal carboxamide compound in pesticidally effective amounts for protecting cultivated plants from row crops such as cotton, corn or soybean plants, the plant propagation material thereof or their locus of growth.
  • the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of an pesticidal carboxamide compound to a row crop plant (such as corn, cotton or soybean plant), the plant propagation material thereof or at its locus of growth, also on the pests or their food supply, habitat or breeding grounds.
  • a row crop plant such as corn, cotton or soybean plant
  • the present invention relates to the method of application or the use of a pesticidal carboxamide compound in pesticidally effective amounts for protecting cultivated plants from row crops such as cotton, corn or soybean plants, the plant propagation material thereof or their locus of growth from the infestions by pests, wherein the pests are selected from the orders of Lepidoptera, Coleoptera or Thysanoptera, and combinations thereof.
  • Pests in particular insects from the order of Lepidoptera, destroy growing and harvested crops and attack wooden dwelling and commercial structures, thereby causing large economic loss to the food supply and to property.
  • soybean it has e.g. been found that, when the pods begin to form and fill out, any foliage loss greater than 20% will decrease the yield (G. Andrews et al., Insect control guides for cotton, soybeans, corn, grain sorghum, wheat, sweet potatoes and pastures, Mississippi State University Extension Service, Publication 2471, 64 pp. (2009)).
  • Anticarsia gemmatalis, Pseudoplusia includens, Spodoptera frugiperda, Spodoptera eridania , and Spodoptera cosmioides for defoliation of soybean genotypes is analyzed by R. C. O. de Freitas Bueno et al. in Pest Manag. Sci. 2011; 67: 170-174.
  • Anticarsia gemmatalis was originally the most important defoliator insect occurring on soybean crops, but that nowadays Pseudoplusia includens, Spodoptera frugiperda, Spodoptera eridania , and Spodoptera cosmioides are also considered to be key pests by Brazilian soybean growers.
  • cry1F a combination of cry1F and cry1Ac (e.g. DAS 81419) for the reason that cry1F in many species interacts with the known receptor for cry1Ac indicating a similar insecticidal activity, which may contribute to cross-resistance to both toxins (Center for Environmental Risk Assessment, ILSI Research Foundation, Washington D.C., USA, 2013: “A Review of the Environmental Safety of the Cry1F Protein”).
  • insect resistance refers to insect resistance against other pesticides and pesticidal mixtures or insect resistance against an insecticidal trait of a plant.
  • plants selected from wheat, maize, rice, soybean, and cotton plants may effectively be protected against defoliation by these pests, and a decrease of the yields can thus be prevented.
  • the method is also suitable for controlling the above mentioned pests, if they have become resistant against conventional pesticides or pesticidal mixtures, or against the insecticidal trait of a plant.
  • the development of a resistance against the insecticidal trait of a plant can be prevented, if the plants are treated with the pesticidal carboxamide compound of the invention.
  • the method according to the invention is suitable for controlling pests, against which the insecticidal trait of a plant is not effective, so that a complementary insecticidal activity can advantageously be used.
  • cultivated plants with at least one modification are more susceptible to attack or infestation by pests than plants, which have not been modified.
  • cultivación of cultivated plants with a modification, which provides insect resistance can be particularly susceptible to certain pests against which the produced toxin is not effective. Moreover, the pests can develop resistance against the toxin, which is produced by the plant.
  • plant health comprises various sorts of improvements of plants that are not connected to the control of pests and which do not embrace the reduction of negative consequences of harmful insects.
  • plant health is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e.g. increased biomass and/or increased content of valuable ingredients), plant vigor (e.g. improved plant growth and/or greener leaves (“greening effect”), quality (e.g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress.
  • yield e.g. increased biomass and/or increased content of valuable ingredients
  • plant vigor e.g. improved plant growth and/or greener leaves (“greening effect”)
  • quality e.g. improved content or composition of certain ingredients
  • tolerance to abiotic and/or biotic stress e.g. improved content or composition of certain ingredients
  • Preferred methods and uses according to of this invention comprise compound i) of formula (I) as pesticidal active carboxamide compound I.
  • Preferred embodiments of this invention are the methods or the use of the pesticidal active carboxamide compound i) of formula (I) or the tautomers, enantiomers, diastereomers or salts thereof, alone or in mixtures comprising such pesticidal active carboxamide compound.
  • inventions of this invention are the methods or the use of the pesticidal active carboxamide compound ii) of formula (Ia) or the tautomers, enantiomers, diastereomers or salts thereof, alone or in mixtures comprising such pesticidal active carboxamide compound.
  • Still other embodiments of this invention are the methods or the use of pesticidal active mixtures comprising the carboxamide compounds i) of formula (I) and ii) of formula (Ia) or the tautomers, enantiomers, diastereomers or salts thereof, alone or in mixtures comprising such pesticidal active carboxamide compound mixtures.
  • the terms “compound i) of formula (I)”, “compound (ii) of formula (la), or “mixture comprising the carboxamide compounds (i) and (ii)” also include the respective salts, tautomers, stereoisomers, and N-oxides of the carboxamide compounds.
  • the above objects may be achieved by the use or application of the pesticidal active carboxamide compound I, preferably compound i) of formula (I) alone.
  • the application of the pesticidal active carboxamide compound I, preferably compound i) of formula (I) as only one active agent can be advantageous in terms of practicability and also in connection with insect resistance management.
  • the application of a mixture comprising pesticidal active carboxamide compound I, preferably compound i) of formula (I), including the simultaneous, that is joint or separate, application of pesticidal active carboxamide compound I, preferably compound i) of formula (I) and the other pesticidal active ingredient or their successive application on cultivated plants may allow enhanced control of animal pests, compared to the control rates that are possible by application on non-cultivated plants.
  • the mixture comprising pesticidal active carboxamide compound I, preferably compound i) of formula (I), and another pesticidal active compound may advantageously be used.
  • the pesticidal active carboxamide compound I may be useful in methods of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth, wherein the plant has at least one insecticidal trait, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • Carboxamide derivatives showing generally pesticidal activity have been described previously.
  • WO200573165 and WO2010018714 describe carboxamide compounds, their preparation and their use as pest control agents.
  • WO2007013150, JP2011-157294, JP2011-157295 and JP2011-157296 describe mixtures of carboxamides with other active ingredients.
  • Preparation of the pesticidal active carboxamide compound I can further be accomplished according to standard methods of organic chemistry, e.g. by the methods or working examples described in WO 2010/018857 without being limited to the routes given therein.
  • the carboxamide compound I preferably the compound i) of formula (I), includes its tautomers, racemic mixtures, individual pure enantiomers and diasteroemers and the optically active mixtures.
  • the carboxamide compound i) of formula (I) is especially suitable for efficiently combating animal pests such as arthropods, gastropods and nematodes including but not limited to: insects from the order of Lepidoptera, for example Achroia grisella, Acleris spp. such as A. fimbriana, A. gloverana, A. variana; Acrolepiopsis assectella, Acronicta major, Adoxophyes spp. such as A. cyrtosema, A. orana; Aedia leucomelas, Agrotis spp. such as A. exclamationis, A. fucosa, A. ipsilon, A. orthogoma, A. segetum, A.
  • insects from the order of Lepidoptera for example Achroia grisella, Acleris spp. such as A. fimbriana, A. gloverana, A. variana; Acrolepiopsis assectella, Acronic
  • Argyresthia conjugelia, Argyroploce spp., Argyrotaenia spp. such as A. velutinana; Athetis mindara, Austroasca viridigrisea, Autographa gamma, Autographa nigrisigna, Barathra brassicae, Bedellia spp., Bonagota salubricola, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Cacoecia spp. such as C. murinana, C.
  • Cactoblastis cactorum Cadra cautella, Calingo braziliensis, Calopas theivora, Capua reticulana, Carposina spp. such as C. niponensis, C. sasald; Cephus spp., Chaetocnema aridula, Cheimatobia brumata, Chilo spp. such as C. lndicus, C. suppressalis, C. partellus; Choreutis pariana, Choristoneura spp. such as C. conflictana, C. fumiferana, C. longicellana, C. murinana, C. occidentalis, C.
  • kuehniella kuehniella; Epinotia aporema, Epiphyas postvittana, Erannis tiliaria, Erionota thrax, Etiella spp., Eulia spp., Eupoecilia ambiguella, Euproct chrysorrhoea, Euxoa spp., Evetria bouliana, Faronta albilinea, Feltia spp. such as F. subterranean; Galleria mellonella, Gracillaria spp., Grapholita spp. such as G. funebrana, G. moiesta, G.
  • H. armigera Heliothis armigera
  • H. zea Heliothis zea
  • Heliothis spp. such as H. assulta, H. subflexa, H. virescens
  • Hellula spp. such as H. undalis, H.
  • Mamestra spp. such as M. brassicae, M. configurata; Mamstra brassicae, Manduca spp. such as M. quinquemaculata, M. sexta; Marasmia spp, Marmara spp., Maruca testulalis, Megalopyge Janata, Melanchra picta, Melanitis leda, Mocis spp. such as M. lapites, M.
  • operculella Phyllocnistis citrella, Phyllonorycter spp. such as P. blancardella, P. crataegella, P. issikii, P. ringoniella; Pieris spp. such as P. brassicae, P. rapae, P. napi; Pllocrocis tripunctata, Plathypena scabra, Platynota spp. such as P. flavedana, P. idaeusalis, P.
  • Tecia solanivora Telehin licus
  • Thecla spp. Theresimima ampelophaga, Thyrinteina spp, Tildenia inconspicuella, Tinea spp. such as T. cloacella, T. pellionella; Tineola bisselliella, Tortrix spp. such as T. viridana; Trichophaga tapetzella, Trichoplusia spp. such as T.
  • insects from the order of Coleoptera for example Acalymma vittatum, Acanthoscehdes obtectus, Adoretus spp., Agelastica alni, Agrilus spp. such as A. anxius, A. planipennis, A. sinuatus; Agriotes spp. such as A. fuscicollis, A. lineatus, A. obscurus; Alphitobius diaperinus, Amphimallus solstitialis, Anisandrus dispar, AmSoplia austriaca, Anobium punctatum, Anomala diverenta, Anomala rufocuprea, Anoplophora spp. such as A.
  • Anthonomus spp. such as A. eugenil, A. grandis, A. pomorum; Anthrenus spp., Aphthona euphoridae, Apion spp., Apogonia spp., Athous haemorrhoidalis, Atomaria spp. such as A. linearis; Attagenus spp., Aulacophora femoralis, Blastophagus piniperda, Blitophaga undata, Bruchidius obtectus, Bruchus spp. such as B. lentis, B. pisorum, B.
  • vespertinus Conotrachelus nenuphar, Cosmopolites spp., Costelytra zealandica, Criocenis asparagi, Cryptolestes ferrugineus, Cryptorhynchus lapathl, Ctenicera spp. such as C. destructor; Curculio spp., Cylindrocopturus spp., Cyclocephala spp., Dactylispa balyi, Dectes texanus, Dermestes spp., Diabrotica spp. such as D. undecimpunctata, D. speciosa, D. longicornis, D. semipunctata, D.
  • Diaprepes abbreviates, Dichocroais spp., Dicladispa armigera, Diloboderus abderus, Diocalandra frumenfi ( Diocalandra stigmaticollis ), Enaphalodes rufulus, Epilachna spp. such as E. varivestis, E. vigintioctomaculata; Epitrix spp. such as E. hirtipennis, E.
  • hypomeces squamosus Hypothenemus spp., lps typographus, Lachnosterna consanguinea, Lasioderma serricome, Latheticus oryzae, Lathridius spp., Lema spp. such as L. bilineata, L. melanopus; Leptinotarsa spp. such as L. decem lineata; Leptispa pygmaea, Limonius californicus, Lissorhoptrus olyzophllus, Lixus spp., Luperodes spp., Lyctus spp. such as L.
  • vulneratus Saperda candida, Scolytus schevyrewi, Scyphophorus acupunctatus, Sitona lineatus, Sitophilus spp. such as S. granaria, S. oryzae, S. zeamais; Sphenophorus spp. such as S. Levis; Stegobium paniceum, Sternechus spp. such as S. subsignatus; Strophomorphus ctenotus, Symphyletes spp., Tanymecus spp., Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp. such as T.
  • Trogoderma spp. Tychius spp.
  • Xylotrechus spp. such as X. pyrrhoderus
  • Zabrus spp. such as Z. tenebrioides
  • insects from the order of Diptera for example Aedes spp. such as A. aegypti, A. albopictus, A. vexans; Anastrepha ludens, Anopheles spp. such as A. albimanus, A. crucians, A. freeborni, A. gambiae, A. leucosphyrus, A. maculipennis, A. minimus, A. quadrimaculatus, A. sinensis; Bactrocera invadens, Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chrysomyia spp. such as C. bezziana, C.
  • fuscipes G. morsitans, G. palpalis, G. tachinoides
  • Haematobiairritans, Haplodiplosis equestris Hippelates spp., Hylemyia spp. such as H. platura
  • Hypoderma spp. such as H. lineata
  • Hyppobosca spp. Hydrellia philippina, Leptoconops torrens, Liriomyza spp. such as L. sativae, L. trifolii
  • Lucllia spp. such as L. caprin, L. cuprina, L.
  • insects from the order of Thysanoptera for example, Basothrips biformis, Dichromothnps corbetti, Dichromothrips ssp., Echinothrips americanus, Enneothrips flavens, Frankliniella spp. such as F. fusca, F. occidentalis, F. tritici; Heliothnps spp., Hercinothrips femoralis, Kakothrips spp., Microcephalothrips abdominalis, Neohydatothnps samayunkur, Pezothrips kellyanus, Rhipiphorothrips cruentatus, Scirtothnps spp. such as S.
  • insects from the order of Hemiptera for example, Acizzia jamatonica, Acrosternum spp. such as A. Mare; Acyrthosipon spp. such as A. onoboichis, A. pisum; Adelges laricis, Adelges tsugae, Adelphocoris spp., such as A. rapidus, A.
  • Idiocerus spp. Idioscopus spp., Laodelphax striatellus, Lecaniurn spp., Lecanoideus floccissimus, Lepidosaphes spp. such as L. ulmi; Leptocorisa spp., Leptoglossus phyllopus, Lipaphis Lygus spp. such as L. hesperus, L. lineolaris, L.
  • Nezara spp. such as N. viridula; Nilaparvata lugens, Nysius huttoni, Oebalus spp. such as O.
  • devastatrix Piesma quadrata, Piezodorus spp. such as P. gulldimi; Pinnaspis aspidlistrae, Planococcus spp. such as P. citri, P. ficus; Prosapia bicincta, Protopulvinana pyriformis, Psallus senatus, Pseudacysta persea, Pseudaulacaspis pentagon, Pseudococcus spp. such as P. comstocki; Psylla spp. such as P.
  • Pteromalus spp. Pulvinana amygdali, Pyrilla spp., Quadraspidiotus spp., such as Q. perniciosus; Quesada gigas, Rastrococcus spp., Reduvius semils, Rhizoecus americanus, Rhodnius spp., Rhopalomyzus ascalonicus, Rhopalosiphum spp. such as R. pseudobrassicas, R. insertum, R. maidis, R.
  • Sagalodes spp., Sahlbergella singularis, Saissetia spp., Sappaphis mala, Sappaphis mall, Scaptocoris spp., Scaphoides titanus, Schizaphis graminum, Schizoneura lanuginosa, Scotinophora spp., Selenaspidus articulatus, Sitobion avenae, Sogata spp., Sogatella furcifera, Solubea insularis, Spissistilus festinus ( Stictocephala festina ), Stephanitis nashi, Stephanitis pyrioides, Stephanitis takeyai, Tenalaphara malayensis, Tetraleurodes perseae, Therioaphis maculate, Thyanta spp.
  • T. accerra, T. perditor Tibraca spp., Tomaspis spp., Toxoptera spp. such as T. aurantii; Trialeurodes spp. such as T. abutilonea, T. ricin, T. vaporariorum; Triatoma spp., Trioza spp., Typhlocyba spp., Unaspis spp. such as U. citri, U. yanonensis ; and Viteus vitifolil;
  • Paravespula spp. such as P. germanica, P. pennsylvanica, P. vulgaris; Pheidole spp. such as P. megacephala; Pogonomyrmex spp. such as P. barbatus, P. californicus, Pollstes rubiginosa, Prenolepis impairs, Pseudomyrmex gracilis, Schelipron spp., Sirex cyaneus, Solenopsis spp. such as S. geminata, Sinvicta, S.
  • Insects from the order Orthoptera for example Acheta domesticus, Calliptamus italicus, Chortoicetes terminifera, Ceuthophilus spp., Diastrammena asynamora, Dociostaurus maroccanus, Gryllotalpa spp. such as G. africana, G. gryllotalpa; Gryllus spp., Hieroglyphus daganensis, Kraussaria angulifera, Locusta spp. such as L. migratoria, L. pardalina; Melanoplus spp. such as M. bivittatus, M. femurrubrum, M. mexicanus, M. sanguinipes, M.
  • Pests from the Class Arachnida for example Acari e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma spp. (e.g. A. americanum, A. variegatum, A. maculatum ), Argas spp. such as A. persicu ), Boophilus spp. such as B. annulatus, B. decoloratus, B. microplus, Dermacentor spp. such as D. silvarum, D. andersom, D. variabilis, Hyalomma spp. such as H. truncatum, Ixodes spp. such as I. ricinus, I.
  • Amblyomma spp. e.g. A. americanum, A. variegatum, A. maculatum
  • Argas spp. such as A. persicu
  • Boophilus spp. such as B.
  • rubicundus I. scapularis, I. holocyclus, I. pacificus, Rhipicephalus sanguineus, Ornithodorus spp. such as O. moubata, O. hermsi, O. turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyssus gallinae, Psoroptes spp. such as P. ovis, Rhipicephalus spp. such as R. sanguineus, R. appendiculatus, Rhipicephalus evertsi, Rhizoglyphus spp., Sarcoptes spp. such as S.
  • T. cinnabarinus such as Eriophyes sheldoni ; Family Tarsonemidae including Hemitarsonemus spp., Phytonemus pallidus and Polyphagotarsonemus latus, Stenotarsonemus spp. Steneotarsonemus spinki ; Family Tenuipalpidae including Brevipalpus spp. such as B. phoenicis ; Family Tetranychidae including Eotetranychus spp., Eutetranychus spp., Oligonychus spp., Petrobia latens, Tetranychus spp. such as T. cinnabarinus, T. evansi, T. kanzawai, T, pacificus, T.
  • Halotydeus destructor Family Demodicidae with species such as Demodex spp.; Family Trombicidea including Trombicula spp.; Family Cellyssidae including Ornothonyssus spp.; Family Pyemotidae including Pyemotes tritici; Tyrophagus putrescentiae ; Family Acaridae including Acarus siro ; Family Araneida including Latrodectus mactans, Tegenaria agrestis, Chiracanthium sp, Lycosa sp Achaearanea tepidariorum and Loxosceles reclusa;
  • Pests from the Phylum Nematoda for example, plant parasitic nematodes such as root-knot nematodes, Meloidogyne spp. such as M. hapla, M. incognita, M. Javanica ; cyst-forming nematodes, Globodera spp. such as G. rostochiensis; Heterodera spp. such as H. avenae, H. glycines, H. schachtil, H. trifolii ; Seed gall nematodes, Anguina spp.; Stem and foliar nematodes, Aphelenchoides spp. such as A.
  • plant parasitic nematodes such as root-knot nematodes, Meloidogyne spp. such as M. hapla, M. incognita, M. Javanica ; cyst-forming nematodes, Globodera spp. such as G. ros
  • Awl nematodes Dolichodorus spp.
  • Spiral nematodes Hellocotylenchus multicinctus ; Sheath and sheathoid nematodes, Hemicycliophora spp. and Hemicriconemoides spp.; Hirshmanniella spp.; Lance nematodes, Hoploaimus spp.; False rootknot nematodes, Nacobbus spp.; Needle nematodes, Longidorus spp. such as L. elongatus ; Lesion nematodes, Pratylenchus spp. such as P.
  • brachyurus P. neglectus, P. penetrans, P. curvitatus, P. goodeyi ; Burrowing nematodes, Radopholus spp. such as R. similis; Rhadopholus spp.; Rhodopholus spp.; Reniform nematodes, Rotylenchus spp. such as R. robustus, R. reniformis; Scutellonema spp.; Stubby-root nematode, Trichodorus spp. such as T. obtusus, T. primitivus; Paratrichodorus spp. such as P.
  • Insects from the order Isoptera for example Calotermes flavicollis, Coptotermes spp. such as C. formosanus, C. gestroi, C. acinaciformis; Cornitermes cumulans, Cryptotermes spp. such as C. brevis, C. cavifrons; Globitermes sulfureus, Heterotermes spp. such as H. aureus, H. longiceps, H. tenuis; Leucotermes flavipes, Odontotermes spp., Incisitermes spp. such as I. minor, I. Snyder, Marginitermes hubbardi, Mastotermes spp. such as M. darwiniensiS Neocapritermes spp. such as N.
  • Neotermes spp. Procornitermes spp., ZootermopsiS spp. such as Z. angusticollis, Z. nevadensis, Reticulitermes spp. such as R. hesperus, R. tibialis, R. speratus, R. flavipes, R. grassei, R. lucifugus, R. santonensis, R. virginicus; Termes natalensis,
  • Insects from the order Siphonoptera for example Cediopsylla simples, Ceratophyllus spp., Ctenocephalides spp. such as C. fells, C. canis, Xenopsylla cheopis, Pulex irritans, Trichodectes canis, Tunga penetrans , and Nosopsyllus fasciatus,
  • Thysanura for example Lepisma saccharin, Ctenolepisma urban , and Thermobia domestica
  • Pests from the class Chilopoda for example Geophilus spp., Scutigera spp. such as Scutigera coleoptrata;
  • Pests from the class Diplopoda for example Blaniulus guttulatus, Julus spp., Narceus spp.,
  • Pests from the class Symphyla for example Scutigerella immaculata
  • Onychiurus spp. such as Onychiurus armatus
  • Pests from the order Isopoda for example, Armadillidium vulgare, Oniscus asellus, Porcellio scaber,
  • Insects from the order Phthiraptera for example Damalinia spp., Pediculus spp. such as Pediculus humanus capitis, Pediculus humanus corporis, Pediculus humanus humanus; Pthirus pubis, Haematopinus spp. such as Haematopinus eurysternus, Haematopinus suis; Linognathus spp. such as Linognathus vituli; Bovicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus, Trichodectes spp.,
  • Examples of further pest species which may be controlled by the compound I, preferably compound i) of formula (I) include: from the Phylum Mollusca, class Bivalvia, for example, Dreissena spp.; class Gastropoda, for example, Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea canaliclata, Succinea spp.; from the class of the helminths, for example, Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris lumbricoides, Ascaris spp., Brugia malap, Brugia timon, Bunostomum spp., Chabertia spp., Cion
  • carboxamide compound ii) of formula (Ia) and mixtures comprising compound i) of formula (I) and compound ii) of formula (Ia) are suitable for efficiently combating animal pests such as arthropods, gastropods and nematodes as set out above.
  • Mixtures comprising the carboxamide compounds i) and ii) are mixtures comprising both compound i) of formula (I) and compound ii) of formula (Ia).
  • the compounds I are suitable for use in protecting crops, plants, plant propagation materials, such as seeds, or its locus of growth, from attack or infestation by animal pests. Therefore, the present invention also relates to a plant protection method, which comprises contacting crops, plants, plant propagation materials, such as seeds, or its locus of growth, to be protected from attack or infestation by animal pests, with a pesticidally effective amount of the compound I, preferably compound i) of formula (I).
  • the compound I preferably compound i) of formula (I), are also suitable for use in combating or controlling animal pests.
  • the present invention also relates to a method of combating or controlling animal pests, which comprises contacting the animal pests, their habitat, breeding ground, or food supply, or the crops, plants, plant propagation materials, such as seeds, or soil, or the area, material or environment in which the animal pests are growing or may grow, with a pesticidally effective amount of the compound i) of formula (I).
  • the present invention also relates to a method of combating or controlling animal pests, which comprises contacting the animal pests, their habitat, breeding ground, or food supply, or the crops, plants, plant propagation materials, such as seeds, or soil, or the area, material or environment in which the animal pests are growing or may grow, with a pesticidally effective amount of compound ii) of formula (Ia).
  • the present invention also relates to a method of combating or controlling animal pests, which comprises contacting the animal pests, their habitat, breeding ground, or food supply, or the crops, plants, plant propagation materials, such as seeds, or soil, or the area, material or environment in which the animal pests are growing or may grow, with a pesticidally effective amount of mixtures comprising the carboxamide compounds i) and ii).
  • the compounds I, preferably compound i) of formula (I), are effective through both contact and ingestion. Furthermore, the compounds I, preferably compound i) of formula (I), can be applied to any and all developmental stages, such as egg, larva, pupa, and adult.
  • the compound I, preferably compound i) of formula (I), can be applied as such or in form of compositions comprising them as defined above. Furthermore, the compound I, preferably compound i) of formula (I), can be applied together with a mixing partner as defined above or in form of compositions comprising said mixtures as defined above.
  • the components of said mixture can be applied simultaneously, jointly or separately, or in succession, that is immediately one after another and thereby creating the mixture “in situ” on the desired location, e.g. the plant, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
  • the application can be carried out both before and after the infestation of the crops, plants, plant propagation materials, such as seeds, soil, or the area, material or environment by the pests.
  • Suitable application methods include inter alia soil treatment, seed treatment, in furrow application, and foliar application.
  • Soil treatment methods include drenching the soil, drip irrigation (drip application onto the soil), dipping roots, tubers or bulbs, or soil injection.
  • Seed treatment techniques include seed dressing, seed coating, seed dusting, seed soaking, and seed pelleting.
  • furrow applications typically include the steps of making a furrow in cultivated land, seeding the furrow with seeds, applying the pesticidally active compound I, preferably compound i) of formula (I), to the furrow, and closing the furrow.
  • Foliar application refers to the application of the pesticidally active compound I, preferably compound i) of formula (I), to plant foliage, e.g. through spray equipment.
  • pheromones for specific crops and pests are known to a skilled person and publicly available from databases of pheromones and semiochemicals, such as http://www.pherobase.com.
  • the term “contacting” includes both direct contact (applying the compounds/mixtures/compositions directly on the animal pest or plant—typically to the foliage, stem or roots of the plant) and indirect contact (applying the compounds/mixtures/compositions to the locus, i.e. habitat, breeding ground, plant, seed, soil, area, material or environment in which a pest is growing or may grow, of the animal pest or plant).
  • animal pest includes arthropods, gastropods, and nematodes.
  • Preferred animal pests according to the invention are arthropods, preferably insects and arachnids, in particular insects.
  • Insects, which are of particular relevance for crops, are typically referred to as crop insect pests.
  • crop refers to both, growing and harvested crops.
  • plant includes cereals, e.g. durum and other wheat, rye, barley, triticale, oats, rice, or maize (fodder maize and sugar maize/sweet and field corn); beet, e.g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e.g.
  • iceberg lettuce chicory, cabbage, asparagus, cabbages, carrots, onions, garlic, leeks, tomatoes, potatoes, cucurbits or sweet peppers; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rapeseed, sugar cane or oil palm; tobacco; nuts, e.g. walnuts; pistachios; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; sweet leaf (also called Stevia ); natural rubber plants or ornamental and forestry plants, such as flowers (e.g.
  • Preferred plants include potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rapeseed, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • plant is to be understood as including wild type plants and plants, which have been modified by either conventional breeding, or mutagenesis or genetic engineering, or by a combination thereof.
  • Plants which have been modified by mutagenesis or genetic engineering, and are of particular commercial importance, include alfalfa, rapeseed (e.g. oilseed rape), bean, carnation, chicory, cotton, eggplant, eucalyptus, flax, lentil, maize, melon, papaya, petunia, plum, poplar, potato, rice, soybean, squash, sugar beet, sugarcane, sunflower, sweet pepper, tobacco, tomato, and cereals (e.g. wheat), in particular maize, soybean, cotton, wheat, and rice.
  • rapeseed e.g. oilseed rape
  • the one or more mutagenized or integrated genes are preferably selected from pat, epsps, cry1Ab, bar, cry1Fa2, cry1Ac, cry34Ab1, cry35AB1, cry3A, cryF, cry1F, mcry3a, cry2Ab2, cry3Bb1, cry1A.105, dfr, barnase, vip3Aa20, barstar, als, bxn, bp40, asn1, and ppo5.
  • the mutagenesis or integration of the one or more genes is performed in order to improve certain properties of the plant. Such properties, also known as traits, include abiotic stress tolerance, altered growth/yield, disease resistance, herbicide tolerance, insect resistance, modified product quality, and pollination control.
  • herbicide tolerance e.g. imidazolinone tolerance, glyphosate tolerance, or glufosinate tolerance
  • Several plants have been rendered tolerant to herbicides by mutagenesis, for example Clearfield® oilseed rape being tolerant to imidazolinones, e.g. imazamox.
  • genetic engineering methods have been used to render plants, such as soybean, cotton, corn, beets and oil seed rape, tolerant to herbicides, such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate) and LibertyLink® (glufosinate).
  • insect resistance is of importance, in particular lepidopteran insect resistance and coleopteran insect resistance.
  • Insect resistance is typically achieved by modifying plants by integrating cry and/or vip genes, which were isolated from Bacillus thuringiensis (Bt), and code for the respective Bt toxins. Genetically modified plants with insect resistance are commercially available under trade names including WideStrike®, Bollgard®, Agrisure®, Herculex®, YieldGard®, Genuity®, and Intacta®. Plants may be modified by mutagenesis or genetic engineering either in terms of one property (singular traits) or in terms of a combination of properties (stacked traits). Stacked traits, e.g. the combination of herbicide tolerance and insect resistance, are of increasing importance.
  • plant propagation material refers to all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e.g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants. Seedlings and young plants, which are to be transplanted after germination or after emergence from soil, may also be included. These plant propagation materials may be treated prophylactically with a plant protection mixture either at or before planting or transplanting.
  • seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like, and means in a preferred embodiment true seeds.
  • pesticidally effective amount means the amount of active ingredient needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism.
  • the pesticidally effective amount can vary for the various compounds/mixtures/compositions used in the invention.
  • a pesticidally effective amount of the compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
  • the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m 2 , preferably from 0.001 to 20 g per 100 m 2 .
  • the rate of application of the active ingredients of this invention may be in the range of 0.0001 g to 4000 g per hectare, e.g. from 1 g to 2 kg per hectare or from 1 g to 750 g per hectare, desirably from 1 g to 100 g per hectare, more desirably from 10 g to 50 g per hectare, e.g., 10 to 20 g per hectare, 20 to 30 g per hectare, 30 to 40 g per hectare, or 40 to 50 g per hectare.
  • the compounds I, preferably compound i) of formula (I), are particularly suitable for use in the treatment of seeds in order to protect the seeds from insect pests, in particular from soil-living insect pests, and the resulting seedling's roots and shoots against soil pests and foliar insects.
  • the present invention therefore also relates to a method for the protection of seeds from insects, in particular from soil insects, and of the seedling's roots and shoots from insects, in particular from soil and foliar insects, said method comprising treating the seeds before sowing and/or after pregermination with the compound I, preferably compound i) of formula (I).
  • the protection of the seedling's roots and shoots is preferred. More preferred is the protection of seedling's shoots from piercing and sucking insects, chewing insects and nematodes.
  • seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking, seed pelleting, and in-furrow application methods.
  • seed treatment application of the compound I, preferably compound i) of formula (I) is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
  • the present invention also comprises seeds coated with or containing the active compound I, preferably compound i) of formula (I).
  • the term “coated with and/or containing” generally signifies that the active ingredient is for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product is (re)planted, it may absorb the active ingredient.
  • Suitable seed is for example seed of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize/sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
  • the active compound I preferably compound i) of formula (I)
  • the present invention relates to the use of the carboxamide compound i) of formula (I) for protecting a cultivated plant, cultivated plant propagation material, or its locus of growth, against the attack or infestation by pests.
  • the present invention relates to the use of the carboxamide compound ii) of formula (Ia) for protecting a cultivated plant, cultivated plant propagation material, or its locus of growth, against the attack or infestation by pests.
  • the present invention relates to the use of mixtures comprising the carboxamide compounds i) and ii) for protecting a cultivated plant, cultivated plant propagation material, or its locus of growth, against the attack or infestation by pests.
  • the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of the carboxamide compound compound i) of formula (I) to a cultivated plant, cultivated plant propagation material, or its locus of growth; the pests or their food supply, habitat or breeding grounds.
  • the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of the carboxamide compound ii) of formula (Ia) to a cultivated plant, cultivated plant propagation material, or its locus of growth; the pests or their food supply, habitat or breeding grounds.
  • the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of a mixture comprising the carboxamide compounds i) and ii) to a cultivated plant, cultivated plant propagation material, or its locus of growth; the pests or their food supply, habitat or breeding grounds.
  • the application of the carboxamide compound I, preferably compound i) of formula (I) in connection with the above use or method includes both contact with the cultivated plant or cultivated plant propagation material and contact with its locus of growth.
  • locus of growth is to be understood as the locus, where the plant is growing, in particular the soil or water, in which the plant is growing.
  • the methods of the present invention relates in one embodiment to the application to the pests or their food supply, habitat or breeding grounds.
  • the carboxamide compound i) of formula (I) is applied to the foliage of the plants, preferably in an amount of from 1 g to 100 g per hectare, more preferably in an amount of from 10 g to 50 g per hectare.
  • the carboxamide compound ii) of formula (Ia) is applied to the foliage of the plants, preferably in an amount of from 1 g to 100 g per hectare, more preferably in an amount of from 10 g to 50 g per hectare.
  • the mixture comprising the carboxamide compounds i) and ii) is applied to the foliage of the plants, preferably in an amount of from 1 g to 100 g per hectare, more preferably in an amount of from 10 g to 50 g per hectare.
  • the carboxamide compound i) of formula (I) is applied to the plant propagation material, preferably the seeds of a plant.
  • the carboxamide compound ii) of formula (Ia) is applied to the plant propagation material, preferably the seeds of a plant.
  • the mixture comprising the carboxamide compounds i) and ii) is applied to the plant propagation material, preferably the seeds of a plant.
  • the carboxamide compound i) of formula (I) is applied to the seeds of the plants, preferably in an amount of from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
  • the carboxamide compound ii) of formula (Ia) is applied to the seeds of the plants, preferably in an amount of from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
  • the mixture comprising the carboxamide compounds i) and ii) is applied to the seeds of the plants, preferably in an amount of from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
  • the components of the mixture can be as mentioned above—applied simultaneously, jointly or separately, or in succession, that is immediately one after another and thereby creating the mixture “in situ” on the desired location, e.g. the plant, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
  • the application methods, uses and mixtures of the present invention are particularly useful for controlling insects of the orders Lepidoptera, Coleoptera and Thysanoptera.
  • the application methods, uses and mixtures of the present invention are especially suitable for efficiently combating pests like insects from the order of the lepidopterans (Lepidoptera), beetles (Coleoptera) and thrips (Thysanoptera).
  • the pests are Anticarsia gemmatalis.
  • the pests are Spodoptera frugiperda.
  • the pests are Spodoptera eridania.
  • the pests are Spodoptera cosmioides.
  • the plant is a plant, which has been modified by conventional breeding, i.e. a plant, which has not been modified by mutagenesis or genetic engineering.
  • the plant is a plant, which has been modified by conventional breeding, i.e. a plant, which has not been modified by mutagenesis or genetic engineering.
  • the plant is a plant, which has been modified by conventional breeding, i.e. a plant, which has not been modified by mutagenesis or genetic engineering.
  • the plant which has not been modified by mutagenesis or genetic engineering, is selected from the group consisting of wheat, maize, rice, soybean, and cotton, and is more preferably a soybean plant.
  • the plant is a plant, which has been modified by mutagenesis or genetic engineering, preferably by genetic engineering.
  • one or more genes have been mutagenized or integrated into the genetic material of the plant, which are selected from pat, epsps, cry1 Ab, bar, cry1 Fa2, cry1 Ac, cry34Ab1, cry35AB1, cry3A, cryF, cry1F, mcry3a, cry2Ab2, cry3Bb1, cry1A.105, dfr, barnase, vip3Aa20, barstar, als, bxn, bp40, asn1, and ppo5.
  • the plant which has been modified by mutagenesis or genetic engineering, exhibits one or more traits selected from the group consisting of abiotic stress tolerance, altered growth/yield, disease resistance, herbicide tolerance, insect resistance, modified product quality, and pollination control.
  • the plant exhibits herbicide tolerance, insect resistance or a combination thereof.
  • the plant is a plant, which has been modified by mutagenesis or genetic engineering, and which corresponds to any one of rows A1 to A385 of table A.
  • Dianthus caryophyllus ST (Color)/bp40 (f3′5′h) ST (Color)/sfl (f3′5′h) HT (SU)/surB A53 Carnation 25947 IFD-25947-1 Moonpearl TM ST (Color)/bp40 Suntory Ltd.
  • Dianthus caryophyllus (f3′5′h) ST (Color)/dfr ST (Color)/dfr-diaca HT (SU)/surB A54 Carnation 25958 IFD-25958-3 Moonberry TM ST (Color)/bp40 Suntory Ltd.
  • Dianthus caryophyllus (f3′5′h) ST (Color)/dfr ST (Color)/dfr-diaca HT (SU)/surB A55 Carnation 264 ⁇ 7 IFD-264 ⁇ 7-2 Moonvelvet TM ST (Color)/hfl Suntory Ltd.
  • Dianthus caryophyllus (f3′5′h) ST (Color)/cytb5 HT (SU)/surB A56 Carnation 4 FLO- ⁇ 4-9 Moondust TM ST (Color)/dfr Florigene Dianthus caryophyllus ST (Color)/hfl Pty. Ltd.
  • Perkebunan Nusantara XI (Persero) A362 Sugarcane NXI-4T NXI-4T not available Y&S (DT)/RmBetA PT Saccharum sp.
  • Perkebunan Nusantara XI (Persero) A363 Sugarcane NXI-6T NXI-6T not available Y&S (DT)/RmBetA PT Saccharum sp.
  • Herbicide Tolerance HT Gly) glyphosate tolerance HT (Glu) glufosinate tolerance HT (SU) sulfonylurea tolerance HT (Imi) imidazolinone tolerance HT (2,4-D) resistance against 2,4-D Choline HT (Dic) dicamba tolerance HT (Gly + Dicamba) glyphosate & dicamba tolerance HT (HPPD) HPPD inhibitor resistance HT (Ox) oxynil herbicide tolerance (e.g. bronnoxynil) HT (Cyc) cyclohexanone herbicide tolerance (e.g.
  • IR Insect resistance including IR (BL) broad spectrum resistance against lepidopterans (above ground Nematodes) worms)
  • SCN soybean Cyst Nematode resistance
  • CB corn borer resistance
  • IR (BRun) broad range resistance not further specified
  • the plant which has been modified by mutagenesis or genetic engineering, is selected from the group consisting of wheat, maize, rice, soybean, and cotton, and is more preferably a soybean plant, particularly any one of the soybean plants according to rows A-325 to A355 of table A.
  • the plant which has been modified by mutagenesis or genetic engineering, is a soybean plant exhibiting insect resistence, in particular Lepidopteran resistance, and optionally at least one further trait, preferably herbicide tolerance, e.g. glyphosate tolerance or glufosinate tolerance.
  • herbicide tolerance e.g. glyphosate tolerance or glufosinate tolerance.
  • Preferred soybean plants include the soybean plants according to one row of table B.
  • the plant, which has been modified by mutagenesis or genetic engineering is a soybean plant, which has been modified by genetic engineering by integrating one or more genes into the genetic material of the soybean, wherein insect resistance is provided by one or more genes selected from the group consisting of cry1Ac, cry1F, cry1A.105, cry2Ab2, and combinations thereof, preferably by cry1Ac, cry1F, or a combination thereof, and more preferably by cry1Ac.
  • herbicide tolerance is additionally provided by one or more genes selected from the group consisting of pat, bar, 2mepsps, cp4 epsps, and mepsps.
  • Preferred soybean plants include soybean plants, which have been modified by integrating at least one gene or gene combination according to one row of Table C.
  • the pests are Anticarsia gemmatalis and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • the pests are Spodoptera frugiperda and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • the pests are Spodoptera eridania and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • the pests are Spodoptera cosmioides and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • the present invention also relates to certain uses and methods comprising the application of the carboxamide compound I selected from compound i) of formula (I), compound ii) of formula (Ia) and mixtures comprising the carboxamide compounds i) and ii).
  • the pests are Anticarsia gemmatalis.
  • the pests are Spodoptera frugiperda.
  • the pests are Spodoptera eridania.
  • the pests are Spodoptera cosmioides.
  • the soybean plant is a soybean plant, which has been modified by conventional breeding, i.e. a soybean plant, which has not been modified by mutagenesis or genetic engineering.
  • the soybean plant is a soybean plant, which has been modified by conventional breeding, i.e. a soybean plant, which has not been modified by mutagenesis or genetic engineering.
  • the soybean plant is a soybean plant, which has been modified by mutagenesis or genetic engineering.
  • the soybean plant is a soybean plant, which has been modified by mutagenesis or genetic engineering.
  • soybean plants which have been modified by mutagenesis or genetic engineering, have been defined above.
  • the soybean plant has been modified by genetic engineering and exhibits insect resistance, in particular lepidopteran resistance, wherein insect resistance is provided by one or more genes selected from the group consisting of cry1Ac, cry1F, cry1A.105, cry2Ab2, and combinations thereof, preferably by cry1Ac, cry1F, or a combination thereof, and more preferably by cry1Ac.
  • the soybean plant exhibits at least one further trait, preferably herbicide tolerance, e.g. glyphosate tolerance or glufosinate tolerance, wherein herbicide tolerance is preferably provided by one or more genes selected from the group consisting of pat, bar, 2mepsps, cp4 epsps, and mepsps.
  • Particularly preferred soybean plants include soybean plants, which are selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84 as defined above.
  • the plant is a soybean plant, which has been modified by mutagenesis or genetic
  • the pests are Anticarsia gemmatalis and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • the pests are Spodoptera frugiperda and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • the pests are Spodoptera eridania and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • the pests are Spodoptera cosmioides and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • the mixture of the invention is a binary mixture, i.e. a mixture, which does not comprise any further pesticidal compounds apart from the carboxamide compound i) of formula (I) and one other pesticidal active ingredient.
  • the mixture of the invention is a binary mixture, i.e. a mixture, which does not comprise any further pesticidal compounds apart from the carboxamide compound ii) of formula (Ia) and one other pesticidal active ingredient.
  • the mixture of the invention is a mixture, which does not comprise any further pesticidal compounds apart from the mixture comprising the carboxamide compounds i) and ii) and one other pesticidal active ingredient.
  • the mixture of the present invention comprises a ternary mixture comprising the carboxamide compound i) of formula (I), a second pesticidal compound as component II and a third pesticidal compound as component III, wherein the pesticidal compounds II and III are both an insecticide or both a fungicide or one an insecticide and the other a fungicide.
  • the mixture of the present invention comprises a ternary mixture comprising the carboxamide compound ii) of formula (Ia), a second pesticidal compound as component II and a third pesticidal compound as component III, wherein the pesticidal compounds II and III are both an insecticide or both a fungicide or one an insecticide and the other a fungicide.
  • the mixture of the present invention comprises a mixture comprising the carboxamides compounds i) and ii), another pesticidal compound as component II and still another pesticidal compound as component III, wherein the pesticidal compounds II and III are both an insecticide or both a fungicide or one an insecticide and the other a fungicide.
  • the mixture of the present invention comprises a multinary mixture of the carboxamide compound i) of formula (I) and three or four or more other pesticidal compounds as components II, III, IV or V etc., wherein these further pesticidal compounds are insecticides and/or fungicides.
  • the mixture of the present invention comprises a multinary mixture of the carboxamide compound ii) of formula (Ia) and three or four or more other pesticidal compounds as components II, III, IV or V etc., wherein these further pesticidal compounds are insecticides and/or fungicides.
  • the mixture of the present invention comprises a multinary mixture of the carboxamide compounds i), ii) and three or four or more other pesticidal compounds as components II, III, IV or V etc., wherein these further pesticidal compounds are insecticides and/or fungicides.
  • the present invention also relates to an agrochemical composition, which comprises a mixture according to the present invention and an auxiliary.
  • Mixing partners can be selected from pesticides, in particular insecticides, nematicides, and acaricides, fungicides, herbicides, plant growth regulators, fertilizers, and the like.
  • Preferred mixing partners are insecticides, nematicides and fungicides.
  • M.1 Acetylcholine esterase (AChE) inhibitors from the class of: M.1A carbamates, for example aldicarb, alanycarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb and triazamate; or from the class of M.1B organophosphates, for example acephate, azamethiphos, azinphos-ethyl, azinphosmethyl, cadusafos, chlorethoxyfos, chlorfenvin
  • GABA-gated chloride channel antagonists such as: M.2A cyclodiene organochlorine compounds, as for example endosulfan or chlordane; or M.2B fiproles (phenylpyrazoles), as for example ethiprole, fipronil, flufiprole, pyrafluprole and pyriprole;
  • M.3 Sodium channel modulators from the class of M.3A pyrethroids for example acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cylclopentenyl, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fenpropathr
  • M.4 Nicotinic acetylcholine receptor agonists from the class of M.4A neonicotinoids, for example acetamiprid, clothianidin, cycloxaprid, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam; or the compounds M.4A.2: (2E+1-[(6-Chloropyridin-3-yl)methyl]-N′-nitro-2-pentylidenehydrazinecarboxinnidamide; or M4.A.3: 1-[(6-Chloropyridin-3-yl)methyl]-7-methyl-8-nitro-5-propoxy-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine; or from the class M.4B nicotine;
  • M.6 Chloride channel activators from the class of avermectins and milbemycins, for example abamectin, emamectin benzoate, ivermectin, lepimectin or milbemectin;
  • M.7 Juvenile hormone mimics such as M.7A juvenile hormone analogues as hydroprene, kinoprene and methoprene; or others as M.7B fenoxycarb or M.7C pyriproxyfen;
  • M.8 miscellaneous non-specific (multi-site) inhibitors for example M.8A alkyl halides as methyl bromide and other alkyl halides, or M.8B chloropicrin, or M.8C sulfuryl fluoride, or M.8D borax, or M.8E tartar emetic;
  • M.9 Selective homopteran feeding blockers for example M.9B pymetrozine, or M.9C flonicamid;
  • M.10 Mite growth inhibitors for example M.10A clofentezine, hexythiazox and diflovidazin, or M.10 B etoxazole;
  • M.11 Microbial disruptors of insect midgut membranes for example bacillus thuringiensis or bacillus sphaericus and the insecticdal proteins they produce such as bacillus thuringiensis subsp. israelensis, bacillus sphaericus, bacillus thuringiensis subsp. aizawai, bacillus thuringiensis subsp. kurstaki and bacillus thuringiensis subsp. tenebrionis , or the Bt crop proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb and Cry34/35Ab1;
  • M.12 Inhibitors of mitochondrial ATP synthase for example M.12A diafenthiuron, or M.12B organotin miticides such as azocyclotin, cyhexatin or fenbutatin oxide, or M.12C propargite, or M.12D tetradifon;
  • Nicotinic acetylcholine receptor (nAChR) channel blockers for example nereistoxin analogues as bensultap, cartap hydrochloride, thiocyclam or thiosultap sodium;
  • benzoylureas as for example bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, or triflumuron;
  • Ecdyson receptor agonists such as diacylhydrazines, for example methoxyfenozide, tebufenozide, halofenozide, fufenozide or chromafenozide;
  • Octopamin receptor agonists as for example amitraz
  • M.20 Mitochondrial complex III electron transport inhibitors for example M.20A hydramethylnon, or M.206 acequinocyl, or M.20C fluacrypyrim;
  • M.21 Mitochondrial complex I electron transport inhibitors for example M.21A METI acaricides and insecticides such as fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad or tolfenpyrad, or M.216 rotenone;
  • M.22 Voltage-dependent sodium channel blockers for example M.22A indoxacarb, or M.22B metaflumizone, or M.22B.1: 2-[2-(4-Cyanophenyl)-1-[3-(trifluoromethyl)phenyl] ⁇ ethylidene]-N-[4-(difluoromethoxy)phenyl]-hydrazinecarboxamide or M.22B.2: N-(3-Chloro-2-methylphenyl)-2-[(4-chlorophenyl)[4-[methyl(methylsulfonyl)amino]phenyl] ⁇ methylene]-hydrazinecarboxamide;
  • M.23 Inhibitors of the of acetyl CoA carboxylase such as Tetronic and Tetramic acid derivatives, for example spirodiclofen, spiromesifen or spirotetramat;
  • M.24 Mitochondrial complex IV electron transport inhibitors for example M.24A phosphine such as aluminium phosphide, calcium phosphide, phosphine or zinc phosphide, or M.246 cyanide;
  • Mitochondrial complex II electron transport inhibitors such as beta-ketonitrile derivatives, for example cyenopyrafen or cyflumetofen;
  • M.28 Ryanodine receptor-modulators from the class of diamides, as for example flubendiamide, chlorantraniliprole (Rynaxypyr®), cyantraniliprole (Cyazypyr®), tetraniliprole, or the phthalamide compounds M.28.1: (R)-3-Chlor-N1- ⁇ 2-methyl-4-[1,2,2,2 tetrafluor-1-(trifluormethyl)ethyl]phenyl ⁇ -N2-(1-methyl-2-methylsulfonylethyl)phthalannid and M.28.2: (S)-3-Chlor-N1- ⁇ 2-methyl-4-[1,2,2,2 tetrafluor-1-(trifluormethyl)ethyl]phenyl ⁇ -N2-(1-methyl-2-methylsulfonylethyl)phthalamid, or the compound M.28.3: 3-bromo-N- ⁇ 2-bromo-4-chloro-6-[(1-
  • M.29 insecticidal active compounds of unknown or uncertain mode of action, as for example afidopyropen, afoxolaner, azadirachtin, amidoflumet, benzoximate, bifenazate, bromopropylate, chinomethionat, cryolite, dicloromezotiaz, dicofol, flufenerim, flometoquin, fluensulfone, fluhexafon, fluopyram, flupyradifurone, fluralaner, metoxadiazone, piperonyl butoxide, pyflubumide, pyridalyl, pyrifluquinazon, sulfoxaflor, tioxazafen, triflunnezopyrinn, or the compounds
  • M.29.6a (E/Z)—N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide
  • M.29.6b (E/Z)—N-[1-[(6-chloro-5-fluoro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide
  • M.29.6c (E/Z)-2,2,2-trifluoro-N-[1-[(6-fluoro-3-pyridyl)methyl]-2-pyridylidene]acetamide
  • M.29.6d (E/Z)—N-[1-[(6-bromo-3-pyridyl)methyl]-2-pyridy
  • M.29.9.a 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4H-isoxazol-3-yl]-2-methyl-N-(1-oxothietan-3-yl)benzamide; or M.29.9.b): fluxametamide; or
  • M.29.11 a compound selected from the group of M.29.11, wherein the compound is selected from M.29.11b) to M.29.11p): M.29.11.b) 3-(benzoylmethylamino)-N-[2-bromo-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]-6-(trifluoromethyl)phenyl]-2-fluoro-benzamide; M.29.11.c) 3-(benzoylmethylamino)-2-fluoro-N-[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]-benzamide; M.29.11.d) N-[3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl
  • M.29.14a 1-[(6-Chloro-3-pyridinyl)methyl]-1,2,3,5,6,7-hexahydro-5-methoxy-7-methyl-8-nitro-imidazo[1,2-a]pyridine; or M.29.14b) 1-[(6-Chloropyridin-3-yl)methyl]-7-methyl-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridin-5-ol; or the compounds
  • M.29.16a 1-isopropyl-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; or M.29.16b) 1-(1,2-dimethylpropyl)-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; M.29.16c) N,5-dimethyl-N-pyridazin-4-yl-1-(2,2,2-trifluoro-1-methyl-ethyl)pyrazole-4-carboxamide; M.29.16d) 1-[1-(1-cyanocyclopropyl)ethyl]-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; M.29.16e) N-ethyl-1-(2-fluoro-1-methyl-propyl)-5-methyl-N-pyridazin-4-yl-pyrazole-4
  • M.29.17 a compound selected from the compounds M.29.17a) to M.29.17j): M.29.17a) N-(1-methylethyl)-2-(3-pyridinyl)-2H-indazole-4-carboxamide; M.29.17b) N-cyclopropyl-2-(3-pyridinyl)-2H-indazole-4-carboxamide; M.29.17c) N-cyclohexyl-2-(3-pyridinyl)-2H-indazole-4-carboxamide; M.29.17d) 2-(3-pyridinyl)-N-(2,2,2-trifluoroethyl)-2H-indazole-4-carboxamide; M.29.17e) 2-(3-pyridinyl)-N-[(tetrahydro-2-furanyl)methyl]-2H-indazole-5-carboxamide; M.29.17f) methyl 2-[[2-
  • M.29.18 a compound selected from the compounds M.29.18a) to M.29.18d): M.29.18a) N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-N-ethyl-3-(3,3,3-trifluoropropylsulfanyl)propanamide; M.29.18b) N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-N-ethyl-3-(3,3,3-trifluoropropylsulfinyl)propanamide; M.29.18c) N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-3-[(2,2-difluorocyclopropyl)methylsulfanyl]-N-ethyl-propanamide; M.29.18d) N-[3-chloro-1-(3-pyridyl
  • the M.4 neonicotinoid cycloxaprid is known from WO2010/069266 and WO2011/069456
  • the neonicotinoid M.4A.2 is known from WO2013/003977
  • the neonicotinoid M.4A.3 (approved as paichongding in China) is known from WO2007/101369.
  • the metaflumizone analogue M.22B.1 is described in CN10171577 and the analogue M.22B.2 in CN102126994.
  • the phthalamides M.28.1 and M.28.2 are both known from WO2007/101540.
  • the anthranilamide M.28.3 is described in WO2005/077934.
  • the hydrazide compound M.28.4 is described in WO2007/043677.
  • the anthranilamides M.28.5a) to M.28.5d) and M.28.5h) are described in WO 2007/006670, WO2013/024009 and WO2013/024010, the anthranilamide M.28.5i) is described in WO2011/085575, M.28.5j) in WO2008/134969, M.28.5k) in US2011/046186 and M.28.5l) in WO2012/034403.
  • the diamide compound M.28.6 can be found in WO2012/034472.
  • the spiroketal-substituted cyclic ketoenol derivative M.29.3 is known from WO2006/089633 and the biphenyl-substituted spirocyclic ketoenol derivative M.29.4 from WO2008/067911.
  • the triazoylphenylsulfide M.29.5 is described in WO2006/043635, and biological control agents on the basis of bacillus firmus are described in WO2009/124707.
  • the compounds M.29.6a) to M.29.6i) listed under M.29.6 are described in WO2012/029672, and M.29.6j) and M.29.6k) in WO2013/129688.
  • the nematicide M.29.8 is known from WO2013/055584.
  • the isoxazoline M.29.9.a) is described in WO2013/050317.
  • the isoxazoline M.29.9.b) is described in WO2014/126208.
  • the pyridalyl-type analogue M.29.10 is known from WO2010/060379.
  • the carboxamides M.29.11.b) to M.29.11.h) are described in WO2010/018714, and the carboxamides M.29.11i) to M.29.11.p) in WO2010/127926.
  • the pyridylthiazoles M.29.12.a) to M.29.12.c) are known from WO2010/006713, M.29.12.d) and M.29.12.e) are known from WO2012/000896, and M.29.12.f) to M.29.12.m) from WO2010/129497.
  • the compounds M.29.14a) and M.29.14b) are known from WO2007/101369.
  • the pyrazoles M.29.16.a) to M.29.16h) are described in WO2010/034737, WO2012/084670, and WO2012/143317, respectively, and the pyrazoles M.29.16i) and M.29.16j) are described in U.S.
  • the pyridinylindazoles M.29.17a) to M.29.17.j) are described in WO2015/038503.
  • the pyridylpyrazoles M.29.18a) to M.29.18d) are described in US2014/0213448.
  • the isoxazoline M.29.19 is described in WO2014/036056.
  • the isoxazoline M.29.20 is known from WO2014/090918.
  • the carboxamide compound ii) of formula (Ia) and the pesticides of the above list M can be used together for the methods of the present invention.
  • the mixture comprising the carboxamide compounds i) and ii) and the pesticides of the above list M can be used together for the methods of the present invention.
  • fungicides described by common names, their preparation and their activity e.g. against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available.
  • fungicides described by IUPAC nomenclature, their preparation and their pesticidal activity is also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EPA 141 317; EP-A 152 031; EP-A 226 917; EPA 243 970; EPA 256 503; EP-A 428 941; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EPA 1 201 648; EPA 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; U.S. Pat. No. 3,296,272; U.S. Pat. No.
  • the carboxamide compound ii) of formula (Ia) and the fungicides of the above list with sections A) to K) can be used together for the methods of the present invention.
  • the mixture comprising the carboxamide compounds i) and ii) and the fungicides of the above list with sections A) to K) can be used together for the methods of the present invention.
  • carboxamide compound I preferably compound i) of formula (I), in mixtures together with one or more other active ingredients in the methods according to the present invention on cultivated plants, some combinations are especially preferred.
  • a compound II selected from group of AChE-inhibitors as defined above is preferred, in particular selected from the group of carbamates, especially preferred carbofuran, benfuracarb or methomyl.
  • a compound II selected from group of AChE-inhibitors as defined above is preferred, in particular selected from the group organophosphates, especially preferred chlorpyrifos and acephate.
  • a compound II selected from group of GABA-gated chloride channel antagonists as defined above is preferred, in particular group fiproles, especially preferred ethiprole and fipronil.
  • a compound II selected from group of Sodium channel modulators as defined above is preferred, in particular pyrethroids, especially preferred alpha-cypermethrin, bifenthrin, tefluthrin and cyhalothrin.
  • a compound II selected from group of Neonicotinoids as defined above is preferred, in particular clothianidin, dinotefuran, imidacloprid, thiacloprid, or thiamethoxam.
  • the compound II is selected from group of Nicotinic acetylcholine receptor allosteric activators and is preferably spinosad or spinetoram.
  • the compound II is selected from group of Chloride channel activators and is preferably an avermectin.
  • the compound II is selected from group of Selective homopteran feeding blockers and is preferably pymetrozine or flonicamid.
  • the component II is selected from group of Mite growth inhibitors and is preferably etoxazole.
  • the component II is selected from the group of Uncouplers of oxidative phosphorylation via disruption of the proton gradient and is preferably chlorfenapyr.
  • the component II is selected from group of Inhibitors of the chitin biosynthesis type 1) and is preferably buprofezin.
  • the component II is selected from group of Voltage-dependent sodium channel blockers) and is preferably metaflumizone or indoxacarb.
  • the component II is selected from group of Inhibitors of the of acetyl CoA carboxylase and is preferably a Tetronic or Tetramic acid derivative, spirodiclofen, spiromesifen or spirotetramat.
  • the compound II is selected from group of Mitochondrial complex II electron transport inhibitors and is preferably cyflumetofen.
  • the compound II is selected from group of Ryanodine receptor-modulators and is preferably fubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole or cyantraniliprole.
  • the compound II selected from group of Ryanodine receptor-modulators may also be selected from a compound listed in and coded as
  • M.28.5a) to M.28.5d namely M.28.5a) N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5b) N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5c) N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyr
  • carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro ⁇ methyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • a compound II selected from the group of the azoles is preferred, especially prochloraz, prothioconazole, tebuconazole and triticonazole, especially prothioconazole and triticonazole.
  • a pesticidal mixture of the present invention preferred is a compound II selected from the group of benomyl, carbendazim, epoxiconazole, fluquinconazole, flutriafol, flusilazole, metconazole, prochloraz, prothioconazole, tebuconazole, triticonazole, pyraclostrobin, trifloxystrobin, boscalid, dimethomorph, penthiopyrad, dodemorph, famoxadone, fenpropimorph, proquinazid, pyrimethanil, tridemorph, maneb, mancozeb, metiram, thiram, chlorothalonil, dithianon, flusulfamide, metrafenone, fluxapyroxad (N-(3′,4′,5′ trifluorobiphenyl-2 yl)-3-difluoromethyl-1-methyl-1H-pyrazo
  • metalaxyl, thiophanate-methyl, pyraclostrobin and fluxapyroxad is especially preferred.
  • the mixture comprise as an additional component a compound against which the cultivated plant is resistant.
  • carboxamide compound I preferably compound i) of formula (I
  • the carboxamide compound I preferably compound i) of formula (I
  • the use of mixtures of (1) the carboxamide compound I, preferably compound i) of formula (I), as component I, with (2) compounds II as defined herein as component II, in cultivated plants may display synergistic effects between the trait of the cultivated plant and the applied compounds.
  • the present invention relates to methods for controlling pests of a cultivated plant, comprising the application of the carboxamide compound i) of formula (I), or a mixture of (1) the carboxamide compound i) of formula (I) as component I with (2) at least one compound II as component II as defined above to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth.
  • the present invention further also relates to methods for controlling pests of a cultivated plant, comprising the application of the carboxamide compound ii) of formula (Ia), or a mixture of (1) the carboxamide compound ii) of formula (Ia) as component I with (2) at least one compound II as component II as defined above to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth.
  • the present invention further also relates to methods for controlling pests of a cultivated plant, comprising the application of the mixture comprising the carboxamide compounds i) and ii), or a mixture of (1) the mixture comprising the carboxamide compounds i) and ii) as component I with (2) at least one compound II as component II as defined above to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth.
  • health of a plant or “plant health” is defined as a condition of the plant and/or its products which is determined by several aspects alone or in combination with each other such as yield, plant vigor, quality and tolerance to abiotic and/or biotic stress.
  • “increased yield” of a cultivated plant means that the yield of a product of the respective cultivated plant is increased via application of the carboxamide compound I, preferably compound i) of formula (I), or a mixture of the carboxamide compound I, preferably compound i) of formula (I) as component I with at least one compound II as component II by a measurable amount over the yield of the same product of the respective control plant produced under the same conditions and also under application of the carboxamide compound I, preferably compound i) of formula (I) or a mixture comprising the carboxamide compound I, preferably compound i) of formula (I) as component I with at least one compound II as component II.
  • Increased yield can be characterized, among others, by the following improved properties of the cultivated plant: increased plant weight, increased plant height, increased biomass such as higher overall fresh weight (FW), increased number of flowers per plant, higher grain and/or fruit yield, more tillers or side shoots (branches), larger leaves, increased shoot growth, increased protein content, increased oil content, increased starch content, increased pigment content, increased chlorophyll content (chlorophyll content has a positive correlation with the plant's photosynthesis rate and accordingly, the higher the chlorophyll content the higher the yield of a plant)
  • Gram and “fruit” are to be understood as any cultivated plant product which is further utilized after harvesting, e.g. fruits in the proper sense, vegetables, nuts, grains, seeds, wood (e.g. in the case of silviculture plants), flowers (e.g. in the case of gardening plants, ornamentals) etc., that is anything of economic value that is produced by the plant.
  • the yield is increased by at least 4%, preferable by 5 to 10%, more preferable by 10 to 20%, or even 20 to 30%. In general, the yield increase may even be higher.
  • the plant vigor becomes manifest in several aspects such as the general visual appearance.
  • Improved plant vigor can be characterized, among others, by the following improved properties of the cultivated plant: improved vitality of the cultivated plant, improved plant growth, improved plant development, improved visual appearance, improved plant stand (less plant verse/lodging), improved emergence, enhanced root growth and/or more developed root system, enhanced nodulation, in particular rhizobial nodulation, bigger leaf blade, bigger size, increased plant height, increased tiller number, increased number of side shoots, increased number of flowers per plant, increased shoot growth, enhanced photosynthetic activity (e.g.
  • Another indicator for the condition of the cultivated plant is the “quality” of a cultivated plant and/or its products.
  • enhanced quality means that certain plant characteristics such as the content or composition of certain ingredients are increased or improved by a measurable or noticeable amount over the same factor of the control plant produced under the same conditions.
  • Enhanced quality can be characterized, among others, by following improved properties of the cultivated plant or its product: increased nutrient content, increased protein content, increased content of fatty acids, increased metabolite content, increased carotenoid content, increased sugar content, increased amount of essential amino acids, improved nutrient composition, improved protein composition, improved composition of fatty acids, improved metabolite composition, improved carotenoid composition, improved sugar composition, improved amino acids composition, improved or optimal fruit color, improved leaf color, higher storage capacity, higher processability of the harvested products.
  • Another indicator for the condition of the cultivated plant is the plants tolerance or resistance to biotic and/or abiotic stress factors.
  • Biotic and abiotic stress can have harmful effects on cultivated plants. Biotic stress is caused by living organisms while abiotic stress is caused for example by environmental extremes.
  • “enhanced tolerance or resistance to biotic and/or abiotic stress factors” means (1.) that certain negative factors caused by biotic and/or abiotic stress are diminished in a measurable or noticeable amount as compared to control plants exposed to the same conditions and (2.) that the negative effects are not diminished by a direct action of the carboxamide compound I, preferably compound i) of formula (I), or a mixture of (i) the carboxamide compound I, preferably compound i) of formula (I) as component I with (ii) at least one compound II as component II on the stress factors, e.g. by its insecticidal action, but rather by a stimulation of the cultivated plants' own defensive reactions against said stress factors.
  • Biotic stress can be caused by living organisms, such as competing plants (for example weeds), microorganisms (such as phythopathogenic fungi and/or bacteria) and/or viruses.
  • Negative factors caused by abiotic stress are also well-known and can often be observed as reduced plant vigor (see above), for example: dotted leaves, “burned leaves”, reduced growth, less flowers, less biomass, less crop yields, reduced nutritional value of the crops, later crop maturity, to give just a few examples.
  • Abiotic stress can be caused for example by: extremes in temperature such as heat or cold (heat stress/cold stress), strong variations in temperature, temperatures unusual for the specific season, drought (drought stress), extreme wetness, high salinity (salt stress), radiation (for example by increased UV radiation due to the decreasing ozone layer), increased ozone levels (ozone stress), organic pollution (for example by phytho-toxic amounts of pesticides), inorganic pollution (for example by heavy metal contaminants).
  • extremes in temperature such as heat or cold (heat stress/cold stress), strong variations in temperature, temperatures unusual for the specific season, drought (drought stress), extreme wetness, high salinity (salt stress), radiation (for example by increased UV radiation due to the decreasing ozone layer), increased ozone levels (ozone stress), organic pollution (for example by phytho-toxic amounts of pesticides), inorganic pollution (for example by heavy metal contaminants).
  • Advantageous properties obtained especially from treated seeds, are e.g. improved germination and field establishment, better vigor and/or a more homogen field establishment.
  • the above identified indicators for the health condition of a cultivated plant may be interdependent and may result from each other.
  • an increased resistance to biotic and/or abiotic stress may lead to a better plant vigor, e.g. to better and bigger crops, and thus to an increased yield.
  • a more developed root system may result in an increased resistance to biotic and/or abiotic stress.
  • these interdependencies and interactions are neither all known nor fully understood and therefore the different indicators are described separately.
  • the methods of the present invention effectuate an increased yield of a cultivated plant or its product.
  • the methods of the present invention effectuate an increased vigor of a cultivated plant or its product.
  • the methods of the present invention effectuate in an increased quality of a cultivated plant or its product.
  • the methods of the present invention effectuate an increased tolerance and/or resistance of a cultivated plant or its product against biotic stress.
  • the methods of the present invention effectuate an increased tolerance and/or resistance of a cultivated plant or its product against abiotic stress.
  • the methods of the present invention increase the yield of cultivated plants.
  • the methods of the present invention increase the yield of cultivated plants such as the plant weight and/or the plant biomass (e.g. overall fresh weight) and/or the grain yield and/or the number of tillers.
  • the methods of the present invention increase the plant vigor of cultivated plants.
  • the methods of the present invention increase the yield of cultivated plants.
  • the methods of the present invention increase the yield of cultivated plants such as the plant weight and/or the plant biomass (e.g. overall fresh weight) and/or the grain yield and/or the number of tillers.
  • the present invention also relates to methods increasing the plant health, in particular the yield of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound i) of formula (I), or a mixture of (1) the carboxamide compound i) of formula (I) as component I with (2) at least one compound II as component II to a cultivated plant, parts of such plant, its plant propagation material, or at its locus of growth.
  • the present invention also relates to methods increasing the plant health, in particular the yield of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (aI), or a mixture of (1) the carboxamide compound ii) of formula (Ia) as component I with (2) at least one compound II as component II to a cultivated plant, parts of such plant, its plant propagation material, or at its locus of growth.
  • the present invention also relates to methods increasing the plant health, in particular the yield of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii), or a mixture of (1) a mixture comprising the carboxamide compounds i) and ii) as component I with (2) at least one compound II as component II to a cultivated plant, parts of such plant, its plant propagation material, or at its locus of growth.
  • the present invention also comprises plant propagation material, preferably seed, of a cultivated plant treated with the carboxamide compound i) of formula (I), or a mixture of the carboxamide compound i) of formula (I) as component I with at least one compound II as component
  • the present invention further also comprises plant propagation material, preferably seed, of a cultivated plant treated with the carboxamide compound ii) of formula (Ia), or a mixture of the carboxamide compound ii) of formula (Ia) as component I with at least one compound II as component II.
  • the present invention further also comprises plant propagation material, preferably seed, of a cultivated plant treated with a mixture comprising the carboxamide compounds i) and ii), or a mixture comprising the carboxamide compounds i) and ii) as component I together with at least one compound II as component II.
  • cultivated plant(s) includes to “modified plant(s)” and “transgenic plant(s)”.
  • the term “cultivated plants” refers to “modified plants”.
  • the term “cultivated plants” refers to “transgenic plants”.
  • “Modified plants” are those which have been modified by conventional breeding techniques.
  • the term “modification” means in relation to modified plants a change in the genome, epigenome, transcriptome or proteome of the modified plant, as compared to the control, wild type, mother or parent plant whereby the modification confers a trait (or more than one trait) or confers the increase of a trait (or more than one trait) as listed below.
  • the term “cultivated plant” refers to a plant, which has been modified by mutagenesis or genetic engineering.
  • the modification may result in the modified plant to be a different, for example a new plant variety than the parental plant.
  • Transgenic plants are those, which genetic material has been modified by the use of recombinant DNA techniques that under natural circumstances can not readily be obtained by cross breeding, mutations or natural recombination, whereby the modification confers a trait (or more than one trait) or confers the increase of a trait (or more than one trait) as listed below as compared to the wild-type plant.
  • the term “transgenic plant” refers to a plant, which has been modified by genetic engineering.
  • one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant, preferably increase a trait as listed below as compared to the wild-type plant.
  • Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), or to post-transcriptional modifications of oligo- or polypeptides e.g. by glycosylation or polymer additions such as prenylated, acetylated, phosphorylated or farnesylated moieties or PEG moieties.
  • modification when referring to a transgenic plant or parts thereof is understood that the activity, expression level or amount of a gene product or the metabolite content is changed, e.g. increased or decreased, in a specific volume relative to a corresponding volume of a control, reference or wild-type plant or plant cell, including the de novo creation of the activity or expression.
  • the activity of a polypeptide is increased or generated by expression or overexpresion of the gene coding for said polypeptide which confers a trait or confers the increase of a trait as listed below as compared to the control plant.
  • expression or “gene expression” means the transcription of a specific gene or specific genes or specific genetic construct.
  • expression or “gene expression” in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA), regulatory RNA (e.g. miRNA, RNAi, RNAa) or mRNA with or without subsequent translation of the latter into a protein.
  • expression in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA) or mRNA with or without subsequent translation of the latter into a protein. In yet another embodiment it means the transcription of a gene or genes or genetic construct into mRNA.
  • the process includes transcription of DNA and processing of the resulting mRNA product.
  • increased expression or “overexpression” as used herein means any form of expression that is additional to the original wild-type expression level.
  • polypeptide expression of a polypeptide is understood in one embodiment to mean the level of said protein or polypeptide, preferably in an active form, in a cell or organism.
  • the activity of a polypeptide is decreased by decreased expression of the gene coding for said polypeptide which confers a trait or confers the increase of a trait as listed below as compared to the control plant.
  • Reference herein to “decreased expression” or “reduction or substantial elimination” of expression is taken to mean a decrease in endogenous gene expression and/or polypeptide levels and/or polypeptide activity relative to control plants. It comprises further reducing, repressing, decreasing or deleting of an expression product of a nucleic acid molecule.
  • reduction relate to a corresponding change of a property in an organism, a part of an organism such as a tissue, seed, root, tuber, fruit, leave, flower etc. or in a cell.
  • change of a property it is understood that the activity, expression level or amount of a gene product or the metabolite content is changed in a specific volume or in a specific amount of protein relative to a corresponding volume or amount of protein of a control, reference or wild type.
  • the overall activity in the volume is reduced, decreased or deleted in cases if the reduction, decrease or deletion is related to the reduction, decrease or deletion of an activity of a gene product, independent whether the amount of gene product or the specific activity of the gene product or both is reduced, decreased or deleted or whether the amount, stability or translation efficacy of the nucleic acid sequence or gene encoding for the gene product is reduced, decreased or deleted.
  • reduction include the change of said property in only parts of the subject of the present invention, for example, the modification can be found in compartment of a cell, like an organelle, or in a part of a plant, like tissue, seed, root, leave, tuber, fruit, flower etc. but is not detectable if the overall subject, i.e. complete cell or plant, is tested.
  • the “reduction”, “repression”, “decrease” or “deletion” is found cellular, thus the term “reduction, decrease or deletion of an activity” or “reduction, decrease or deletion of a metabolite content” relates to the cellular reduction, decrease or deletion compared to the wild type cell.
  • the terms “reduction”, “repression”, “decrease” or “deletion” include the change of said property only during different growth phases of the organism used in the inventive process, for example the reduction, repression, decrease or deletion takes place only during the seed growth or during blooming.
  • the terms include a transitional reduction, decrease or deletion for example because the used method, e.g. the antisense, RNAi, snRNA, dsRNA, siRNA, miRNA, ta-siRNA, cosuppression molecule, or ribozyme, is not stable integrated in the genome of the organism or the reduction, decrease, repression or deletion is under control of a regulatory or inducible element, e.g. a chemical or otherwise inducible promoter, and has therefore only a transient effect.
  • a regulatory or inducible element e.g. a chemical or otherwise inducible promoter
  • Reducing, repressing, decreasing or deleting of an expression product of a nucleic acid molecule in modified plants is known.
  • Examples are canola i.e. double nill oilseed rape with reduced amounts of erucic acid and sinapins.
  • Such a decrease can also be achieved for example by the use of recombinant DNA technology, such as antisense or regulatory RNA (e.g. miRNA, RNAi, RNAa) or siRNA approaches.
  • antisense or regulatory RNA e.g. miRNA, RNAi, RNAa
  • siRNA approaches e.g. RNAi, snRNA, dsRNA, siRNA, miRNA, ta-siRNA, cosuppression molecule, ribozyme, or antisense nucleic acid molecule
  • a nucleic acid molecule conferring the expression of a dominant-negative mutant of a protein or a nucleic acid construct capable to recombine with and silence, inactivate, repress or reduces the activity of an endogenous gene may be used to decrease the activity of a polypeptide in a transgenic plant or parts thereof or a plant cell thereof used in one embodiment of the methods of the invention.
  • transgenic plants with reduced, repressed, decreased or deleted expression product of a nucleic acid molecule are Carica papaya ( Papaya plants) with the event name X17-2 of the University of Florida, Prunus domestica (Plum) with the event name C5 of the United States Department of Agriculture—Agricultural Research Service, or those listed in rows T9-48 and T9-49 of table 9 below.
  • plants with increased resistance to nematodes for example by reducing, repressing, decreasing or deleting of an expression product of a nucleic acid molecule, e.g. from the PCT publication WO 2008/095886.
  • the reduction or substantial elimination is in increasing order of preference at least 10%, 20%, 30%, 40% or 50%, 60%, 70%, 80%, 85%, 90%, or 95%, 96%, 97%, 98%, 99% or more reduced compared to that of control plants.
  • Reference herein to an “endogenous” gene not only refers to the gene in question as found in a plant in its natural form (i.e., without there being any human intervention), but also refers to that same gene (or a substantially homologous nucleic acid/gene) in an isolated form subsequently (re)introduced into a plant (a transgene).
  • a transgenic plant containing such a transgene may encounter a substantial reduction of the transgene expression and/or substantial reduction of expression of the endogenous gene.
  • control or “reference” are exchangeable and can be a cell or a part of a plant such as an organelle like a chloroplast or a tissue, in particular a plant, which was not modified or treated according to the herein described process according to the invention. Accordingly, the plant used as control or reference corresponds to the plant as much as possible and is as identical to the subject matter of the invention as possible. Thus, the control or reference is treated identically or as identical as possible, saying that only conditions or properties might be different which do not influence the quality of the tested property other than the treatment of the present invention.
  • control or reference plants are wild-type plants.
  • control or reference plants may refer to plants carrying at least one genetic modification, when the plants employed in the process of the present invention carry at least one genetic modification more than said control or reference plants.
  • control or reference plants may be transgenic but differ from transgenic plants employed in the process of the present invention only by said modification contained in the transgenic plants employed in the process of the present invention.
  • wild type or wild-type plants refers to a plant without said genetic modification. These terms can refer to a cell or a part of a plant such as an organelle like a chloroplast or a tissue, in particular a plant, which lacks said genetic modification but is otherwise as identical as possible to the plants with at least one genetic modification employed in the present invention. In a particular embodiment the “wild-type” plant is not transgenic.
  • the wild type is identically treated according to the herein described process according to the invention.
  • the person skilled in the art will recognize if wild-type plants will not require certain treatments in advance to the process of the present invention, e.g. non-transgenic wild-type plants will not need selection for transgenic plants for example by treatment with a selecting agent such as a herbicide.
  • the control plant may also be a nullizygote of the plant to be assessed.
  • nullizygote refers to a plant that has undergone the same production process as a transgenic, yet has lost the once acquired genetic modification (e.g. due to mendelian segregation) as the corresponding transgenic. If the starting material of said production process is transgenic, then nullizygotes are also transgenic but lack the additional genetic modification introduced by the production process.
  • the purpose of wild-type and nullizygotes is the same as the one for control and reference or parts thereof. All of these serve as controls in any comparison to provide evidence of the advantageous effect of the present invention.
  • any comparison is carried out under analogous conditions.
  • analogous conditions means that all conditions such as, for example, culture or growing conditions, soil, nutrient, water content of the soil, temperature, humidity or surrounding air or soil, assay conditions (such as buffer composition, temperature, substrates, pathogen strain, concentrations and the like) are kept identical between the experiments to be compared.
  • assay conditions such as buffer composition, temperature, substrates, pathogen strain, concentrations and the like.
  • results can be normalized or standardized based on the control.
  • the “reference”, “control”, or “wild type” is preferably a plant, which was not modified or treated according to the herein described process of the invention and is in any other property as similar to a plant, employed in the process of the present invention of the invention as possible.
  • the reference, control or wild type is in its genome, transcriptome, proteome or metabolome as similar as possible to a plant, employed in the process of the present invention of the present invention.
  • the term “reference-” “control-” or “wild-type-” plant relates to a plant, which is nearly genetically identical to the organelle, cell, tissue or organism, in particular plant, of the present invention or a part thereof preferably 90% or more, e.g.
  • the “reference”, “control”, or “wild type” is a plant, which is genetically identical to the plant, cell, a tissue or organelle used according to the process of the invention except that the responsible or activity conferring nucleic acid molecules or the gene product encoded by them have been amended, manipulated, exchanged or introduced in the organelle, cell, tissue, plant, employed in the process of the present invention.
  • the reference and the subject matter of the invention are compared after standardization and normalization, e.g. to the amount of total RNA, DNA, or protein or activity or expression of reference genes, like housekeeping genes, such as ubiquitin, actin or ribosomal proteins.
  • the genetic modification carried in the organelle, cell, tissue, in particular plant used in the process of the present invention is in one embodiment stable e.g. due to a stable transgenic integration or to a stable mutation in the corresponding endogenous gene or to a modulation of the expression or of the behaviour of a gene, or transient, e.g. due to an transient transformation or temporary addition of a modulator such as an agonist or antagonist or inducible, e.g. after transformation with a inducible construct carrying a nucleic acid molecule under control of a inducible promoter and adding the inducer, e.g. tetracycline.
  • a modulator such as an agonist or antagonist or inducible
  • preferred plants from which “modified plants” and/or “transgenic plants” are be selected from the group consisting of cereals, such as maize (corn), wheat, barley sorghum, rice, rye, millet, triticale, oat, pseudocereals (such as buckwheat and quinoa), alfalfa, apples, banana, beet, broccoli, Brussels sprouts, cabbage, canola (rapeseed), carrot, cauliflower, cherries, chickpea, Chinese cabbage, Chinese mustard, collard, cotton, cranberries, creeping bentgrass, cucumber, eggplant, flax, grape, grapefruit, kale, kiwi, kohlrabi, melon, mizuna, mustard, papaya, peanut, pears, pepper, persimmons, pigeonpea, pineapple, plum, potato, raspberry, rutabaga, soybean, squash, strawberries, sugar beet, sugarcane, sunflower, sweet corn, tobacco, tomato, turnip, walnut, watermel
  • alfalfa canola (rapeseed), cotton, rice, maize, cerals (such as wheat, barley, rye, oat), soybean, fruits and vegetables (such as potato, tomato, melon, papaya), pome fruits (such as apple and pear), vine, sugarbeet, sugarcane, rape, citrus fruits (such as citron, lime, orange, pomelo, grapefruit, and mandarin) and stone fruits (such as cherry, apricot and peach), most preferably from cotton, rice, maize, cerals (such as wheat, barley, rye, oat), sorghum, squash, soybean, potato, vine, pome fruits (such as apple), citrus fruits (such as citron and orange), sugarbeet, sugarcane, rape, oilseed rape and tomatoes utmost preferably from cotton, rice, maize, wheat, barley, rye, oat, soybean, potato, vine, apple, apple
  • the cultivated plant is a gymnosperm plant, especially a spruce, pine or fir.
  • the invention relates to methods and uses, wherein the carboxamide compound i) of formula (I) is applied in an application type which corresponds in each case to one row of Table AP-T.
  • the invention relates to methods and uses, wherein the carboxamide compound i) of formula (I) as component I and at least one compound II as defined above as component II, are applied in an application type which corresponds in each case to one row of Table AP-T.
  • the invention relates to methods and uses, wherein the carboxamide compound ii) of formula (Ia) is applied in an application type which corresponds in each case to one row of Table AP-T.
  • the invention relates to methods and uses, wherein a mixture comprising the carboxamide compounds i) and ii) is applied in an application type which corresponds in each case to one row of Table AP-T.
  • the cultivated plants are plants, which comprise at least one trait.
  • the term “trait” refers to a property, which is present in the plant either by genetic engineering or by conventional breeding techniques. Each trait has to be assessed in relation to its respective control. Examples of traits are: herbicide tolerance, insect resistance by expression of bacterial toxins, fungal resistance or viral resistance or bacterial resistance, antibiotic resistance, stress tolerance, maturation alteration, content modification of chemicals present in the cultivated plant, preferably increasing the content of fine chemicals advantageous for applications in the field of the food and/or feed industry, the cosmetics industry and/or the pharmaceutical industry, modified nutrient uptake, preferably an increased nutrient use efficiency and/or resistance to conditions of nutrient deficiency, improved fiber quality, plant vigor, modified colour, fertility restoration, and male sterility.
  • cultivadas plants may also comprise combinations of the aforementioned traits, e.g. they may be tolerant to the action of herbicides and express bacertial toxins.
  • all cultivated plants may also provide combinations of the aforementioned properties, e.g. they may be tolerant to the action of herbicides and express bacertial toxins.
  • plant refers to a cultivated plant.
  • Tolerance to herbicides can be obtained by creating insensitivity at the site of action of the herbicide by expression of a target enzyme which is resistant to herbicide; rapid metabolism (conjugation or degradation) of the herbicide by expression of enzymes which inactivate herbicide; or poor uptake and translocation of the herbicide.
  • Examples are the expression of enzymes which are tolerant to the herbicide in comparison to wild type enzymes, such as the expression of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which is tolerant to glyphosate (see e.g. Heck et. al, Crop Sci. 45, 2005, 329-339; Funke et. al, PNAS 103, 2006, 13010-13015; U.S. Pat.
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • Gene constructs can be obtained, for example, from micro-organism or plants, which are tolerant to said herbicides, such as the Agrobacterium strain CP4 EPSPS which is resistant to glyphosate; Streptomyces bacteria which are resistance to glufosinate; Arabidopsis, Daucus carota, Pseudomonoas spp. or Zea grass with chimeric gene sequences coding for HDDP (see e.g. WO 1996/38567, WO 2004/55191); Arabidopsis thaliana which is resistant to protox inhibitors (see e.g. US 2002/0073443).
  • said herbicides such as the Agrobacterium strain CP4 EPSPS which is resistant to glyphosate; Streptomyces bacteria which are resistance to glufosinate; Arabidopsis, Daucus carota, Pseudomonoas spp. or Zea grass with chimeric gene sequences coding for HD
  • Tolerance to glyphosate can also be achieved by any one of the genes 2mepsps, epsps, gat4601, goxv247 or mepsps.
  • Tolerance to glufosinate can be achieved by any one of the genes bar, pat or pat(syn).
  • the herbicide tolerant plant can be selected from cereals such as wheat, barley, rye, oat; canola, sorghum, soybean, rice, oil seed rape, sugar beet, sugarcane, grapes, lentils, sunflowers, alfalfa, pome fruits; stone fruits; peanuts; coffee; tea; strawberries; turf; vegetables, such as tomatoes, potatoes, cucurbits and lettuce, more preferably, the plant is selected from soybean, maize (corn), rice, cotton, oilseed rape in particular canola, tomatoes, potatoes, sugarcane, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • cereals such as wheat, barley, rye, oat
  • canola, sorghum soybean
  • rice oil seed rape
  • sugar beet sugarcane
  • grapes lentils
  • sunflowers alfalfa
  • pome fruits stone fruits
  • stone fruits peanuts
  • coffee coffee
  • the cultivated plant is selected from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize), Glycine max L. (soybean), Triticum aestivum (wheat), and Oryza sativa L. (rice), preferably from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize) and Glycine max L. (soybean).
  • the cultivated plant is Glycine max L. (soybean).
  • Examples of commercial available transgenic plants with tolerance to herbicides are the corn varieties “Roundup Ready Corn”, “Roundup Ready 2” (Monsanto), “Agrisure GT”, “Agrisure GT/CB/LL”, “Agrisure GT/RW”, “Agrisure 3000GT” (Syngenta), “YieldGard VT Rootworm/RR2” and “YieldGard VT Triple” (Monsanto) with tolerance to glyphosate; the corn varieties “Liberty Link” (Bayer), “Herculex I”, “Herculex RW”, “Herculex Xtra” (Dow, Pioneer), “Agrisure GT/CB/LL” and “Agrisure CB/LL/RW” (Syngenta) with tolerance to glufosinate; the soybean varieties “Roundup Ready Soybean” (Monsanto) and “Optimum GAT” (DuPont, Pioneer) with tolerance to glyphosate; the cotton varieties “Round
  • transgenic plants with herbicide tolerance are commonly known, for instance alfalfa, apple, eucalyptus, flax, grape, lentils, oil seed rape, peas, potato, rice, sugar beet, sunflower, tobacco, tomatom turf grass and wheat with tolerance to glyphosate (see e.g. U.S. Pat. No. 5,188,642, U.S. Pat. No. 4,940,835, U.S. Pat. No. 5,633,435, U.S. Pat. No. 5,804,425, U.S. Pat. No. 5,627,061); beans, soybean, cotton, peas, potato, sunflower, tomato, tobacco, corn, sorghum and sugarcane with tolerance to dicamba (see e.g.
  • Plants which are capable of synthesising one or more selectively acting bacterial toxins, comprise for example at least one toxin from toxin-producing bacteria, especially those of the genus Bacillus , in particular plants capable of synthesising one or more insecticidal proteins from Bacillus cereus or Bacillus popliae ; or insecticidal proteins from Bacillus thuringiensis , such as delta.-endotoxins, e.g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c, or vegetative insecticidal proteins (VIP), e.g.
  • VIP vegetative insecticidal proteins
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • proteinase inhibitors such as trypsine inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors
  • steroid metabolism enzymes such as 3-hydroxysteroid
  • a plant is capable of producing a toxin, lectin or inhibitor if it contains at least one cell comprising a nucleic acid sequence encoding said toxin, lectin, inhibitor or inhibitor producing enzyme, and said nucleic acid sequence is transcribed and translated and if appropriate the resulting protein processed and/or secreted in a constitutive manner or subject to developmental, inducible or tissue-specific regulation.
  • delta.-endotoxins for example CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c, or vegetative insecticidal proteins (VIP), for example VIP1, VIP2, VIP3 or VIP3A, expressly also hybrid toxins, truncated toxins and modified toxins.
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701).
  • a truncated toxin is a truncated Cry1A(b), which is expressed in the Bt11 maize from Syngenta Seed SAS, as described below.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of CryIIIA055, a cathepsin-D-recognition sequence is inserted into a CryIIIA toxin (see WO 2003/018810).
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A451 878 and WO 2003/052073.
  • genes conferring resistance to coleopteran insects include cry34Ab1, cry35 Ab1, cry3A, cry3Bb1, dvsnf7, and mcry3A.
  • genes conferring resistance to lepidopteran insects include cry1A, cry1A.105, cry1Ab, cry1Ab-Ac, cry1Ac, cry1C, cry1F, cry1Fa2, cry2Ab2, cry2Ae, cry9c, mocry1F, pinII, vip3A(a), and vip3Aa20.
  • Cry1-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A0 367 474, EP-A-0 401 979 and WO 1990/13651.
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
  • the plant capable of expression of bacterial toxins is selected from cereals such as wheat, barley, rye, oat; canola, cotton, eggplant, lettuce, sorghum, soybean, rice, oil seed rape, sugar beet, sugarcane, grapes, lentils, sunflowers, alfalfa, pome fruits; stone fruits; peanuts;
  • cereals such as wheat, barley, rye, oat; canola, cotton, eggplant, lettuce, sorghum, soybean, rice, oil seed rape, sugar beet, sugarcane, grapes, lentils, sunflowers, alfalfa, pome fruits; stone fruits; peanuts;
  • the plant is selected from cotton, soybean, maize (corn), rice, tomatoes, potatoes, oilseed rape and cereals such as wheat, barley, rye and oat, most preferably from cotton, soybean, maize, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat. More preferably, the cultivated plant is selected from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize), Glycine max L. (soybean), Triticum aestivum (wheat), and Oryza sativa L.
  • the cultivated plant is Glycine max L. (soybean).
  • Examples of commercial available transgenic plants capable of expression of bacterial toxins are the corn varieties “YieldGard corn rootworm” (Monsanto), “YieldGard VT” (Monsanto), “Herculex RW” (Dow, Pioneer), “Herculex Rootworm” (Dow, Pioneer) and “Agrisure CRW” (Syngenta) with resistance against corn rootworm; the corn varieties “YieldGard corn borer” (Monsanto), “YieldGard VT Pro” (Monsanto), “Agrisure CB/LL” (Syngenta), “Agrisure 3000GT” (Syngenta), “Hercules I”, “Hercules II” (Dow, Pioneer), “KnockOut” (Novartis), “NatureGard” (Mycogen) and “StarLink” (Aventis) with resistance against corn borer, the corn varieties “Herculex I” (Dow, Pioneer) and “Herculex Xtra” (Dow,
  • transgenic plants with insect resistance are commonly known, such as yellow stemborer resistant rice (see e.g. Molecular Breeding, Volume 18, 2006, Number 1), lepidopteran resistant lettuce (see e.g. U.S. Pat. No. 5,349,124), resistant soybean (see e.g. U.S. Pat. No. 7,432,421) and rice with resistance against Lepidopterans, such as rice stemborer, rice skipper, rice cutworm, rice caseworm, rice leaffolder and rice armyworm (see e.g. WO 2001021821).
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • plants which are capable of synthesising antipathogenic substances are selected from soybean, maize (corn), rice, tomatoes, potato, banana, papaya, tobacco, grape, plum and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, tomatoes, potato, banana, papaya, oil seed rape, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Plants which are capable of synthesising antipathogenic substances having a selective action are for example plants expressing the so-called “pathogenesis-related proteins” (PRPs, see e.g. EP-A-0 392 225) or so-called “antifungal proteins” (AFPs, see e.g. U.S. Pat. No. 6,864,068).
  • PRPs pathogenesis-related proteins
  • AFPs antifungal proteins
  • a wide range of antifungal proteins with activity against plant pathogenic fungi have been isolated from certain plant species and are common knowledge. Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 93/05153, WO 95/33818, and EP-A-0 353 191.
  • Transgenic plants which are resistant against fungal, viral and bacterial pathogens are produced by introducing plant resistance genes.
  • Numerous resistant genes have been identified, isolated and were used to improve plant resistant, such as the N gene which was introduced into tobacco lines that are susceptible to Tobacco Mosaic Virus (TMV) in order to produce TMV-resistant tobacco plants (see e.g. U.S. Pat. No. 5,571,706), the Prf gene, which was introduced into plants to obtain enhanced pathogen resistance (see e.g. WO 199802545) and the Rps2 gene from Arabidopsis thaliana , which was used to create resistance to bacterial pathogens including Pseudomonas syringae (see e.g. WO 199528423).
  • Plants exhibiting systemic acquired resistance response were obtained by introducing a nucleic acid molecule encoding the TIR domain of the N gene (see e.g. U.S. Pat. No. 6,630,618).
  • Further examples of known resistance genes are the Xa21 gene, which has been introduced into a number of rice cultivars (see e.g. U.S. Pat. No. 5,952,485, U.S. Pat. No. 5,977,434, WO 1999/09151, WO 1996/22375), the Rcg1 gene for colletotrichum resistance (see e.g. US 2006/225152), the prp1 gene (see e.g. U.S. Pat. No.
  • the PIP gene to introduce a broad resistant to viruses, such as potato virus X (PVX), potato virus Y (PVY), potato leafroll virus (PLRV) (see e.g. EP 0707069) and genes such as Arabidopsis N116, ScaM4 and ScaM5 genes to obtain fungal resistance (see e.g. U.S. Pat. No. 6,706,952 and EP 1018553).
  • viruses such as potato virus X (PVX), potato virus Y (PVY), potato leafroll virus (PLRV)
  • PLRV potato leafroll virus
  • genes such as Arabidopsis N116, ScaM4 and ScaM5 genes to obtain fungal resistance (see e.g. U.S. Pat. No. 6,706,952 and EP 1018553).
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called “pathogenesis-related proteins” (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 1995/33818) or protein or polypeptide factors involved in plant pathogen defense (so-called “plant disease resistance genes”, as described in WO 2003/000906).
  • ion channel blockers such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins
  • stilbene synthases such as the viral KP1, KP4 or KP6 toxins
  • bibenzyl synthases such as
  • Antipathogenic substances produced by the plants are able to protect the plants against a variety of pathogens, such as fungi, viruses and bacteria.
  • Useful plants of elevated interest in connection with present invention are cereals, such as wheat, barley, rye and oat; soybean; maize; rice; alfalfa, cotton, sugar beet, sugarcane, tobacco, potato, banana, oil seed rape; pome fruits; stone fruits; peanuts; coffee; tea; strawberries; turf; vines and vegetables, such as tomatoes, potatoes, cucurbits, papaya, melon, lenses and lettuce, more preferably selected from soybean, maize (corn), alfalfa, cotton, potato, banana, papaya, rice, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, potato, tomato, oilseed rape, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Transgenic plants with resistance against fungal pathogens are, for examples, soybeans with resistance against Asian soybean rust (see e.g. WO 2008/017706); plants such as alfalfa, corn, cotton, sugar beet, oileed, rape, tomato, soybean, wheat, potato and tobacco with resistance against Phytophtora infestans (see e.g. U.S. Pat. No. 5,859,332, U.S. Pat. No.
  • WO 1999064600 plants such as rice, wheat, barley, rye, corn, oats, potato, melon, soybean and sorghum with resistance against fusarium diseases, such as Fusarium graminearum, Fusarium sporotrichioides, Fusarium lateritium, Fusarium pseudograminearum Fusarium sambucinum, Fusarium culmorum, Fusarium poae, Fusarium acuminatum, Fusarium equiseti (see e.g. U.S. Pat. No.
  • plants such as corn, soybean, cereals (in particular wheat, rye, barley, oats, rye, rice), tobacco, sorghum, sugarcane and potatoes with broad fungal resistance (see e.g. U.S. Pat. No. 5,689,046, U.S. Pat. No. 6,706,952, EP 1018553 and U.S. Pat. No. 6,020,129).
  • Transgenic plants with resistance against bacterial pathogens and which are covered by the present invention are, for examples, rice with resistance against Xylella fastidiosa (see e.g. U.S. Pat. No. 6,232,528); plants, such as rice, cotton, soybean, potato, sorghum, corn, wheat, balrey, sugarcane, tomato and pepper, with resistance against bacterial blight (see e.g. WO 2006/42145, U.S. Pat. No. 5,952,485, U.S. Pat. No. 5,977,434, WO 1999/09151, WO 1996/22375); tomato with resistance against Pseudomonas syringae (see e.g. Can. J. Plant Path., 1983, 5: 251-255).
  • Transgenic plants with resistance against viral pathogens are, for examples, stone fruits, such as plum, almond, apricot, cherry, peach, nectarine, with resistance against plum pox virus (PPV, see e.g. US PP15,154Ps, EP 0626449); potatoes with resistance against potato virus Y (see e.g. U.S. Pat. No. 5,968,828); plants such as potato, tomato, cucumber and leguminosaes which are resistant against tomato spotted wilt virus (TSWV, see e.g. EP 0626449, U.S. Pat. No. 5,973,135); corn with resistance against maize streak virus (see e.g. U.S. Pat. No.
  • deregulated orcommercially available transgenic plants with modified genetic material capable of expression of antipathogenic substances are the following plants: Carica papaya (papaya), Event: 55-1/63-1; Georgia University, Carica papaya (Papaya); Event: (X17-2); University of Florida, Cucurbita pepo (Squash); Event: (CZW-3); Asgrow (USA); Seminis Vegetable Inc. (Canada), Cucurbita pepo (Squash); Event: (ZW20); Upjohn (USA); Seminis Vegetable Inc. (Canada), Prunus domestica (Plum); Event: (C5); United States Department of Agriculture—Agricultural Research Service, Solanum tuberosum L.
  • Transgenic plants with resistance against nematodes and which may be used in the methods of the present invention are, for examples, soybean plants with resistance to soybean cyst nematodes.
  • U.S. Pat. Nos. 5,589,622 and 5,824,876 are directed to the identification of plant genes expressed specifically in or adjacent to the feeding site of the plant after attachment by the nematode.
  • transgenic plants with reduced feeding structures for parasitic nematodes e.g. plants resistant to herbicides except of those parts or those cells that are nematode feeding sites and treating such plant with a herbicide to prevent, reduce or limit nematode feeding by damaging or destroying feeding sites (e.g. U.S. Pat. No. 5,866,777).
  • RNAi to target essential nematode genes has been proposed, for example, in PCT Publication WO 2001/96584, WO 2001/17654, US 2004/0098761, US 2005/0091713, US 2005/0188438, US 2006/0037101, US 2006/0080749, US 2007/0199100, and US 2007/0250947.
  • Transgenic nematode resistant plants have been disclosed, for example in the PCT publications WO 2008/095886 and WO 2008/095889.
  • the naturally occurring bacterial nptII gene expresses the enzyme that blocks the effects of the antibiotics kanamycin and neomycin.
  • the ampicillin resistance gene ampR also known as blaTEM1
  • ampR is derived from the bacterium Salmonella paratyphi and is used as a marker gene in the transformation of micro-organisms and plants. It is responsible for the synthesis of the enzyme beta-lactamase, which neutralises antibiotics in the penicillin group, including ampicillin.
  • Transgenic plants with resistance against antibiotics are, for examples potato, tomato, flax, canola, oilseed rape and corn (see e.g.
  • Plant Cell Reports 20, 2001, 610-615. Trends in Plant Science, 11, 2006, 317-319. Plant Molecular Biology, 37, 1998, 287-296. Mol Gen Genet., 257, 1998, 606-13.). Plant Cell Reports, 6, 1987, 333-336. Federal Register (USA), Vol. 60, No. 113, 1995, page 31139. Federal Register (USA), Vol. 67, No. 226, 2002, page 70392. Federal Register (USA), Vol. 63, No. 88, 1998, page 25194. Federal Register (USA), Vol. 60, No. 141, 1995, page 37870. Canadian Food Inspection Agency, FD/OFB-095-264-A, October 1999, FD/OFB-099-127-A, October 1999.
  • the plant is selected from soybean, maize (corn), rice, cotton, oilseed rape, potato, sugarcane, alfalfa, tomatoes and cereals, such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, oilseed rape, tomato, potato, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Plants which are tolerant to stress conditions are plants, which show increased tolerance to abiotic stress conditions such as drought, high salinity, high light intensities, high UV irradiation, chemical pollution (such as high heavy metal concentration), low or high temperatures, limited supply of nutrients (i.e. nitrogen, phosphorous) and population stress.
  • abiotic stress conditions such as drought, high salinity, high light intensities, high UV irradiation, chemical pollution (such as high heavy metal concentration), low or high temperatures, limited supply of nutrients (i.e. nitrogen, phosphorous) and population stress.
  • transgenic plants with resistance to stress conditions are selected from rice, corn, soybean, sugarcane, alfalfa, wheat, tomato, potato, barley, rapeseed, beans, oats, sorghum and cotton with tolerance to drought (see e.g.
  • the plant is selected from soybean, maize (corn), rice, cotton, sugarcane, alfalfa, sugar beet, potato, oilseed rape, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, oilseed rape, tomato, potato, sugarcane, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Altered maturation properties are for example delayed ripening, delayed softening and early maturity.
  • transgenic plants with modified maturation properties are, selected from tomato, melon, raspberry, strawberry, muskmelon, pepper and papaya with delayed ripening (see e.g. U.S. Pat. No. 5,767,376, U.S. Pat. No. 7,084,321, U.S. Pat. No. 6,107,548, U.S. Pat. No. 5,981,831, WO 1995035387, U.S. Pat. No. 5,952,546, U.S. Pat. No. 5,512,466, WO 1997001952, WO 1992/008798, Plant Cell. 1989, 53-63. Plant Molecular Biology, 50, 2002).
  • the plant is selected from fruits, such as tomato, vine, melon, papaya, banana, pepper, raspberry and strawberry; stone fruits, such as cherry, apricot and peach; pome fruits, such as apple and pear; and citrus fruits, such as citron, lime, orange, pomelo, grapefruit, and mandarin; more preferably from tomato, vine, apple, banana, orange and strawberry, most preferably tomatoes.
  • fruits such as tomato, vine, melon, papaya, banana, pepper, raspberry and strawberry
  • stone fruits such as cherry, apricot and peach
  • pome fruits such as apple and pear
  • citrus fruits such as citron, lime, orange, pomelo, grapefruit, and mandarin
  • tomato, vine, apple, banana, orange and strawberry most preferably tomatoes.
  • Content modification is synthesis of modified chemical compounds (if compared to the corresponding control plant) or synthesis of enhanced amounts of chemical (if compounds compared to the corresponding control plant) and corresponds to an increased or reduced amount of vitamins, amino acids, proteins and starch, different oils and a reduced amount of nicotine.
  • soybean varieties “Vistive II” and “Visitive III” with low-linolenic/medium oleic content are the soybean varieties “Vistive II” and “Visitive III” with low-linolenic/medium oleic content; the corn variety “Mavera high-value corn” with increased lysine content; and the soybean variety “Mavera high value soybean” with yielding 5% more protein compared to conventional varieties when processed into soybean meal.
  • Further transgenic plants with altered content are, for example, potato and corn with modified amylopectin content (see e.g. U.S. Pat. No. 6,784,338, US 20070261136); canola, corn, cotton, grape, catalpa, cattail, rice, soybean, wheat, sunflower, balsam pear and vernonia with a modified oil content (see e.g. U.S.
  • EP 0929685, WO 1997041239) tomato with increased free amino acid contents, such as asparagine, aspartic acid, serine, threonine, alanine, histidine and glutamic acid (see e.g. U.S. Pat. No. 6,727,411); corn with enhanced amino acid content (see e.g. WO 05077117); potato, corn and rice with modified starch content (see e.g. WO 1997044471 and U.S. Pat. No. 7,317,146); tomato, corn, grape, alfalfa, apple, beans and peas with modified flavonoid content (see e.g.
  • the plant is selected from soybean, maize (corn), rice, cotton, sugarcane, potato, tomato, oilseed rape, flax and cereals such as wheat, barley, rye and oat, most preferably soybean, maize (corn), rice, oilseed rape, potato, tomato, cotton, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • transgenic plants with enhanced nitrogen assimilatory and utilization capacities are selected from for example, canola, corn, wheat, sunflower, rice, tobacco, soybean, cotton, alfalfa, tomato, wheat, potato, sugar beet, sugar cane and rapeseed (see e.g. WO 1995/009911, WO 1997/030163, U.S. Pat. No. 6,084,153, U.S. Pat. No. 5,955,651 and U.S. Pat. No. 6,864,405). Plants with improved phosphorous uptake are, for example, tomato and potato (see e.g. U.S. Pat. No.
  • the plant is selected from soybean, maize (corn), rice, cotton, sugarcane, alfalfa, potato, oilseed rape and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, oilseed rape, tomato, potato, vine, apple, pear, citron, orange and cereals such as wheat, barley.
  • Transgenic plants with male sterility are preferably selected from canola, corn, tomato, rice, Indian mustard, wheat, soybean and sunflower (see e.g. U.S. Pat. No. 6,720,481, U.S. Pat. No. 6,281,348, U.S. Pat. No. 5,659,124, U.S. Pat. No. 6,399,856, U.S. Pat. No. 7,345,222, U.S. Pat. No. 7,230,168, U.S. Pat. No. 6,072,102, EP1 135982, WO 2001/092544 and WO 1996/040949).
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • the plant is selected from soybean, maize (corn), rice, cotton, oilseed rape, tomato, potato, vine, apple, pear, citron, orange and cereals such as wheat, barley.
  • Plants, which produce higher quality fiber are e.g. transgenic cotton plants.
  • the such improved quality of the fiber is related to improved micronaire of the fiber, increased strength, improved staple length, improved length unifomity and color of the fibers (see e.g. WO 1996/26639, U.S. Pat. No. 7,329,802, U.S. Pat. No. 6,472,588 and WO 2001/17333).
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • cultivadas plants may comprise one or more traits, e.g. selected from the group consisting of herbicide tolerance, insect resistance, fungal resistance, viral resistance, bacterial resistance, stress tolerance, maturation alteration, content modification, modified nutrient uptake and male sterility (see e.g. WO 2005033319 and U.S. Pat. No. 6,376,754).
  • traits e.g. selected from the group consisting of herbicide tolerance, insect resistance, fungal resistance, viral resistance, bacterial resistance, stress tolerance, maturation alteration, content modification, modified nutrient uptake and male sterility (see e.g. WO 2005033319 and U.S. Pat. No. 6,376,754).
  • Examples of commercial available transgenic plants with two combined properties are the corn varieties “YieldGard Roundup Ready” and YieldGard Roundup Ready 2′′ (Monsanto) with glyphosate tolerance and resistance to corn borer; the corn variety “Agrisure CB/LL” (Syntenta) with glufosinate tolerance and corn borer resistance; the corn variety “Yield Gard VT Rootworm/RR2” with glyphosate tolerance and corn rootworm resistance; the corn variety “Yield Gard VT Triple” with glyphosate tolerance and resistance against corn rootworm and corn borer; the corn variety “Herculex I” with glufosinate tolerance and lepidopteran resistance (Cry1F), i.e.
  • Examples of commercial available transgenic plants with three traits are the corn variety “Herculex I/Roundup Ready 2” with glyphosate tolerance, gluphosinate tolerance and lepidopteran resistance (Cry1F), i.e. against western bean cutworm, corn borer, black cutworm and fall armyworm; the corn variety “YieldGard Plus/Roundup Ready 2” (Monsanto) with glyphosate tolerance, corn rootworm resistance and corn borer resistance; the corn variety “Agrisure GT/CB/LL” (Syngenta) with tolerance to glyphosate tolerance, tolerance to gluphosinate and corn borer resistance; the corn variety “Herculex Xtra” (Dow, Pioneer) with glufosinate tolerance and lepidopteran resistance (Cry1F+Cry34/35Ab1), i.e.
  • the commercial transgenic plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, preferably with one trait of glyphosate tolerance and two traits of lepidopteran resistance.
  • the glyphosate tolerance is through expression of the EPSPS encoding gene from A. tumefaciens strain CP4, more preferably it is based on the transgenic event MON89788 (see A1-14, T1-100).
  • the lepidopteran resistance is a resistance to lepidopteran pests of soybean, preferably through expression of the Cry1AC encoding gene from B. thuringiensis , preferably against velvetbean caterpillar ( Anticarsia gemmatalis ) and soybean looper ( Pseudoplusia includens ), more preferably it is based on the transgenic event MON87701.
  • the glyphosate tolerance is based on the transgenic event MON89788 and the trait of lepidopteran resistance is achieved through expression of the Cry1AC encoding gene from B. thuringiensis , preferably against velvetbean caterpillar ( Anticarsia gemmatalis ) and soybean looper ( Pseudoplusia includens ), more preferably based on the transgenic event MON87701.
  • the commercial transgenic plant is “Intacta RR2 PRO” soybean (Monsanto) which claims to offer tolerance to glyphosate herbicide and protection against major soybean pests (velvetbean caterpilar, soybean looper, soybean budborer, bean shoot borer, bollworm, corn stalk borer, Helicoverpa , e.g. Helicoverpa armigera ), along with increased yield potential.
  • the commercial transgenic plant is a soybean variety selected from “Roundup Ready 2 Yield”, “Intacta RR2 Pro” and “Vistive Gold” (all Monsanto), or “Stearidonic Acid (SDA) Omega-3” (higher content of SDA in soybean, Monsanto).
  • the trait is Bacillus thuringiensis Cry1A.105 and cry2Ab2 and Vector PV-GMIR13196, for Mon87751 soybean (Monsanto).
  • the commercial transgenic plant is a corn variety which has aboveground insect protection from “Genuity VT Triple PRO” or “Herculex Xtra” or both of them, and herbicide tolerance from “Roundup Ready 2” and Liberty Link, preferably corn varieties selected from “Genuity SmartStax”, “Genuity VT Triple PRO” and “Genuity VT Double PRO” (all Monsanto), optionally as RIB (refuge-in-bag) solution.
  • the commercial transgenic corn plant variety has a drought tolerance trait, preferably “Genuity DroughtGard”.
  • the trait is double-stranded ribonucleic acid (dsRNA), Bacillus thuringiensis Cry3Bb1 protein and vector PV-ZMIR10871 for MON87411 corn.
  • the commercial transgenic plant is a cotton variety selected from “Bollgard II” (insect protection), “Roundup Ready Flex” (herbicide tolerance) and “Bollgard II with Roundup Ready Flex” (both), all Monsanto.
  • the cultivated plants are plants, which comprise at least one trait selected from herbicide tolerance, insect resistance by expression of bacertial toxins, fungal resistance or viral resistance or bacterial resistance by expression of antipathogenic substances, stress tolerance, content modification of chemicals present in the cultivated plant compared to the corresponding control plant.
  • the cultivated plants are plants, which are tolerant to the action of herbicides and plants, which express bacterial toxins, which provides resistance against animal pests (such as insects or arachnids or nematodes), wherein the bacterial toxin is preferably a toxin from Bacillus thuriginensis .
  • the plant is preferably selected from cotton, rice, maize, wheat, barley, rye, oat, soybean, potato, vine, apple, pear, citron and orange.
  • the plant is soybean.
  • the invention relates to a method for controlling pests and/or increasing the plant health of a cultivated plant with at least one modification as compared to the respective non-modified control plant, wherein the plant is soybean, which method comprises applying the carboxamide compound i) of formula (I), or a mixture of (1) the carboxamide compound i) of formula (I) as component I with (2) at least one compound II as component II.
  • the invention relates to a method for controlling pests and/or increasing the plant health of a cultivated plant with at least one modification as compared to the respective non-modified control plant, wherein the plant is soybean, which method comprises applying the carboxamide compound ii) of formula (Ia), or a mixture of (1) the carboxamide compound ii) of formula (Ia) as component I with (2) at least one compound II as component II.
  • the invention relates to a method for controlling pests and/or increasing the plant health of a cultivated plant with at least one modification as compared to the respective non-modified control plant, wherein the plant is soybean, which method comprises applying a mixture comprising the carboxamide compounds i) and ii), or a mixture of (1) a mixture comprising the carboxamide compounds i) and ii) as component I with (2) at least one compound II as component II.
  • the cultivated plants are plants, which are tolerant to the action of herbicides. Further guidance for specific combinations within this utmost preferred embodiment can be found in tables 1, 2, 14 and tables A, B and C.
  • the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise a herbicide III, to which the plant is tolerant.
  • the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise a herbicide III, to which the plant is tolerant.
  • the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) the mixture comprising the carboxide compounds i) and ii) with (2) at least one compound II may additionally comprise a herbicide III, to which the plant is tolerant.
  • the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise glyphosate.
  • the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise glyphosate.
  • the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise glyphosate.
  • the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (i) the carboxamide compound i) of formula (I) with (ii) at least one compound II may additionally comprise glufonisate.
  • the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise glufonsinate.
  • the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise glufonsinate.
  • the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (i) the carboxamide compound i) of formula (I) with (ii) at least one compound II may additionally comprise at least one imidazolinone herbicide.
  • the imidazolinone herbicide is selected from imazamox, imazethapyr, imazapic, imazapyr, imazamethabenz or imazaquin.
  • the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise at least one imidazolinone herbicide.
  • the imidazolinone herbicide is selected from imazamox, imazethapyr, imazapic, imazapyr, imazamethabenz or imazaquin.
  • the cultivated plant is a cultivated plant tolerant to a imidazolinone herbicide
  • the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise at least one imidazolinone herbicide.
  • the imidazolinone herbicide is selected from imazamox, imazethapyr, imazapic, imazapyr, imazamethabenz or imazaquin.
  • the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise dicamba.
  • the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise dicamba.
  • the cultivated plant is a cultivated plant tolerant to dicamba
  • the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise dicamba.
  • the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise sethoxidim.
  • the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise sethoxidim.
  • the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise sethoxidim.
  • the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise cyloxidim.
  • the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise cycloxidim.
  • the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise cycloxidim.
  • the present invention also relates to ternary mixtures, comprising the carboxamide compound i) of formula (I), an insecticide II and a herbicide III.
  • the present invention also relates to ternary mixtures, comprising the carboxamide compound ii) of formula (Ia), an insecticide II and a herbicide III.
  • the present invention also relates to ternary mixtures, comprising the mixture comprising the carboxamide compounds i) and ii), an insecticide II and a herbicide III.
  • the present invention also relates to ternary mixtures comprising two insecticides and a fungicide.
  • the present invention also relates to ternary mixtures comprising two fungicides and one insecticide.
  • the present invention also relates to ternary mixtures comprising an insectide, a fungicide and a herbicide.
  • mixture partners may be especially preferred.
  • that compound II is preferably selected from teflubenzuron, chlorefenapyr or from the class of diamides
  • mixtures wherein the at least one compound II is teflubenzuron can be preferred.
  • mixtures, wherein the at least one compound II is chlorfenapyr can be preferred.
  • mixtures wherein the at least one compound II is a ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-
  • the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole
  • the mixtures for seed treatment application comprising at least one other active compound II as component II, that compound II is preferably selected from thiamethoxam, fipronil or from the class of diamides
  • mixtures wherein the at least one compound II is thiamethoxam can be preferred.
  • mixtures, wherein the at least one compound II is fipronil can be preferred.
  • mixtures wherein the at least one compound II is a ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-
  • the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole
  • the cultivated plants are plants, which comprise at least one trait selected from herbicide tolerance, insect resistance for example by expression of one or more bacterial toxins, fungal resistance or viral resistance or bacterial resistance by expression of one or more antipathogenic substances, stress tolerance, nutrient uptake, nutrient use efficiency, content modification of chemicals present in the cultivated plant compared to the corresponding control plant.
  • the cultivated plants are plants, which comprise at least one trait selected from herbicide tolerance, insect resistance by expression of one or more bacterial toxins, fungal resistance or viral resistance or bacterial resistance by expression of one or more antipathogenic substances, stress tolerance, content modification of one or more chemicals present in the cultivated plant compared to the corresponding control plant.
  • the cultivated plants are plants, which are tolerant to the action of herbicides and plants, which express one or more bacterial toxins, which provides resistance against one or more animal pests (such as insects or arachnids or nematodes), wherein the bacterial toxin is preferably a toxin from Bacillus thuriginensis .
  • the cultivated plant is preferably selected from soybean, maize (corn), rice, cotton, sugarcane, alfalfa, potato, oilseed rape, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), cotton, rice and cereals such as wheat, barley, rye and oat.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant is a plant, which is rendered tolerant to herbicides, more preferably to herbicides such as glutamine synthetase inhibitors, 5-enol-pyrovyl-shikimate-3-phosphate-synthase inhibitors, acetolactate synthase (ALS) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, auxine type herbicides, most preferably to herbicides such as glyphosate, glufosinate, imazapyr, imazapic, imazamox, imazethapyr, imazaquin, imazamethabenz methyl, dicamba and 2,4-
  • herbicides such
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a plant, which is rendered tolerant to herbicides, more preferably to herbicides such as glutamine synthetase inhibitors, 5-enol-pyrovyl-shikimate-3-phosphate-synthase inhibitors, acetolactate synthase (ALS) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, auxine type herbicides, most preferably to herbicides such as glyphosate, glufosinate, imazapyr, imazapic, imazamox, imazethapyr, imazaquin, imazamethabenz methyl, dicamba and 2,4-D
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant is a plant, which is rendered tolerant to herbicides, more preferably to herbicides such as glutamine synthetase inhibitors, 5-enol-pyrovyl-shikimate-3-phosphate-synthase inhibitors, acetolactate synthase (ALS) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, auxine type herbicides, most preferably to herbicides such as glyphosate, glufosinate, imazapyr, imazapic, imazamox, imazethapyr, imazaquin, imazamethabenz methyl, dic
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant is a plant, which express at least one insecticidal toxin, preferably a toxin from Bacillus species, more preferably from Bacillus thuringiensis.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a plant, which express at least one insecticidal toxin, preferably a toxin from Bacillus species, more preferably from Bacillus thuringiensis.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant is a plant, which express at least one insecticidal toxin, preferably a toxin from Bacillus species, more preferably from Bacillus thuringiensis.
  • the cultivated plant has an arthropodicidal, preferably insecticidal, trait, it often occurs that the pest that should be combated becomes resistant to that trait.
  • Resistance may be defined as ‘a heritable change in the sensitivity of a pest population that is reflected in the repeated failure of a product to achieve the expected level of control when used according to the label recommendation for that pest species’.
  • IRAC Iron Resistance therefore means that the original activity of a pesticide against the target organisms (arthropods, insects) decreases or is even lost, due to genetic or metabolic adaptation of the target organism.
  • “Resistant” to an insecticide is understood to mean resistant to at least one insecticide or insecticidal trait, i.e. the insect may be resistant to only one, but also to several insecticides or insecticidal traits.
  • the resistance is against an insecticidal effect which is due to a genetic modification of a plant (modified or transgenic plant), which caused a resistance of the plant or crop to certain pests, especially insect pests, in susceptible insects.
  • insecticidal proteins especially those mentioned herein, especially those known from the bacterial genus Bacillus , particularly from Bacillus thuringiensis , such as endotoxins, e. g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, for example Photorhabdus spp. or Xenorhabdus spp., and so on.
  • endotoxins e. g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c
  • VIP vegetative insecticidal proteins
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant has at least one insecticidal trait, and wherein the harmful insects are resistant to that at least one insecticidal trait of the plant.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant has at least one insecticidal trait, and wherein the harmful insects are resistant to that at least one insecticidal trait of the plant.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compound i) and ii), wherein the plant has at least one insecticidal trait, and wherein the harmful insects are resistant to that at least one insecticidal trait of the plant.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant has at least one lepidopteran or coleopteran trait, and wherein the harmful insects are resistant to that lepidopteran or coleopteran insecticidal trait of the plant.
  • the present invention also relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant has at least one lepidopteran or coleopteran trait, and wherein the harmful insects are resistant to that lepidopteran or coleopteran insecticidal trait of the plant.
  • the present invention also relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant has at least one lepidopteran or coleopteran trait, and wherein the harmful insects are resistant to that lepidopteran or coleopteran insecticidal trait of the plant.
  • Methods and uses of the invention as described herein may also involve a step of assessing whether insects are resistant to certain insecticides.
  • This step will in general involve collecting a sample of insects from the area (e.g. crop, field, habitat) to be treated, before actually applying the carboxamide compound I, preferably compound i) of formula (I), and testing (for example using any suitable phenotypic, biochemical or molecular biological technique applicable) for resistance/sensitivity.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant has at least one insecticidal trait, e.g. as listed in table A14 or B, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant has at least one insecticidal trait, e.g. as listed in table A14 or B, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant has at least one insecticidal trait, e.g. as listed in table A14 or B, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant is a plant, which shows increased resistance against fungal, viral and bacterial diseases, more preferably a plant, which expresses antipathogenic substances, such as antifungal proteins, or which has systemic acquired resistance properties.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a plant, which shows increased resistance against fungal, viral and bacterial diseases, more preferably a plant, which expresses antipathogenic substances, such as antifungal proteins, or which has systemic acquired resistance properties.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with a mixture comprising carboxamide compounds i) and ii) as component I and at least one compound II as component II, wherein the plant is a plant, which shows increased resistance against fungal, viral and bacterial diseases, more preferably a plant, which expresses antipathogenic substances, such as antifungal proteins, or which has systemic acquired resistance properties.
  • the cultivated plants are plants, which are given in table A.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating plant propagation materials, preferably seeds with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating plant propagation materials, preferably seeds with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating plant propagation materials, preferably seeds with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • the cultivated plant is preferably selected from the group consisting of soybean, cotton and maize, wherein the plant has been made tolerant to the action of certain herbicides as described above. It is particularly preferred that the cultivated plant is selected from the group consisting of soybean, cotton and maize, wherein the plant has been made tolerant to the action of glyphosate herbicides.
  • the cultivated plant is a plant, which has been made tolerant to the action of glyphosate herbicides.
  • the plant may have been made tolerant to other herbicides and/or resistant to certain insects, and/or the plant may have been genetically modified otherwise, e.g. in terms of abiotic stress tolerance, altered growth/yield, disease resistance, modified product quality or pollination control system.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the mixture comprising the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the mixture comprising the carboxamide compound i) of formula
  • component I as component I and at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant having the insecticidal trait corresponds to a row of table A14, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • Syngenta Glyphosate tolerance + MIR604 ⁇ Bt11 ⁇ (corn, maize) Agrisure ® Duracade TM Coleopteran resistance + TC1507 ⁇ 5222 Lepidopteran resistance + GA21 ⁇ Modified alpha amylase + MIR162 Mannose metabolism A14-26 Glufosinate tolerance + 59122 ⁇ GA21 Zea mays L.
  • Syngenta Glyphosate tolerance + (corn, maize) Coleopteran resistance A14-27 Glufosinate tolerance + 59122 ⁇ Zea mays L.
  • DuPont (Pioneer Hi- Glyphosate tolerance + MON810 ⁇ (corn, maize) Bred International Coleopteran resistance + NK603 Inc.) Lepidopteran resistance A14-30 Glufosinate tolerance + 59122 ⁇ Zea mays L. Monsanto Company Glyphosate tolerance + MON88017 (corn, maize) Coleopteran resistance A14-31 Glufosinate tolerance + 59122 ⁇ Zea mays L. Syngenta Glyphosate tolerance + TC1507 ⁇ (corn, maize) Coleopteran resistance + GA21 Lepidopteran resistance A14-32 Glufosinate tolerance + 98140 ⁇ 59122 Zea mays L.
  • DuPont (Pioneer Hi- Coleopteran resistance + NK603 (corn, maize) Bred International Mannose metabolism Inc.) A14-50 Glyphosate tolerance + MON801 Zea mays L. Monsanto Company Lepidopteran resistance + (MON80100) (corn, maize) antibiotic resistance A14-51 Glyphosate tolerance + MON810 Zea mays L. available, Monsanto Lepidopteran resistance + (corn, maize) Company; Yield- antibiotic resistance Card TM, Maize- Gard TM A14-52 Glyphosate tolerance + MON87411 Zea mays L.
  • DuPont Glyphosate tolerance + 59122 ⁇ (corn, maize) (Pioneer Hi-Bred Coleopteran resistance + MON810 ⁇ International Inc.); Lepidopteran resistance + MIR604 ⁇ Optimum TM Intrasect Mannose metabolism NK603 Xtrenne A14-70 Glufosinate tolerance + TC1507 ⁇ Zea mays L.
  • DuPont (Pioneer Hi- Glyphosate tolerance + MON810 ⁇ (corn, maize) Bred International Coleopteran resistance + MIR604 ⁇ Inc.) Lepidopteran resistance + NK603 Antibiotic resistance + Mannose metabolism A14-71 Glufosinate tolerance + TC1507 ⁇ Zea mays L.
  • DuPont Glyphosate tolerance + 59122 ⁇ (corn, maize) (Pioneer Hi-Bred Coleopteran resistance + MON810 ⁇ International Inc.); Lepidopteran resistance NK603 Optimum TM Intrasect XTRA A14-72 Glufosinate tolerance + TC1507 ⁇ Zea mays L.
  • DuPont Glyphosate tolerance + MIR604 ⁇ (corn, maize) (Pioneer Hi-Bred Coleopteran resistance + NK603 International Inc.); Lepidopteran resistance + Optimum TM TRIsect Mannose metabolism A14-76 Glufosinate tolerance + TC1507 ⁇ Zea mays L.
  • DuPont (Pioneer Hi- Glyphosate tolerance + MON810 ⁇ (corn, maize) Bred International Lepidopteran resistance + MIR162 ⁇ Inc.) Mannose metabolism NK603 A14-77 Glufosinate tolerance + TC1507 ⁇ Zea mays L.
  • DuPont Glyphosate tolerance + MON810 ⁇ (corn, maize) (Pioneer Hi-Bred Lepidopteran resistance NK603 International Inc.); Optimum TM Intrasect A14-78 Glufosinate tolerance + TC1507 ⁇ Zea mays L. Monsanto Company Glyphosate tolerance + MON88017 (corn, maize) and Dow AgroSciences Coleopteran resistance + LLC Lepidopteran resistance A14-79 Glyphosate tolerance VCO- ⁇ 1981-5 Zea mays L. Genective S. A. (corn, maize)
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the mixture comprising the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the mixture comprising the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant having the insecticidal trait corresponds to a row of table A14, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the mixture comprising 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the mixture comprising 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant having the insecticidal trait corresponds to a row of table A14, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • Insect resistance in particular lepidopteran resistance is of growing importance in GMO crops. Furthermore, it has been found that insects often become resistant to the crops, which have been modified in terms of insect resistance. It has been found that the carboxamide compound I, preferably compound i) of formula (I) are particularly suitable for combating insects, which have become resistant to the crops, which have been modified in terms of insect resistance. In particular, the carboxamide compound I, preferably compound i) of formula (I) may advantageously be applied in soybeans, which have been made resistant to insects.
  • the cultivated plant is soybean, which has been made resistant to lepidoperan insects.
  • the soybean may have been made tolerant to certain herbicides and/or resistant to other insects, and/or the soybean may have been genetically modified otherwise, e.g. in terms of abiotic stress tolerance, altered growth/yield, disease resistance, modified product quality or pollination control system.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the carboxamide compound i) of formula (I), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the carboxamide compound I, preferably compound ii) of formula (Ia), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with a mixture comprising the carboxamide compounds i) and ii), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • Lepidopteran resistance of soybeans is typically achieved by introducing a gene selected from the group consisting of: cry1Ac (gene source: Bacillus thuringiensis subsp. Kurstaki strain H D73), cry1F (gene source: Bacillus thuringiensis var. aizawai ), cry1A.105 (gene source: Bacillus thuringiensis subsp. Kumamotoensis ), cry2Ab2 (gene source: Bacillus thuringiensis subsp. Kumamotoensis ), and combinations thereof.
  • cry1Ac gene source: Bacillus thuringiensis subsp. Kurstaki strain H D73
  • cry1F gene source: Bacillus thuringiensis var. aizawai
  • cry1A.105 gene source: Bacillus thuringiensis subsp. Kumamotoensis
  • cry2Ab2 gene source: Bacillus thuringiensis subsp. Kumamoto
  • the soybeans are additionally modified in terms of glyphosate tolerance by introducing the gene cp4 epsps (aroA:CP4).
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the carboxamide compound i) of formula (I), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the carboxamide compound ii) of formula (Ia), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with a mixture comprising the carboxamide compounds i) and ii), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • the present invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound i) of formula (I), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is
  • the invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (Ia), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is
  • the invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is
  • present invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound i) of formula (I), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is modified by at least one gene according to one row of table D.
  • the invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (Ia), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is modified by at least one gene according to one row of table D.
  • the invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is modified by at least one gene according to one row of table D.
  • Further preferred embodiments of the invention are those methods of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or at their locus of growth with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • Further embodiments of the invention are those methods of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or at their locus of growth with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • Further embodiments of the invention are those methods of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or at their locus of growth with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is teflubenzuron and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is teflubenzuron and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is teflubenzuron and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is chlorfenapyr and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is chlorfenapyr and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is chlorfenapyr and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoy
  • the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl
  • the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)
  • the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is thiamethoxam and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is thiamethoxam and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of 1) a mixture of the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is thiamethoxam and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is fipronil and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is fipronil and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of 1) a mixture of the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is fipronil and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-
  • the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl
  • the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole
  • the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture 1) a mixture of the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]
  • the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene) ⁇ carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole
  • inventions of this invention are methods for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (Ia), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth.
  • inventions of this invention are e.g. methods for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth.
  • the cultivated plant is a plant with at least one property selected from: herbicide tolerance, insect resistance, fungal resistance or viral resistance or bacterial resistance, stress tolerance, maturation alteration, content modification of chemicals present in the cultivated plant, modified nutrient uptake, antibiotic resistance and male sterility compared to the corresponding control plant respectively.
  • a plant with at least one trait of the category herbicide tolerance a plant with at least one trait of the category insect resistance, or a plant with at least two traits, wherein at least one trait is of the category of herbicide tolerance and at least one trait is of the category of insect resistance.
  • the herbicide resistance is preferably selected from the group consisting of glyphosate tolerance, glufosinate tolerance, and imidazolinone tolerance, and is particularly preferably glyphosate tolerance.
  • the insect resistance is preferably selected from the group consisting of lepidoperan resistance and coleopteran resistance, and is particularly preferably lepidopteran resistance.
  • the cultivated plant has at least one trait of the category insect resistance, preferably at least two genes confer insect resistance to the cultivated plant.
  • cultivated plants wherein the cultivated plant is selected from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize), Glycine max L. (soybean), Triticum aestivum (wheat), and Oryza sativa L. (rice), preferably from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize) and Glycine max L. (soybean).
  • the cultivated plant is selected from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize) and Glycine max L. (soybean).
  • cultivated plants preferably are selected:
  • (rice) and comprises at least one gene selected from the group consisting of cry34Ab1, cry35 Ab1, cry3A, cry3Bb1, dvsnf7, mcry3A, cry1A, cry1A.105, cry1Ab, cry1Ab-Ac, cry1Ac, cry1C, cry1F, cry1Fa2, cry2Ab2, cry2Ae, cry9c, mocry1F, pinII, vip3A(a), vip3Aa20.
  • the modification is selected from the events provided in table A14.
  • a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant comprising the application of the carboxamide compound i) of formula (I) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, wherein the glyphosate tolerance is preferably through the expression of the cp4epsps gene, and more preferably based on the transgenic event MON89788, and wherein the lepidopteran resistance is preferably through expression of the Cry1AC encoding gene from B. thuringiensis , preferably against velvetbean caterpillar ( Anticarsia gemmatalis ) and soybean looper ( Pseudoplusia includens ), and more preferably based on the transgenic event MON87701.
  • Another method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant comprising the application of the carboxamide compound ii) of formula (Ia) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, wherein the glyphosate tolerance is preferably through the expression of the cp4epsps gene, and more preferably based on the transgenic event MON89788, and wherein the lepidopteran resistance is preferably through expression of the Cry1AC encoding gene from B. thuringiensis , preferably against velvetbean caterpillar ( Anticarsia gemmatalis ) and soybean looper ( Pseudoplusia includens), and more preferably based on the transgenic event MON87701.
  • Still another method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant comprising the application of a mixture comprising the carboxamide compounds i) and ii) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, wherein the glyphosate tolerance is preferably through the expression of the cp4epsps gene, and more preferably based on the transgenic event MON89788, and wherein the lepidopteran resistance is preferably through expression of the Cry1AC encoding gene from B. thuringiensis , preferably against velvetbean caterpillar ( Anticarsia gemmatalis ) and soybean looper ( Pseudoplusia includens ), and more preferably based on the transgenic event MON87701.
  • the cultivated plant is “Intacta RR2 PRO” soybean (Monsanto), which claims to offer tolerance to glyphosate herbicide and protection against major soybean pests (velvetbean caterpilar, soybean looper, soybean budborer, bean shoot borer, bollworm, corn stalk borer, Helicoverpa , e.g. Helicoverpa armigera ), along with increased yield potential.
  • Major soybean pests velvetbean caterpilar, soybean looper, soybean budborer, bean shoot borer, bollworm, corn stalk borer, Helicoverpa , e.g. Helicoverpa armigera , along with increased yield potential.
  • the carboxamide compound i) of formula (I) is applied to the plant propagation material of the cultivated plant.
  • the plant propagation material are the seeds.
  • the carboxamide compound ii) of formula (Ia) is applied to the plant propagation material of the cultivated plant.
  • the plant propagation material are the seeds.
  • the mixture comprising the carboxamide compounds i) and ii) is applied to the plant propagation material of the cultivated plant.
  • the plant propagation material are the seeds.
  • the carboxamide compound i) of formula (I) is applied in a mixture of (1) the carboxamide compound i) of formula (I), and (2) at least one further pesticidal compound II as component II, wherein the pesiticdal compound II is an insecticide or a fungicide.
  • the carboxamide compound ii) of formula (Ia) is applied in a mixture of (1) the carboxamide compound ii) of formula (Ia), and (2) at least one further pesticidal compound II as component II, wherein the pesiticdal compound II is an insecticide or a fungicide.
  • the carboxamide compound i) of formula (I) is applied in a mixture of (1) a mixture comprising the carboxamide compounds i) and ii) and (2) at least one further pesticidal compound II as component II, wherein the pesiticdal compound II is an insecticide or a fungicide.
  • the mixture of the invention or the carboxamide compound i) of formula (I) may be provided in the form of an agrochemical composition comprising the carboxamide compound i) of formula (I) together with one or more other pesticidal active ingredient(s) and an auxiliary.
  • An agrochemical composition comprises a pesticidally effective amount the carboxamide compound i) of formula (I), a pesticidally effective amount of the carboxamide compound ii) of formula (Ia) or a pesticidally effective amount of the mixture comprising the carboxamide compounds i) and ii).
  • the mixture of the invention or the carboxamide compound ii) of formula (Ia) may be provided in the form of an agrochemical composition comprising the carboxamide compound ii) of formula (Ia) together with one or more other pesticidal active ingredient(s) and an auxiliary.
  • Still other embodiments relate (1) to the mixture of the invention comprising the mixture comprising the carboxamide compounds i) and ii) as well as uses and methods comprising the application of said mixture and (2) to uses and methods comprising the application of the mixture comprising the carboxamide compounds i) and ii) according to the invention.
  • the mixture of the invention or the mixture comprising the carboxamide compounds i) and ii) may be provided in the form of an agrochemical composition comprising the mixture comprising the carboxamide compounds i) and ii) together with one or more other pesticidal active ingredient(s) and an auxiliary.
  • An agrochemical composition comprises a pesticidally effective amount the carboxamide compound i) of formula (I), a pesticidally effective amount of the carboxamide compound ii) of formula (Ia) or a pesticidally effective amount of the mixture comprising the carboxamide compounds i) and ii).
  • compositions comprising the carboxamide compound i) of formula (I), compound ii) of formula (la) or a mixture comprising the carboxamide compounds i) and ii) of the present invention can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
  • agrochemical compositions e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
  • composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g.
  • compositions types are defined in the “Catalogue of pesticide formulation types and international coding system”, Technical Mono-graph No. 2, 6th Ed. May 2008, CropLife International.
  • compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
  • auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
  • Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclo ⁇ hexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g.
  • mineral oil fractions of medium to high boiling point e.g. kerosene, diesel oil
  • oils of vegetable or animal origin oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e. g. toluene, paraffin, tetrahydronaphthalene, alkyl
  • lactates carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
  • Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharide powders, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
  • mineral earths e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide
  • polysaccharide powders e.g. cellulose, starch
  • Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol. 1: Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
  • Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof.
  • sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyl ⁇ naphthalenes, sulfosuccinates or sulfosuccinamates.
  • Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters.
  • Examples of phosphates are phosphate esters.
  • Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
  • Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof.
  • alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents.
  • Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.
  • N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
  • esters are fatty acid esters, glycerol esters or monoglycerides.
  • sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides.
  • polymeric surfactants are homo- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate.
  • Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines.
  • Suitable amphoteric surfactants are alkylbetains and imidazolines.
  • Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B—C type comprising alkanol, polyethylene oxide and polypropylene oxide.
  • Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.
  • Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the active ingredients(s) on the target.
  • examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
  • Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
  • Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.
  • Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
  • Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
  • Suitable colorants are pigments of low water solubility and water-soluble dyes.
  • examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).
  • Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
  • composition types and their preparation are:
  • 10-60 wt % of the pesticidal active compound(s), and 5-15 wt % wetting agent e.g. alcohol alkoxylates
  • a water-soluble solvent e.g. alcohols
  • dispersant e. g. polyvinylpyrrolidone
  • organic solvent e.g. cyclohexanone
  • emulsifiers e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • water-insoluble organic solvent e.g. aromatic hydrocarbon
  • Emulsions (EW, EO, ES)
  • emulsifiers e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • 20-40 wt % water-insoluble organic solvent e.g. aromatic hydrocarbon
  • 20-60 wt % of the pesticidal active compound(s) are comminuted with addition of 2-10 wt % dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1-2 wt % thickener (e.g. xanthan gum) and up to 100 wt % water to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance.
  • dispersants and wetting agents e.g. sodium lignosulfonate and alcohol ethoxylate
  • 0.1-2 wt % thickener e.g. xanthan gum
  • 50-80 wt % of the pesticidal active compound(s) are ground finely with addition of up to 100 wt % dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants and wetting agents e.g. sodium lignosulfonate and alcohol ethoxylate
  • 50-80 wt % of the pesticidal active compound(s) are ground in a rotor-stator mill with ad-dition of 1-5 wt % dispersants (e.g. sodium lignosulfonate), 1-3 wt % wetting agents (e.g. alcohol ethoxylate) and up to 100 wt % solid carrier, e.g. silica gel. Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants e.g. sodium lignosulfonate
  • wetting agents e.g. alcohol ethoxylate
  • solid carrier e.g. silica gel
  • the pesticidal active compound(s) are comminuted with addition of 3-10 wt % dispersants (e.g. sodium lignosulfonate), 1-5 wt % thickener (e.g. carboxymethylcellulose) and up to 100 wt % water to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.
  • dispersants e.g. sodium lignosulfonate
  • 1-5 wt % thickener e.g. carboxymethylcellulose
  • 5-20 wt % of the pesticidal active compound(s) are added to 5-30 wt % organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt % surfactant blend (e.g. alkohol ethoxylate and arylphenol ethoxylate), and water up to 100%. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
  • organic solvent blend e.g. fatty acid dimethylamide and cyclohexanone
  • surfactant blend e.g. alkohol ethoxylate and arylphenol ethoxylate
  • An oil phase comprising 5-50 wt % of the pesticidal active compound(s), 0-40 wt % water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt % acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radi-cal initiator results in the formation of poly(meth)acrylate microcapsules.
  • an oil phase comprising 5-50 wt % of the pesticidal active compound(s), 0-40 wt % water insoluble organic solvent (e.g.
  • an isocyanate monomer e.g. diphenylme-thene-4,4′-diisocyanatae
  • a protective colloid e.g. polyvinyl alcohol
  • the addition of a polyamine results in the for-mation of a polyurea microcapsule.
  • the monomers amount to 1-10 wt %.
  • the wt % relate to the total CS composition.
  • Dustable powders (DP, DS)
  • 1-10 wt % of pesticidal active compound(s), are ground finely and mixed intimately with up to 100 wt % solid carrier, e.g. finely divided kaolin.
  • 0.5-30 wt % of v is ground finely and associated with up to 100 wt % solid carrier (e.g. silicate).
  • Granulation is achieved by extrusion, spray-drying or the fluidized bed.
  • 1-50 wt % of pesticidal active compound(s), are dissolved in up to 100 wt % organic solvent, e.g. aromatic hydrocarbon.
  • compositions types i) to xi) may optionally comprise further auxiliaries, such as 0.1-1 wt % bactericides, 5-15 wt % anti-freezing agents, 0.1-1 wt % anti-foaming agents, and 0.1-1 wt % colorants.
  • auxiliaries such as 0.1-1 wt % bactericides, 5-15 wt % anti-freezing agents, 0.1-1 wt % anti-foaming agents, and 0.1-1 wt % colorants.
  • the agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and most preferably between 0.5 and 75%, by weight of active substance.
  • the active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • oils, wetters, adjuvants, fertilizer, or micronutrients, and other pesticides may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix).
  • pesticides e.g. herbicides, insecticides, fungicides, growth regulators, safeners
  • These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.
  • the user applies the composition according to the invention usually from a predosage de-vice, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
  • the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
  • 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
  • composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
  • either individual components of the composition according to the invention or partially premixed components, e.g. components comprising pesticidal active compound(s), may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate.
  • either individual components of the composition according to the invention or partially premixed components, e. g. components comprising pesticidal active compound(s), can be applied jointly (e.g. after tank mix) or consecutively.
  • Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, suspoemulsions (SE), powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pregerminated the latter. Preferably, the formulations are applied such that germination is not included.
  • the active substance concentrations in ready-to-use formulations are preferably from 0.01 to 60% by weight, more preferably from 0.1 to 40% by weight.
  • a FS formulation is used for seed treatment.
  • a FS formulation may comprise 1-800 g/l of active ingredient, 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
  • Especially preferred FS formulations of the compound I, preferably compound i) of formula (I), for seed treatment usually comprise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient, from 0.1 to 20% by weight (1 to 200 g/l) of at least one surfactant, e.g. 0.05 to 5% by weight of a wetter and from 0.5 to 15% by weight of a dispersing agent, up to 20% by weight, e.g. from 5 to 20% of an anti-freeze agent, from 0 to 15% by weight, e.g. 1 to 15% by weight of a pigment and/or a dye, from 0 to 40% by weight, e.g.
  • a binder optionally up to 5% by weight, e.g. from 0.1 to 5% by weight of a thickener, optionally from 0.1 to 2% of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1% by weight and a filler/vehicle up to 100% by weight.
  • the application rates of the carboxamide compound i) of formula (I), of the carboxamide compound ii) of formula (Ia) or of a mixture comprising the carboxamide compounds i) and ii), are generally from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, more preferably from 1 g to 1000 g per 100 kg of seed and in particular from 1 g to 200 g per 100 kg of seed, e.g. from 1 g to 100 g or from 5 g to 100 g per 100 kg of seed.
  • the invention therefore also relates to seed comprising one of the carboxamide compound i) of formula (I), the carboxamide compound ii) of formula (Ia) or the mixture comprising the carboxamide compounds i) and ii).
  • the amount of the carboxamide compound i) of formula (I), the carboxamide compound ii) of formula (Ia) or the mixture comprising the carboxamide compounds i) and ii) will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed. For specific crops such as lettuce the rate can be higher.
  • the present invention may be illustrated by the following example.
  • the interaction between the carboxamide compound of the present invention (or compositions comprising it) and the cultivated plant may be evaluated in different test systems. As well for the comparison to non-cultivated plants or to mixtures (comprising the carboxamide compound) synergism may be shown.
  • Synergism can be described as an interaction where the combined effect of two or more compounds is greater than the sum of the individual effects of each of the compounds.
  • the presence of a synergistic effect in terms of percent control, between two mixing partners (X and Y) can be calculated using the Colby equation (Colby, S. R., 1967, Calculating Synergistic and Antagonistic Responses in Herbicide Combinations, Weeds, 15, 20-22):
  • B1 Test on cultivated soybeans Trial is carried out under greenhouse conditions on soybean (genetically modified plant variety, e.g. roundup, growth stage 109). 12 treatments are compared in a complete randomized blocks (4 replications) with plot size of 1 m ⁇ 3 meters. Only selected plants are considered for artificial infestation and evaluations. Due to glyphosate timing for application on such cultivated soybeans, all treatments are applied in older plants (GS 109) otherwise a significant phytotoxicity is expected. Application is done, using 400 l/ha. All treatments are applied using a CO2 backpack (nozzle type TXVK-10). Temperature at the time of applications is around 25 to 30° C. and air humidity is between 30 and 100%. Soil condition is e.g.
  • R4 (when ⁇ 75% of surface is dried up) and the moisture is moist (normal).
  • Roundup Original® (Glyfosate-sal isopropilamina @360 g/L) is used in the rate of 867 g a.i./ha. Artificial infestation is done one day after the application.
  • the species used is Anticarsia gemmatalis (Hübner) [ Thermesia elegantula (Herrich-Schaffer, 1869)], Noctuidae. 5 plants/plot are infested with 3 larvae (stage L2) using an entomological metallic tweezers, totaling 15 larvae per repetition. Larvae used in this trial are e.g.

Abstract

Described herein are agricultural methods for controlling pests on and/or increasing the plant health of a cultivated plant, with at least one modification, using a pesticidal carboxamide compound or a mixtures thereof. In particular, methods of controlling harmful insects, which are resistant to an insecticidal trait of the plant, are provided. In addition, the use of a pesticidal carboxamide compound or mixtures thereof for protecting a plant, plant propagation material, seeds or the locus of growth, against the attack or infestation by pests, wherein the plant has been modified by mutagenesis or genetic engineering, and for controlling pests that are resistant to an insecticidal trait of the plant are described.

Description

  • In a first aspect, the present invention relates to a method for controlling pests on and/or increasing the plant health of a cultivated plant with at least one modification (hereinafter abbreviated as “cultivated plant”) as compared to a respective non-modified control plant.
  • The method comprises the application of a pesticidal carboxamide compound (alone or in the form of a mixture comprising such pesticidal carboxamide compound) to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth.
  • In a further aspect, the present invention relates to a method for controlling pests and/or increasing the plant health of a cultivated plant with at least one modification as compared to the respective non-modified control plant, comprising the application of an pesticidal carboxamide compound (again, alone or in the form a mixture comprising such pesticidal carboxamide compound) to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth, wherein said cultivated plant is selected from a group of certain plants with specific modifications as defined further below.
  • The methods of the invention relating to cultivated plants are particularly suitable for efficiently controlling arthropodal pests such as arachnids, myriapedes and insects as well as nematodes on cultivated plants. Preferably, the term pests embrace animal pests (such as insects, acarids or nematodes). Relevant animal pests of different genera and species are provided further below.
  • In another aspect, the present invention relates to the use of a pesticidal carboxamide compound alone or in the form of a pesticidal mixture comprising such pesticidal carboxamide compound for protecting a cultivated plant, modified plant propagation material, or its locus of growth, against the attack or infestation by pests.
  • In still another aspect, the present invention relates to the use of a pesticidal carboxamide compound in pesticidally effective amounts for protecting cultivated plants from row crops such as cotton, corn or soybean plants, the plant propagation material thereof or their locus of growth.
  • In still another aspect, the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of an pesticidal carboxamide compound to a row crop plant (such as corn, cotton or soybean plant), the plant propagation material thereof or at its locus of growth, also on the pests or their food supply, habitat or breeding grounds.
  • In still another aspect, the present invention relates to the method of application or the use of a pesticidal carboxamide compound in pesticidally effective amounts for protecting cultivated plants from row crops such as cotton, corn or soybean plants, the plant propagation material thereof or their locus of growth from the infestions by pests, wherein the pests are selected from the orders of Lepidoptera, Coleoptera or Thysanoptera, and combinations thereof.
  • In yet another aspect, the present invention relates to the use of an pesticidal carboxamide compound in pesticidally effective amounts for protecting a soybean plant, the plant propagation material thereof, or its locus of growth, against the attack or infestation by pests selected from the group consisting of Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera eridania, Spodoptera frugiperda, and combinations thereof.
  • In yet another aspect, the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of an pesticidal carboxamide compound to a soybean plant, the plant propagation material thereof or its locus of growth; the pests or their food supply, habitat or breeding grounds, wherein the pests are selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera eridania, Spodoptera frugiperda, and combinations thereof.
  • Pests, in particular insects from the order of Lepidoptera, destroy growing and harvested crops and attack wooden dwelling and commercial structures, thereby causing large economic loss to the food supply and to property. A particular important threat in connection with Lepidoptera, particular leaf eating caterpillars, is defoliation of the plants, which typically results in a decrease of the yield. In connection with soybean, it has e.g. been found that, when the pods begin to form and fill out, any foliage loss greater than 20% will decrease the yield (G. Andrews et al., Insect control guides for cotton, soybeans, corn, grain sorghum, wheat, sweet potatoes and pastures, Mississippi State University Extension Service, Publication 2471, 64 pp. (2009)).
  • It is known in the art that row crops, such as wheat, maize, rice, soybean, and cotton, in particular soybean, are particularly vulnerable in terms of the attack or infestation by Lepidoptera selected from the group consisting of Anticarsia (=Thermesia) spp., Chrysodeixis (=Pseudoplusia) spp., Helicoverpa spp., and Spodoptera (=Lamphygma) spp. The most important species include Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), Helicoverpa armigera (=Heliothis armigera), Spodoptera frugiperda, Spodoptera eridania, and Spodoptera cosmioides.
  • The relevance of Anticarsia gemmatalis, Pseudoplusia includens, Spodoptera frugiperda, Spodoptera eridania, and Spodoptera cosmioides for defoliation of soybean genotypes is analyzed by R. C. O. de Freitas Bueno et al. in Pest Manag. Sci. 2011; 67: 170-174. It is said therein that Anticarsia gemmatalis was originally the most important defoliator insect occurring on soybean crops, but that nowadays Pseudoplusia includens, Spodoptera frugiperda, Spodoptera eridania, and Spodoptera cosmioides are also considered to be key pests by Brazilian soybean growers.
  • In recent years, there were also numerous reports in the media regarding the growing threat of Helicoverpa armigera to Brazilian cotton, corn and soybean crops.
  • According to O. Bernardi et al. (Crop Protection 2014; 58: 33-40), it has been observed that Spodoptera frugiperda, Spodoptera eridania, and Spodoptera cosmioides have caused significant damage on soybean in Brazil. It has been found that these Spodoptera species also have a low susceptibility to genetically modified soybeans expressing cry1Ac protein. It is concluded that the cry1Ac expressing soybeans show poor control of these Spodoptera species, and that, consequently, other control tactics must be used in combination with MON 87701 x MON 89788 soybean in the field for the efficient management of these Spodoptera species.
  • Similar problems are to be expected in connection with genetically modified soybeans expressing cry1F or a combination of cry1F and cry1Ac (e.g. DAS 81419) for the reason that cry1F in many species interacts with the known receptor for cry1Ac indicating a similar insecticidal activity, which may contribute to cross-resistance to both toxins (Center for Environmental Risk Assessment, ILSI Research Foundation, Washington D.C., USA, 2013: “A Review of the Environmental Safety of the Cry1F Protein”).
  • Accordingly, there is an acute need for pesticides and pesticidal mixtures for controlling the above mentioned pests on the above mentioned row crops, including plants, which have been modified by mutagenesis or genetic engineering, and plants, which have not been modified by mutagenesis or genetic engineering. In particular, there is a need for pesticides and pesticidal mixtures for controlling the above mentioned pests on row crops, which have been modified by mutagenesis or genetic engineering, in particular on soybean plants, which have been modified by mutagenesis or genetic engineering.
  • It is therefore an object of the present invention to provide a pesticidal mixture, which is suitable for controlling pests, in particular from the orders of Lepidoptera, Coleoptera or Thysanoptera, preferably Lepidoptera and more preferably any one of the above mentioned Lepidoptera genera and species, or combinations thereof, which are of particular relevance in connection with wheat, maize, rice, soybean, and cotton plants. And in particular in connection with soybean plants, especially in connection with soybean plants, which have been modified by mutagenesis or genetic engineering, e.g. insect resistant soybeans expressing cry1Ac, cry1F, or a combination thereof.
  • In this connection, it is also an object of the invention to provide a pesticidal compound or a pesticidal mixture, which overcome insect resistance problems in connection with the herein mentioned pests. As used herein, the term “insect resistance” refers to insect resistance against other pesticides and pesticidal mixtures or insect resistance against an insecticidal trait of a plant.
  • Furthermore, it is an object of the invention to provide a pesticidal mixture, which can be applied in lower dosage rates compared to other pesticides and pesticidal mixtures in order to avoid unfavorable environmental or toxicological effects.
  • With regard to the pests Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), Helicoverpa armigera (=Heliothis armigera), Spodoptera cosmioides, Spodoptera eridania, and Spodoptera frugiperda, which are typically present on soybeans, it is another object of the present invention to provide pesticides, which are suitable for selective pest control, if infestation with one or more of these pests occurs.
  • The above objects may be achieved by a pesticidal active carboxamide compound, and the uses and methods comprising the application of said compound as defined hereinafter.
  • It has surprisingly been found that the pesticidal mixture according to the invention is suitable for controlling the above mentioned pests, in particular Anticarsia (=Thermesia) spp., Chrysodeixis (=Pseudoplusia) spp., Helicoverpa spp., and Spodoptera (=Lamphygma) spp., especially Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), Helicoverpa armigera (=Heliothis armigera), Spodoptera frugiperda, Spodoptera eridania, and Spodoptera cosmioides. Accordingly, plants selected from wheat, maize, rice, soybean, and cotton plants, in particular soybean plants may effectively be protected against defoliation by these pests, and a decrease of the yields can thus be prevented. In this connection, it is an important advantage of the method according to the present invention that the method is also suitable for controlling the above mentioned pests, if they have become resistant against conventional pesticides or pesticidal mixtures, or against the insecticidal trait of a plant.
  • Furthermore, it has been found that the development of a resistance against the insecticidal trait of a plant can be prevented, if the plants are treated with the pesticidal carboxamide compound of the invention. Moreover, the method according to the invention is suitable for controlling pests, against which the insecticidal trait of a plant is not effective, so that a complementary insecticidal activity can advantageously be used.
  • It is another advantage of the pesticidal method according to the present invention that the carboxamide compound and its mixtures can be applied in lower dosage rates compared to other pesticides and pesticidal mixtures.
  • Furthermore, there are special interests in connection with cultivated plants with at least one modification.
  • It has been observed that cultivated plants with at least one modification, for example a modification providing herbicide tolerance, are more susceptible to attack or infestation by pests than plants, which have not been modified.
  • Furthermore, it has been observed that cultivated plants with a modification, which provides insect resistance, can be particularly susceptible to certain pests against which the produced toxin is not effective. Moreover, the pests can develop resistance against the toxin, which is produced by the plant.
  • Accordingly, there is a need for pesticides and pesticidal mixtures for controlling pests on cultivated plants with at least one or even more modifications.
  • In this connection, it is also an object of the invention to provide a pesticide or pesticidal mixture, which is suitable for controlling pests, which are resistant to the insecticidal trait of the cultivated plant. It is another object of the invention to provide a pesticide or pesticidal mixture, which prevents pests to become resistant to the insecticidal trait of the cultivated plant.
  • Furthermore, it is an object of the invention to provide a pesticide or pesticidal mixture, which can be applied in lower dosage rates compared to other pesticides and pesticidal mixtures in order to avoid unfavorable environmental or toxicological effects.
  • It is yet another object of the invention to provide a pesticide or pesticidal mixture, which improves the health of a plant, a process which is commonly and hereinafter referred to as “plant health”. The term plant health comprises various sorts of improvements of plants that are not connected to the control of pests and which do not embrace the reduction of negative consequences of harmful insects. The term “plant health” is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e.g. increased biomass and/or increased content of valuable ingredients), plant vigor (e.g. improved plant growth and/or greener leaves (“greening effect”), quality (e.g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress. The above identified indicators for the health condition of a plant may be interdependent or may result from each other.
  • It has been found that the above objects can be achieved by methods applying or the use of a pesticidal active carboxamide compound I selected from
  • i) compound i) of formula (I)
  • Figure US20190021322A9-20190124-C00001
  • ii) compound ii) of formula (Ia)
  • Figure US20190021322A9-20190124-C00002
  • iii) mixtures comprising the carboxamide compounds i) and ii),
      • or the tautomers, enantiomers, diastereomers or salts thereof,
      • alone or in mixtures comprising such pesticidal active carboxamide compound.
  • Preferred methods and uses according to of this invention comprise compound i) of formula (I) as pesticidal active carboxamide compound I. Preferred embodiments of this invention are the methods or the use of the pesticidal active carboxamide compound i) of formula (I) or the tautomers, enantiomers, diastereomers or salts thereof, alone or in mixtures comprising such pesticidal active carboxamide compound.
  • Other embodiments of this invention are the methods or the use of the pesticidal active carboxamide compound ii) of formula (Ia) or the tautomers, enantiomers, diastereomers or salts thereof, alone or in mixtures comprising such pesticidal active carboxamide compound.
  • Still other embodiments of this invention are the methods or the use of pesticidal active mixtures comprising the carboxamide compounds i) of formula (I) and ii) of formula (Ia) or the tautomers, enantiomers, diastereomers or salts thereof, alone or in mixtures comprising such pesticidal active carboxamide compound mixtures.
  • Unless explicitly said otherwise, the terms “compound i) of formula (I)”, “compound (ii) of formula (la), or “mixture comprising the carboxamide compounds (i) and (ii)” also include the respective salts, tautomers, stereoisomers, and N-oxides of the carboxamide compounds.
  • In case of certain cultivated plants, the above objects may be achieved by the use or application of the pesticidal active carboxamide compound I, preferably compound i) of formula (I) alone. The application of the pesticidal active carboxamide compound I, preferably compound i) of formula (I) as only one active agent can be advantageous in terms of practicability and also in connection with insect resistance management.
  • It has furthermore been found that the above objects can be achieved by a pesticidal mixture comprising the pesticidal active carboxamide compound I, preferably compound i) of formula (I) and another pesticidal active ingredient, whereas the uses and methods comprising the application of said mixture as defined hereinafter.
  • In case that the pesticidal effectiveness of the pesticidal mixture of the invention as well as of the pesticidal active carboxamide compound I, preferably compound i) of formula (I) alone can be enhanced by the insecticidal trait of the plant, this may be considered as a synergistic effect.
  • The application of a mixture comprising pesticidal active carboxamide compound I, preferably compound i) of formula (I), including the simultaneous, that is joint or separate, application of pesticidal active carboxamide compound I, preferably compound i) of formula (I) and the other pesticidal active ingredient or their successive application on cultivated plants may allow enhanced control of animal pests, compared to the control rates that are possible by application on non-cultivated plants.
  • For certain plants with specific modifications as described herein after, the use of the pesticidal active carboxamide compound I, preferably compound i) of formula (I), alone may also display a synergistic effect between the trait of the cultivated plant and the applied pesticidal active carboxamide compound I, preferably compound i) of formula (I). For these plants with specific modifications, also the mixture comprising pesticidal active carboxamide compound I, preferably compound i) of formula (I), and another pesticidal active compound may advantageously be used.
  • As mentioned above, the pesticidal active carboxamide compound I, preferably compound i) of formula (I), or a mixture comprising such pesticidal active carboxamide compound I, preferably compound i) of formula (I), may be useful in methods of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth, wherein the plant has at least one insecticidal trait, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • The carboxamide compound I
  • Carboxamide derivatives showing generally pesticidal activity have been described previously. WO200573165 and WO2010018714 describe carboxamide compounds, their preparation and their use as pest control agents. WO2007013150, JP2011-157294, JP2011-157295 and JP2011-157296 describe mixtures of carboxamides with other active ingredients.
  • Preparation of the pesticidal active carboxamide compound I, preferably compound i) of formula (I), can further be accomplished according to standard methods of organic chemistry, e.g. by the methods or working examples described in WO 2010/018857 without being limited to the routes given therein.
  • The carboxamide compound i) of formula (I), which has been provisionally approved under the common name broflanilide, has been described in combination with fungicidal active compounds in PCT/EP2014/072189 or with insecticidal active compounds in PCT/EP2014/072183.
  • However, methods and uses applying the pesticidal carboxamide compound I, preferably compound i) of formula (I), on cultivated plant, alone or in combination with selected other pesticidal active ingredients, have not been described previously.
  • The prior art does not disclose such methods and uses of the pesticidal carboxamide compound I, preferably compound i) of formula (I), or pesticidal mixtures comprising such selected carboxamide compound on cultivated plant showing unexpected results.
  • The carboxamide compound I, preferably the compound i) of formula (I), includes its tautomers, racemic mixtures, individual pure enantiomers and diasteroemers and the optically active mixtures.
  • Pests
  • The carboxamide compound i) of formula (I) is especially suitable for efficiently combating animal pests such as arthropods, gastropods and nematodes including but not limited to: insects from the order of Lepidoptera, for example Achroia grisella, Acleris spp. such as A. fimbriana, A. gloverana, A. variana; Acrolepiopsis assectella, Acronicta major, Adoxophyes spp. such as A. cyrtosema, A. orana; Aedia leucomelas, Agrotis spp. such as A. exclamationis, A. fucosa, A. ipsilon, A. orthogoma, A. segetum, A. subterranea; Alabama argillacea, Aleurodicus dispersus, Alsophlla pometaria, Ampelophaga rubiginosa, Amyelolis transitella, Anacampsis sarcitella, Anagasta kuehniella, Anarsia lineatella, Anisota senatoria, Antheraea pemyi, Anticarsia (=Thermesia) spp. such as A. gemmatalis; Apamea spp., Aproaerema modicella, Archips spp. such as A. argyrospila, A. fuscocupreanus, A. rosana, A. xyloseanus; Argyresthia conjugelia, Argyroploce spp., Argyrotaenia spp. such as A. velutinana; Athetis mindara, Austroasca viridigrisea, Autographa gamma, Autographa nigrisigna, Barathra brassicae, Bedellia spp., Bonagota salubricola, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Cacoecia spp. such as C. murinana, C. podana; Cactoblastis cactorum, Cadra cautella, Calingo braziliensis, Calopas theivora, Capua reticulana, Carposina spp. such as C. niponensis, C. sasald; Cephus spp., Chaetocnema aridula, Cheimatobia brumata, Chilo spp. such as C. lndicus, C. suppressalis, C. partellus; Choreutis pariana, Choristoneura spp. such as C. conflictana, C. fumiferana, C. longicellana, C. murinana, C. occidentalis, C. rosaceana; Chrysodeixis (=Pseudoplusia) spp. such as C. eriosoma, C. includens; Cirphis unipuncta, Clysia ambiguella, Cnaphalocerus spp., Cnaphalocroclis medinalis, Cnephasia spp., Cochyllis hospes, Coleophora spp., Colias eurytheme, Conopomorpha spp., Conotrachelus spp., Copitarsia spp., Corcyra cephalonica, Crambus caliginosellus, Crambus teterrellus, Crocidosema (=Epinotia) aporema, Cydalima (=Diaphania) perspectalis, Cydia (=Carpocapsa) spp. such as C. pomonella, C. latiferreana; Dalaca noctuides, Datana integerrima, Dasychira pinicola, Dendrolimus spp. such as D. pini, D. spectabllis, D. sibiricus; Desmia funeralis, Diaphania spp. such as D. nitidalis, D. hyalinata; Diatraea grandiosella, Diatraea saccharalis, Diphthera festiva, Earias spp. such as E. insulana, E. vittella; Ecdytolopha aurantianu, Egira (=Xylomyges) curialis, Elasmopalpus lignosellus, Eldana saccharin, Endopiza viteana, Ennomos subsignaria, Eoreuma lofiini, Ephestia spp. such as E. cautella, E. elutella, E. kuehniella; Epinotia aporema, Epiphyas postvittana, Erannis tiliaria, Erionota thrax, Etiella spp., Eulia spp., Eupoecilia ambiguella, Euproct chrysorrhoea, Euxoa spp., Evetria bouliana, Faronta albilinea, Feltia spp. such as F. subterranean; Galleria mellonella, Gracillaria spp., Grapholita spp. such as G. funebrana, G. moiesta, G. inopinata; Halysidota spp., Harrisina americana, Hedylepta spp., Helicoverpa spp. such as H. armigera (=Heliothis armigera), H. zea (=Heliothis zea); Heliothis spp. such as H. assulta, H. subflexa, H. virescens; Hellula spp. such as H. undalis, H. rogatalis; Helocoverpa gelotopoeon, Hemlleuca oliviae, Herpetogramma licarsisalis, Hibernia defoliaria, Hofmannophlla pseudospretella, Homoeosoma electellum, Homona magnanima, Hypena scabra, Hyphantria cunea, Hyponomeuta padella, Hyponomeuta malinellus, Kakivoria flavofasciata, Keiferia lycopersicella, Lambdina fiscellaria fiscellaria, Lambdina fiscellaria lugubrosa, Lamprosema indicata, Laspeyresia molesta, Leguminivora glycinivorella, Lerodea eufala, Leucinodes orbonalis, Leucoma salicis, Leucoptera spp. such as L. coffeella, L. scitella; Leuminivora lycinivorella, LithocollenS blancardella, Lithophane antennata, Llattia octo (=Amyna axis), Lobesia botrana, Lophocampa spp., Loxagrotis albicosta, Loxostege spp. such as L. sticticalis, L. cereralis; Lymantria spp. such as L. dispar, L. monacha; Lyonetia clerkella, Lyonetia prunifoliella, Malacosoma spp. such as M. americanum, M. californicum, M. constrictum, M. neustria; Mamestra spp. such as M. brassicae, M. configurata; Mamstra brassicae, Manduca spp. such as M. quinquemaculata, M. sexta; Marasmia spp, Marmara spp., Maruca testulalis, Megalopyge Janata, Melanchra picta, Melanitis leda, Mocis spp. such as M. lapites, M. repanda; Mocis latipes, Monochroa fragariae, Mythimna separata, Nemapogon cloacella, Neoleucinodes elegantalis, Nepytia spp., Nymphula spp., Oiketicus spp., Omiodes indicata, Omphisa anastomosalis, Operophtera brumata, Orgyia pseudotsugata, Oria spp., Orthaga thyrisalis, Ostrinia spp. such as O. nubilalis; Oulema oryzae, Paleacrita vernata, Panolis flammea, Parnara spp., Papaipema nebris, Papllio cresphontes, Paramyelois transitella, Paranthrene regalis, Paysandisia archon, Pectinophora spp. such as P. gossypiella; Peridroma saucia, Perileucoptera spp., such as P. coffeella; Phalera bucephala, Phryganidia californica, Phthorimaea spp. such as P. operculella; Phyllocnistis citrella, Phyllonorycter spp. such as P. blancardella, P. crataegella, P. issikii, P. ringoniella; Pieris spp. such as P. brassicae, P. rapae, P. napi; Pllocrocis tripunctata, Plathypena scabra, Platynota spp. such as P. flavedana, P. idaeusalis, P. stultana; Platyptllia carduidactyla, Plebejus argus, Plodia interpunctella, Plusia spp, Plutella maculipennis, Plutella xylostella, Pontia protodica, Prays spp., Prodenia spp., Proxenus lepigone, Pseudaletia spp. such as P. sequax, P. unipuncta; Pyrausta nubllalis, Rachiplusia nu, Richia albicosta, Rhizobius ventrals, Rhyacionia frustrana, Sabulodes aegrotata, Schizura concinna, Schoenobius spp., Schreckensteinia festaliella, Scirpophaga spp. such as S. incertulas, S. innotata; Scotia segetum, Sesamia spp. such as S. inferens, Seudyra subflava, Sitotroga cerealella, Sparganothis pilleriana, Spllonota lechriaspis, S. ocellana, Spodoptera (=Lamphygma) spp. such as S. cosmoides, S. eridania, S. exigua, S. frugiperda, S. latisfascia, S. littoralis, S. litura, S. omithogalli; Stigmella spp., Stomopteryx subsecivella, Strymon bazochii, Sylepta derogata, Synanthedon spp. such as S. exitiosa, Tecia solanivora, Telehin licus, Thaumatopoea pityocampa, Thaumatotibia (=Cryptophlebia) leucotreta, Thaumetopoea pityocampa, Thecla spp., Theresimima ampelophaga, Thyrinteina spp, Tildenia inconspicuella, Tinea spp. such as T. cloacella, T. pellionella; Tineola bisselliella, Tortrix spp. such as T. viridana; Trichophaga tapetzella, Trichoplusia spp. such as T. ni; Tuta (=Scrobipalpula) absoluta, Udea spp. such as U. rubigalis, U. rubigalis; Virachola spp., Yponomeuta padella, and Zeiraphera canadensis;
  • insects from the order of Coleoptera, for example Acalymma vittatum, Acanthoscehdes obtectus, Adoretus spp., Agelastica alni, Agrilus spp. such as A. anxius, A. planipennis, A. sinuatus; Agriotes spp. such as A. fuscicollis, A. lineatus, A. obscurus; Alphitobius diaperinus, Amphimallus solstitialis, Anisandrus dispar, AmSoplia austriaca, Anobium punctatum, Anomala corpulenta, Anomala rufocuprea, Anoplophora spp. such as A. glabripennis; Anthonomus spp. such as A. eugenil, A. grandis, A. pomorum; Anthrenus spp., Aphthona euphoridae, Apion spp., Apogonia spp., Athous haemorrhoidalis, Atomaria spp. such as A. linearis; Attagenus spp., Aulacophora femoralis, Blastophagus piniperda, Blitophaga undata, Bruchidius obtectus, Bruchus spp. such as B. lentis, B. pisorum, B. rufimanus; Bycfiscus betulae, Callidiellum rufipenne, Callopistria floridensis, Callosobruchus chinensis, Cameraria ohridella, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthorhynchus spp. such as C. assimllis, C. napi; Chaetocnema tibialis, Cleonus mendicus, Conoderus spp. such as C. vespertinus; Conotrachelus nenuphar, Cosmopolites spp., Costelytra zealandica, Criocenis asparagi, Cryptolestes ferrugineus, Cryptorhynchus lapathl, Ctenicera spp. such as C. destructor; Curculio spp., Cylindrocopturus spp., Cyclocephala spp., Dactylispa balyi, Dectes texanus, Dermestes spp., Diabrotica spp. such as D. undecimpunctata, D. speciosa, D. longicornis, D. semipunctata, D. virgifera; Diaprepes abbreviates, Dichocroais spp., Dicladispa armigera, Diloboderus abderus, Diocalandra frumenfi (Diocalandra stigmaticollis), Enaphalodes rufulus, Epilachna spp. such as E. varivestis, E. vigintioctomaculata; Epitrix spp. such as E. hirtipennis, E. simllaris; Eutheola humilis, Eutinobothrus brasiliensis, Faustinus cubae, Gibbium psylloides, Gnathocerus cornutus, Hellula undalis, Heteronychus arator, Hylamorpha elegans, Hylobius abietis, Hylotrupes bajulus, Hypera spp. such as H. brunneipennis, H. postica; Hypomeces squamosus, Hypothenemus spp., lps typographus, Lachnosterna consanguinea, Lasioderma serricome, Latheticus oryzae, Lathridius spp., Lema spp. such as L. bilineata, L. melanopus; Leptinotarsa spp. such as L. decem lineata; Leptispa pygmaea, Limonius californicus, Lissorhoptrus olyzophllus, Lixus spp., Luperodes spp., Lyctus spp. such as L. bruneus; Liogenys fuscus, Macrodactylus spp. such as M. subspinosus; Maladera matrida, Megaplatypus mutates, Megascells spp., Melanotus communis, Meligethes spp. such as M. aeneus; Melolontha spp. such as M. hippocastani, M. melolontha; Metamasius hemipterus, Microtheca spp., Migdolus spp. such as M. fryanus, Monochamus spp. such as M. altematus; Naupactus xanthographus, Niptus hololeucus, Oberia brevis, Oemona hirta, Oryctes rhinoceros, Oryzaephilus surinamensis, Oryzaphagus oryzae, Otiorrhynchus sulcatus, Otiorrhynchus ovatus, Otiorrhynchus sulcatus, Oulema melanopus, Oulema oryzae, Oxycetonia jucunda, Phaedon spp. such as P. brassicae, P. cochleariae; Phoracantha recurva, Phyllobius pyri, Phyllopertha horticola, Phyllophaga spp. such as P. helleri; Phyllotreta spp. such as P. chrysocephala, P. nemorum, P. striolata, P. vittula; Phyllopertha horticola, Popillia japonica, Premnotrypes spp., Psacothea hilaris, Psylliodes chrysocephala, Prostephanus truncates, Psylliodes spp., Ptinus spp., Pulga saltona, Rhizopertha dominica, Rhynchophorus spp. such as R. billineatus, R. ferrugineus, R. palmarum, R. phoenicis, R. vulneratus; Saperda candida, Scolytus schevyrewi, Scyphophorus acupunctatus, Sitona lineatus, Sitophilus spp. such as S. granaria, S. oryzae, S. zeamais; Sphenophorus spp. such as S. Levis; Stegobium paniceum, Sternechus spp. such as S. subsignatus; Strophomorphus ctenotus, Symphyletes spp., Tanymecus spp., Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp. such as T. castaneum; Trogoderma spp., Tychius spp., Xylotrechus spp. such as X. pyrrhoderus; and, Zabrus spp. such as Z. tenebrioides;
  • insects from the order of Diptera for example Aedes spp. such as A. aegypti, A. albopictus, A. vexans; Anastrepha ludens, Anopheles spp. such as A. albimanus, A. crucians, A. freeborni, A. gambiae, A. leucosphyrus, A. maculipennis, A. minimus, A. quadrimaculatus, A. sinensis; Bactrocera invadens, Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chrysomyia spp. such as C. bezziana, C. hominivorax, C. macellaria; Chrysops atlanticus, Chrysops Chrysops sllacea, Cochliomyia spp. such as C. hominivorax; Contarinia spp. such as C. sorghicola; Cordylobia anthropophaga, Culex spp. such as C. nigripalpus, C. pipiens, C. quinquefasciatus, C. tarsalis, C. tritaeniorhynchus; Culicoides furens, Cuilseta inornata, Culiseta melanura, Cuterebra spp., Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Dasineura oxycoccana, Della spp. such as D. antique, D. coarctata, D. platura, D. radicum; Dermatobia hominis, Drosophila spp. such as D. suzukii, Fannia spp. such as F. canicularis; Gastraphllus spp. such as G. intestinalis; Geomyza tipunctata, Glossina spp. such as G. fuscipes, G. morsitans, G. palpalis, G. tachinoides; Haematobiairritans, Haplodiplosis equestris, Hippelates spp., Hylemyia spp. such as H. platura; Hypoderma spp. such as H. lineata; Hyppobosca spp., Hydrellia philippina, Leptoconops torrens, Liriomyza spp. such as L. sativae, L. trifolii; Lucllia spp. such as L. caprin, L. cuprina, L. sericata; Lycoria pectoralis, Mansonia titillanus, Mayetiola spp. such as M. destructor; Musca spp. such as M. autumnalis, M. domestica; Muscina stabulans, Oestrus spp. such as O. ovis; Opomyza florum, Oscinella spp. such as O. frit; Orseolia oryzae, Pegomya hysocyami, Phlebotomus argentipes, Phorbia spp. such as P. antiqua, P. brassicae, P. coarctata; Phytomyza gymnostoma, Prosimulium mixtum, Psila rosae, Psorophora columbiae, Psorophora discolor, Rhagoletis spp. such as R. cerasi, R. cingulate, R. indifferens, R. mendax, R. pomonella; Rivellia quadrifasciata, Sarcophaga spp. such as S. haemorrhoidalis; Simulium vittatum, Sitodiplosis mosellana, Stomoxys spp. such as S. calcitrans; Tabanus spp. such as T. atratus, T. bovinus, T. lineola, T. similis; Tannia spp., Thecodiplosis japonensis, Tipula oleracea, Tipula paludosa, and Wohlfahrtia spp;
  • insects from the order of Thysanoptera for example, Baliothrips biformis, Dichromothnps corbetti, Dichromothrips ssp., Echinothrips americanus, Enneothrips flavens, Frankliniella spp. such as F. fusca, F. occidentalis, F. tritici; Heliothnps spp., Hercinothrips femoralis, Kakothrips spp., Microcephalothrips abdominalis, Neohydatothnps samayunkur, Pezothrips kellyanus, Rhipiphorothrips cruentatus, Scirtothnps spp. such as S. citri, S. dorsalis, S. perseae; Stenchaetothrips spp, Taeniothnps cardamom, Taeniothrips inconsequens, Thrips spp. such as T. imagines, T. hawallensis, T. oryzae, T. palmi, T. parvispinus, T. tabaci;
  • insects from the order of Hemiptera for example, Acizzia jamatonica, Acrosternum spp. such as A. Mare; Acyrthosipon spp. such as A. onoboichis, A. pisum; Adelges laricis, Adelges tsugae, Adelphocoris spp., such as A. rapidus, A. superbus; Aeneolamia spp., Agonoscena spp., Aulacorthum solani, Aleurocanthus woglumi, Aleurodes spp., Aleurodicus disperses, Aleurolobus barodensis, Aleurothrixus spp., Amrasca spp., Anasa tristis, Antestiopsis spp., Anuraphis cardui, Aonidiella spp., Aphanostigma Aphidula nasturtil, Aphis spp. such as A. craccivora, A. fabae, A. forbesi, A. gossypil A. grossulariae, A. maidiradicis, A. pomi, A. sambuci, A. schneideri, A. spiraecola; Arboridia apicalis, Arilus critatus, Aspidiella spp., Aspidiotus spp., Atanus spp., Aulacaspis yasumatsui, Aulacorthum solani, Bactericera cockerelli (Paratrioza cockerelli), Bemisia spp. such as B. argentifolil, B. tabaci (Aleurodes tabaci); Blissus spp. such as B. leucopterus; Brachycaudus spp. such as B. cardui, B. helichlysi, B. persicae, B. prunicola; Brachycolus spp., Brachycorynella asparagi, Brevicoryne brassicae, Cacopsylla spp. such as C. fulguralis, C. pyricola (Psylla piri); Calligypona marginata, Calocoris spp., Campylomma livida, Capitophorus horni, Cameocephala fulgida, Cavelerius spp., Ceraplastes spp., Ceratovacuna lanigera, Ceroplastes ceriferus, Cerosipha gossypil, Chaetosiphon fragaefolil, Chionaspis tegalensis, Chlorita Chromaphis juglandicola, Chlysomphalus ficus, Cicadulina mbila, mex spp. such as C. hemipterus, C. lectularius; Coccomytilus Coccus spp. such as C. hespendum, C. pseudomagnoliarum; Corythucha arcuata, Creontiades Cryptomyzus nbis, Chlysomphalus aonidum, Cryptomyzus Ctenalytaina spatulata, Cyrtopeltis notatus, Dalbulus spp., Dasynus piperis, Dialeurodes spp. such as D. citrifolii; Dalbulus maidis, Diaphorina spp. such as D. citri; Diaspis spp. such as D. bromeliae; Dichelops furcatus, Diconocoris hewetti, Doralls spp., Dreyfusia nordmannianae, Dreyfusia piceae, Drosicha spp., Dysaphis spp. such as D. plantaginea, D. gyri, D. radicola; Dysaulacorthum pseudosolani, Dysdercus spp. such as D. cingulatus, D. intermedius; Dysmicoccus spp., Edessa spp., Geocoris spp., Empoasca spp. such as E. fabae, E. solana; Epidiaspis leperii, Enbsoma spp. such as E. lanigerum, E. pyricola; Erythroneura spp., Eurygaster spp. such as E. integriceps; Euscells bilobatus, Euschistus spp. such as E. heros, E. impictiventris, E. servus; Fionnia theae, Geococcus coffeae, Glycaspis brimblecombel, Halyomorpha spp. such as H. halys; Heliopeltis spp., Homalodisca vitripennis (=H. coagulata), Horcias nobllellus, Hyalopterus pruni, Hyperomyzus lactucae, Icelya spp. such as I. purchase; Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecaniurn spp., Lecanoideus floccissimus, Lepidosaphes spp. such as L. ulmi; Leptocorisa spp., Leptoglossus phyllopus, Lipaphis Lygus spp. such as L. hesperus, L. lineolaris, L. pratensis; Maconellicoccus hirsutus, Marchalina hellenica, Macropes excavatus, Macrosiphum spp. such as M. rosae, M. avenae, M. euphorbiae; Macrosteles quadrilineatus, Mahanarva fimbriolata, Megacopta cribraria, Megoura viciae, Melanaphis pyrarius, Melanaphis sacchari, Melanocallis (=Tinocallis) coyaefoliae, Metcafiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzocallls coryli, Murgantia spp., Myzus spp. such as M. ascalonicus, M. cerasi, M. nicotianae, M. persicae, M. varians; Nasonovia ribis nigri, Neotoxoptera formosana, Neomegalotomus spp, Nephotettix spp. such as N. malayanus, N. nigropictus, N. parvus, N. virescens; Nezara spp. such as N. viridula; Nilaparvata lugens, Nysius huttoni, Oebalus spp. such as O. pugnax; Oncometopia spp., Orthezia praelonga, Oxycaraenus hyalinipennis, Para bemisia myricae, Parlatona spp., Parthenolecanium spp. such as P. corm, P. persicae; Pemphigus spp. such as P. bursarius, P. populivenae; Peregrinus maidis, Perkinsiella saccharicida, Phenacoccus spp. such as P. aceris, P. gossypii; Phloeomyzus passerimi, Phorodon humuli, Phylloxera spp. such as P. devastatrix, Piesma quadrata, Piezodorus spp. such as P. gulldimi; Pinnaspis aspidlistrae, Planococcus spp. such as P. citri, P. ficus; Prosapia bicincta, Protopulvinana pyriformis, Psallus senatus, Pseudacysta persea, Pseudaulacaspis pentagon, Pseudococcus spp. such as P. comstocki; Psylla spp. such as P. mali; Pteromalus spp., Pulvinana amygdali, Pyrilla spp., Quadraspidiotus spp., such as Q. perniciosus; Quesada gigas, Rastrococcus spp., Reduvius semils, Rhizoecus americanus, Rhodnius spp., Rhopalomyzus ascalonicus, Rhopalosiphum spp. such as R. pseudobrassicas, R. insertum, R. maidis, R. padi; Sagalodes spp., Sahlbergella singularis, Saissetia spp., Sappaphis mala, Sappaphis mall, Scaptocoris spp., Scaphoides titanus, Schizaphis graminum, Schizoneura lanuginosa, Scotinophora spp., Selenaspidus articulatus, Sitobion avenae, Sogata spp., Sogatella furcifera, Solubea insularis, Spissistilus festinus (=Stictocephala festina), Stephanitis nashi, Stephanitis pyrioides, Stephanitis takeyai, Tenalaphara malayensis, Tetraleurodes perseae, Therioaphis maculate, Thyanta spp. such as T. accerra, T. perditor; Tibraca spp., Tomaspis spp., Toxoptera spp. such as T. aurantii; Trialeurodes spp. such as T. abutilonea, T. ricin, T. vaporariorum; Triatoma spp., Trioza spp., Typhlocyba spp., Unaspis spp. such as U. citri, U. yanonensis; and Viteus vitifolil;
  • Insects from the order Hymenoptera for example Acanthomyops interjectus, Athalia rosae, Atta spp. such as A. capiguara, A. cephalotes, A. cephalotes, A. laevigata, A. robusta, A. sexdens, A. texana, Bombus spp., Brachymyrmex spp., Camponotus spp. such as C. floridanus, C. pennsylvanicus, C. modoc; Cardiocondyla nuda, Challbion sp, Crematogaster spp., Dasymutllla occidentalis, Diprion spp., Dolichovespula maculata, Dorymyrmex spp., Dryocosmus kuriphilus, Formica spp., Hoplocampa spp. such as H. minuta, H. testudinea; Iridomyrmex humilis, Lasius spp. such as L. niger, Linepithema humile, Liometopum spp., Leptocybe invasa, Monomorium spp. such as M. pharaonis, Monomorium, Nylandria fulva, Pachycondyla chinensis, Paratrechina longicornis, Paravespula spp., such as P. germanica, P. pennsylvanica, P. vulgaris; Pheidole spp. such as P. megacephala; Pogonomyrmex spp. such as P. barbatus, P. californicus, Pollstes rubiginosa, Prenolepis impairs, Pseudomyrmex gracilis, Schelipron spp., Sirex cyaneus, Solenopsis spp. such as S. geminata, Sinvicta, S. molesta, S. richteri, S. xylonl, Sphecius speciosus, Sphex spp., Tapinoma spp. such as T. melanocephalum, T. sessile; Tetramorium spp. such as T. caespitum, T. bicarinatum, Vespa spp. such as V. crabro; Vespula spp. such as V. squamosal; Wasmannia auropunctata, Xylocopa sp;
  • Insects from the order Orthoptera for example Acheta domesticus, Calliptamus italicus, Chortoicetes terminifera, Ceuthophilus spp., Diastrammena asynamora, Dociostaurus maroccanus, Gryllotalpa spp. such as G. africana, G. gryllotalpa; Gryllus spp., Hieroglyphus daganensis, Kraussaria angulifera, Locusta spp. such as L. migratoria, L. pardalina; Melanoplus spp. such as M. bivittatus, M. femurrubrum, M. mexicanus, M. sanguinipes, M. spretus; Nomadacris septemfasciata, Oedaleus senegalensis, Scapteriscus spp., Schistocerca spp. such as S. Americana, S. gregaria, Stemopelmatus spp., Tachycines asynamorus, and Zonozerus variegatus;
  • Pests from the Class Arachnida for example Acari, e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma spp. (e.g. A. americanum, A. variegatum, A. maculatum), Argas spp. such as A. persicu), Boophilus spp. such as B. annulatus, B. decoloratus, B. microplus, Dermacentor spp. such as D. silvarum, D. andersom, D. variabilis, Hyalomma spp. such as H. truncatum, Ixodes spp. such as I. ricinus, I. rubicundus, I. scapularis, I. holocyclus, I. pacificus, Rhipicephalus sanguineus, Ornithodorus spp. such as O. moubata, O. hermsi, O. turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyssus gallinae, Psoroptes spp. such as P. ovis, Rhipicephalus spp. such as R. sanguineus, R. appendiculatus, Rhipicephalus evertsi, Rhizoglyphus spp., Sarcoptes spp. such as S. Scabiei; and Family Eriophyidae including Aceria spp. such as A. sheldoni, A. anthocoptes, Acallitus spp., Aculops spp. such as A. lycopersici, A. pelekassi; Aculus spp. such as A. schlechtendali; Colomerus vitis, Epitrimerus gyri, Phyllocoptruta oleivora; Eriophytes ribis and Eriophyes spp. such as Eriophyes sheldoni; Family Tarsonemidae including Hemitarsonemus spp., Phytonemus pallidus and Polyphagotarsonemus latus, Stenotarsonemus spp. Steneotarsonemus spinki; Family Tenuipalpidae including Brevipalpus spp. such as B. phoenicis; Family Tetranychidae including Eotetranychus spp., Eutetranychus spp., Oligonychus spp., Petrobia latens, Tetranychus spp. such as T. cinnabarinus, T. evansi, T. kanzawai, T, pacificus, T. phaseulus, T. telarius and T. urticae; Bryobia praetiosa; Panonychus spp. such as P. ulmi, P. citri; Metatetranychus spp. and Oligonychus spp. such as O. pratensis, O. perseae, Vasates lycopersici; Raoiella indica, Family Carpoglyphidae including Carpoglyphus spp.; Penthaleidae spp. such as Halotydeus destructor, Family Demodicidae with species such as Demodex spp.; Family Trombicidea including Trombicula spp.; Family Macronyssidae including Ornothonyssus spp.; Family Pyemotidae including Pyemotes tritici; Tyrophagus putrescentiae; Family Acaridae including Acarus siro; Family Araneida including Latrodectus mactans, Tegenaria agrestis, Chiracanthium sp, Lycosa sp Achaearanea tepidariorum and Loxosceles reclusa;
  • Pests from the Phylum Nematoda, for example, plant parasitic nematodes such as root-knot nematodes, Meloidogyne spp. such as M. hapla, M. incognita, M. Javanica; cyst-forming nematodes, Globodera spp. such as G. rostochiensis; Heterodera spp. such as H. avenae, H. glycines, H. schachtil, H. trifolii; Seed gall nematodes, Anguina spp.; Stem and foliar nematodes, Aphelenchoides spp. such as A. besseyi; Sting nematodes, Belonolaimus spp. such as B. longicaudatus; Pine nematodes, Bursaphelenchus spp. such as B. lignicolus, B. xylophilus; Ring nematodes, Criconema spp., Criconemella spp. such as C. xenoplax and C. omata; and, Criconemoides spp. such as Criconemoides informis; Mesocriconema spp.; Stem and bulb nematodes, Ditylenchus spp. such as D. destructor, D. dipsaci; Awl nematodes, Dolichodorus spp.; Spiral nematodes, Hellocotylenchus multicinctus; Sheath and sheathoid nematodes, Hemicycliophora spp. and Hemicriconemoides spp.; Hirshmanniella spp.; Lance nematodes, Hoploaimus spp.; False rootknot nematodes, Nacobbus spp.; Needle nematodes, Longidorus spp. such as L. elongatus; Lesion nematodes, Pratylenchus spp. such as P. brachyurus, P. neglectus, P. penetrans, P. curvitatus, P. goodeyi; Burrowing nematodes, Radopholus spp. such as R. similis; Rhadopholus spp.; Rhodopholus spp.; Reniform nematodes, Rotylenchus spp. such as R. robustus, R. reniformis; Scutellonema spp.; Stubby-root nematode, Trichodorus spp. such as T. obtusus, T. primitivus; Paratrichodorus spp. such as P. minor; Stunt nematodes, Tylenchorhynchus spp. such as T. claytoni, T. dubius; Citrus nematodes, Tylenchulus spp. such as T. semipenetrans; Dagger nematodes, Xiphinema spp.; and other plant parasitic nematode species;
  • Insects from the order Isoptera for example Calotermes flavicollis, Coptotermes spp. such as C. formosanus, C. gestroi, C. acinaciformis; Cornitermes cumulans, Cryptotermes spp. such as C. brevis, C. cavifrons; Globitermes sulfureus, Heterotermes spp. such as H. aureus, H. longiceps, H. tenuis; Leucotermes flavipes, Odontotermes spp., Incisitermes spp. such as I. minor, I. Snyder, Marginitermes hubbardi, Mastotermes spp. such as M. darwiniensiS Neocapritermes spp. such as N. opacus, N. parvus; Neotermes spp., Procornitermes spp., ZootermopsiS spp. such as Z. angusticollis, Z. nevadensis, Reticulitermes spp. such as R. hesperus, R. tibialis, R. speratus, R. flavipes, R. grassei, R. lucifugus, R. santonensis, R. virginicus; Termes natalensis,
  • Insects from the order Blattaria for example Blatta spp. such as B. orientails, B. lateralis; Blattella spp. such as B. asahinae, B. germanica; Leucophaea maderae, Panchlora nivea, Periplaneta spp. such as P. americana, P. australasiae, P. brunnea, P. fuligginosa, P. japonica; Supella longipaipa, Parcoblatta pennsylvanica, Eurycotis floridana, Pycnoscelus surinamensis,
  • Insects from the order Siphonoptera for example Cediopsylla simples, Ceratophyllus spp., Ctenocephalides spp. such as C. fells, C. canis, Xenopsylla cheopis, Pulex irritans, Trichodectes canis, Tunga penetrans, and Nosopsyllus fasciatus,
  • Insects from the order Thysanura for example Lepisma saccharin, Ctenolepisma urban, and Thermobia domestica,
  • Pests from the class Chilopoda for example Geophilus spp., Scutigera spp. such as Scutigera coleoptrata;
  • Pests from the class Diplopoda for example Blaniulus guttulatus, Julus spp., Narceus spp.,
  • Pests from the class Symphyla for example Scutigerella immaculata,
  • Insects from the order Dermaptera, for example Forficula auricularia,
  • Insects from the order Collembola, for example Onychiurus spp., such as Onychiurus armatus,
  • Pests from the order Isopoda for example, Armadillidium vulgare, Oniscus asellus, Porcellio scaber,
  • Insects from the order Phthiraptera, for example Damalinia spp., Pediculus spp. such as Pediculus humanus capitis, Pediculus humanus corporis, Pediculus humanus humanus; Pthirus pubis, Haematopinus spp. such as Haematopinus eurysternus, Haematopinus suis; Linognathus spp. such as Linognathus vituli; Bovicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus, Trichodectes spp.,
  • Examples of further pest species which may be controlled by the compound I, preferably compound i) of formula (I) include: from the Phylum Mollusca, class Bivalvia, for example, Dreissena spp.; class Gastropoda, for example, Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea canaliclata, Succinea spp.; from the class of the helminths, for example, Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris lumbricoides, Ascaris spp., Brugia malap, Brugia timon, Bunostomum spp., Chabertia spp., Cionorchis spp., Cooperia spp., Dicrocoelium spp., Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp. such as Haemonchus contortus; Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp., Oesophagostomum spp., Opisthorchis spp., Onchocerca volvulus, Ostertagia spp., Paragonimus spp., Schistosomen spp., Strongyloides fuelleborm, Strongyloides stercora lis, Stronyloides spp., Taenia saginata, Taenia solium, Trichinella spiralis, Trichinella nativa, Trichinella britow, Trichinella nelsoni, Trichinella pseudopsiralis, Trichostrongulus spp., Trichuris trichiura, Wuchereria bancrofii.
  • Besides compound i) of formula (I) also the carboxamide compound ii) of formula (Ia) and mixtures comprising compound i) of formula (I) and compound ii) of formula (Ia) are suitable for efficiently combating animal pests such as arthropods, gastropods and nematodes as set out above.
  • For the avoidance of doubt: Mixtures comprising the carboxamide compounds i) and ii) are mixtures comprising both compound i) of formula (I) and compound ii) of formula (Ia).
  • Application Methods, Plants and Crops
  • The compounds I, preferably compound i) of formula (I), are suitable for use in protecting crops, plants, plant propagation materials, such as seeds, or its locus of growth, from attack or infestation by animal pests. Therefore, the present invention also relates to a plant protection method, which comprises contacting crops, plants, plant propagation materials, such as seeds, or its locus of growth, to be protected from attack or infestation by animal pests, with a pesticidally effective amount of the compound I, preferably compound i) of formula (I).
  • The compound I, preferably compound i) of formula (I), are also suitable for use in combating or controlling animal pests.
  • Therefore, the present invention also relates to a method of combating or controlling animal pests, which comprises contacting the animal pests, their habitat, breeding ground, or food supply, or the crops, plants, plant propagation materials, such as seeds, or soil, or the area, material or environment in which the animal pests are growing or may grow, with a pesticidally effective amount of the compound i) of formula (I).
  • The present invention also relates to a method of combating or controlling animal pests, which comprises contacting the animal pests, their habitat, breeding ground, or food supply, or the crops, plants, plant propagation materials, such as seeds, or soil, or the area, material or environment in which the animal pests are growing or may grow, with a pesticidally effective amount of compound ii) of formula (Ia).
  • The present invention also relates to a method of combating or controlling animal pests, which comprises contacting the animal pests, their habitat, breeding ground, or food supply, or the crops, plants, plant propagation materials, such as seeds, or soil, or the area, material or environment in which the animal pests are growing or may grow, with a pesticidally effective amount of mixtures comprising the carboxamide compounds i) and ii).
  • The compounds I, preferably compound i) of formula (I), are effective through both contact and ingestion. Furthermore, the compounds I, preferably compound i) of formula (I), can be applied to any and all developmental stages, such as egg, larva, pupa, and adult.
  • The compound I, preferably compound i) of formula (I), can be applied as such or in form of compositions comprising them as defined above. Furthermore, the compound I, preferably compound i) of formula (I), can be applied together with a mixing partner as defined above or in form of compositions comprising said mixtures as defined above. The components of said mixture can be applied simultaneously, jointly or separately, or in succession, that is immediately one after another and thereby creating the mixture “in situ” on the desired location, e.g. the plant, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
  • The application can be carried out both before and after the infestation of the crops, plants, plant propagation materials, such as seeds, soil, or the area, material or environment by the pests.
  • Suitable application methods include inter alia soil treatment, seed treatment, in furrow application, and foliar application. Soil treatment methods include drenching the soil, drip irrigation (drip application onto the soil), dipping roots, tubers or bulbs, or soil injection. Seed treatment techniques include seed dressing, seed coating, seed dusting, seed soaking, and seed pelleting. In furrow applications typically include the steps of making a furrow in cultivated land, seeding the furrow with seeds, applying the pesticidally active compound I, preferably compound i) of formula (I), to the furrow, and closing the furrow. Foliar application refers to the application of the pesticidally active compound I, preferably compound i) of formula (I), to plant foliage, e.g. through spray equipment. For foliar applications, it can be advantageous to modify the behavior of the pests by use of pheromones in combination with the compound I, preferably compound i) of formula (I). Suitable pheromones for specific crops and pests are known to a skilled person and publicly available from databases of pheromones and semiochemicals, such as http://www.pherobase.com.
  • As used herein, the term “contacting” includes both direct contact (applying the compounds/mixtures/compositions directly on the animal pest or plant—typically to the foliage, stem or roots of the plant) and indirect contact (applying the compounds/mixtures/compositions to the locus, i.e. habitat, breeding ground, plant, seed, soil, area, material or environment in which a pest is growing or may grow, of the animal pest or plant).
  • The term “animal pest” includes arthropods, gastropods, and nematodes. Preferred animal pests according to the invention are arthropods, preferably insects and arachnids, in particular insects. Insects, which are of particular relevance for crops, are typically referred to as crop insect pests.
  • The term “crop” refers to both, growing and harvested crops.
  • The term “plant” includes cereals, e.g. durum and other wheat, rye, barley, triticale, oats, rice, or maize (fodder maize and sugar maize/sweet and field corn); beet, e.g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e.g. apples, pears, plums, peaches, nectarines, almonds, cherries, papayas, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as beans, lentils, peas, alfalfa or soybeans; oil plants, such as rapeseed (oilseed rape), turnip rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, pumpkins, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as eggplant, spinach, lettuce (e.g. iceberg lettuce), chicory, cabbage, asparagus, cabbages, carrots, onions, garlic, leeks, tomatoes, potatoes, cucurbits or sweet peppers; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rapeseed, sugar cane or oil palm; tobacco; nuts, e.g. walnuts; pistachios; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers (e.g. carnation, petunias, geranium/pelargoniums, pansies and impatiens), shrubs, broad-leaved trees (e.g. poplar) or evergreens, e.g. conifers; eucalyptus; turf; lawn; grass such as grass for animal feed or ornamental uses. Preferred plants include potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rapeseed, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • The term “plant” is to be understood as including wild type plants and plants, which have been modified by either conventional breeding, or mutagenesis or genetic engineering, or by a combination thereof.
  • Plants, which have been modified by mutagenesis or genetic engineering, and are of particular commercial importance, include alfalfa, rapeseed (e.g. oilseed rape), bean, carnation, chicory, cotton, eggplant, eucalyptus, flax, lentil, maize, melon, papaya, petunia, plum, poplar, potato, rice, soybean, squash, sugar beet, sugarcane, sunflower, sweet pepper, tobacco, tomato, and cereals (e.g. wheat), in particular maize, soybean, cotton, wheat, and rice. In plants, which have been modified by mutagenesis or genetic engineering, one or more genes have been mutagenized or integrated into the genetic material of the plant. The one or more mutagenized or integrated genes are preferably selected from pat, epsps, cry1Ab, bar, cry1Fa2, cry1Ac, cry34Ab1, cry35AB1, cry3A, cryF, cry1F, mcry3a, cry2Ab2, cry3Bb1, cry1A.105, dfr, barnase, vip3Aa20, barstar, als, bxn, bp40, asn1, and ppo5. The mutagenesis or integration of the one or more genes is performed in order to improve certain properties of the plant. Such properties, also known as traits, include abiotic stress tolerance, altered growth/yield, disease resistance, herbicide tolerance, insect resistance, modified product quality, and pollination control. Of these properties, herbicide tolerance, e.g. imidazolinone tolerance, glyphosate tolerance, or glufosinate tolerance, is of particular importance. Several plants have been rendered tolerant to herbicides by mutagenesis, for example Clearfield® oilseed rape being tolerant to imidazolinones, e.g. imazamox. Alternatively, genetic engineering methods have been used to render plants, such as soybean, cotton, corn, beets and oil seed rape, tolerant to herbicides, such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate) and LibertyLink® (glufosinate). Furthermore, insect resistance is of importance, in particular lepidopteran insect resistance and coleopteran insect resistance. Insect resistance is typically achieved by modifying plants by integrating cry and/or vip genes, which were isolated from Bacillus thuringiensis (Bt), and code for the respective Bt toxins. Genetically modified plants with insect resistance are commercially available under trade names including WideStrike®, Bollgard®, Agrisure®, Herculex®, YieldGard®, Genuity®, and Intacta®. Plants may be modified by mutagenesis or genetic engineering either in terms of one property (singular traits) or in terms of a combination of properties (stacked traits). Stacked traits, e.g. the combination of herbicide tolerance and insect resistance, are of increasing importance. In general, all relevant modified plants in connection with singular or stacked traits as well as detailed information as to the mutagenized or integrated genes and the respective events are available from websites of the organizations “International Service for the Acquisition of Agri-biotech Applications (ISAAA)” (http://www.isaaa.org/gmapprovaldatabase) and “Center for Environmental Risk Assessment (CERA)” (http://cera-grinc.org/GMCropDatabase).
  • The term “plant propagation material” refers to all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e.g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants. Seedlings and young plants, which are to be transplanted after germination or after emergence from soil, may also be included. These plant propagation materials may be treated prophylactically with a plant protection mixture either at or before planting or transplanting.
  • The term “seed” embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like, and means in a preferred embodiment true seeds.
  • In general, “pesticidally effective amount” means the amount of active ingredient needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism. The pesticidally effective amount can vary for the various compounds/mixtures/compositions used in the invention. A pesticidally effective amount of the compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
  • In the case of soil treatment, in furrow application or of application to the pests dwelling place or nest, the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m2, preferably from 0.001 to 20 g per 100 m2.
  • For use in treating crop plants, e.g. by foliar application, the rate of application of the active ingredients of this invention may be in the range of 0.0001 g to 4000 g per hectare, e.g. from 1 g to 2 kg per hectare or from 1 g to 750 g per hectare, desirably from 1 g to 100 g per hectare, more desirably from 10 g to 50 g per hectare, e.g., 10 to 20 g per hectare, 20 to 30 g per hectare, 30 to 40 g per hectare, or 40 to 50 g per hectare.
  • The compounds I, preferably compound i) of formula (I), are particularly suitable for use in the treatment of seeds in order to protect the seeds from insect pests, in particular from soil-living insect pests, and the resulting seedling's roots and shoots against soil pests and foliar insects. The present invention therefore also relates to a method for the protection of seeds from insects, in particular from soil insects, and of the seedling's roots and shoots from insects, in particular from soil and foliar insects, said method comprising treating the seeds before sowing and/or after pregermination with the compound I, preferably compound i) of formula (I). The protection of the seedling's roots and shoots is preferred. More preferred is the protection of seedling's shoots from piercing and sucking insects, chewing insects and nematodes.
  • The term “seed treatment” comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking, seed pelleting, and in-furrow application methods. Preferably, the seed treatment application of the compound I, preferably compound i) of formula (I), is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
  • The present invention also comprises seeds coated with or containing the active compound I, preferably compound i) of formula (I). The term “coated with and/or containing” generally signifies that the active ingredient is for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product is (re)planted, it may absorb the active ingredient.
  • Suitable seed is for example seed of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize/sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
  • In addition, the active compound I, preferably compound i) of formula (I), may also be used for the treatment of seeds from plants, which have been modified by mutagenisis or genetic engineering, and which e.g. tolerate the action of herbicides or fungicides or insecticides. Such modified plants are described herein in detail elsewhere.
  • Preferences
  • Application methods, which are of particular relevance in connection with the mixture of the invention are described in detail further below. Preferences of particular importance are provided in the following.
  • In one aspect, the present invention relates to the use of the carboxamide compound i) of formula (I) for protecting a cultivated plant, cultivated plant propagation material, or its locus of growth, against the attack or infestation by pests.
  • In another aspect, the present invention relates to the use of the carboxamide compound ii) of formula (Ia) for protecting a cultivated plant, cultivated plant propagation material, or its locus of growth, against the attack or infestation by pests.
  • In still another aspect, the present invention relates to the use of mixtures comprising the carboxamide compounds i) and ii) for protecting a cultivated plant, cultivated plant propagation material, or its locus of growth, against the attack or infestation by pests.
  • In another aspect, the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of the carboxamide compound compound i) of formula (I) to a cultivated plant, cultivated plant propagation material, or its locus of growth; the pests or their food supply, habitat or breeding grounds.
  • In another aspect, the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of the carboxamide compound ii) of formula (Ia) to a cultivated plant, cultivated plant propagation material, or its locus of growth; the pests or their food supply, habitat or breeding grounds.
  • In another aspect, the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of a mixture comprising the carboxamide compounds i) and ii) to a cultivated plant, cultivated plant propagation material, or its locus of growth; the pests or their food supply, habitat or breeding grounds.
  • The application of the carboxamide compound I, preferably compound i) of formula (I) in connection with the above use or method includes both contact with the cultivated plant or cultivated plant propagation material and contact with its locus of growth. The term “locus of growth” is to be understood as the locus, where the plant is growing, in particular the soil or water, in which the plant is growing.
  • Furthermore, the methods of the present invention relates in one embodiment to the application to the pests or their food supply, habitat or breeding grounds.
  • In a preferred embodiment of the above use or method comprising the application of the carboxamide compound i) of formula (I), it is applied to the plants, in particular parts of the plants such as the foliage.
  • In another embodiment of the above use or method comprising the application of the carboxamide compound ii) of formula (Ia), it is applied to the plants, in particular parts of the plants such as the foliage.
  • In another embodiment of the above use or method comprising the application of a mixture comprising the carboxamide compounds i) and ii), it is applied to the plants, in particular parts of the plants such as the foliage.
  • In a particularly preferred embodiment of the above use or method, the carboxamide compound i) of formula (I) is applied to the foliage of the plants, preferably in an amount of from 1 g to 100 g per hectare, more preferably in an amount of from 10 g to 50 g per hectare.
  • In another embodiment of the above use or method, the carboxamide compound ii) of formula (Ia) is applied to the foliage of the plants, preferably in an amount of from 1 g to 100 g per hectare, more preferably in an amount of from 10 g to 50 g per hectare.
  • In still another embodiment of the above use or method, the mixture comprising the carboxamide compounds i) and ii) is applied to the foliage of the plants, preferably in an amount of from 1 g to 100 g per hectare, more preferably in an amount of from 10 g to 50 g per hectare.
  • In an alternative preferred embodiment of the above use or method, the carboxamide compound i) of formula (I) is applied to the plant propagation material, preferably the seeds of a plant.
  • In another embodiment of the above use or method, the carboxamide compound ii) of formula (Ia) is applied to the plant propagation material, preferably the seeds of a plant.
  • In another embodiment of the above use or method, the mixture comprising the carboxamide compounds i) and ii) is applied to the plant propagation material, preferably the seeds of a plant.
  • In a particularly preferred embodiment of the above use or method, the carboxamide compound i) of formula (I) is applied to the seeds of the plants, preferably in an amount of from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
  • In another embodiment of the above use or method, the carboxamide compound ii) of formula (Ia) is applied to the seeds of the plants, preferably in an amount of from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
  • In still another embodiment of the above use or method, the mixture comprising the carboxamide compounds i) and ii) is applied to the seeds of the plants, preferably in an amount of from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
  • In case the carboxamide compound I, preferably compound i) of formula (I) is applied in a mixture with another agriculturally active ingredient, the components of the mixture can be as mentioned above—applied simultaneously, jointly or separately, or in succession, that is immediately one after another and thereby creating the mixture “in situ” on the desired location, e.g. the plant, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
  • The application methods, uses and mixtures of the present invention are particularly useful for controlling insects of the orders Lepidoptera, Coleoptera and Thysanoptera.
  • The application methods, uses and mixtures of the present invention are especially suitable for efficiently combating pests like insects from the order of the lepidopterans (Lepidoptera), beetles (Coleoptera) and thrips (Thysanoptera).
  • In a preferred embodiment of the above use or method comprising the application of the mixture of the invention, the pests are selected from insects from the order of Lepidoptera, preferably from the group consisting of Anticarsia (=Thermesia) spp., Chrysodeixis (=Pseudoplusia) spp., Helicoverpa spp., Spodoptera (=Lamphygma) spp., and combinations thereof, more preferably from the group consisting of Helicoverpa spp., Spodoptera spp., and combinations thereof, most preferably from Helicoverpa armigera (=Heliothis armigera), Spodoptera spp., and combinations thereof, in particular from Helicoverpa armigera (=Heliothis armigera), Spodoptera frugiperda, Spodoptera cosmioides, and combinations thereof.
  • In another preferred embodiment, the pests are selected from the group consisting of Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), Helicoverpa armigera (=Heliothis armigera), Spodoptera frugiperda, Spodoptera eridania, Spodoptera cosmioides, and combinations thereof, and are preferably selected from Spodoptera eridania, Spodoptera cosmioides, or a combination thereof, and are particularly preferably Spodoptera cosmioides.
  • In another preferred embodiment, the pests are Anticarsia gemmatalis.
  • In another preferred embodiment, the pests are Chrysodeixis includens (=Pseudoplusiaincludens).
  • In another preferred embodiment, the pests are Helicoverpa armigera (=Heliothis armigera).
  • In another preferred embodiment, the pests are Spodoptera frugiperda.
  • In another preferred embodiment, the pests are Spodoptera eridania.
  • In another preferred embodiment, the pests are Spodoptera cosmioides.
  • As outlined above, the above mentioned pests are of particular importance in connection with certain plants.
  • In one embodiment of the above use or method comprising the application of the carboxamide compound i) of formula (I), the plant is a plant, which has been modified by conventional breeding, i.e. a plant, which has not been modified by mutagenesis or genetic engineering.
  • In another embodiment of the above use or method comprising the application of the carboxamide compound ii) of formula (Ia), the plant is a plant, which has been modified by conventional breeding, i.e. a plant, which has not been modified by mutagenesis or genetic engineering.
  • In another embodiment of the above use or method comprising the application of a mixture comprising the carboxamide compounds i) and ii), the plant is a plant, which has been modified by conventional breeding, i.e. a plant, which has not been modified by mutagenesis or genetic engineering.
  • Preferably, the plant, which has not been modified by mutagenesis or genetic engineering, is selected from the group consisting of wheat, maize, rice, soybean, and cotton, and is more preferably a soybean plant.
  • In another embodiment of the above use or method comprising the application of the mixture of the invention, the plant is a plant, which has been modified by mutagenesis or genetic engineering, preferably by genetic engineering.
  • In a more preferred embodiment of such the embodiment, in the plant, which has been modified by mutagenesis or genetic engineering, one or more genes have been mutagenized or integrated into the genetic material of the plant, which are selected from pat, epsps, cry1 Ab, bar, cry1 Fa2, cry1 Ac, cry34Ab1, cry35AB1, cry3A, cryF, cry1F, mcry3a, cry2Ab2, cry3Bb1, cry1A.105, dfr, barnase, vip3Aa20, barstar, als, bxn, bp40, asn1, and ppo5.
  • In another more preferred embodiment, the plant, which has been modified by mutagenesis or genetic engineering, exhibits one or more traits selected from the group consisting of abiotic stress tolerance, altered growth/yield, disease resistance, herbicide tolerance, insect resistance, modified product quality, and pollination control. Preferably, the plant exhibits herbicide tolerance, insect resistance or a combination thereof.
  • In a preferred embodiment of the use or method as defined above, the plant is a plant, which has been modified by mutagenesis or genetic engineering, and which corresponds to any one of rows A1 to A385 of table A.
  • TABLE A
    Trait (Trait
    No. Crop, latin name Event Name Event Code Tradename type)/Gene Company
    A1 Alfalfa J101 MON-ØØ1Ø1-8 Roundup HT (Gly)/cp4 Monsanto
    Medicago sativa Ready ™ Alfalfa epsps (aroA:CP4)
    A2 Alfalfa J101 × J163 MON-ØØ1Ø1-8 × Roundup HT (Gly)/cp4 Monsanto
    Medicago sativa MON-ØØ163-7 Ready ™ Alfalfa epsps (aroA:CP4)
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A3 Alfalfa J163 MON-ØØ163-7 Roundup HT (Gly)/cp4 Monsanto
    Medicago sativa Ready ™ Alfalfa epsps (aroA:CP4)
    A4 Alfalfa KK179 MON-ØØ179-5 Not available ST (Lignin)/ccomt Monsanto
    Medicago sativa (inverted repeat)
    A5 Argentine Canola 23-18-17 CGN-89111-8 Laurical ™ ST (Oil)/te Monsanto
    Brassica napus (Event 18) Canola (thioesterase)
    A6 Argentine Canola 23-198 CGN-89465-2 Laurical ™ ST (Oil)/te Monsanto
    Brassica napus (Event 23) Canola (thioesterase)
    A7 Argentine Canola 61061 DP-Ø61Ø61-7 not available HT (Gly)/gat4621 Dupont
    Brassica napus
    A8 Argentine Canola 73496 DP-Ø73496-4 Optimum ® Gly HT (Gly)/gat4621 Dupont
    Brassica napus canola
    A9 Argentine Canola GT200 MON-89249-2 Roundup HT (Gly)/EPSPS Monsanto
    Brassica napus (RT200) Ready ™ Canola HT (Gly)/goxv247
    A10 Argentine Canola GT73 MON-ØØØ73-7 Roundup HT (Gly)/EPSPS Monsanto
    Brassica napus (RT73) Ready ™ Canola HT (Gly)/goxv247
    A11 Argentine Canola HCN10 not available Liberty Link ™ HT (Glu)/bar Bayer Crop
    Brassica napus (Topas 19/2) Independence ™ Science
    A12 Argentine Canola HCN28 ACS-BNØØ8-2 InVigor ™ Canola HT (Glu)/pat (syn) Bayer Crop
    Brassica napus (T45) Science
    A13 Argentine Canola HCN92 ACS-BNØØ7-1 Liberty Link ™ HT (Glu)/bar Bayer Crop
    Brassica napus (Topas 19/2) Innovator ™ Science
    A14 Argentine Canola MON88302 MON-883Ø2-9 TruFlex ™ HT (Gly)/cp4 Monsanto
    Brassica napus Roundup epsps (aroA:CP4)
    Ready ™ Canola
    A15 Argentine Canola MON88302 × MON-883Ø2-9 × not available HT (Gly)/cp4 Monsanto
    Brassica napus MS8 × RF3 ACS-BNØØ5-8 × epsps (aroA:CP4)
    ACS-BNØØ3-6 HT (Glu)/bar
    PC (MS)/barnase
    PC (FR)/barstar
    A16 Argentine Canola MON88302 × MON-883Ø2-9 × not available HT (Gly)/cp4 Monsanto
    Brassica napus RF3 ACS-BNØØ3-6 epsps (aroA:CP4)
    HT (Glu)/bar
    PC (FR)/barstar
    A17 Argentine Canola MPS961 not available Phytaseed ™ ST (P)/phyA BASF
    Brassica napus Canola
    A18 Argentine Canola MPS962 not available Phytaseed ™ ST (P)/phyA BASF
    Brassica napus Canola
    A19 Argentine Canola MPS963 not available Phytaseed ™ ST (P)/phyA BASF
    Brassica napus Canola
    A20 Argentine Canola MPS964 not available Phytaseed ™ ST (P)/phyA BASF
    Brassica napus Canola
    A21 Argentine Canola MPS965 not available Phytaseed ™ ST (P)/phyA BASF
    Brassica napus Canola
    A22 Argentine Canola MS1 (B91-4) ACS-BNØØ4-7 InVigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus PC (MS)/barnase Science
    A23 Argentine Canola MS1 × RF1 ACS-BNØØ4-7 × InVigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus (PGS1) ACS-BNØØ1-4 PC (MS)/barnase Science
    PC (FR)/barstar
    A24 Argentine Canola MS1 × RF2 ACS-BNØØ4-7 × InVigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus (PGS2) ACS-BNØØ2-5 PC (MS)/barnase Science
    PC (FR)/barstar
    A25 Argentine Canola MS1 × RF3 ACS-BNØØ4-7 × Invigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus ACS-BNØØ3-6 PC (MS)/barnase Science
    PC (FR)/barstar
    A26 Argentine Canola MS8 ACS-BNØØ5-8 InVigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus PC (MS)/barnase Science
    A27 Argentine Canola MS8 × RF3 ACS-BNØØ5-8 × InVigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus ACS-BNØØ3-6 PC (MS)/barnase Science
    PC (FR)/barstar
    A28 Argentine Canola MS8 × RF3 × ACS-BNØØ5-8 × not available HT (Glu)/bar Bayer Crop
    Brassica napus GT73 (RT73) ACS-BNØØ3-6 × PC (MS)/barnase Science
    MON-ØØØ73-7 PC (FR)/barstar
    HT (Gly)/EPSPS
    HT (Gly)/goxv247
    A29 Argentine Canola OXY-235 ACS-BNØ11-5 Navigator ™ HT (Ox)/bxn Bayer Crop
    Brassica napus Canola Science
    A30 Argentine Canola PHY14 not available not available HT (Glu)/bar Bayer Crop
    Brassica napus PC (MS)/barnase Science
    PC (FR)/barstar
    A31 Argentine Canola PHY23 not available not available HT (Glu)/bar Bayer Crop
    Brassica napus PC (MS)/barnase Science
    PC (FR)/barstar
    A32 Argentine Canola PHY35 not available not available HT (Glu)/bar Bayer Crop
    Brassica napus PC (MS)/barnase Science
    PC (FR)/barstar
    A33 Argentine Canola PHY36 not available not available HT (Glu)/bar Bayer Crop
    Brassica napus PC (MS)/barnase Science
    PC (FR)/barstar
    A34 Argentine Canola RF1 (B93- ACS-BNØØ1-4 InVigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus 101) PC (FR)/barstar Science
    A35 Argentine Canola RF2 (B94-2) ACS-BNØØ2-5 InVigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus PC (FR)/barstar Science
    A36 Argentine Canola RF3 ACS-BNØØ3-6 InVigor ™ Canola HT (Glu)/bar Bayer Crop
    Brassica napus PC (FR)/barstar Science
    A37 Argentine Canola 45A37, 45A37, 46A40 not available ST (Oil)/fad2 Pioneer
    Brassica napus 46A40 (mutant)
    A38 Argentine Canola 46A12, 46A12, 46A16 not available ST (Oil)/fad2 Pioneer
    Brassica napus 46A16 (mutant)
    A39 Argentine Canola NS738, NS738, NS1471, Clearfield Canola HT (Imi)/als Pioneer
    Brassica napus NS1471, NS1473 (mutant)
    NS1473
    A40 Bean EMB6X 5.1 EMB-PVØ51-1 not available VR (BGMV)/ac1 Embrapa
    Phaseolus vulgaris (sense and anti-
    sense)
    A41 Carnation 11 (7442) FLO-Ø7442-4 Moondust ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus ST (Color)/hfl Pty. Ltd.
    (f3′5′h)
    A42 Carnation 11363 FLO-11363-1 Moonshadow ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (1363A) ST (Color)/bp40 Pty. Ltd.
    (f3′5′h)
    A43 Carnation 1226A FLO-11226-8 Moonshade ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (11226) ST (Color)/bp40 Pty. Ltd.
    (f3′5′h)
    A44 Carnation 123.2.2 FLO-4Ø619-7 Moonshade ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (40619) ST (Color)/hfl Pty. Ltd.
    (f3′5′h)
    A45 Carnation 123.2.38 FLO-4Ø644-4 Moonlite ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (40644) ST (Color)/hfl Pty. Ltd.
    (f3′5′h)
    A46 Carnation 123.8.12 FLO-4Ø689-6 Moonaqua ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus ST (Color)/bp40 Pty. Ltd.
    (f3′5′h)
    A47 Carnation 123.8.8 FLO-4Ø685-1 Moonvista ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (40685) ST (Color)/bp40 Pty. Ltd.
    (f3′5′h)
    A48 Carnation 1351A FLO-11351-7 Moonshade ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (11351) ST (Color)/bp40 Pty. Ltd.
    (f3′5′h)
    A49 Carnation 1400A FLO-114ØØ-2 Moonshade ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (11400) ST (Color)/bp40 Pty. Ltd.
    (f3′5′h)
    A50 Carnation 15 FLO-ØØØ15-2 Moondust ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus ST (Color)/hfl Pty. Ltd.
    (f3′5′h)
    A51 Carnation 16 FLO-ØØØ16-3 Moondust ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus ST (Color)/hfl Pty. Ltd.
    (f3′5′h)
    A52 Carnation 199Ø7 IFD-199Ø7-9 Moonique ™ ST (Color)/dfr Suntory Ltd.
    Dianthus caryophyllus ST (Color)/bp40
    (f3′5′h)
    ST (Color)/sfl
    (f3′5′h)
    HT (SU)/surB
    A53 Carnation 25947 IFD-25947-1 Moonpearl ™ ST (Color)/bp40 Suntory Ltd.
    Dianthus caryophyllus (f3′5′h)
    ST (Color)/dfr
    ST (Color)/dfr-diaca
    HT (SU)/surB
    A54 Carnation 25958 IFD-25958-3 Moonberry ™ ST (Color)/bp40 Suntory Ltd.
    Dianthus caryophyllus (f3′5′h)
    ST (Color)/dfr
    ST (Color)/dfr-diaca
    HT (SU)/surB
    A55 Carnation 264Ø7 IFD-264Ø7-2 Moonvelvet ™ ST (Color)/hfl Suntory Ltd.
    Dianthus caryophyllus (f3′5′h)
    ST (Color)/cytb5
    HT (SU)/surB
    A56 Carnation 4 FLO-ØØØØ4-9 Moondust ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus ST (Color)/hfl Pty. Ltd.
    (f3′5′h)
    A57 Carnation 66 FLO-ØØØ66-8 not available ST (Ripe)/acc Florigene
    Dianthus caryophyllus (truncated) Pty. Ltd.
    A58 Carnation 959A FLO-11959-3 Moonshade ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (11959) ST (Color)/bp40 Pty. Ltd.
    (f3′5′h)
    A59 Carnation 988A FLO-11988-7 Moonshade ™ ST (Color)/dfr Florigene
    Dianthus caryophyllus (11988) ST (Color)/bp40 Pty. Ltd.
    (f3′5′h)
    A60 Chicory RM3-3 not available Seed Link ™ HT (Glu)/bar Bejo Zaden
    Cichorium intybus PC (MS)/barnase BV
    A61 Chicory RM3-4 not available Seed Link ™ HT (Glu)/bar Bejo Zaden
    Cichorium intybus PC (MS)/barnase BV
    A62 Chicory RM3-6 not available Seed Link ™ HT (Glu)/bar Bejo Zaden
    Cichorium intybus PC (MS)/barnase BV
    A63 Cotton 19-51a DD-Ø1951A-7 not available HT (SU)/S4-hrA Dupont
    Gossypium hirsutum
    A64 Cotton 281-24-236 DAS-24236-5 not available IR (BL)/cry1F Dow
    Gossypium hirsutum
    A65 Cotton 281-24-236 × DAS-24236-5 × WideStrike ™ IR (BL)/cry1F Dow
    Gossypium hirsutum 3006-210-23 DAS-21Ø23-5 Cotton IR (BL)/cry1Ac
    (MXB-13)
    A66 Cotton 3006-210-23 DAS-21Ø23-5 not available IR (BL)/Cry1Ac Dow
    Gossypium hirsutum
    A67 Cotton 3006-210-23 × DAS-21Ø23-5 × WideStrike ™ HT (Gly)/cp4 Monsanto
    Gossypium hirsutum 281-24-236 × DAS-24236-5 × Roundup epsps (aroA:CP4)
    MON1445 MON-Ø1445-2 Ready ™ Cotton IR (BL)/cry1F
    IR (BL)/cry1Ac
    HT (Glu)/bar
    A68 Cotton 3006-210-23 × DAS-21Ø23-5 × Widestrike ™ HT (Gly)/cp4 Dow &
    Gossypium hirsutum 281-24-236 × DAS-24236-5 × Roundup Ready epsps (aroA:CP4) Monsanto
    MON88913 MON-88913-8 Flex ™ Cotton IR (BL)/cry1F
    IR (BL)/cry1Ac
    HT (Glu)/bar
    A69 Cotton 3006-210-23 × DAS-21Ø23-5 × Widestrike ™ × IR (BL)/cry1Ac Dow
    Gossypium hirsutum 281-24-236 × DAS-24236-5 × Roundup Ready IR (BL)/vip3A(a)
    MON88913 × MON-88913-8 × Flex ™ × VIP- IR (BL)/cry1F
    COT102 SYN-IR1Ø2-7 COT ™ Cotton HT (Gly)/cp4
    epsps (aroA:CP4)
    HT (Glu)/pat
    A70 Cotton 31707 not available BXN ™ Plus HT (Ox)/bxn Monsanto
    Gossypium hirsutum Bollgard ™ IR (BL)/cry1Ac
    Cotton
    A71 Cotton 31803 not available BXN ™ Plus HT (Ox)/bxn Monsanto
    Gossypium hirsutum Bollgard ™ IR (BL)/cry1Ac
    Cotton
    A72 Cotton 31807 × 31808 not available not available 2HT (Ox)/bxn Monsanto
    Gossypium hirsutum 2IR (BL)/cry1Ac
    /
    /
    A73 Cotton 31807 not available BXN ™ Plus HT (Ox)/bxn Monsanto
    Gossypium hirsutum Bollgard ™ IR (BL)/cry1Ac
    Cotton
    A74 Cotton 31808 not available BXN ™ Plus HT (Ox)/bxn Monsanto
    Gossypium hirsutum Bollgard ™ IR (BL)/cry1Ac
    Cotton
    A75 Cotton 42317 not available BXN ™ Plus HT (Ox)/bxn Monsanto
    Gossypium hirsutum Bollgard ™ IR (BL)/cry1Ac
    Cotton
    A76 Cotton BNLA-601 not available not available IR (BL)/cry1Ac Central Insti-
    Gossypium hirsutum tute for Cotton
    Research and
    University of
    Agricultural
    Sciences Dharwad
    (India)
    A77 Cotton BXN10211 BXN-1Ø211-9 BXN ™ Cotton HT (Ox)/bxn Monsanto
    Gossypium hirsutum (10211)
    A78 Cotton BXN10215 BXN-1Ø215-4 BXN ™ Cotton HT (Ox)/bxn Monsanto
    Gossypium hirsutum (10215)
    A79 Cotton BXN10222 BXN-1Ø222-2 BXN ™ Cotton HT (Ox)/bxn Monsanto
    Gossypium hirsutum (10222)
    A80 Cotton BXN10224 BXN-1Ø224-4 BXN ™ Cotton HT (Ox)/bxn Monsanto
    Gossypium hirsutum (10224)
    A81 Cotton COT102 SYN-IR1Ø2-7 VIPCOT ™ IR (BL)/vip3A(a) Syngenta
    Gossypium hirsutum (IR102) Cotton
    A82 Cotton COT102 × SYN-IR1Ø2-7 × VIPCOT ™ IR (BL)/vip3A(a) Syngenta
    Gossypium hirsutum COT67B SYN-IR67B-1 Cotton IR (BL)/cry1Ab
    A83 Cotton COT102 × SYN-IR1Ø2-7 × VIPCOT ™ IR (BL)/vip3A(a) Syngenta
    Gossypium hirsutum COT67B × SYN-IR67B-1 × Roundup Ready IR (BL)/cry1Ab
    MON88913 MON-88913-8 Flex ™ Cotton
    A84 Cotton COT102 × SYN-IR1Ø2-7 × Bollgard ® III IR (BL)/vip3A(a) Monsanto
    Gossypium hirsutum MON15985 MON-15985-7 IR (BL)/cry1Ac
    IR (BL)/cry2Ab2
    A85 Cotton COT102 × SYN-IR1Ø2-7 × Bollgard ® III × IR (BL)/vip3A(a) Monsanto
    Gossypium hirsutum MON15985 × MON-15985-7 × Roundup IR (BL)/cry1Ac
    MON88913 MON-88913-8 Ready ™ Flex ™ IR (BL)/cry2Ab2
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A86 Cotton COT67B SYN-IR67B-1 not available IR (BL)/cry1Ab Syngenta
    Gossypium hirsutum (IR67B)
    A87 Cotton Event1 not available JK 1 IR (BL)/cry1Ac JK Agri Ge-
    Gossypium hirsutum netics Ltd.
    (India)
    A88 Cotton GFM Cry1A GTL-GFM311-7 not available IR (BL)/cry1Ab-Ac Nath
    Gossypium hirsutum Seeds/Global
    Transgenes
    Ltd (India)
    A89 Cotton GHB119 BCS-GHØØ5-8 not available HT (Glu)/bar Bayer Crop
    Gossypium hirsutum IR (BL)/cry2Ae Science
    A90 Cotton GHB614 BCS-GHØØ2-5 GlyTol ™ HT (Gly)/2mepsps Bayer Crop
    Gossypium hirsutum Science
    A91 Cotton GHB614 × BCS-GHØØ2-5 × GlyTol ™ Liberty HT (Gly)/2mepsps Bayer Crop
    Gossypium hirsutum LLCotton25 ACS-GHØØ1-3 Link ™ HT (Glu)/bar Science
    A92 Cotton GHB614 × BCS-GHØØ2-5 × not available HT (Gly)/2mepsps Bayer Crop
    Gossypium hirsutum LLCotton25 × ACS-GHØØ1-3 × HT (Glu)/bar Science
    MON15985 MON-15985-7 IR (BL)/cry1Ac
    IR (BL)/cry2Ab2
    A93 Cotton GHB614 × BCS-GHØØ2-5 × not available HT (Gly)/2mepsps Bayer Crop
    Gossypium hirsutum MON15985 MON-15985-7 IR (BL)/cry1Ac Science
    IR (BL)/cry2Ab2
    A94 Cotton GHB614 × BCS-GHØØ2-5 × Glytol ™ × HT (Gly)/2mepsps Bayer Crop
    Gossypium hirsutum T304-40 × BCS-GHØØ4-7 × Twinlink ™ HT (Glu)/bar Science
    GHB119 BCS-GHØØ5-8 IR (BL)/cry1Ab
    IR (BL)/cry2Ae
    A95 Cotton GK12 not available not available IR (BL)/cry1Ab-Ac Chinese
    Gossypium hirsutum Academy of
    Agricultural
    Sciences
    A96 Cotton LLCotton25 ACS-GHØØ1-3 Fibermax ™ HT (Glu)/bar Bayer Crop
    Gossypium hirsutum Liberty Link ™ Science
    A97 Cotton LLCotton25 × ACS-GHØØ1-3 × Fibermax ™ HT (Glu)/bar
    Gossypium hirsutum MON15985 MON-15985-7 Liberty Link ™ IR (BL)/cry1Ac
    Bollgard II ™ IR (BL)/cry2Ab2
    A98 Cotton MLS 9124 not available not available IR (BL)/cry1C Metahelix
    Gossypium hirsutum Life Sciences
    Pvt. Ltd
    (India)
    A99 Cotton MON 887Ø1-3 MON88701 not available HT (Dic)/dmo Monsanto
    Gossypium hirsutum HT (Glu)/bar
    A100 Cotton MON1076 MON-89924-2 Bollgard ™ IR (BL)/cry1Ac Monsanto
    Gossypium hirsutum Cotton
    A101 Cotton MON1445 MON-Ø1445-2 Roundup HT (Gly)/cp4 Monsanto
    Gossypium hirsutum Ready ™ Cotton epsps (aroA:CP4)
    A102 Cotton MON15985 MON-15985-7 Bollgard II ™ IR (BL)/cry1Ac Monsanto
    Gossypium hirsutum Cotton IR (BL)/cry2Ab2
    A103 Cotton MON15985 × MON-15985-7 × Roundup Ready ™ HT (Gly)/cp4 Monsanto
    Gossypium hirsutum MON1445 MON-Ø1445-2 Bollgard II ™ epsps (aroA:CP4)
    Cotton IR (BL)/cry1Ac
    IR (BL)/cry2Ab2
    A104 Cotton MON1698 MON-89383-1 Roundup Ready ™ HT (Gly)/cp4 Monsanto
    Gossypium hirsutum Cotton epsps (aroA:CP4)
    A105 Cotton MON531 MON-ØØ531-6 Bollgard ™ IR (BL)/cry1Ac Monsanto
    Gossypium hirsutum Cotton, Ingard ™
    A106 Cotton MON531 × MON-Ø531-6 × Roundup Ready ™ HT (Gly)/cp4 Monsanto
    Gossypium hirsutum MON1445 MON-Ø1445-2 Bollgard ™ epsps (aroA:CP4)
    Cotton IR (BL)/cry1Ac
    A107 Cotton MON757 MON-ØØ757-7 Bollgard ™ IR (BL)/cry1Ac Monsanto
    Gossypium hirsutum Cotton
    A108 Cotton MON88913 MON-88913-8 Roundup Ready ™ HT (Gly)/cp4 Monsanto
    Gossypium hirsutum Flex ™ epsps (aroA:CP4)
    Cotton
    A109 Cotton MON88913 × MON-88913-8 × Roundup Ready ™ HT (Gly)/cp4 Monsanto
    Gossypium hirsutum MON15985 MON-15985-7 Flex ™ epsps (aroA:CP4)
    Bollgard II ™ IR (BL)/cry1Ac
    Cotton IR (BL)/cry2Ab2
    A110 Cotton Ngwe Chi 6 not available Ngwe Chi 6 Bt Cotton and
    Gossypium hirsutum Bt Sericulture
    Department
    (Myanmar)
    A111 Cotton SGK321 not available not available IR (BL)/cry1A Chinese
    Gossypium hirsutum IR (BRun)/CpTI Academy of
    Agricultural
    Sciences
    A112 Cotton T303-3 BCS-GHØØ3-6 not available IR (BL)/cry1Ab Bayer Crop
    Gossypium hirsutum HT (Glu)/bar Science
    A113 Cotton T304-40 BCS-GHØØ4-7 not available IR (BL)/cry1Ab Bayer Crop
    Gossypium hirsutum HT (Glu)/bar Science
    A114 Cotton T304-40 × BCS-GHØØ4-7 × TwinLink ™ IR (BL)/cry1Ab Bayer Crop
    Gossypium hirsutum GHB119 BCS-GHØØ5-8 Cotton HT (Glu)/bar Science
    A115 Cotton 81910 DAS-81910-7 not available HT (2,4-D)/aad-12 Dow
    Gossypium hirsutum HT (Glu)/pat
    A116 Creeping Bentgrass ASR368 SMG-368ØØ-2 Roundup Ready ™ HT (Gly)/cp4 Monsanto
    Agrostis stolonifera Creeping Bentgrass epsps (aroA:CP4)
    A117 Eggplant Bt Brinjal Bt Brinjal Event EE1 BARI Bt Begun- IR (BL)/cry1Ac Maharashtra
    Solanum melongena Event EE1 1, -2, -3 and -4 Hybrid Seed
    Company
    (MAHYCO)
    A118 Flax FP967 (CDC CDC-FLØØ1-2 CDC Triffid Flax HT (SU)/als University of
    Linum usitatissimum Triffid) Saskatchewan
    A119 Lentil RH44 RH44 not available HT (Imi)/als BASF
    Lens culinaris (mutant)
    A120 Maize 32138 DP-32138-1 32138 SPT PC (FR)/ms45 Dupont
    Zea mays maintainer PC (MS)/zm-aa1
    A121 Maize 3272 SYN-E3272-5 Enogen ™ ST (CA)/amy797E Syngenta
    Zea mays
    A122 Maize 3272 × Bt11 SYN-E3272-5 × not available ST (CA)/amy797E Syngenta
    Zea mays SYN-BTØ11-1 IR (BL)/cry1Ab
    HT (Glu)/pat
    A123 Maize 3272 × Bt11 × SYN-E3272-5 × not available ST (CA)/amy797E Syngenta
    Zea mays GA21 SYN-BTØ11-1 × IR (BL)/cry1Ab
    MON-ØØØ21-9 HT (Glu)/pat
    HT (Gly)/mepsps
    A124 Maize 3272 × Bt11 × SYN-E3272-5 × not available ST (CA)/amy797E Syngenta
    Zea mays MIR604 SYN-BTØ11-1 × IR (BL)/cry1Ab
    SYN-IR6Ø4-5 HT (Glu)/pat
    IR (Col)/mcry3A
    A125 Maize 3272 × BT11 × SYN-E3272-5 × not available ST (CA)/amy797E Syngenta
    Zea mays MIR604 × GA21 SYN-BTØ11-1 × IR (BL)/cry1Ab
    SYN-IR6Ø4-5 × HT (Glu)/pat
    MON-ØØØ21-9 IR (Col)/mcry3A
    HT (Gly)/mepsps
    A126 Maize 3272 × GA21 SYN-E3272-5 × not available ST (CA)/amy797E Syngenta
    Zea mays MON-ØØØ21-9 HT (Gly)/mepsps
    A127 Maize 3272 × SYN-E3272-5 × not available ST (CA)/amy797E Syngenta
    Zea mays MIR604 SYN-IR6Ø4-5 IR (Col)/mcry3A
    A128 Maize 3272 × SYN-E3272-5 × not available ST (CA)/amy797E Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × IR (Col)/mcry3A
    GA21 MON-ØØØ21-9 HT (Gly)/mepsps
    A129 Maize 33121 DP-Ø33121-3 not available IR (BL)/cry2Ae Dupont
    Zea mays IR (BL)/cry1A
    IR (BL)/vip3Aa20
    HT (Glu)/pat
    A130 Maize 4114 DP-ØØ4114-3 not available IR (BL)/cry1F Dupont
    Zea mays IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    HT (Glu)/pat
    A131 Maize 5307 SYN-Ø53Ø7-1 Agrisure ® IR (Col)/ecry3.1Ab Syngenta
    Zea mays Duracade ™
    A132 Maize 5307 × SYN-Ø53Ø7-1 × Agrisure ® IR (Col)/ecry3.1Ab Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × Duracade ™ IR (Col)/mcry3A
    Bt11 × SYN-BTØ11-1 × 5122 IR (BL)/cry1Ab
    TC1507 × DAS-Ø15Ø7-1 × HT (Glu)/pat
    GA21 MON-ØØØ21-9 IR (BL)/cry1Fa2
    HT (Gly)/mepsps
    A133 Maize 5307 × SYN-Ø53Ø7-1 × Agrisure ® IR (Col)/ecry3.1Ab Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × Duracade ™ IR (Col)/mcry3A
    Bt11 × SYN-BTØ11-1 × 5222 IR (BL)/cry1Ab
    TC1507 × DAS-Ø15Ø7-1 × HT (Glu)/pat
    GA21 × MON-ØØØ21-9 × IR (BL)/cry1Fa2
    MIR162 SYN-IR162-4 HT (Gly)/mepsps
    IR (BL)/vip3Aa20
    A134 Maize 59122 DAS-59122-7 Herculex ™ RW HT (Glu)/pat Dow
    Zea mays IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    A135 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Syngenta
    Zea mays GA21 MON-ØØØ21-9 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    HT (Gly)/mepsps
    A136 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Syngenta
    Zea mays MIR604 SYN-IR6Ø4-5 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    IR (Col)/mcry3A
    A137 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × IR (Col)/cry34Ab1
    GA21 MON-ØØØ21-9 IR (Col)/cry35Ab1
    IR (Col)/mcry3A
    HT (Gly)/mepsps
    A138 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × IR (Col)/cry34Ab1
    TC1507 DAS-Ø15Ø7-1 IR (Col)/cry35Ab1
    IR (Col)/mcry3A
    IR (BL)/cry1Fa2
    A139 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × IR (Col)/cry34Ab1
    TC1507 × DAS-Ø15Ø7-1 × IR (Col)/cry35Ab1
    GA21 MON-ØØØ21-9 IR (Col)/mcry3A
    IR (BL)/cry1Fa2
    HT (Gly)/mepsps
    A140 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Dupont
    Zea mays MON810 MON-ØØ81Ø-6 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    IR (BL)/cry1Ab
    A141 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Dupont
    Zea mays MON810 × MON-ØØ81Ø-6 × IR (Col)/cry34Ab1
    NK603 MON-ØØ6Ø3-6 IR (Col)/cry35Ab1
    IR (BL)/cry1Ab
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A142 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Monsanto &
    Zea mays MON88017 MON-88Ø17-3 IR (Col)/cry34Ab1 Dow
    IR (Col)/cry35Ab1
    IR (Col)/cry3Bb1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A143 Maize 59122 × DAS-59122-7 × Herculex ™ RW HT (Glu)/pat Dupont
    Zea mays NK603 MON-ØØ6Ø3-6 Roundup Ready ™ 2 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A144 Maize 59122 × DAS-59122-7 × not available HT (Glu)/pat Syngenta
    Zea mays TC1507 × DAS-Ø15Ø7-1 × IR (Col)/cry34Ab1
    GA21 MON-ØØØ21-9 IR (Col)/cry35Ab1
    IR (BL)/cry1Fa2
    HT (Gly)/mepsps
    A145 Maize 676 PH-ØØØ676-7 not available HT (Glu)/pat Dupont
    Zea mays PC (MS)/dam
    A146 Maize 678 PH-ØØØ678-9 not available HT (Glu)/pat Dupont
    Zea mays PC (MS)/dam
    A147 Maize 680 PH-ØØØ68Ø-2 not available HT (Glu)/pat Dupont
    Zea mays PC (MS)/dam
    A148 Maize 98140 DP-Ø9814Ø-6 Optimum ™ HT (SU)/zm-hra Dupont
    Zea mays GAT ™ HT (Gly)/gat4621
    A149 Maize 98140 × DP-Ø9814Ø-6 × not available HT (Glu)/pat Dow &
    Zea mays 59122 DAS-59122-7 IR (Col)/cry34Ab1 Dupont
    IR (Col)/cry35Ab1
    HT (SU)/zm-hra
    HT (Gly)/gat4621
    A150 Maize 98140 × DP-Ø9814Ø-6 × not available HT (SU)/zm-hra Dow &
    Zea mays TC1507 DAS-Ø15Ø7-1 HT (Gly)/gat4621 Dupont
    IR (BL)/cry1Fa2
    HT (Glu)/pat
    A151 Maize 98140 × DP-Ø9814Ø-6 × not available HT (Glu)/pat Dow &
    Zea mays TC1507 × DAS-Ø15Ø7-1 × IR (Col)/cry34Ab1 Dupont
    59122 DAS-59122-7 IR (Col)/cry35Ab1
    HT (SU)/zm-hra
    HT (Gly)/gat4621
    IR (BL)/cry1Fa2
    A152 Maize Bt10 not available Bt10 IR (BL)/cry1Ab Syngenta
    Zea mays HT (Glu)/pat
    A153 Maize Bt11 SYN-BTØ11-1 Agrisure ™ IR (BL)/cry1Ab Syngenta
    Zea mays (X4334CBR, CB/LL HT (Glu)/pat
    X4734CBR)
    A154 Maize Bt11 × SYN-BTØ11-1 × not available HT (Glu)/pat Syngenta
    Zea mays 59122 DAS-59122-7 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    IR (BL)/cry1Ab
    A155 Maize Bt11 × SYN-BTØ11-1 × not available HT (Glu)/pat Syngenta
    Zea mays 59122 × DAS-59122-7 × IR (Col)/cry34Ab1
    GA21 MON-ØØØ21-9 IR (Col)/cry35Ab1
    IR (BL)/cry1Ab
    HT (Gly)/mepsps
    A156 Maize Bt11 × SYN-BTØ11-1 × not available HT (Glu)/pat Syngenta
    Zea mays 59122 × DAS-59122-7 × IR (Col)/cry34Ab1
    MIR604 SYN-IR6Ø4-5 IR (Col)/cry35Ab1
    IR (BL)/cry1Ab
    IR (Col)/mcry3a
    A157 Maize Bt11 × SYN-BTØ11-1 × not available HT (Glu)/pat Syngenta
    Zea mays 59122 × DAS-59122-7 × IR (Col)/cry34Ab1
    MIR604 × SYN-IR6Ø4-5 × IR (Col)/cry35Ab1
    GA21 MON-ØØØ21-9 IR (BL)/cry1Ab
    IR (Col)/mcry3a
    HT (Gly)/mepsps
    A158 Maize Bt11 × SYN-BTØ11-1 × not available HT (Glu)/pat Syngenta
    Zea mays 59122 × DAS-59122-7 × IR (Col)/cry34Ab1
    MIR604 × SYN-IR6Ø4-5 × IR (Col)/cry35Ab1
    TC1507 DAS-Ø15Ø7-1 IR (BL)/cry1Ab
    IR (BL)/cry1Fa2
    IR (Col)/mcry3a
    A159 Maize BT11 × SYN-BTØ11-1 × Agrisure ® 3122 HT (Glu)/pat Syngenta
    Zea mays 59122 × DAS-59122-7 × IR (Col)/cry34Ab1
    MIR604 × SYN-IR6Ø4-5 × IR (Col)/cry35Ab1
    TC1507 × DAS-Ø15Ø7-1 × IR (BL)/cry1Ab
    GA21 MON-ØØØ21-9 IR (BL)/cry1Fa2
    IR (Col)/mcry3a
    HT (Gly)/mepsps
    A160 Maize Bt11 × SYN-BTØ11-1 × not available HT (Glu)/pat Syngenta
    Zea mays 59122 × DAS-59122-7 × IR (Col)/cry34Ab1
    TC1507 DAS-Ø15Ø7-1 IR (Col)/cry35Ab1
    IR (BL)/cry1Ab
    IR (BL)/cry1Fa2
    A161 Maize Bt11 × SYN-BTØ11-1 × not available HT (Glu)/pat Syngenta
    Zea mays 59122 × DAS-59122-7 × IR (Col)/cry34Ab1
    TC1507 × DAS-Ø15Ø7-1 × IR (Col)/cry35Ab1
    GA21 MON-ØØØ21-9 IR (BL)/cry1Ab
    IR (BL)/cry1Fa2
    HT (Gly)/mepsps
    A162 Maize Bt11 × SYN-BTØ11-1 × Agrisure ™ HT (Gly)/mepsps Syngenta
    Zea mays GA21 MON-ØØØ21-9 GT/CB/LL IR (BL)/cry1Ab
    HT (Glu)/pat
    A163 Maize Bt11 × SYN-BTØ11-1 × Agrisure ® IR (BL)/cry1Ab Syngenta
    Zea mays MIR162 SYN-IR162-4 Viptera ™ 2100 (truncated)
    HT (Glu)/pat
    IR (BL)/vip3Aa20
    A164 Maize Bt11 × SYN-BTØ11-1 × Agrisure ® IR (BL)/cry1Ab Syngenta
    Zea mays MIR162 × SYN-IR162-4 × Viptera ™ 3110 HT (Glu)/pat
    GA21 MON-ØØØ21-9 IR (BL)/vip3Aa20
    HT (Gly)/mepsps
    A165 Maize BT11 × SYN-BTØ11-1 × Agrisure ® IR (BL)/cry1Ab Syngenta
    Zea mays MIR162 × SYN-IR162-4 × Viptera ™ 3100 HT (Glu)/pat
    MIR604 SYN-IR6Ø4-5 IR (BL)/vip3Aa20
    IR (Col)/mcry3a
    A166 Maize Bt11 × SYN-BTØ11-1 × Agrisure ® IR (BL)/cry1Ab Syngenta
    Zea mays MIR162 × SYN-IR162-4 × Viptera ™ 3111, HT (Glu)/pat
    MIR604 × SYN-IR6Ø4-5 × Agrisure ® IR (BL)/vip3Aa20
    GA21 MON-ØØØ21-9 Viptera ™ 4 IR (Col)/mcry3a
    HT (Gly)/mepsps
    A167 Maize Bt11 × SYN-BTØ11-1 × not available IR (BL)/cry1Ab Syngenta
    Zea mays MIR162 × SYN-IR162-4 × HT (Glu)/pat
    TC1507 DAS-Ø15Ø7-1 IR (BL)/vip3Aa20
    IR (BL)/cry1Fa2
    A168 Maize Bt11 × SYN-BTØ11-1 × Agrisure ™ IR (BL)/cry1Ab Syngenta
    Zea mays MIR162 × SYN-IR162-4 × Viptera 3220 HT (Glu)/pat
    TC1507 × DAS-Ø15Ø7-1 × IR (BL)/vip3Aa20
    GA21 MON-ØØØ21-9 IR (BL)/cry1Fa2
    HT (Gly)/mepsps
    A169 Maize Bt11 × SYN-BTØ11-1 × Agrisure ™ IR (BL)/cry1Ab Syngenta
    Zea mays MIR604 SYN-IR6Ø4-5 CB/LL/RW HT (Glu)/pat
    IR (Col)/mcry3a
    A170 Maize BT11 × SYN-BTØ11-1 × Agrisure ™ IR (BL)/cry1Ab Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × 3000GT HT (Glu)/pat
    GA21 MON-ØØØ21-9 IR (Col)/mcry3a
    HT (Gly)/mepsps
    A171 Maize Bt11 × SYN-BTØ11-1 × not available IR (BL)/cry1Ab Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × HT (Glu)/pat
    TC1507 DAS-Ø15Ø7-1 IR (Col)/mcry3a
    IR (BL)/cry1Fa2
    A172 Maize Bt11 × SYN-BTØ11-1 × not available IR (BL)/cry1Ab Syngenta
    Zea mays TC1507 DAS-Ø15Ø7-1 HT (Glu)/pat
    IR (BL)/cry1Fa2
    A173 Maize Bt11 × SYN-BTØ11-1 × not available IR (BL)/cry1Ab Syngenta
    Zea mays TC1507 × DAS-Ø15Ø7-1 × HT (Glu)/pat
    GA21 MON-ØØØ21-9 IR (BL)/cry1Fa2
    HT (Gly)/mepsps
    A174 Maize Bt176 (176) SYN-EV176-9 NaturGard IR (BL)/cry1Ab Syngenta
    Zea mays KnockOut ™, HT (Glu)/bar
    Maximizer ™
    A175 Maize BVLA430101 not available not available ST (P)/phyA2 Origin
    Zea mays Agritech
    (China)
    A176 Maize CBH-351 ACS-ZMØØ4-3 Starlink ™ Maize IR (BL)/cry9c Bayer Crop
    Zea mays HT (Glu)/bar Sciences
    A177 Maize DAS40278 DAS-4Ø278-9 Enlist ™ Maize HT (2,4-D)/aad1 Dow
    Zea mays
    A178 Maize DAS40278 × DAS-4Ø278-9 × not available HT (2,4-D)/aad1 Dow
    Zea mays NK603 MON-ØØ6Ø3-6 HT (Gly)/cp4
    epsps (aroA:CP4)
    A179 Maize DBT418 DKB-89614-9 Bt Xtra ™ Maize IR (BL)/Cry1Ac Monsanto
    Zea mays IR (BL)/pinII
    HT (Glu)/bar
    A180 Maize DLL25 (B16) DKB-8979Ø-5 not available HT (Glu)/bar Monsanto
    Zea mays
    A181 Maize GA21 MON-ØØØ21-9 Roundup HT (Gly)/mepsps Monsanto
    Zea mays Ready ™ Maize,
    Agrisure ™ GT
    A182 Maize GA21 × MON-ØØØ21-9 × Roundup IR (BL)/cry1Ab Monsanto
    Zea mays MON810 MON-ØØ81Ø-6 Ready ™ HT (Gly)/mepsps
    YieldGard ™
    maize
    A183 Maize GA21 × T25 MON-ØØØ21-9 × not available HT (Gly)/mepsps Syngenta
    Zea mays ACS-ZMØØ3-2 HT (Glu)/pat (syn)
    A184 Maize HCEM485 HCEM485 not available HT (Gly)/2mepsps Stine Seed
    Zea mays Farm, Inc
    (USA)
    A185 Maize LY038 REN-ØØØ38-3 Mavera ™ Maize ST (AA)/cordapA Renessen LLC
    Zea mays (Netherlands)
    A186 Maize LY038 × REN-ØØØ38-3 × Mavera ™ ST (AA)/cordapA Renessen LLC
    Zea mays MON810 MON-ØØ81Ø-6 YieldGard ™ IR (BL)/cry1Ab (Netherlands)
    Maize & Monsanto
    A187 Maize MIR162 SYN-IR162-4 Agrisure ™ IR (BL)/vip3Aa20 Syngenta
    Zea mays Viptera
    A188 Maize MIR162 × SYN-IR162-4 × not available IR (BL)/vip3Aa20 Syngenta
    Zea mays GA21 MON-ØØØ21-9 HT (Gly)/mepsps
    A189 Maize MIR162 × SYN-IR162-4 × not available IR (BL)/vip3Aa20 Syngenta
    Zea mays MIR604 SYN-IR6Ø4-5 IR (Col)/mcry3a
    A190 Maize MIR162 × SYN-IR162-4 × not available IR (BL)/vip3Aa20 Syngenta
    Zea mays MIR604 × SYN-IR6Ø4-5 × IR (Col)/mcry3a
    GA21 MON-ØØØ21-9 HT (Gly)/mepsps
    A191 Maize MIR162 × SYN-IR162-4 × not available IR (BL)/vip3Aa20 Syngenta
    Zea mays TC1507 DAS-Ø15Ø7-1 IR (BL)/cry1Fa2
    HT (Glu)/pat
    A192 Maize MIR162 × SYN-IR162-4 × not available IR (BL)/vip3Aa20 Syngenta
    Zea mays TC1507 × DAS-Ø15Ø7-1 × IR (BL)/cry1Fa2
    GA21 MON-ØØØ21-9 HT (Glu)/pat
    HT (Gly)/mepsps
    A193 Maize MIR604 SYN-IR6Ø4-5 Agrisure ™ RW IR (Col)/mcry3a Syngenta
    Zea mays
    A194 Maize MIR604 × SYN-IR6Ø4-5 × Agrisure ™ IR (Col)/mcry3a Syngenta
    Zea mays GA21 MON-ØØØ21-9 GT/RW HT (Gly)/mepsps
    A195 Maize MIR604 × SYN-IR6Ø4-5 × not available IR (Col)/mcry3a Dupont
    Zea mays NK603 MON-ØØ6Ø3-6 HT (Gly)/cp4
    epsps (aroA:CP4)
    A196 Maize MIR604 × SYN-IR6Ø4-5 × not available IR (Col)/mcry3a Syngenta
    Zea mays TC1507 DAS-Ø15Ø7-1 IR (BL)/cry1Fa2
    HT (Glu)/pat
    A197 Maize MON801 MON801 not available IR (BL)/cry1Ab Monsanto
    Zea mays (MON80100)
    A198 Maize MON802 MON-8Ø2ØØ-7 not available IR (BL)/cry1Ab Monsanto
    Zea mays
    A199 Maize MON809 PH-MON-8Ø9-2 not available IR (BL)/cry1Ab Monsanto &
    Zea mays Dupont
    A200 Maize MON810 MON-ØØ81Ø-6 YieldGard ™, IR (BL)/cry1Ab Monsanto
    Zea mays MaizeGard ™
    A201 Maize MON810 × MON-ØØ81Ø-6 × YieldGard ™ VT IR (BL)/cry1Ab Monsanto
    Zea mays MON88017 MON-88Ø17-3 Triple IR (Col)/cry3Bb1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A202 Maize MON832 not available Roundup HT (Gly)/gov247 Monsanto
    Zea mays Ready ™ Maize HT (Gly)/cp4
    epsps (aroA:CP4)
    A203 Maize MON863 MON-ØØ863-5 YieldGard ™ IR (Col)/cry3Bb1 Monsanto
    Zea mays Rootworm RW,
    MaxGard ™
    A204 Maize MON863 × MON-ØØ863-5 × YieldGard ™ Plus IR (BL)/cry1Ab Monsanto
    Zea mays MON810 MON-ØØ81Ø-6 IR (Col)/cry3Bb1
    A205 Maize MON863 × MON-ØØ6Ø3-6 × YieldGard ™ Plus IR (BL)/cry1Ab Monsanto
    Zea mays MON810 × MON-ØØ81Ø-6 × with RR IR (Col)/cry3Bb1
    NK603 MON-ØØ863-5 HT (Gly)/cp4
    epsps (aroA:CP4)
    A206 Maize MON863 × MON-ØØ863-5 × YieldGard ™ IR (Col)/cry3Bb1 Monsanto
    Zea mays NK603 MON-ØØ6Ø3-6 RW + RR HT (Gly)/cp4
    epsps (aroA:CP4)
    A207 Maize MON87411 MON-87411-9 Not available IR (Col)/cry3Bb1 Monsanto
    Zea mays HT (Gly)/cp4
    epsps (aroA:CP4)
    IR (Rw)/dvsnf7
    A208 Maize MON87427 MON-87427-7 Roundup HT (Gly)/cp4 Monsanto
    Zea mays Ready ™ Maize epsps (aroA:CP4)
    A209 Maize MON87427 × MON-87427-7 × not available HT (Gly)/cp4 Monsanto
    Zea mays MON89034 × MON-89Ø34-3 × epsps (aroA:CP4)
    MON88017 MON-88Ø17-3 IR (BL)/cry2Ab2
    IR (BL)/cry1A.105
    IR (Col)/cry3Bb1
    A210 Maize MON87427 × MON-87427-7 × not available HT (Gly)/cp4 Monsanto
    Zea mays MON89034 × MON-89Ø34-3 × epsps (aroA:CP4)
    NK603 MON-ØØ6Ø3-6 IR (BL)/cry2Ab2
    IR (BL)/cry1A.105
    A211 Maize MON87427 × MON-87427-7 × not available HT (Gly)/cp4 Monsanto
    Zea mays MON89Ø34 × MON-89Ø34-3 × epsps (aroA:CP4)
    TC15Ø7 × DAS-Ø15Ø7-1 × IR (Col)/cry34Ab1
    MON88Ø17 × MON-88Ø17-3 × IR (Col)/cry35Ab1
    59122 DAS-59122-7 IR (BL)/cry1Fa2
    HT (Glu)/pat
    IR (BL)/cry2Ab2
    A212 Maize MON87460 MON-8746Ø-4 Genuity ® YS (DT)/cspB Monsanto &
    Zea mays DroughtGard ™ BASF
    A213 Maize MON87460 × MON-8746Ø-4 × not available YS (DT)/cspB Monsanto
    Zea mays MON89034 × MON-89Ø34-3 × IR (BL)/cry1A.105
    MON88017 MON-88Ø17-3 IR (BL)/cry2Ab2
    IR (Col)/cry3Bb1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A214 Maize MON87460 × MON-8746Ø-4 × not available YS (DT)/cspB Monsanto
    Zea mays MON89034 × MON-89Ø34-3 × IR (BL)/cry1A.105
    NK603 MON-ØØ6Ø3-6 IR (BL)/cry2Ab2
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A215 Maize MON87460 × MON-8746Ø-4 × not available YS (DT)/cspB Monsanto
    Zea mays NK603 MON-ØØ6Ø3-6 HT (Gly)/cp4
    epsps (aroA:CP4)
    A216 Maize MON88017 MON-88Ø17-3 YieldGard ™ IR (Col)/cry3Bb1 Monsanto
    Zea mays VT ™ HT (Gly)/cp4
    Rootworm ™ epsps (aroA:CP4)
    RR2
    A217 Maize MON89034 MON-89Ø34-3 YieldGard ™ VT IR (BL)/cry1A.105 Monsanto
    Zea mays Pro ™
    A218 Maize MON89034 × MON-89Ø34-3 × not available HT (Glu)/pat Monsanto
    Zea mays 59122 DAS-59122-7 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    IR (BL)/cry1A.105
    IR (BL)/cry2Ab2
    A219 Maize MON89034 × MON-89Ø34-3 × not available HT (Glu)/pat Monsanto
    Zea mays 59122 × DAS-59122-7 × IR (Col)/cry34Ab1
    MON88017 MON-88Ø17-3 IR (Col)/cry35Ab1
    IR (Col)/cry3Bb1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    IR (BL)/cry1A.105
    IR (BL)/cry2Ab2
    A220 Maize MON89034 × MON-89Ø34-3 × Genuity ® VT IR (BL)/cry1A.105 Monsanto
    Zea mays MON88017 MON-88Ø17-3 Triple Pro ™ IR (BL)/cry2Ab2
    IR (Col)/cry3Bb1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A221 Maize MON89034 × MON-89Ø34-3 × Genuity ® VT IR (BL)/cry1A.105 Monsanto
    Zea mays NK603 MON-ØØ6Ø3-6 Double Pro ™ IR (BL)/cry2Ab2
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A222 Maize MON89034 × MON-89Ø34-3 × not available IR (BL)/cry1A.105 Monsanto
    Zea mays TC1507 DAS-Ø15Ø7-1 IR (BL)/cry2Ab2
    IR (BL)/cry1Fa2
    HT (Glu)/pat
    A223 Maize MON89034 × MON-89Ø34-3 × not available HT (Glu)/pat Monsanto
    Zea mays TC1507 × DAS-Ø15Ø7-1 × IR (Col)/cry34Ab1
    59122 DAS-59122-7 IR (Col)/cry35Ab1
    IR (BL)/cry1A.105
    IR (BL)/cry2Ab2
    IR (BL)/cry1Fa2
    A224 Maize MON89034 × MON-89Ø34-3 × not available IR (Col)/cry3Bb1 Monsanto &
    Zea mays TC1507 × DAS-Ø15Ø7-1 × HT (Gly)/cp4 Dow
    MON88017 MON-88Ø17-3 epsps (aroA:CP4)
    IR (BL)/cry1A.105
    IR (BL)/cry2Ab2
    IR (BL)/cry1Fa2
    HT (Glu)/pat
    A225 Maize MON89034 × MON-89Ø34-3 × Genuity ® HT (Glu)/pat Monsanto &
    Zea mays TC1507 × DAS-Ø15Ø7-1 × SmartStax ™ IR (Col)/cry34Ab1 Dow
    MON88017 × MON-88Ø17-3 × IR (Col)/cry35Ab1
    59122 DAS-59122-7 IR (Col)/cry3Bb1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    IR (BL)/cry1A.105
    IR (BL)/cry2Ab2
    IR (BL)/cry1Fa2
    A226 Maize MON89034 × MON-89Ø34-3 × not available HT (Glu)/pat Dow
    Zea mays TC1507 × DAS-Ø15Ø7-1 × IR (Col)/cry34Ab1
    MON88017 × MON-88Ø17-3 × IR (Col)/cry35Ab1
    59122 × DAS-59122-7 × IR (Col)/cry3Bb1
    DAS40278 DAS-4Ø278-9 HT (Gly)/cp4
    epsps (aroA:CP4)
    IR (BL)/cry1A.105
    IR (BL)/cry2Ab2
    IR (BL)/cry1Fa2
    HT (2,4-D)/aad1
    A227 Maize MON89034 × MON-89Ø34-3 × not available IR (Col)/cry3Bb1 Dow
    Zea mays TC1507 × DAS-Ø15Ø7-1 × HT (Gly)/cp4
    MON88017 × MON-88Ø17-3 × epsps (aroA:CP4)
    DAS40278 DAS-59122-7 × IR (BL)/cry1A.105
    DAS-4Ø278-9 IR (BL)/cry2Ab2
    IR (BL)/cry1Fa2
    HT (Glu)/pat
    HT (2,4-D)/aad1
    A228 Maize MON89034 × MON-89Ø34-3 × Power Core ™ IR (BL)/cry1A.105 Monsanto &
    Zea mays TC1507 × DAS-Ø15Ø7-1 × IR (BL)/cry2Ab2 Dow
    NK603 MON-ØØ6Ø3-6 IR (BL)/cry1Fa2
    HT (Gly)/cp4
    epsps (aroA:CP4)
    HT (Glu)/pat
    A229 Maize MON89034 × MON-89Ø34-3 × not available IR (BL)/cry1A.105 Dow
    Zea mays TC1507 × DAS-Ø15Ø7-1 × IR (BL)/cry2Ab2
    NK603 × MON-ØØ6Ø3-6 × IR (BL)/cry1Fa2
    DAS40278 DAS-4Ø278-9 HT (Gly)/cp4
    epsps (aroA:CP4)
    HT (Glu)/pat
    HT (2,4-D)/aad1
    A230 Maize MS3 ACS-ZMØØ1-9 InVigor ™ Maize PC (MS)/barnase Bayer Crop
    Zea mays Science
    A231 Maize MS6 ACS-ZMØØ5-4 InVigor ™ Maize PC (MS)/barnase Bayer Crop
    Zea mays Science
    A232 Maize NK603 MON-ØØ6Ø3-6 Roundup HT (Gly)/cp4 Monsanto
    Zea mays Ready ™ 2 Maize epsps (aroA:CP4)
    A233 Maize NK603 × MON-00603-6 × Not available HT (Gly)/cp4 Syngenta &
    Zea mays MON810 × MON-00810-6 × epsps (aroA:CP4) Monsanto
    4114 × DP004114-3 × IR (BL)/cry1Ab
    MIR 604 SYN-IR604-4 IR (BL)/cry1F
    IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    HT (Glu)/pat
    A234 Maize NK603 × MON-ØØ6Ø3-6 × YieldGard ™ IR (BL)/cry1Ab Monsanto
    Zea mays MON810 MON-ØØ81Ø-6 CB + RR HT (Gly)/cp4
    epsps (aroA:CP4)
    A235 Maize NK603 × MON-ØØ6Ø3-6 × Roundup HT (Gly)/cp4 Monsanto
    Zea mays T25 ACS-ZMØØ3-2 Ready ™ Liberty epsps (aroA:CP4)
    Link ™ Maize HT (Glu)/pat (syn)
    A236 Maize T14 ACS-ZMØØ2-1 Liberty Link ™ HT (Glu)/pat (syn) Bayer Crop
    Zea mays Maize Science
    A237 Maize T25 ACS-ZMØØ3-2 Liberty Link ™ HT (Glu)/pat (syn) Bayer Crop
    Zea mays Maize Science
    A238 Maize T25 × ACS-ZMØØ3-2 × Liberty Link ™ IR (BL)/cry1Ab Bayer Crop
    Zea mays MON810 MON-ØØ81Ø-6 Yieldgard ™ HT (Glu)/pat (syn) Science &
    Maize Monsanto
    A239 Maize TC1507 DAS-Ø15Ø7-1 Herculex ™ I, IR (BL)/cry1Fa2 Dow &
    Zea mays Herculex ™ CB HT (Glu)/pat Dupont
    A240 Maize TC1507 × DAS-Ø15Ø7-1 × Optimum ™ IR (BL)/cry1Fa2 Dupont
    Zea mays 59122 × DAS-59122-7 × Intrasect Xtreme HT (Glu)/pat
    MON810 × MON-ØØ81Ø-6 × IR (Col)/cry34Ab1
    MIR604 × SYN-IR6Ø4-5 × IR (Col)/cry35Ab1
    NK603 MON-ØØ6Ø3-6
    A241 Maize TC1507 × DAS-Ø15Ø7-1 × not available IR (Col)/mcry3A Dupont
    Zea mays MON810 × MON-ØØ81Ø-6 × IR (BL)/cry1Fa2
    MIR604 × SYN-IR6Ø4-5 × HT (Glu)/pat
    NK603 MON-ØØ6Ø3-6 IR (BL)/cry1Ab
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A242 Maize TC1507 × DAS-Ø15Ø7-1 × Herculex IR (BL)/cry1Fa2 Dow &
    Zea mays 59122 DAS-59122-7 XTRA ™ HT (Glu)/pat Dupont
    IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    A243 Maize TC1507 × DAS-Ø15Ø7-1 × not available IR (BL)/cry1Fa2 Dupont
    Zea mays 59122 × DAS-59122-7 × HT (Glu)/pat
    MON810 MON-ØØ81Ø-6 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    IR (BL)/cry1Ab
    A244 Maize TC1507 × DAS-Ø15Ø7-1 × Optimum ™ IR (BL)/cry1Fa2 Dupont
    Zea mays 59122 × DAS-59122-7 × Intrasect XTRA HT (Glu)/pat
    MON810 × MON-ØØ81Ø-6 × IR (Col)/cry34Ab1
    NK603 MON-ØØ6Ø3-6 IR (Col)/cry35Ab1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    IR (BL)/cry1Ab
    A245 Maize TC1507 × DAS-Ø15Ø7-1 × not available IR (BL)/cry1Fa2 Monsanto &
    Zea mays 59122 × DAS-59122-7 × HT (Glu)/pat Dow
    MON88017 MON-88Ø17-3 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    IR (Col)/cry3Bb1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A246 Maize TC1507 × DAS-Ø15Ø7-1 × Herculex IR (BL)/cry1Fa2 Dow &
    Zea mays 59122 × DAS-59122-7 × XTRA ™ RR HT (Glu)/pat Dupont
    NK603 MON-ØØ6Ø3-6 IR (Col)/cry34Ab1
    IR (Col)/cry35Ab1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A247 Maize TC1507 × DAS-Ø15Ø7-1 × not available IR (BL)/cry1Fa2 Dupont
    Zea mays GA21 MON-ØØØ21-9 HT (Glu)/pat
    HT (Gly)/mepsps
    A248 Maize TC1507 × DAS-Ø15Ø7-1 × Optimum ™ IR (BL)/cry1Fa2 Dupont
    Zea mays MIR604 × SYN-IR6Ø4-5 × TRIsect HT (Glu)/pat
    NK603 MON-ØØ6Ø3-6 HT (Gly)/cp4
    epsps (aroA:CP4)
    IR (Col)/mcry3A
    A249 Maize TC1507 × DAS-Ø15Ø7-1 × not available IR (BL)/cry1Fa2 Dow &
    Zea mays MON810 MON-ØØ81Ø-6 HT (Glu)/pat Dupont
    IR (BL)/cry1Ab
    A250 Maize TC1507 × DAS-Ø15Ø7-1 × not available IR (BL)/cry1Fa2 Dupont
    Zea mays MON810 × MON-ØØ81Ø-6 × HT (Glu)/pat
    MIR162 × SYN-IR162-4 × IR (BL)/cry1Ab
    NK603 MON-ØØ6Ø3-6 HT (Gly)/cp4
    epsps (aroA:CP4)
    IR (BL)/vip3Aa20
    A251 Maize TC1507 × DAS-Ø15Ø7-1 × Optimum ™ IR (BL)/cry1Fa2 Dupont
    Zea mays MON810 × MON-ØØ81Ø-6 × Intrasect HT (Glu)/pat
    NK603 MON-ØØ6Ø3-6 IR (BL)/cry1Ab
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A252 Maize TC1507 × DAS-Ø15Ø7-1 × not available IR (BL)/cry1Fa2 Monsanto
    Zea mays MON88017 MON-88Ø17-3 HT (Glu)/pat
    IR (Col)/cry3Bb1
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A253 Maize TC1507 × DAS-Ø15Ø7-1 × Herculex ™ I RR IR (BL)/cry1Fa2 Dow
    Zea mays NK603 MON-ØØ6Ø3-6 HT (Glu)/pat
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A254 Maize TC6275 DAS-Ø6275-8 not available IR (BL)/mocry1F Dow
    Zea mays HT (Glu)/bar
    A255 Maize VCO- VCO-Ø1981-5 not available HT (Gly)/epsps Genective
    Zea mays Ø1981-5 grg23ace5 S.A.
    A256 Maize DK404SR DK404SR not available HT (Cyc)/ACCase BASF
    Zea mays (mutant)
    A257 Maize EXP1910IT EXP1910IT not available HT (Imi)/als Syngenta
    Zea mays (mutant)
    A258 Melon Melon A not available not available ST (Ripe)/sam-k Agritope Inc.
    Cucumis melo (USA)
    A259 Melon Melon B not available not available ST (Ripe)/sam-k Agritope Inc.
    Cucumis melo (USA)
    A260 Papaya 55-1 CUH-CP551-8 Rainbow, SunUp VR (PRSV)/prsv-cp Cornell Uni-
    Carica papaya versity and
    University of
    Hawaii
    A261 Papaya 63-1 CUH-CP631-7 not available VR (PRSV)/prsv-cp Cornell Uni-
    Carica papaya versity and
    University of
    Hawaii
    A262 Papaya Huanong not available Huanong No. 1 VR (PRSV)/prsv-rep South China
    Carica papaya No. 1 Agricultural
    University
    A263 Papaya X17-2 UFL-X17CP-6 not available VR (PRSV)/prsv-cp University of
    Carica papaya Florida
    A264 Petunia Petunia- not available not available Beijing
    Petunia hybrida CHS University
    A265 Plum C-5 ARS-PLMC5-6 not available VR (PPV)/ppv-cp United
    Prunus domestica States De-
    partment of
    Agriculture -
    Agricultural
    Research
    Service
    A266 Polish canola HCR-1 not available not available HT (Glu)/pat Bayer Crop
    Brassica rapa Sciences
    A267 Polish canola ZSR500 not available Hysyn 101 RR HT (Gly)/cp4 University of
    Brassica rapa Roundup- epsps (aroA:CP4) Florida
    Ready ™ HT (Gly)/gov247
    A268 Polish canola ZSR502 not available Hysyn 101 RR HT (Gly)/cp4 University of
    Brassica rapa Roundup- epsps (aroA:CP4) Florida
    Ready ™ HT (Gly)/gov247
    A269 Polish canola ZSR503 not available Hysyn 101 RR HT (Gly)/cp4 University of
    Brassica rapa Roundup- epsps (aroA:CP4) Florida
    Ready ™ HT (Gly)/gov247
    A270 Poplar Bt poplar, not available not available IR (BL)/cry1Ac Research
    Populus sp. poplar 12 Institute of
    (Populus Forestry
    nigra) (China)
    A271 Poplar Hybrid poplar not available not available IR (BL)/cry1Ac Research
    Populus sp. clone 741 IR (BRun)/API Institute of
    Forestry
    (China)
    A272 Potato 1210 amk not available Lugovskoi plus IR (Col)/cry3A Centre Bio-
    Solanum tuberosum engineering,
    Russian
    Academy of
    Sciences
    A273 Potato 2904/1 kgs not available Elizaveta plus IR (Col)/cry3A Centre Bio-
    Solanum tuberosum engineering,
    Russian
    Academy of
    Sciences
    A274 Potato ATBT04-27 NMK-89367-8 Atlantic IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™
    potato
    A275 Potato ATBT04-30 NMK-89613-2 Atlantic IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™
    potato
    A276 Potato ATBT04-31 NMK-8917Ø-9 Atlantic IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™
    potato
    A277 Potato ATBT04-36 NMK-89279-1 Atlantic IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™
    potato
    A278 Potato ATBT04-6 NMK-89761-6 Atlantic IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™
    potato
    A279 Potato BT06 NMK-89812-3 New Leaf ™ IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank
    potato
    A280 Potato BT10 NMK-89175-5 New Leaf ™ IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank
    potato
    A281 Potato BT12 NMK-896Ø1-8 New Leaf ™ IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank
    potato
    A282 Potato BT16 NMK-89167-6 New Leaf ™ IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank
    potato
    A283 Potato BT17 NMK-89593-9 New Leaf ™ IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank
    potato
    A284 Potato BT18 NMK-899Ø6-7 New Leaf ™ IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank
    potato
    A285 Potato BT23 NMK-89675-1 New Leaf ™ IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank
    potato
    A286 Potato EH92-527-1 BPS-25271-9 Amflora ™ ST (Starch)/gbss BASF
    Solanum tuberosum (antisense-
    fragment)
    A287 Potato HLMT15-15 not available Hi-Lite IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™ Y VR (PVY)/pvy-cp
    potato
    A288 Potato HLMT15-3 not available Hi-Lite IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™ Y VR (PVY)/pvy-cp
    potato
    A289 Potato HLMT15-46 not available Hi-Lite IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™ Y VR (PVY)/pvy-cp
    potato
    A290 Potato RBMT15-101 NMK-89653-6 New Leaf ™ Y IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank VR (PVY)/pvy-cp
    potato
    A291 Potato RBMT21-129 NMK-89684-1 New Leaf ™ Plus IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank VR (PLRV)/plrv-orf1
    potato VR (PLRV)/plrv-orf2
    A292 Potato RBMT21-152 not available New Leaf ™ Plus IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank VR (PLRV)/plrv-orf1
    potato VR (PLRV)/plrv-orf2
    A293 Potato RBMT21-350 NMK-89185-6 New Leaf ™ Plus IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank VR (PLRV)/plrv-orf1
    potato VR (PLRV)/plrv-orf2
    A294 Potato RBMT22-082 NMK-89896-6 New Leaf ™ Plus IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank HT (Gly)/cp4
    potato epsps (aroA:CP4)
    VR (PLRV)/plrv-orf1
    VR (PLRV)/plrv-orf2
    A295 Potato RBMT22-186 not available New Leaf ™ Plus IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank HT (Gly)/cp4
    potato epsps (aroA:CP4)
    VR (PLRV)/plrv-orf1
    VR (PLRV)/plrv-orf2
    A296 Potato RBMT22-238 not available New Leaf ™ Plus IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank HT (Gly)/cp4
    potato epsps (aroA:CP4)
    VR (PLRV)/plrv-orf1
    VR (PLRV)/plrv-orf2
    A297 Potato RBMT22-262 not available New Leaf ™ Plus IR (Col)/cry3A Monsanto
    Solanum tuberosum Russet Burbank HT (Gly)/cp4
    potato epsps (aroA:CP4)
    VR (PLRV)/plrv-orf1
    VR (PLRV)/plrv-orf2
    A298 Potato SEMT15-02 NMK-89935-9 Shepody IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™ Y VR (PVY)/pvy-cp
    potato
    A299 Potato SEMT15-07 not available Shepody IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™ Y VR (PVY)/pvy-cp
    potato
    A300 Potato SEMT15-15 NMK-8993Ø-4 Shepody IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™ Y VR (PVY)/pvy-cp
    potato
    A301 Potato SPBT02-5 NMK-89576-1 Superior IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™
    potato
    A302 Potato SPBT02-7 NMK-89724-5 Superior IR (Col)/cry3A Monsanto
    Solanum tuberosum NewLeaf ™
    potato
    A303 Potato E12 SPS-ØØE12-8 Innate ™ Russet ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Burbank Potato ST (Starch)/pPhL Co.
    ST (BSB)/ppo5
    ST (Starch)/pR1
    A304 Potato E24 SPS-ØØE24-2 Innate ™ Russet ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Burbank Potato ST (Starch)/pPhL Co.
    ST (BSB)/ppo5
    ST (Starch)/pR1
    A305 Potato F10 SPS-ØØF10-7 Innate ™ Ranger ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Russet Potato ST (Starch)/pPhL Co.
    ST (BSB)/ppo5
    ST (Starch)/pR1
    A306 Potato F37 SPS-ØØF37-7 Innate ™ Ranger ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Russet Potato ST (Starch)/pPhL Co.
    ST (BSB)/ppo5
    ST (Starch)/pR1
    A307 Potato G11 SPS-ØØG11-9 Innate ™ G ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Potato ST (BSB)/ppo5 Co.
    A308 Potato H37 SPS-ØØH37-9 Innate ™ H ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Potato ST (Starch)/pPhL Co.
    ST (BSB)/ppo5
    ST (Starch)/pR1
    A309 Potato H50 SPS-ØØH50-4 Innate ™ H ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Potato ST (Starch)/pPhL Co.
    ST (BSB)/ppo5
    ST (Starch)/pR1
    A310 Potato J3 SPS-ØØØJ3-4 Innate ™ Atlantic ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Potato ST (Starch)/pPhL Co.
    ST (BSB)/ppo5
    ST (Starch)/pR1
    A311 Potato J55 SPS-ØØJ55-2 Innate ™ Atlantic ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Potato ST (Starch)/pPhL Co.
    ST (BSB)/ppo5
    ST (Starch)/pR1
    A312 Potato J78 SPS-ØØJ78-7 Innate ™ Atlantic ST (AA)/asn1 J.R. Simplot
    Solanum tuberosum Potato ST (BSB)/ppo5 Co.
    A313 Rice 7Crp#10 not available not available ST (All)/7crp National
    Oryza sativa Institute of
    Agrobiolog-
    ical Sciences
    (Japan)
    A314 Rice GM not available BT Shanyou 63 IR (BL)/cry1Ab Huazhong
    Oryza sativa Shanyou 63 IR (BL)/cry1Ac Agricultural
    University
    (China)
    A315 Rice Huahui-1/ not available Huahui-1 IR (BL)/cry1Ab Huazhong
    Oryza sativa TT51-1 IR (BL)/cry1Ac Agricultural
    University
    (China)
    A316 Rice LLRICE06 ACS-OSØØ1-4 Liberty Link ™ HT (Glu)/bar Bayer Crop
    Oryza sativa rice Science
    A317 Rice LLRICE601 BCS-OSØØ3-7 Liberty Link ™ HT (Glu)/bar Bayer Crop
    Oryza sativa rice Science
    A318 Rice LLRICE62 ACS-OSØØ2-5 Liberty Link ™ HT (Glu)/bar Bayer Crop
    Oryza sativa rice Science
    A319 Rice Tarom molaii + not available not available IR (BL)/cry1Ab Agricultural
    Oryza sativa cry1Ab (truncated) Biotech Re-
    search Insti-
    tute (Iran)
    A320 Rice CL121, CL141, CL121, CL141, CFX51 Clearfield Rice HT (Imi)/als BASF
    Oryza sativa CFX51 (mutant)
    A321 Rice IMINTA-1, IMINTA-1, IMINTA-4 Clearfield Rice HT (Imi)/als BASF
    Oryza sativa IMINTA-4 (mutant)
    A322 Rice PWC16 PWC16 not available HT (Imi)/als BASF
    Oryza sativa (mutant)
    A323 Rose WKS82/130-4-1 IFD-524Ø1-4 not available ST (Color)/5AT Suntory
    Rosa hybrida ST (Color)/bp40 Limited
    (f3′5′h) (Japan)
    A324 Rose WKS92/130-9-1 IFD-529Ø1-9 not available ST (Color)/5AT Suntory
    Rosa hybrida ST (Color)/bp40 Limited
    (f3′5′h) (Japan)
    A325 Soybean 260-05 (G94-1, DD-Ø26ØØ5-3 not available ST (Oil)/gm-fad2-1 Dupont
    Glycine max G94-19, G168) (silencing locus)
    A326 Soybean A2704-12 ACS-GMØØ5-3 Liberty Link ™ HT (Glu)/pat Bayer Crop
    Glycine max soybean Science
    A327 Soybean A2704-21 ACS-GMØØ4-2 Liberty Link ™ HT (Glu)/pat Bayer Crop
    Glycine max soybean Science
    A328 Soybean A5547-127 ACS-GMØØ6-4 Liberty Link ™ HT (Glu)/pat Bayer Crop
    Glycine max soybean Science
    A329 Soybean A5547-35 ACS-GMØØ8-6 Liberty Link ™ HT (Glu)/pat Bayer Crop
    Glycine max soybean Science
    A330 Soybean CV127 BPS-CV127-9 Cultivance HT (Imi)/csr1-2 BASF
    Glycine max
    A331 Soybean DAS44406-6 DAS-444Ø6-6 not available HT (2,4-D)/aad-12 Dow
    Glycine max HT (Gly)/2mepsps
    HT (Glu)/pat
    A332 Soybean DAS68416-4 DAS-68416-4 Enlist ™ Soybean HT (2,4-D)/aad-12 Dow
    Glycine max HT (Glu)/pat
    A333 Soybean DAS68416-4 × DAS-68416-4 × not available HT (2,4-D)/aad-12 Dow
    Glycine max MON89788 MON-89788-1 HT (Glu)/pat
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A334 Soybean DAS81419 DAS-81419-2 not available IR (BL)/cry1Ac Dow
    Glycine max IR (BL)/cry1F
    HT (Glu)/pat
    A335 Soybean DP305423 DP-3Ø5423-1 Treus ™, ST (Oil)/gm-fad2-1 Dupont
    Glycine max Plenish ™ (partial sequence)
    A336 Soybean DP305423 × DP-3Ø5423-1 × not available ST (Oil)/gm-fad2-1 Dupont
    Glycine max GTS 40-3-2 MON-Ø4Ø32-6 (partial sequence)
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A337 Soybean DP356043 DP-356Ø43-5 Optimum GAT ™ HT (Gly)/gat4601 Dupont
    Glycine max HT (SU)/gm-hra
    A338 Soybean FG72 MST-FGØ72-3 not available HT (Gly)/2mepsps Bayer Crop-
    Glycine max (FGØ72-2, HT (HPPD)/hppdPF Science and
    FGØ72-3) W336 MS Tech-
    nologies
    LLC
    A339 Soybean GTS 40-3-2 MON-Ø4Ø32-6 Roundup HT (Gly)/cp4 Monsanto
    Glycine max (40-3-2) Ready ™ epsps (aroA:CP4)
    soybean
    A340 Soybean GU262 ACS-GMØØ3-1 Liberty Link ™ HT (Glu)/pat Bayer Crop
    Glycine max soybean Science
    A341 Soybean MON 87712 MON-87712-4 Not available Y&S (Y)/bbx32 Monsanto
    Glycine max
    A342 Soybean MON87701 MON-877Ø1-2 not available IR (BL)/cry1Ac Monsanto
    Glycine max
    A343 Soybean MON87701 × MON-877Ø1-2 × Intacta ™ IR (BL)/cry1Ac Monsanto
    Glycine max MON89788 MON-89788-1 Roundup HT (Gly)/cp4
    Ready ™ 2 Pro epsps (aroA:CP4)
    A344 Soybean MON87705 MON-877Ø5-6 Vistive Gold ™ ST (Oil)/fatb1-A Monsanto
    Glycine max (sense and anti-
    sense segments)
    ST (Oil)/fatb2-1-A
    (sense and anti-
    sense)
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A345 Soybean MON87705 × MON-877Ø5-6 × not available ST (Oil)/fatb1-A Monsanto
    Glycine max MON89788 MON-89788-1 (sense and anti-
    sense segments)
    ST (Oil)/fatb2-1-A
    (sense and anti-
    sense)
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A346 Soybean MON87708 MON-877Ø8-9 Genuity ® HT (Dic)/dmo Monsanto
    Glycine max Roundup
    Ready ™ 2
    Xtend ™
    A347 Soybean MON87708 × MON-877Ø8-9 × not available HT (Dic)/dmo Monsanto
    Glycine max MON89788 MON-89788-1 HT (Gly)/cp4
    epsps (aroA:CP4)
    A348 Soybean MON87751 MON-87751-7 not available IR (BL)/cry1A.105 Monsanto
    Glycine max IR (BL)/cry2Ab2
    A349 Soybean MON87769 MON87769-7 not available ST (Oil)/Pj.D6D Monsanto
    Glycine max ST (Oil)/Nc.fad3
    A350 Soybean MON87769 × MON-87769-7 × not available ST (Oil)/Pj.D6D Monsanto
    Glycine max MON89788 MON-89788-1 ST (Oil)/Nc.fad3
    HT (Gly)/cp4
    epsps (aroA:CP4)
    A351 Soybean MON89788 MON-89788-1 Genuity ® HT (Gly)/cp4 Monsanto
    Glycine max Roundup Ready epsps (aroA:CP4)
    2 Yield ™
    A352 Soybean SYHTØH2 SYN-ØØØH2-5 Herbicide- HT (Glu)/pat Bayer Crop
    Glycine max tolerant Soybean HT (HPPD)/avhppd-03 Science &
    line Syngenta
    A353 Soybean W62 ACS-GMØØ2-9 Liberty Link ™ HT (Glu)/bar Bayer Crop
    Glycine max soybean Science
    A354 Soybean W98 ACS-GMØØ1-8 Liberty Link ™ HT (Glu)/bar Bayer Crop
    Glycine max soybean Science
    A355 Soybean OT96-15 OT96-15 not available ST (Oil)/fan1 (mutant) Agriculture &
    Glycine max Agri-Food
    Canada
    A356 Squash CZW3 SEM-ØCZW3-2 not available VR (CMV)/cmv-cp Seminis
    Cucurbita pepo VR (zymv)/zymv-cp Vegetable
    VR (wmv)/wmv-cp Seeds
    (Canada) and
    Monsanto
    Company
    (As-grow)
    A357 Squash ZW20 SEM-ØZW2Ø-7 not available VR (CYMV)/zymv-cp Seminis
    Cucurbita pepo VR (WMV)/wmv-cp Vegetable
    Seeds
    (Canada) and
    Monsanto
    Company
    (As-grow)
    A358 Sugar beet GTSB77 SY-GTSB77-8 InVigor ™ HT (Gly)/cp4 Novartis
    Beta vulgaris (T9100152) sugarbeet epsps (aroA:CP4) Seeds and
    HT (Gly)/gov247 Monsanto
    Company
    A359 Sugar beet H7-1 KM-ØØØH71-4 Roundup HT (Gly)/cp4 Monsanto
    Beta vulgaris Ready ™ sugar epsps (aroA:CP4)
    beet
    A360 Sugar beet T120-7 ACS-BVØØ1-3 Liberty Link ™ HT (Glu)/pat Bayer Crop
    Beta vulgaris sugarbeet Science
    A361 Sugarcane NXI-1T NXI-1T not available Y&S (DT)/EcBetA PT
    Saccharum sp. Perkebunan
    Nusantara
    XI (Persero)
    A362 Sugarcane NXI-4T NXI-4T not available Y&S (DT)/RmBetA PT
    Saccharum sp. Perkebunan
    Nusantara
    XI (Persero)
    A363 Sugarcane NXI-6T NXI-6T not available Y&S (DT)/RmBetA PT
    Saccharum sp. Perkebunan
    Nusantara
    XI (Persero)
    A364 Sunflower X81359 X81359 Clearfield HT (Imi)/als BASF
    Helianthus annuus Sunflower (mutant)
    A365 Sweet pepper PK-SP01 not available not available VR (CMV)/cmv-cp Beijing
    Capsicum annuum University
    A366 Tobacco C/F/93/08-02 not available not available HT (Ox)/bxn SEITA S.A.
    Nicotiana tabacum (France)
    A367 Tobacco Vector 21-41 not available not available ST (Nic)/NtQPT1 Vector
    Nicotiana tabacum (antisense) Tobacco Inc.
    (USA)
    A368 Tomato 1345-4 not available not available ST (Ripe)/acc DNA Plant
    Lycopersicon (truncated) Technology
    esculentum Corporation
    (USA)
    A369 Tomato 35-1-N not available not available ST (Ripe)/sam-k Agritope Inc.
    Lycopersicon (USA)
    esculentum
    A370 Tomato 5345 not available not available IR (BL)/cry1Ac Monsanto
    Lycopersicon
    esculentum
    A371 Tomato 8338 CGN-89322-3 not available ST (Ripe)/accd Monsanto
    Lycopersicon
    esculentum
    A372 Tomato B SYN-ØØØØB-6 not available ST (Ripe)/pg Zeneca
    Lycopersicon (sense or antisense) Plant Sci-
    esculentum ence and
    Petoseed
    Company
    A373 Tomato Da SYN-ØØØDA-9 not available ST (Ripe)/pg Zeneca
    Lycopersicon (sense or antisense) Plant Sci-
    esculentum ence and
    Petoseed
    Company
    A374 Tomato Da Dong No 9 not available not available Institute of
    Lycopersicon Microbiolo-
    esculentum gy, CAS
    (China)
    A375 Tomato F (1401F, SYN-ØØØØF-1 not available ST (Ripe)/pg Zeneca
    Lycopersicon h38F, 11013F, (sense or antisense) Plant Sci-
    esculentum 7913F) ence and
    Petoseed
    Company
    A376 Tomato FLAVR CGN-89564-2 FLAVR SAVR ST (Ripe)/pg Monsanto
    Lycopersicon SAVR ™ (sense or antisense)
    esculentum
    A377 Tomato Huafan No 1 not available not available ST (Ripe)/anti-efe Huazhong
    Lycopersicon Agricultural
    esculentum University
    (China)
    A378 Tomato PK-TM8805R not available not available VR (CMV)/cmv-cp Beijing
    Lycopersicon (8805R) University
    esculentum
    A379 Wheat MON71800 MON-718ØØ-3 Roundup HT (Gly)/cp4 Monsanto
    Triticum aestivum Ready ™ wheat epsps (aroA:CP4)
    A380 Wheat AP205CL AP205CL Clearfield Wheat HT (Imi)/als BASF
    Triticum aestivum (mutant)
    A381 Wheat AP602CL AP602CL Clearfield Wheat HT (Imi)/als BASF
    Triticum aestivum (mutant)
    A382 Wheat BW255-2, BW255-2, BW238-3 Clearfield Wheat HT (Imi)/als BASF
    Triticum aestivum BW238-3 (mutant)
    A383 Wheat BW7 BW7 Clearfield Wheat HT (Imi)/als BASF
    Triticum aestivum (mutant)
    A384 Wheat Teal 11A Teal 11A Clearfield Wheat HT (Imi)/als BASF
    Triticum aestivum (mutant)
    A385 Wheat SWP965001 SWP965001 not available HT (Imi)/als American
    Triticum aestivum (mutant) Cyanamid
  • Explanations:
  • TRAIT TRAIT - full name TRAIT TYPE TRAIT TYPE - full name
    HT Herbicide Tolerance HT (Gly) glyphosate tolerance
    HT (Glu) glufosinate tolerance
    HT (SU) sulfonylurea tolerance
    HT (Imi) imidazolinone tolerance
    HT (2,4-D) resistance against 2,4-D Choline
    HT (Dic) dicamba tolerance
    HT (Gly + Dicamba) glyphosate & dicamba tolerance
    HT (HPPD) HPPD inhibitor resistance
    HT (Ox) oxynil herbicide tolerance (e.g. bronnoxynil)
    HT (Cyc) cyclohexanone herbicide tolerance (e.g. sethoxydim)
    2HT two genes for same HT-trait
    IR Insect resistance (including IR (BL) broad spectrum resistance against lepidopterans (above ground
    Nematodes) worms)
    IR (Col) resistance against Coleopterans (beetles)
    IR (SCN) soybean Cyst Nematode resistance
    IR (CB) corn borer resistance
    IR (BRun) broad range resistance, not further specified
    IR (Rw) resistance against root worm
    PC Pollination control and PC (FR) fertility restoration
    male sterility systems
    PC (MS) male sterility
    FR Fungal resistance FR (SR) stalk rot resistance
    VR Viral resistance VR (BGMV) resistance to Bean Golden Mosaic Virus
    VR (PRSV) resistance to papaya ringspot virus
    VR (PPV) resistance to plum pox virus
    VR (PVY) resistance to potato virus Y
    VR (PLRV) resistance to potato leafroll virus
    VR (CMV) resistance to cucumber mosaic cucumovirus
    VR (ZYMV) resistance to zucchini yellow mosaic potyvirus
    VR (WMV) resistance to watermelon mosaic potyvirus 2
    Y&S Yield and Stress Y&S (DT) drought tolerance
    Y&S (Y) yield increase
    Y&S (NUE) nitrogen use efficiency
    ST Specialty Trait (includes Feed, ST (Lignin) altered lignin production
    Food, Quality)
    ST (OIL) altered oil content
    ST (starch) altered starch content
    ST (CA) corn amylase
    ST (P) phytase production
    ST (Color) modified color
    ST (Ripe) delayed/altered ripening
    ST (AA) altered amino-acid content
    ST (All) anti-allergy
    ST (Nic) altered nicotin content
    ST (BSB) reduced black spot bruise formation
    SM Selectable marker
  • Preferably, the plant, which has been modified by mutagenesis or genetic engineering, is selected from the group consisting of wheat, maize, rice, soybean, and cotton, and is more preferably a soybean plant, particularly any one of the soybean plants according to rows A-325 to A355 of table A.
  • In a preferred embodiment of the use or method as defined above, the plant, which has been modified by mutagenesis or genetic engineering, is a soybean plant exhibiting insect resistence, in particular Lepidopteran resistance, and optionally at least one further trait, preferably herbicide tolerance, e.g. glyphosate tolerance or glufosinate tolerance.
  • Preferred soybean plants include the soybean plants according to one row of table B.
  • TABLE B
    Developer/
    No Trait(s) Event name commercial plants
    B-1 Glufosinate tolerance + DAS81419 Dow AgroSciences
    Lepidopteran resistance LLC
    B-2 Lepidopteran resistance MON87701 Monsanto Company
    B-3 Glyphosate tolerance + MON87701 × available, Monsanto
    Company; Intacta ™
    Lepidopteran resistance MON89788 Roundup Ready ™
    2 Pro
    B-4 Lepidopteran resistance MON87751 Monsanto Company
  • In another preferred embodiment of the use or method as defined above, the plant, which has been modified by mutagenesis or genetic engineering, is a soybean plant, which has been modified by genetic engineering by integrating one or more genes into the genetic material of the soybean, wherein insect resistance is provided by one or more genes selected from the group consisting of cry1Ac, cry1F, cry1A.105, cry2Ab2, and combinations thereof, preferably by cry1Ac, cry1F, or a combination thereof, and more preferably by cry1Ac. Optionally, herbicide tolerance is additionally provided by one or more genes selected from the group consisting of pat, bar, 2mepsps, cp4 epsps, and mepsps.
  • Preferred soybean plants include soybean plants, which have been modified by integrating at least one gene or gene combination according to one row of Table C.
  • TABLE C
    Gene for Gene for Gene for Gene for
    lepidopteran lepidopteran lepidopteran herbicide
    No resistance resistance resistance tolerance
    C-1 cry1Ac
    C-2 cry1A.105
    C-3 cry2Ab2
    C-4 cry1F
    C-5 cry1Ac cry1A.105
    C-6 cry1Ac cry2Ab2
    C-7 cry1Ac cry1F
    C-8 cry1A.105 cry2Ab2
    C-9 cry1A.105 cry1F
    C-10 cry2Ab2 cry1F
    C-11 cry1Ac cry1A.105 cry2Ab2
    C-12 cry1F cry1A.105 cry2Ab2
    C-13 cry1Ac cry1F cry2Ab2
    C-14 cry1Ac cry1A.105 cry1F
    C-15 cry1Ac pat
    C-16 cry1A.105 pat
    C-17 cry2Ab2 pat
    C-18 cry1F pat
    C-19 cry1Ac cry1A.105 pat
    C-20 cry1Ac cry2Ab2 pat
    C-21 cry1Ac cry1F pat
    C-22 cry1A.105 cry2Ab2 pat
    C-23 cry1A.105 cry1F pat
    C-24 cry2Ab2 cry1F pat
    C-25 cry1Ac cry1A.105 cry2Ab2 pat
    C-26 cry1F cry1A.105 cry2Ab2 pat
    C-27 cry1Ac cry1F cry2Ab2 pat
    C-28 cry1Ac cry1A.105 cry1F pat
    C-29 cry1Ac bar
    C-30 cry1A.105 bar
    C-31 cry2Ab2 bar
    C-32 cry1F bar
    C-33 cry1Ac cry1A.105 bar
    C-34 cry1Ac cry2Ab2 bar
    C-35 cry1Ac cry1F bar
    C-36 cry1A.105 cry2Ab2 bar
    C-37 cry1A.105 cry1F bar
    C-38 cry2Ab2 cry1F bar
    C-39 cry1Ac cry1A.105 cry2Ab2 bar
    C-40 cry1F cry1A.105 cry2Ab2 bar
    C-41 cry1Ac cry1F cry2Ab2 bar
    C-42 cry1Ac cry1A.105 cry1F bar
    C-43 cry1Ac 2mepsps
    C-44 cry1A.105 2mepsps
    C-45 cry2Ab2 2mepsps
    C-46 cry1F 2mepsps
    C-47 cry1Ac cry1A.105 2mepsps
    C-48 cry1Ac cry2Ab2 2mepsps
    C-49 cry1Ac cry1F 2mepsps
    C-50 cry1A.105 cry2Ab2 2mepsps
    C-51 cry1A.105 cry1F 2mepsps
    C-52 cry2Ab2 cry1F 2mepsps
    C-53 cry1Ac cry1A.105 cry2Ab2 2mepsps
    C-54 cry1F cry1A.105 cry2Ab2 2mepsps
    C-55 cry1Ac cry1F cry2Ab2 2mepsps
    C-56 cry1Ac cry1A.105 cry1F 2mepsps
    C-57 cry1Ac cp4 epsps
    C-58 cry1A.105 cp4 epsps
    C-59 cry2Ab2 cp4 epsps
    C-60 cry1F cp4 epsps
    C-61 cry1Ac cry1A.105 cp4 epsps
    C-62 cry1Ac cry2Ab2 cp4 epsps
    C-63 cry1Ac cry1F cp4 epsps
    C-64 cry1A.105 cry2Ab2 cp4 epsps
    C-65 cry1A.105 cry1F cp4 epsps
    C-66 cry2Ab2 cry1F cp4 epsps
    C-67 cry1Ac cry1A.105 cry2Ab2 cp4 epsps
    C-68 cry1F cry1A.105 cry2Ab2 cp4 epsps
    C-69 cry1Ac cry1F cry2Ab2 cp4 epsps
    C-70 cry1Ac cry1A.105 cry1F cp4 epsps
    C-71 cry1Ac mepsps
    C-72 cry1A.105 mepsps
    C-73 cry2Ab2 mepsps
    C-74 cry1F mepsps
    C-75 cry1Ac cry1A.105 mepsps
    C-76 cry1Ac cry2Ab2 mepsps
    C-77 cry1Ac cry1F mepsps
    C-78 cry1A.105 cry2Ab2 mepsps
    C-79 cry1A.105 cry1F mepsps
    C-80 cry2Ab2 cry1F mepsps
    C-81 cry1Ac cry1A.105 cry2Ab2 mepsps
    C-82 cry1F cry1A.105 cry2Ab2 mepsps
    C-83 cry1Ac cry1F cry2Ab2 mepsps
    C-84 cry1Ac cry1A.105 cry1F mepsps
  • In view of the above preferences regarding pests and plants, the following embodiments of the use or method of the invention comprising the application of the mixture of the invention are particularly preferred.
  • In one preferred embodiment of the invention, the present invention relates to the use or method comprising the application of the mixture of the invention as defined above, wherein the pests are selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Helicoverpa armigera (=Heliothis armigera), Spodoptera frugiperda, Spodoptera eridania, Spodoptera cosmioides, and combinations thereof, and the plant is a soybean plant, which has been modified by mutagenesis or genetic engineering, and is preferably selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Anticarsia gemmatalis and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Chrysodeixis includens (=Pseudoplusia includens) and the plant is a soybean plant selected from the soybean plants A325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Helicoverpa armigera (=Heliothis armigera) and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Spodoptera frugiperda and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Spodoptera eridania and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Spodoptera cosmioides and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • As already indicated above, the present invention also relates to certain uses and methods comprising the application of the carboxamide compound I selected from compound i) of formula (I), compound ii) of formula (Ia) and mixtures comprising the carboxamide compounds i) and ii).
  • The following remarks as to preferred embodiments of these uses or methods are to be understood as preferred on their own as well as preferably in combination with each other.
  • In one aspect, the present invention relates to the use of the carboxamide compound i) of formula (I) in pesticidally effective amounts for protecting a soybean plant, the plant propagation material thereof, or its locus of growth, against the attack or infestation by pests selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera eridania, Spodoptera frugiperda, and combinations thereof.
  • In another aspect, the present invention relates to the use of the carboxamide compound ii) of formula (Ia) in pesticidally effective amounts for protecting a soybean plant, the plant propagation material thereof, or its locus of growth, against the attack or infestation by pests selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera eridania, Spodoptera frugiperda, and combinations thereof.
  • In another aspect, the present invention relates to the use of pesticidally effective amounts of mixtures comprising the carboxamide compounds i) and ii) for protecting a soybean plant, the plant propagation material thereof, or its locus of growth, against the attack or infestation by pests selected from the group consisting of Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera eridania, Spodoptera frugiperda, and combinations thereof.
  • In another aspect, the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of the carboxamide compound i) of formula (I) to a soybean plant, the plant propagation material thereof, or its locus of growth; the pests or their food supply, habitat or breeding grounds, wherein the pests are selected from the group consisting of Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera eridania, Spodoptera frugiperda, and combinations thereof.
  • In still another aspect, the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of the carboxamide compound ii) of formula (Ia) to a soybean plant, the plant propagation material thereof, or its locus of growth; the pests or their food supply, habitat or breeding grounds, wherein the pests are selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera eridania, Spodoptera frugiperda, and combinations thereof.
  • In still another aspect, the present invention relates to a method for controlling pests, which method comprises the application of a pesticidally effective amount of a mixture comprising the carboxamide compounds i) and ii) to a soybean plant, the plant propagation material thereof, or its locus of growth; the pests or their food supply, habitat or breeding grounds, wherein the pests are selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera eridania, Spodoptera frugiperda, and combinations thereof.
  • In a preferred embodiment of the above use or method comprising the application of the carboxamide compound i) of formula (I) the pests are selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera frugiperda, and combinations thereof.
  • For example, the use or method comprising the application of the carboxamide compound I, preferably compound i) of formula (I) may be preferred for pests, which are selected from the group consisting of Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), and a combination thereof.
  • In another preferred embodiment, the pests are Anticarsia gemmatalis.
  • In another preferred embodiment, the pests are Chrysodeixis includens (=Pseudoplusia includens).
  • In another preferred embodiment, the pests are Spodoptera frugiperda.
  • In another preferred embodiment, the pests are Spodoptera eridania.
  • In another preferred embodiment, the pests are Spodoptera cosmioides.
  • In another embodiment of the above use or method comprising the application of the carboxamide compound ii) of formula (Ia) or of a mixture comprising the carboxamide compounds i) and ii), the pests are selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Spodoptera cosmioides, Spodoptera frugiperda, and combinations thereof.
  • As outlined above, the above mentioned pests are of particular relevance in connection with soybean plants.
  • In one preferred embodiment of the above use or method comprising the application of the carboxamide compound i) of formula (I), the soybean plant is a soybean plant, which has been modified by conventional breeding, i.e. a soybean plant, which has not been modified by mutagenesis or genetic engineering.
  • In another embodiment of the above use or method comprising the application of the carboxamide compound ii) of formula (Ia) or of a mixture comprising the carboxamide compounds i) and ii), the soybean plant is a soybean plant, which has been modified by conventional breeding, i.e. a soybean plant, which has not been modified by mutagenesis or genetic engineering.
  • In another preferred embodiment of the above use or method comprising the application of the carboxamide compound i) of formula (I), the soybean plant is a soybean plant, which has been modified by mutagenesis or genetic engineering.
  • In another embodiment of the above use or method comprising the application of the carboxamide compound ii) of formula (Ia) or of a mixture comprising the carboxamide compounds i) and ii), the soybean plant is a soybean plant, which has been modified by mutagenesis or genetic engineering.
  • Preferred soybean plants, which have been modified by mutagenesis or genetic engineering, have been defined above.
  • Preferably, the soybean plant has been modified by genetic engineering and exhibits insect resistance, in particular lepidopteran resistance, wherein insect resistance is provided by one or more genes selected from the group consisting of cry1Ac, cry1F, cry1A.105, cry2Ab2, and combinations thereof, preferably by cry1Ac, cry1F, or a combination thereof, and more preferably by cry1Ac. Optionally, the soybean plant exhibits at least one further trait, preferably herbicide tolerance, e.g. glyphosate tolerance or glufosinate tolerance, wherein herbicide tolerance is preferably provided by one or more genes selected from the group consisting of pat, bar, 2mepsps, cp4 epsps, and mepsps.
  • Particularly preferred soybean plants include soybean plants, which are selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84 as defined above.
  • In view of the above preferences regarding pests and plants, the following embodiments of the use or method of the invention comprising the application of the carboxamide compound I, preferably compound i) of formula (I) are particularly preferred.
  • In a preferred embodiment of the invention, the present invention relates to a use or method as defined above, wherein the pests are selected from the group consisting of Anticarsia gemmatalis, Chrysodeixis includens (=Pseudoplusia includens), Spodoptera frugiperda, Spodoptera eridania, Spodoptera cosmioides, and combinations thereof, and the plant is a soybean plant, which has been modified by mutagenesis or genetic engineering, and is preferably selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Anticarsia gemmatalis and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Chrysodeixis includens (=Pseudoplusia includens) and the plant is a soybean plant selected from the soybean plants A325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Spodoptera frugiperda and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Spodoptera eridania and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • In one particularly preferred embodiment, the pests are Spodoptera cosmioides and the plant is a soybean plant selected from the soybean plants A-325 to A-355, B-1 to B-4, or C-1 to C-84.
  • Mixtures
  • The remarks as to preferred embodiments of the carboxamide compound I, preferably compound i) of formula (I) are to be understood as preferred on their own as well as in combination with other pesticidal active ingredients and also in combination with the preferred embodiments regarding uses and methods comprising the application of the carboxamide compound I, preferably compound i) of formula (I) as defined herein, and in combination with preferred embodiments regarding the agrochemical composition as defined herein.
  • In one embodiment, the mixture of the invention is a binary mixture, i.e. a mixture, which does not comprise any further pesticidal compounds apart from the carboxamide compound i) of formula (I) and one other pesticidal active ingredient.
  • In another embodiment, the mixture of the invention is a binary mixture, i.e. a mixture, which does not comprise any further pesticidal compounds apart from the carboxamide compound ii) of formula (Ia) and one other pesticidal active ingredient.
  • In one embodiment, the mixture of the invention is a mixture, which does not comprise any further pesticidal compounds apart from the mixture comprising the carboxamide compounds i) and ii) and one other pesticidal active ingredient.
  • In another embodiment, the mixture of the present invention comprises a ternary mixture comprising the carboxamide compound i) of formula (I), a second pesticidal compound as component II and a third pesticidal compound as component III, wherein the pesticidal compounds II and III are both an insecticide or both a fungicide or one an insecticide and the other a fungicide.
  • In another embodiment, the mixture of the present invention comprises a ternary mixture comprising the carboxamide compound ii) of formula (Ia), a second pesticidal compound as component II and a third pesticidal compound as component III, wherein the pesticidal compounds II and III are both an insecticide or both a fungicide or one an insecticide and the other a fungicide.
  • In still another embodiment, the mixture of the present invention comprises a mixture comprising the carboxamides compounds i) and ii), another pesticidal compound as component II and still another pesticidal compound as component III, wherein the pesticidal compounds II and III are both an insecticide or both a fungicide or one an insecticide and the other a fungicide. In a further embodiment, the mixture of the present invention comprises a multinary mixture of the carboxamide compound i) of formula (I) and three or four or more other pesticidal compounds as components II, III, IV or V etc., wherein these further pesticidal compounds are insecticides and/or fungicides.
  • In a further embodiment, the mixture of the present invention comprises a multinary mixture of the carboxamide compound ii) of formula (Ia) and three or four or more other pesticidal compounds as components II, III, IV or V etc., wherein these further pesticidal compounds are insecticides and/or fungicides.
  • In a further embodiment, the mixture of the present invention comprises a multinary mixture of the carboxamide compounds i), ii) and three or four or more other pesticidal compounds as components II, III, IV or V etc., wherein these further pesticidal compounds are insecticides and/or fungicides.
  • The present invention also relates to an agrochemical composition, which comprises a mixture according to the present invention and an auxiliary.
  • Suitable formulations and auxiliaries are defined further below.
  • Mixing partners can be selected from pesticides, in particular insecticides, nematicides, and acaricides, fungicides, herbicides, plant growth regulators, fertilizers, and the like.
  • Preferred mixing partners are insecticides, nematicides and fungicides.
  • The following list M of pesticides, grouped and numbered according the Mode of Action Classification of the Insecticide Resistance Action Committee (IRAC), together with which the carboxamide compound i) of formula (I) can be used for the methods of the present invention, and with which potential synergistic effects might be produced between the combination of the active ingredients or with the active ingredients and the cultivated plants, is intended to illustrate the possible combinations, but not to impose any limitation:
  • M.1 Acetylcholine esterase (AChE) inhibitors from the class of: M.1A carbamates, for example aldicarb, alanycarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb and triazamate; or from the class of M.1B organophosphates, for example acephate, azamethiphos, azinphos-ethyl, azinphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothio-phosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos-methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, trichlorfon and vamidothion;
  • M.2. GABA-gated chloride channel antagonists such as: M.2A cyclodiene organochlorine compounds, as for example endosulfan or chlordane; or M.2B fiproles (phenylpyrazoles), as for example ethiprole, fipronil, flufiprole, pyrafluprole and pyriprole;
  • M.3 Sodium channel modulators from the class of M.3A pyrethroids, for example acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cylclopentenyl, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, heptafluthrin, imiprothrin, meperfluthrin, metofluthrin, momfluorothrin, permethrin, phenothrin, prallethrin, profluthrin, pyrethrin (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethylfluthrin, tetramethrin, tralomethrin and transfluthrin; or M.3B sodium channel modulators such as DDT or methoxychlor;
  • M.4 Nicotinic acetylcholine receptor agonists (nAChR) from the class of M.4A neonicotinoids, for example acetamiprid, clothianidin, cycloxaprid, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam; or the compounds M.4A.2: (2E+1-[(6-Chloropyridin-3-yl)methyl]-N′-nitro-2-pentylidenehydrazinecarboxinnidamide; or M4.A.3: 1-[(6-Chloropyridin-3-yl)methyl]-7-methyl-8-nitro-5-propoxy-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine; or from the class M.4B nicotine;
  • M.5 Nicotinic acetylcholine receptor allosteric activators from the class of spinosyns, for example spinosad or spinetoram;
  • M.6 Chloride channel activators from the class of avermectins and milbemycins, for example abamectin, emamectin benzoate, ivermectin, lepimectin or milbemectin;
  • M.7 Juvenile hormone mimics, such as M.7A juvenile hormone analogues as hydroprene, kinoprene and methoprene; or others as M.7B fenoxycarb or M.7C pyriproxyfen;
  • M.8 miscellaneous non-specific (multi-site) inhibitors, for example M.8A alkyl halides as methyl bromide and other alkyl halides, or M.8B chloropicrin, or M.8C sulfuryl fluoride, or M.8D borax, or M.8E tartar emetic;
  • M.9 Selective homopteran feeding blockers, for example M.9B pymetrozine, or M.9C flonicamid;
  • M.10 Mite growth inhibitors, for example M.10A clofentezine, hexythiazox and diflovidazin, or M.10 B etoxazole;
  • M.11 Microbial disruptors of insect midgut membranes, for example bacillus thuringiensis or bacillus sphaericus and the insecticdal proteins they produce such as bacillus thuringiensis subsp. israelensis, bacillus sphaericus, bacillus thuringiensis subsp. aizawai, bacillus thuringiensis subsp. kurstaki and bacillus thuringiensis subsp. tenebrionis, or the Bt crop proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb and Cry34/35Ab1;
  • M.12 Inhibitors of mitochondrial ATP synthase, for example M.12A diafenthiuron, or M.12B organotin miticides such as azocyclotin, cyhexatin or fenbutatin oxide, or M.12C propargite, or M.12D tetradifon;
  • M.13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient, for example chlorfenapyr, DNOC or sulfluramid;
  • M.14 Nicotinic acetylcholine receptor (nAChR) channel blockers, for example nereistoxin analogues as bensultap, cartap hydrochloride, thiocyclam or thiosultap sodium;
  • M.15 Inhibitors of the chitin biosynthesis type 0, such as benzoylureas as for example bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, or triflumuron;
  • M.16 Inhibitors of the chitin biosynthesis type 1, as for example buprofezin;
  • M.17 Moulting disruptors, Dipteran, as for example cyromazine;
  • M.18 Ecdyson receptor agonists such as diacylhydrazines, for example methoxyfenozide, tebufenozide, halofenozide, fufenozide or chromafenozide;
  • M.19 Octopamin receptor agonists, as for example amitraz;
  • M.20 Mitochondrial complex III electron transport inhibitors, for example M.20A hydramethylnon, or M.206 acequinocyl, or M.20C fluacrypyrim;
  • M.21 Mitochondrial complex I electron transport inhibitors, for example M.21A METI acaricides and insecticides such as fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad or tolfenpyrad, or M.216 rotenone;
  • M.22 Voltage-dependent sodium channel blockers, for example M.22A indoxacarb, or M.22B metaflumizone, or M.22B.1: 2-[2-(4-Cyanophenyl)-1-[3-(trifluoromethyl)phenyl]¬ethylidene]-N-[4-(difluoromethoxy)phenyl]-hydrazinecarboxamide or M.22B.2: N-(3-Chloro-2-methylphenyl)-2-[(4-chlorophenyl)[4-[methyl(methylsulfonyl)amino]phenyl]¬methylene]-hydrazinecarboxamide;
  • M.23 Inhibitors of the of acetyl CoA carboxylase, such as Tetronic and Tetramic acid derivatives, for example spirodiclofen, spiromesifen or spirotetramat;
  • M.24 Mitochondrial complex IV electron transport inhibitors, for example M.24A phosphine such as aluminium phosphide, calcium phosphide, phosphine or zinc phosphide, or M.246 cyanide;
  • M.25 Mitochondrial complex II electron transport inhibitors, such as beta-ketonitrile derivatives, for example cyenopyrafen or cyflumetofen;
  • M.28 Ryanodine receptor-modulators from the class of diamides, as for example flubendiamide, chlorantraniliprole (Rynaxypyr®), cyantraniliprole (Cyazypyr®), tetraniliprole, or the phthalamide compounds M.28.1: (R)-3-Chlor-N1-{2-methyl-4-[1,2,2,2 tetrafluor-1-(trifluormethyl)ethyl]phenyl}-N2-(1-methyl-2-methylsulfonylethyl)phthalannid and M.28.2: (S)-3-Chlor-N1-{2-methyl-4-[1,2,2,2 tetrafluor-1-(trifluormethyl)ethyl]phenyl}-N2-(1-methyl-2-methylsulfonylethyl)phthalamid, or the compound M.28.3: 3-bromo-N-{2-bromo-4-chloro-6-[(1-cyclopropylethyl)carbamoyl]phenyl}-1-(3-chlorpyridin-2-yl)-1H-pyrazole-5-carboxamide (proposed ISO name: cyclaniliprole), or the compound M.28.4: methyl-2-[3,5-dibromo-2-({[3-bromo-1-(3-chlorpyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-1,2-dimethylhydrazinecarboxylate; or a compound selected from M.28.5a) to M.28.5d) and M.28.5h) to M.28.5l): M.28.5a) N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5b) N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5c) N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5d) N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5h) N-[4,6-dibromo-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5i) N-[2-(5-Amino-1,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide; M.28.5j) 3-Chloro-1-(3-chloro-2-pyridinyl)-N-[2,4-dichloro-6-[[(1-cyano-1-methylethyl)amino]carbonyl]phenyl]-1H-pyrazole-5-carboxamide; M.28.5k) 3-Bromo-N-[2,4-dichloro-6-(methylcarbamoyl)phenyl]-1-(3,5-dichloro-2-pyridyl)-1H-pyrazole-5-carboxamide; M.28.5l) N-[4-Chloro-2-[[(1,1-dimethylethyl)amino]carbonyl]-6-methylphenyl]-1-(3-chloro-2-pyridinyl)-3-(fluoromethoxy)-1H-pyrazole-5-carboxamide;
  • or M.28.6: cyhalodiamide; or
  • M.29: insecticidal active compounds of unknown or uncertain mode of action, as for example afidopyropen, afoxolaner, azadirachtin, amidoflumet, benzoximate, bifenazate, bromopropylate, chinomethionat, cryolite, dicloromezotiaz, dicofol, flufenerim, flometoquin, fluensulfone, fluhexafon, fluopyram, flupyradifurone, fluralaner, metoxadiazone, piperonyl butoxide, pyflubumide, pyridalyl, pyrifluquinazon, sulfoxaflor, tioxazafen, triflunnezopyrinn, or the compounds
  • M.29.3: 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1,4-dioxa-9-azadispiro[4.2.4.2]-tetradec-11-en-10-one, or the compound
  • M.29.4: 3-(4′-fluoro-2,4-dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-one, or the compound
  • M.29.5: 1-[2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl]-3-(trifluoromethyl)-1H-1,2,4-triazole-5-amine, or actives on basis of bacillus firmus (Votivo, 1-1582); or
  • a compound selected from the group of M.29.6, wherein the compound is selected from M.29.6a) to M.29.6k): M.29.6a) (E/Z)—N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; M.29.6b) (E/Z)—N-[1-[(6-chloro-5-fluoro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; M.29.6c) (E/Z)-2,2,2-trifluoro-N-[1-[(6-fluoro-3-pyridyl)methyl]-2-pyridylidene]acetamide; M.29.6d) (E/Z)—N-[1-[(6-bromo-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; M.29.6e) (E/Z)—N-[1-[1-(6-chloro-3-pyridyl)ethyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; M.29.6f) (E/Z)—N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2-difluoroacetamide; M.29.6g) (E/Z)-2-chloro-N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2-difluoroacetamide; M.29.6h) (E/Z)—N-[1-[(2-chloropyrimidin-5-yl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; M.29.6i) (E/Z)—N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,3,3,3-pentafluoro-propanamide); M.29.6j) N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-thioacetamide; or M.29.6k) N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-N′-isopropyl-acetamidine; or the compounds
  • M.29.8: fluazaindolizine; or the compounds
  • M.29.9.a): 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4H-isoxazol-3-yl]-2-methyl-N-(1-oxothietan-3-yl)benzamide; or M.29.9.b): fluxametamide; or
  • M.29.10: 5-[3-[2,6-dichloro-4-(3,3-dichloroallyloxy)phenoxy]propoxy]-1H-pyrazole; or
  • a compound selected from the group of M.29.11, wherein the compound is selected from M.29.11b) to M.29.11p): M.29.11.b) 3-(benzoylmethylamino)-N-[2-bromo-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]-6-(trifluoromethyl)phenyl]-2-fluoro-benzamide; M.29.11.c) 3-(benzoylmethylamino)-2-fluoro-N-[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]-benzamide; M.29.11.d) N-[3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methyl-benzamide; M.29.11.e) N-[3-[[[2-bromo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]-2-fluorophenyl]-4-fluoro-N-methyl-benzamide; M.29.11.f) 4-fluoro-N-[2-fluoro-3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)¬ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methyl-benzamide; M.29.11.g) 3-fluoro-N-[2-fluoro-3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)¬ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methyl-benzamide; M.29.11.h) 2-chloro-N-[3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-3-pyridinecarboxamide; M.29.11.i) 4-cyano-N-[2-cyano-5-[[2,6-dibromo-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]phenyl]-2-methyl-benzamide; M.29.11.j) 4-cyano-3-[(4-cyano-2-methylbenzoyl)amino]-N-[2,6-dichloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)-propyl]phenyl]-2-fluoro-benzamide; M.29.11.k) N-[5-[[2-chloro-6-cyano-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; M.29.11.l) N-[5-[[2-bromo-6-chloro-4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; M.29.11.m) N-[5-[[2-bromo-6-chloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; M.29.11.n) 4-cyano-N-[2-cyano-5-[[2,6-dichloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]phenyl]-2-methyl-benzamide; M.29.11.o) 4-cyano-N-[2-cyano-5-[[2,6-dichloro-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]¬phenyl]-2-methyl-benzamide; M.29.11.p) N-[5-[[2-bromo-6-chloro-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; or
  • a compound selected from the group of M.29.12, wherein the compound is selected from M.29.12a) to M.29.12m): M.29.12.a) 2-(1,3-Dioxan-2-yl)-6-[2-(3-pyridinyl)-5-thiazolyl]-pyridine; M.29.12.b) 2-[6-[2-(5-Fluoro-3-pyridinyl)-5-thiazolyl]-2-pyridinyl]-pyrimidine; M.29.12.c) 2-[6-[2-(3-Pyridinyl)-5-thiazolyl]-2-pyridinyl]-pyrimidine; M.29.12.d) N-Methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2-carboxamide; M.29.12.e) N-Methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2-carboxamide; M.29.12.f) N-Ethyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide; M.29.12.g) N-Methyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide; M.29.12.h) N,2-Dimethyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide; M.29.12.i) N-Ethyl-2-methyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide; M.29.12.j) N-[4-Chloro-2-(3-pyridyl)thiazol-5-yl]-N-ethyl-2-methyl-3-methylthio-propanamide; M.29.12.k) N-[4-Chloro-2-(3-pyridyl)thiazol-5-yl]-N,2-dimethyl-3-M.29.12.1) N-[4-Chloro-2-(3-pyridyl)thiazol-5-yl]-N-methyl-3-methylthio-propanamide; M.29.12.m) N-[4-Chloro-2-(3-pyridyl)thiazol-5-yl]-N-ethyl-3-methylthio-propanamide; or the compounds
  • M.29.14a) 1-[(6-Chloro-3-pyridinyl)methyl]-1,2,3,5,6,7-hexahydro-5-methoxy-7-methyl-8-nitro-imidazo[1,2-a]pyridine; or M.29.14b) 1-[(6-Chloropyridin-3-yl)methyl]-7-methyl-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridin-5-ol; or the compounds
  • M.29.16a) 1-isopropyl-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; or M.29.16b) 1-(1,2-dimethylpropyl)-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; M.29.16c) N,5-dimethyl-N-pyridazin-4-yl-1-(2,2,2-trifluoro-1-methyl-ethyl)pyrazole-4-carboxamide; M.29.16d) 1-[1-(1-cyanocyclopropyl)ethyl]-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; M.29.16e) N-ethyl-1-(2-fluoro-1-methyl-propyl)-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; M.29.16f) 1-(1,2-dimethylpropyl)-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; M.29.16g) 1-[1-(1-cyanocyclopropyl)ethyl]-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; M.29.16h) N-methyl-1-(2-fluoro-1-methyl-propyl]-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; M.29.16i) 1-(4,4-difluorocyclohexyl)-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; or M.29.16j) 1-(4,4-difluorocyclohexyl)-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide, or
  • M.29.17 a compound selected from the compounds M.29.17a) to M.29.17j): M.29.17a) N-(1-methylethyl)-2-(3-pyridinyl)-2H-indazole-4-carboxamide; M.29.17b) N-cyclopropyl-2-(3-pyridinyl)-2H-indazole-4-carboxamide; M.29.17c) N-cyclohexyl-2-(3-pyridinyl)-2H-indazole-4-carboxamide; M.29.17d) 2-(3-pyridinyl)-N-(2,2,2-trifluoroethyl)-2H-indazole-4-carboxamide; M.29.17e) 2-(3-pyridinyl)-N-[(tetrahydro-2-furanyl)methyl]-2H-indazole-5-carboxamide; M.29.17f) methyl 2-[[2-(3-pyridinyl)-2H-indazol-5-yl]carbonyl]hydrazinecarboxylate; M.29.17g) N-[(2,2-difluorocyclopropyl)methyl]-2-(3-pyridinyl)-2H-indazole-5-carboxamide; M.29.17h) N-(2,2-difluoropropyl)-2-(3-pyridinyl)-2H-indazole-5-carboxamide; M.29.17i) 2-(3-pyridinyl)-N-(2-pyrimidinylmethyl)-2H-indazole-5-carboxamide; M.29.17j) N-[(5-methyl-2-pyrazinyl)methyl]-2-(3-pyridinyl)-2H-indazole-5-carboxamide, or
  • M.29.18 a compound selected from the compounds M.29.18a) to M.29.18d): M.29.18a) N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-N-ethyl-3-(3,3,3-trifluoropropylsulfanyl)propanamide; M.29.18b) N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-N-ethyl-3-(3,3,3-trifluoropropylsulfinyl)propanamide; M.29.18c) N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-3-[(2,2-difluorocyclopropyl)methylsulfanyl]-N-ethyl-propanamide; M.29.18d) N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-3-[(2,2-difluorocyclopropyl)methylsulfinyl]-N-ethyl-propanamide; or the compound
  • M.29.19 sarolaner, or the compound
  • M.29.20 lotilaner.
  • The commercially available compounds of the group M listed above may be found in The Pesticide Manual, 16th Edition, C. MacBean, British Crop Protection Council (2013) among other publications. The online Pesticide Manual is updated regularly and is accessible through http://bcpcdata.conn/pesticide-manual.html.
  • Another online data base for pesticides providing the ISO common names is http://www.alanwood.net/pesticides.
  • The M.4 neonicotinoid cycloxaprid is known from WO2010/069266 and WO2011/069456, the neonicotinoid M.4A.2, sometimes also to be named as guadipyr, is known from WO2013/003977, and the neonicotinoid M.4A.3 (approved as paichongding in China) is known from WO2007/101369. The metaflumizone analogue M.22B.1 is described in CN10171577 and the analogue M.22B.2 in CN102126994. The phthalamides M.28.1 and M.28.2 are both known from WO2007/101540. The anthranilamide M.28.3 is described in WO2005/077934. The hydrazide compound M.28.4 is described in WO2007/043677. The anthranilamides M.28.5a) to M.28.5d) and M.28.5h) are described in WO 2007/006670, WO2013/024009 and WO2013/024010, the anthranilamide M.28.5i) is described in WO2011/085575, M.28.5j) in WO2008/134969, M.28.5k) in US2011/046186 and M.28.5l) in WO2012/034403. The diamide compound M.28.6 can be found in WO2012/034472. The spiroketal-substituted cyclic ketoenol derivative M.29.3 is known from WO2006/089633 and the biphenyl-substituted spirocyclic ketoenol derivative M.29.4 from WO2008/067911. The triazoylphenylsulfide M.29.5 is described in WO2006/043635, and biological control agents on the basis of bacillus firmus are described in WO2009/124707. The compounds M.29.6a) to M.29.6i) listed under M.29.6 are described in WO2012/029672, and M.29.6j) and M.29.6k) in WO2013/129688. The nematicide M.29.8 is known from WO2013/055584. The isoxazoline M.29.9.a) is described in WO2013/050317. The isoxazoline M.29.9.b) is described in WO2014/126208. The pyridalyl-type analogue M.29.10 is known from WO2010/060379. The carboxamides M.29.11.b) to M.29.11.h) are described in WO2010/018714, and the carboxamides M.29.11i) to M.29.11.p) in WO2010/127926. The pyridylthiazoles M.29.12.a) to M.29.12.c) are known from WO2010/006713, M.29.12.d) and M.29.12.e) are known from WO2012/000896, and M.29.12.f) to M.29.12.m) from WO2010/129497. The compounds M.29.14a) and M.29.14b) are known from WO2007/101369. The pyrazoles M.29.16.a) to M.29.16h) are described in WO2010/034737, WO2012/084670, and WO2012/143317, respectively, and the pyrazoles M.29.16i) and M.29.16j) are described in U.S. 61/891,437. The pyridinylindazoles M.29.17a) to M.29.17.j) are described in WO2015/038503. The pyridylpyrazoles M.29.18a) to M.29.18d) are described in US2014/0213448. The isoxazoline M.29.19 is described in WO2014/036056. The isoxazoline M.29.20 is known from WO2014/090918.
  • In another embodiment of the invention, the carboxamide compound ii) of formula (Ia) and the pesticides of the above list M can be used together for the methods of the present invention.
  • In still another embodiment of the invention, the mixture comprising the carboxamide compounds i) and ii) and the pesticides of the above list M can be used together for the methods of the present invention.
  • The following list of fungicides, in conjunction with which the carboxamide compound i) of formula (I) can be used, is intended to illustrate the possible combinations but does not limit them:
  • A) Respiration Inhibitors
      • Inhibitors of complex III at Qo site (e. g. strobilurins): azoxystrobin (A.1.1), coumeth¬oxystrobin (A.1.2), coumoxystrobin (A.1.3), dimoxystrobin (A.1.4), enestroburin (A.1.5), fenaminstrobin (A.1.6), fenoxy¬strobin/flufenoxystrobin (A.1.7), fluoxastro¬bin (A.1.8), kresoxim-methyl (A.1.9), mandestrobin (A.1.10), meto¬minostrobin (A.1.11), orysastrobin (A.1.12), picoxy¬.strobin (A.1.13), pyraclostrobin (A.1.14), pyrametostrobin (A.1.15), pyraoxystrobin (A.1.16), tri-floxystrobin (A.1.17), 2 (2-(3-(2,6-di¬ichlorophenyl)-1-methyl-allylidene≳aminooxy¬methyl)-phenyl)-2-methoxyimino-N methyl-acetamide (A.1.18), pyribencarb (A.1.19), triclopyricarb/chlorodin¬carb (A.1.20), famoxadone (A.1.21), fenamidone (A.1.21), methyl-N-[2-[(1,4-dimethyl-5-phenyl-pyrazol-3-yl)oxylmethyl]phenyl]-N-methoxy-carbamate (A.1.22), 1-[3-chloro-2-[[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (A.1.23), 1-[3-bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (A.1.24), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (A.1.25), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (A.1.26), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (A.1.27), 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (A.1.28), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]-oxymethyl]phenyl]-4-methyl-tetrazol-5-one (A.1.29), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (A.1.30), 1-[3-(difluoromethoxy)-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (A.1.31), 1-methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5-one (A.1.32), 1-methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]-ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (A.1.33), (Z,2E)-5-[1-(2,4-dichloro-phenyl)pyrazol-3-yl]-oxy-2-methoxyimino-N,3-dimethyl-pent-3-enamide (A.1.34), (Z,2E)-5-[1-(4-chlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-N,3-dimethyl-pent-3-enamide (A.1.35), pyriminostrobin (A.1.36), bifujunzhi (A.1.37), 2-(ortho-((2,5-dimethylphenyl-oxymethylen)phenyl)-3-methoxy-acrylic acid methylester (A.1.38);
      • inhibitors of complex III at Qi site: cyazofamid (A.2.1), amisulbrom (A.2.2) [(6S,7R,8R)-8-benzyl-3-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate (A.2.3), [2-[[(7R,8R,9S)-7-benzyl-9-methyl-8-(2-methylpropanoyloxy)-2,6-dioxo-1,5-dioxonan-3-yl]carbamoyl]-4-methoxy-3-pyridyl]oxymethyl 2-methylpropanoate (A.2.4), [(6S,7R,8R)-8-benzyl-3-[[4-methoxy-3-(propanoyloxymethoxy)pyridine-2-carbonyl]amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate (A.2.5);
      • inhibitors of complex II: benodanil (A.3.1), benzovindiflupyr (A.3.2), bixafen (A.3.3), boscalid (A.3.4), carboxin (A.3.5), fenfuram (A.3.6), fluopyram (A.3.7), flutolanil (A.3.8), fluxapyroxad (A.3.9), furannetpyr (A.3.10), isofetamid (A.3.11), isopyrazam (A.3.12), mepronil (A.3.13), oxycarboxin (A.3.14), penflufen (A.3.15), penthiopyrad (A.3.16), sedaxane (A.3.19), tecloftalam (A.3.20), thifluzamide (A.3.21), 3-(difluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.22), 3-(trifluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.23), 1,3-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.24), 3-(trifluoromethyl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.25), 1,3,5-trimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.26), 3-(difluoromethyl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.27), 3-(difluoromethyl)-N-(7-fluoro-1,1,3-trimethyl-indan-4-yl)-1-methyl-pyrazole-4-carboxamide (A.3.28), methyl (E)-2-[2-[(5-cyano-2-methyl-phenoxy)methyl]phenyl]-3-methoxyprop-2-enoate (A.3.30);
      • other respiration inhibitors: diflumetorim (A.4.1); nitrophenyl derivates: binapacryl (A.4.2), dinobuton (A.4.3), dinocap (A.4.4), fluazinam (A.4.5), ferimzone (A.4.7); organometal compounds: fentin salts, e. g. fentin-acetate (A.4.8), fentin chloride (A.4.9) or fentin hydroxide (A.4.10); ametoctradin (A.4.11); silthiofam (A.4.12);
  • B) Sterol Biosynthesis Inhibitors (SBI Fungicides)
      • C14 demethylase inhibitors: triazoles: azaconazole (B.1.1), bitertanol (B.1.2), bromuconazole (B.1.3), cyproconazole (B.1.4), difenoconazole (B.1.5), diniconazole (B.1.6), diniconazole-M (B.1.7), epoxiconazole (B.1.8), fenbuconazole (B.1.9), fluquinconazole (B.1.10), flusilazole (B.1.11), flutriafol (B.1.12), hexaconazole (B.1.13), imibenconazole (B.1.14), ipconazole (B.1.15), metconazole (B.1.17), myclobutanil (B.1.18), oxpoconazole (B.1.19), paclobutrazole (B.1.20), penconazole (B.1.21), propiconazole (B.1.22), prothioconazole (B.1.23), simeconazole (B.1.24), tebuconazole (B.1.25), tetraconazole (B.1.26), triadimefon (B.1.27), triadimenol (B.1.28), triticonazole (B.1.29), uniconazole (B.1.30), 1-[rel-(2S,3A)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-5-thiocyanato-1H-[1,2,4]triazole (B.1.31), 2-[rel-(2S;3A)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-2H-[1,2,4]triazole-3-thiol (B.1.32), 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol (B.1.33), 1-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-cyclopropyl-2-(1,2,4-triazol-1-yl)ethanol (B.1.34), 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol (B.1.35), 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol (B.1.36), 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol (B.1.37), 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol (B.1.38), 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol (B.1.39), 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol (B.1.40), 2-[4-(4-fluorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol (B.1.41), 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)pent-3-yn-2-ol (B.1.42), 2-(chloromethyl)-2-methyl-5-(p-tolylmethyl)-1-(1,2,4-triazol-1-ylmethyl)cyclopentanol (B.1.43); imidazoles: imazalil (B.1.44), pefurazoate (B.1.45), prochloraz (B.1.46), triflumizol (B.1.47); pyrimidines, pyridines and piperazines: fenarimol (B.1.49), pyrifenox (B.1.50), triforine (B.1.51), [3-(4-chloro-2-fluoro-phenyl)-5-(2,4-difluorophenyl)isoxazol-4-yl]-(3-pyridyl)methanol (B.1.52);
      • Delta14-reductase inhibitors: aldimorph (B.2.1), dodemorph (B.2.2), dodemorph-acetate (B.2.3), fenpropimorph (B.2.4), tridemorph (B.2.5), fenpropidin (B.2.6), piperalin (B.2.7), spiroxamine (B.2.8);
      • Inhibitors of 3-keto reductase: fenhexamid (B.3.1);
      • Other Sterol biosynthesis inhibitors: chlorphenonnizole (B.4.1);
  • C) Nucleic Acid Synthesis Inhibitors
      • phenylamides or acyl amino acid fungicides: benalaxyl (C.1.1), benalaxyl-M (C.1.2), kiralaxyl (C.1.3), metalaxyl (C.1.4), metalaxyl-M (C.1.5), ofurace (C.1.6), oxadixyl (C.1.7);
      • other nucleic acid synthesis inhibitors: hymexazole (C.2.1), octhilinone (C.2.2), oxolinic acid (C.2.3), bupirimate (C.2.4), 5-fluorocytosine (C.2.5), 5-fluoro-2-(p-tolylmethoxy)pyrimidin-4-amine (C.2.6), 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine (C.2.7), 5-fluoro-2-(4-chlorophenylmethoxy)pyrimidin-4 amine (C.2.8);
  • D) Inhibitors of Cell Division and Cytoskeleton
      • tubulin inhibitors: benomyl (D.1.1), carbendazim (D.1.2), fuberidazole (D1.3), thiabendazole (D.1.4), thiophanate-methyl (D.1.5), 3-chloro-4-(2,6-difluorophenyl)-6-methyl-5-phenyl-pyridazine (D.1.6), 3-chloro-6-methyl-5-phenyl-4-(2,4,6-trifluorophenyl)pyridazine (D.1.7), N-ethyl-2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]butanamide (D.1.8), N-ethyl-2-[(3-ethynyl-8-methyl-6-guinolyl)oxy]-2-methylsulfanyl-acetamide (D.1.9), 2-[(3-ethynyl-8-methyl-6-guinolyl)oxy]-N-(2-fluoroethyl)butanamide (D.1.10), 2-[(3-ethynyl-8-methyl-6-guinolyl)oxy]-N-(2-fluoroethyl)-2-methoxy-acetamide (D.1.11), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-N-propyl-butanamide (D.1.12), 2-[(3-ethynyl-8-methyl-6-guinolypoxy]-2-methoxy-N-propyl-acetamide (D.1.13), 2-[(3-ethynyl-8-methyl-6-guinolyl)oxy]-2-methylsulfanyl-N-propyl-acetamide (D.1.14), 2-[(3-ethynyl-8-methyl-6-guinolyl)oxy]-N-(2-fluoroethyl)-2-methylsulfanyl-acetamide (D.1.15), 4-(2-bromo-4-fluoro-phenyl)-N-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3-amine (D.1.16);
      • other cell division inhibitors: diethofencarb (D.2.1), ethaboxam (D.2.2), pencycuron (D.2.3), fluopicolide (D.2.4), zoxamide (D.2.5), metrafenone (D.2.6), pyriofenone (D.2.7); E) Inhibitors of amino acid and protein synthesis
      • methionine synthesis inhibitors: cyprodinil (E.1.1), mepanipyrim (E.1.2), pyrimethanil (E.1.3);
      • protein synthesis inhibitors: blasticidin-S(E.2.1), kasugamycin (E.2.2), kasugamycin hydrochloride-hydrate (E.2.3), mildiomycin (E.2.4), streptomycin (E.2.5), oxytetracyclin (E.2.6);
  • F) Signal Transduction Inhibitors
      • MAP/histidine kinase inhibitors: fluoroimid (F.1.1), iprodione (F.1.2), procymidone (F.1.3), vinclozolin (F.1.4), fludioxonil (F.1.5);
      • G protein inhibitors: quinoxyfen (F.2.1);
  • G) Lipid and Membrane Synthesis Inhibitors
      • Phospholipid biosynthesis inhibitors: edifenphos (G.1.1), iprobenfos (G.1.2), pyrazophos (G.1.3), isoprothiolane (G.1.4);
      • lipid peroxidation: dicloran (G.2.1), quintozene (G.2.2), tecnazene (G.2.3), tolclofos-methyl (G.2.4), biphenyl (G.2.5), chloroneb (G.2.6), etridiazole (G.2.7);
      • phospholipid biosynthesis and cell wall deposition: dimethomorph (G.3.1), flumorph (G.3.2), mandipropamid (G.3.3), pyrimorph (G.3.4), benthiavalicarb (G.3.5), iprovalicarb (G.3.6), valifenalate (G.3.7);
      • compounds affecting cell membrane permeability and fatty acides: propamocarb (G.4.1);
      • inhibitors of oxysterol binding protein: oxathiapiprolin (G.5.1), 2-{3-[2-(1-{[3,5-bis(difluoromethyl-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-phenyl methanesulfonate (G.5.2), 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate (G.5.3), 4-[1-[2-[3-(difluoromethyl)-5-methyl-pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.4), 4-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.5), 4-[1-[2-[3-(difluoromethyl)-5-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.6), 4-[1-[2-[5-cyclopropyl-3-(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.7), 4-[1-[2-[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.8), 4-[1-[2-[5-(difluoromethyl)-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.9), 4-[1-[2-[3,5-bis(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.10), (4-[1-[2-[5-cyclopropyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.11);
  • H) Inhibitors with Multi Site Action
      • inorganic active substances: Bordeaux mixture (H.1.1), copper (H.1.2), copper acetate (H.1.3), copper hydroxide (H.1.4), copper oxychloride (H.1.5), basic copper sulfate (H.1.6), sulfur (H.1.7);
      • thio- and dithiocarbamates: ferbam (H.2.1), mancozeb (H.2.2), maneb (H.2.3), metam (H.2.4), metiram (H.2.5), propineb (H.2.6), thiram (H.2.7), zineb (H.2.8), ziram (H.2.9);
      • organochlorine compounds: anilazine (H.3.1), chlorothalonil (H.3.2), captafol (H.3.3), captan (H.3.4), folpet (H.3.5), dichlofluanid (H.3.6), dichlorophen (H.3.7), hexachlorobenzene (H.3.8), pentachlorphenole (H.3.9) and its salts, phthalide (H.3.10), tolylfluanid (H.3.11);
      • guanidines and others: guanidine (H.4.1), dodine (H.4.2), dodine free base (H.4.3), guazatine (H.4.4), guazatine-acetate (H.4.5), iminoctadine (H.4.6), iminoctadine-triacetate (H.4.7), iminoctadine-tris(albesilate) (H.4.8), dithianon (H.4.9), 2,6-dimethyl-1H,5H[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetraone (H.4.10);
  • I) Cell Wall Synthesis Inhibitors
      • inhibitors of glucan synthesis: validamycin (1.1.1), polyoxin B (1.1.2);
      • melanin synthesis inhibitors: pyroquilon (1.2.1), tricyclazole (1.2.2), carpropamid (1.2.3), dicyclomet (1.2.4), fenoxanil (1.2.5);
  • J) Plant Defence Inducers
      • acibenzolar-S-methyl (J.1.1), probenazole (J.1.2), isotianil (J.1.3), tiadinil (J.1.4), prohexadione-calcium (J.1.5); phosphonates: fosetyl (J.1.6), fosetyl-aluminum (J.1.7), phosphorous acid and its salts (J.1.8), potassium or sodium bicarbonate (J.1.9);
  • K) Unknown Mode of Action
      • bronopol (K.1.1), chinonnethionat (K.1.2), cyflufenamid (K.1.3), cymoxanil (K.1.4), dazomet (K.1.5), debacarb (K.1.6), diclocymet (K.1.7), diclomezine (K.1.8), difenzoquat (K.1.9), difenzoquat-methylsulfate (K.1.10), diphenylamin (K.1.11), fenitropan (K.1.12), fenpyrazamine (K.1.13), flumetover (K.1.14), flusulfamide (K.1.15), flutianil (K.1.16), harpin (K.1.17), methasulfocarb (K.1.18), nitrapyrin (K.1.19), nitrothal-isopropyl (K.1.20), tolprocarb (K.1.21), oxincopper (K.1.22), proquinazid (K.1.23), tebufloquin (K.1.24), tecloftalam (K.1.25), triazoxide (K.1.26), N′-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine (K.1.27), N′-(4-(4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine (K.1.28), N′-[4-[[3-[(4-chlorophenyl)methyl]-1,2,4-thiadiazol-5-yl]oxy]-2,5-dimethyl-phenyl]-N-ethyl-N-methyl-formamidine (K.1.29), N′-(5-bromo-6-indan-2-yloxy-2-methyl-3-pyridyl)-N-ethyl-N-methyl-formamidine (K.1.30), N′-[5-bromo-6-[1-(3,5-difluorophenyl)ethoxy]-2-methyl-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.31), N′-[5-bromo-6-(4-isopropylcyclohexoxy)-2-methyl-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.32), N′-[5-bromo-2-methyl-6-(1-phenylethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.33), N′-(2-methyl-5-trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine (K.1.34), N′-(5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine (K.1.35), 2-(4-chloro-phenyl)-N-[4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy-acetamide (K.1.36), 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]pyridine (pyrisoxazole) (K.1.37), 3-[5-(4-methylphenyl)-2,3-dimethyl-isoxazolidin-3 yl]-pyridine (K.1.38), 5-chloro-1-(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1H-benzoimidazole (K.1.39), ethyl (Z)-3-amino-2-cyano-3-phenyl-prop-2-enoate (K.1.40), picarbutrazox (K.1.41), pentyl N-[6-[[(Z)-[(1-methyltetrazol-5-yl)phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate (K.1.42), 2-[2-[(7,8-difluoro-2-methyl-3-quinolyloxy]-6-fluoro-phenyl]propan-2-ol (K.1.44), 2-[2-fluoro-6-[(8-fluoro-2-methyl-3-quinolyloxy]phen-yl]propan-2-ol (K.1.45), 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline (K.1.46), 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline (K.1.47), 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline (K.1.48), 9-fluoro-2,2-dimethyl-5-(3-quinolyl)-3H-1,4-benzoxazepine (K.1.49), 2-(6-benzyl-2-pyridyl)quinazoline (K.1.50), 2-[6-(3-fluoro-4-methoxy-phenyl)-5-methyl-2-pyridyl]quinazoline (K.1.51), 3-[(3,4-dichloroisothiazol-5-yl)methoxy]-1,2-benzothiazole 1,1-dioxide (K.1.52), N′-(2,5-dimethyl-4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine (K.1.53);
  • The fungicides described by common names, their preparation and their activity e.g. against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available.
  • The fungicides described by IUPAC nomenclature, their preparation and their pesticidal activity is also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EPA 141 317; EP-A 152 031; EP-A 226 917; EPA 243 970; EPA 256 503; EP-A 428 941; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EPA 1 201 648; EPA 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; U.S. Pat. No. 3,296,272; U.S. Pat. No. 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501; WO 01/56358; WO 02/22583; WO 02/40431; WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 11/028657, WO2012/168188, WO 2007/006670, WO 2011/77514; WO13/047749, WO 10/069882, WO 13/047441, WO 03/16303, WO 09/90181, WO13/007767, WO 13/010862, WO 13/127704, WO 13/024009, WO 13/024010 and WO 13/047441, WO 13/162072, WO 13/092224, WO 11/135833).
  • In another embodiment of the invention, the carboxamide compound ii) of formula (Ia) and the fungicides of the above list with sections A) to K) can be used together for the methods of the present invention.
  • In still another embodiment of the invention, the mixture comprising the carboxamide compounds i) and ii) and the fungicides of the above list with sections A) to K) can be used together for the methods of the present invention.
  • With regard the use of the carboxamide compound I, preferably compound i) of formula (I), in mixtures together with one or more other active ingredients in the methods according to the present invention on cultivated plants, some combinations are especially preferred.
  • With regard to the use in a pesticidal mixture of the present invention, a compound II selected from group of AChE-inhibitors as defined above is preferred, in particular selected from the group of carbamates, especially preferred carbofuran, benfuracarb or methomyl.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with carbofuran as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with carbofuran as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with carbofuran as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, a compound II selected from group of AChE-inhibitors as defined above is preferred, in particular selected from the group organophosphates, especially preferred chlorpyrifos and acephate.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with acephate as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with acephate as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with acephate as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with chlorpyrifos as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with chlorpyrifos as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with chlorpyrifos as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, a compound II selected from group of GABA-gated chloride channel antagonists as defined above is preferred, in particular group fiproles, especially preferred ethiprole and fipronil.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with fipronil as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with fipronil as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with fipronil as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, a compound II selected from group of Sodium channel modulators as defined above is preferred, in particular pyrethroids, especially preferred alpha-cypermethrin, bifenthrin, tefluthrin and cyhalothrin.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with alpha-cypermethrin as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with alpha-cypermethrin as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with alpha-cypermethrin as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with bifenthrin as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with bifenthrin as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with bifenthrin as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with tefluthrin as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with tefluthrin as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with tefluthrin as component II are another embodiment of this invention.
  • Mixtures of the carboxamide preferably compound i) of formula (I) as component I with cyhalothrin as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with cyhalothrin as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with cyhalothrin as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, a compound II selected from group of Neonicotinoids as defined above is preferred, in particular clothianidin, dinotefuran, imidacloprid, thiacloprid, or thiamethoxam.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with thiamethoxam as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with thiamethoxam as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with thiamethoxam as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with clothianidin as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with clothianidin as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with clothianidin as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with dinotefuran as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with dinotefuran as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with dinotefuran as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with imidacloprid as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with imidacloprid as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with imidacloprid as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with thiacloprid as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with thiacloprid as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with thiacloprid as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the compound II is selected from group of Nicotinic acetylcholine receptor allosteric activators and is preferably spinosad or spinetoram.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with spinosad as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with spinosad as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with spinosad as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with spinetoram as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with spinetoram as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with spinetoram as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the compound II is selected from group of Chloride channel activators and is preferably an avermectin.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with emamectin as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with emamectin as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with emamectin as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with abamectin as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with abamectin as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with abamectin as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the compound II is selected from group of Selective homopteran feeding blockers and is preferably pymetrozine or flonicamid.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with pymetrozine as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with pymetrozine as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with pymetrozine as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with flonicamid as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with flonicamid as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with flonicamid as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the component II is selected from group of Mite growth inhibitors and is preferably etoxazole.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the component II is selected from the group of Uncouplers of oxidative phosphorylation via disruption of the proton gradient and is preferably chlorfenapyr.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with chlorfenapyr as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with chlorfenapyr as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with chlorfenapyr as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the component II is selected from group of Inhibitors of the chitin biosynthesis type 1) and is preferably buprofezin.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the component II is selected from group of Voltage-dependent sodium channel blockers) and is preferably metaflumizone or indoxacarb.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with metaflumizone as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with metaflumizone as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with metaflumizone as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the component II is selected from group of Inhibitors of the of acetyl CoA carboxylase and is preferably a Tetronic or Tetramic acid derivative, spirodiclofen, spiromesifen or spirotetramat.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with Tetronic Acid as component II are preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with Tetronic Acid as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with Tetronic Acid as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with Tetramic Acid as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with Tetramic Acid as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with Tetramic Acid as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with spirodiclofen as component II are also preferred
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with spirodiclofen as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with spirodiclofen as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with spiromesifen as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with spiromesifen as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with spiromesifen as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with spirotetramat as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with spirotetramat as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with spirotetramat as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the compound II is selected from group of Mitochondrial complex II electron transport inhibitors and is preferably cyflumetofen.
  • With regard to the use in a pesticidal mixture of the present invention, in an embodiment of the invention, the compound II is selected from group of Ryanodine receptor-modulators and is preferably fubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole or cyantraniliprole.
  • With regard to the use in a pesticidal mixture of the present invention, in another embodiment of the invention, the compound II selected from group of Ryanodine receptor-modulators may also be selected from a compound listed in and coded as
  • M.28.5a) to M.28.5d), namely M.28.5a) N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5b) N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5c) N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5d) N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide;
  • M.28.5h) to M.28.5l): M.28.5a) N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5b) N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5c) N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5d) N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5h) N-[4,6-dibromo-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; M.28.5i) N-[2-(5-Amino-1,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide; M.28.5j) 3-Chloro-1-(3-chloro-2-pyridinyl)-N-[2,4-dichloro-6-[[(1-cyano-1-methylethyl)amino]carbonyl]phenyl]-1H-pyrazole-5-carboxamide; M.28.5k) 3-Bromo-N-[2,4-dichloro-6-(methylcarbamoyl)phenyl]-1-(3,5-dichloro-2-pyridyl)-1H-pyrazole-5-carboxamide; M.28.5l) N-[4-Chloro-2-[[(1,1-dimethylethyl)amino]carbonyl]-6-methylphenyl]-1-(3-chloro-2-pyridinyl)-3-(fluoromethoxy)-1H-pyrazole-5-carboxamide; or
  • M.28.6: cyhalodiamide.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with flubendiamid as component 11 are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component 1 with flubendiamid as component 11 are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with flubendiamid as component 11 are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with chlorantraniliprole as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with chlorantraniliprole as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with chlorantraniliprole as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with cyantraniliprole as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with cyantraniliprole as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with cyantraniliprole as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with cyclaniliprole as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with cyclaniliprole as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with cyclaniliprole as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with tetraniliprole as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with tetraniliprole as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with tetraniliprole as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with triflumezopyrim as component II are especially preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with triflumezopyrim as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with triflumezopyrim as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with sulfoxaflor as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with sulfoxaflor as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with sulfoxaflor as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with afidopyropen as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with afidopyropen as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with afidopyropen as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with pyrifluquinazon as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with pyrifluquinazon as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with pyrifluquinazon as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with flupyradifuron as component II are also preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with flupyradifuron as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with flupyradifuron as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, a compound II selected from the group of the azoles is preferred, especially prochloraz, prothioconazole, tebuconazole and triticonazole, especially prothioconazole and triticonazole.
  • Mixtures of the carboxamide compound i) of formula (I) as component I, with triticonazole as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with triticonazole as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with triticonazole as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I, with prothioconazole as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with prothioconazole as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with prothioconazole as component II are another embodiment of this invention.
  • With regard to the use in a pesticidal mixture of the present invention, preferred is a compound II selected from the group of benomyl, carbendazim, epoxiconazole, fluquinconazole, flutriafol, flusilazole, metconazole, prochloraz, prothioconazole, tebuconazole, triticonazole, pyraclostrobin, trifloxystrobin, boscalid, dimethomorph, penthiopyrad, dodemorph, famoxadone, fenpropimorph, proquinazid, pyrimethanil, tridemorph, maneb, mancozeb, metiram, thiram, chlorothalonil, dithianon, flusulfamide, metrafenone, fluxapyroxad (N-(3′,4′,5′ trifluorobiphenyl-2 yl)-3-difluoromethyl-1-methyl-1H-pyrazole-4 carboxamide), bixafen, penflufen, sedaxane, isopyrazam, metalaxyl, thiophanate-methyl.
  • Especially preferred is metalaxyl, thiophanate-methyl, pyraclostrobin and fluxapyroxad.
  • Mixtures of the carboxamide compound i) of formula (I) as component I, with metalaxyl as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with metalaxyl as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with metalaxyl as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with thiophanate-methyl as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with thiophanate-methyl as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with thiophanate-methyl as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with pyraclostrobin as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with pyraclostrobin as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with pyraclostrobin as component II are another embodiment of this invention.
  • Mixtures of the carboxamide compound i) of formula (I) as component I with fluxapyroxad as component II are particularly preferred.
  • Mixtures of the carboxamide compound ii) of formula (Ia) as component I with fluxapyroxad as component II are another embodiment of this invention.
  • Mixtures of carboxamide mixtures comprising the carboxamide compounds i) and ii) as component I with fluxapyroxad as component II are another embodiment of this invention.
  • In a particular preferred embodiment, the mixture comprise as an additional component a compound against which the cultivated plant is resistant.
  • Cultivated Plants
  • Not only the use of the carboxamide compound I, preferably compound i) of formula (I), alone may display a synergistic effect between the trait of the cultivated plant and the applied compound, but also the use of mixtures of (1) the carboxamide compound I, preferably compound i) of formula (I), as component I, with (2) compounds II as defined herein as component II, in cultivated plants may display synergistic effects between the trait of the cultivated plant and the applied compounds.
  • Thus, the present invention relates to methods for controlling pests of a cultivated plant, comprising the application of the carboxamide compound i) of formula (I), or a mixture of (1) the carboxamide compound i) of formula (I) as component I with (2) at least one compound II as component II as defined above to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth.
  • The present invention further also relates to methods for controlling pests of a cultivated plant, comprising the application of the carboxamide compound ii) of formula (Ia), or a mixture of (1) the carboxamide compound ii) of formula (Ia) as component I with (2) at least one compound II as component II as defined above to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth.
  • The present invention further also relates to methods for controlling pests of a cultivated plant, comprising the application of the mixture comprising the carboxamide compounds i) and ii), or a mixture of (1) the mixture comprising the carboxamide compounds i) and ii) as component I with (2) at least one compound II as component II as defined above to a cultivated plant, parts of such plant, plant propagation material, or at its locus of growth.
  • It has also been found that the application of the carboxamide compound i) of formula (I) as defined above on cultivated plants provides enhanced plant health effects, compared to the plant health effects that are possible by application of the carboxamide compound i) of formula (I) on non-cultivated plants.
  • It has further also been found that the application of the carboxamide compound ii) of formula (Ia) as defined above on cultivated plants provides enhanced plant health effects, compared to the plant health effects that are possible by application of the carboxamide compound ii) of formula (Ia) on non-cultivated plants.
  • It has still further also been found that the application of the mixture comprising the carboxamide compounds i) and ii) as defined above on cultivated plants provides enhanced plant health effects, compared to the plant health effects that are possible by application of the mixture comprising the carboxamide compounds i) and ii) on non-cultivated plants.
  • It has also been found that the application of a mixture of (1) the carboxamide compound i) of formula (I) as component I with (2) at least one compound II as defined above as component II on cultivated plants provides enhanced plant health effects, compared to the plant health effects that are possible by application of a mixture of (1) the carboxamide compound i) of formula (I) as component I with (2) at least one compound II as component II on non-cultivated plants.
  • It has further also been found that the application of a mixture of (1) the carboxamide compound ii) of formula (Ia) as component I with (2) at least one compound II as defined above as component II on cultivated plants provides enhanced plant health effects, compared to the plant health effects that are possible by application of a mixture of (1) the carboxamide compound ii) of formula (Ia) as component I with (2) at least one compound II as component II on non-cultivated plants.
  • It has further also been found that the application of a mixture of (1) the mixture comprising the carboxamide compounds i) and ii) as component I with (2) at least one compound II as defined above as component II on cultivated plants provides enhanced plant health effects, compared to the plant health effects that are possible by application of a mixture of (1) the mixture comprising the carboxamide compounds i) and ii) as component I with (2) at least one compound II as component II on non-cultivated plants.
  • The term “health of a plant” or “plant health” is defined as a condition of the plant and/or its products which is determined by several aspects alone or in combination with each other such as yield, plant vigor, quality and tolerance to abiotic and/or biotic stress.
  • It has to be emphasized that the above mentioned plant health effects are also present when the cultivated plant is not under biotic stress and in particular when the cultivated plant is not under pest pressure. It is evident that a cultivated plant suffering from fungal or insecticidal attack produces a smaller biomass and leads to a reduced yield as compared to a cultivated plant which has been subjected to curative or preventive treatment against the pathogenic fungus or any other relevant pest and which can grow without the damage caused by the biotic stress factor. However, the methods according to the invention lead to an enhanced plant health even in the absence of any biotic stress. This means that increased plant health cannot be explained just by the insecticidal (or herbicidal) activities of the carboxamide compound I, preferably compound i) of formula (I), or a mixture comprising the carboxamide compound I, preferably compound i) of formula (I) as component I with at least one compound II as component II, but are based on further activity profiles. Thus, the method of the present invention also be carried out in the absence of pest pressure.
  • Each listed plant health indicator listed below, and which is selected from the groups consisting of yield, plant vigor, quality and tolerance to abiotic and/or biotic stress, is to be understood as a preferred embodiment of the present invention either each on its own or preferably in combination with each other.
  • According to the present invention, “increased yield” of a cultivated plant means that the yield of a product of the respective cultivated plant is increased via application of the carboxamide compound I, preferably compound i) of formula (I), or a mixture of the carboxamide compound I, preferably compound i) of formula (I) as component I with at least one compound II as component II by a measurable amount over the yield of the same product of the respective control plant produced under the same conditions and also under application of the carboxamide compound I, preferably compound i) of formula (I) or a mixture comprising the carboxamide compound I, preferably compound i) of formula (I) as component I with at least one compound II as component II.
  • Increased yield can be characterized, among others, by the following improved properties of the cultivated plant: increased plant weight, increased plant height, increased biomass such as higher overall fresh weight (FW), increased number of flowers per plant, higher grain and/or fruit yield, more tillers or side shoots (branches), larger leaves, increased shoot growth, increased protein content, increased oil content, increased starch content, increased pigment content, increased chlorophyll content (chlorophyll content has a positive correlation with the plant's photosynthesis rate and accordingly, the higher the chlorophyll content the higher the yield of a plant)
  • “Grain” and “fruit” are to be understood as any cultivated plant product which is further utilized after harvesting, e.g. fruits in the proper sense, vegetables, nuts, grains, seeds, wood (e.g. in the case of silviculture plants), flowers (e.g. in the case of gardening plants, ornamentals) etc., that is anything of economic value that is produced by the plant.
  • According to the present invention, the yield is increased by at least 4%, preferable by 5 to 10%, more preferable by 10 to 20%, or even 20 to 30%. In general, the yield increase may even be higher.
  • Another indicator for the condition of the cultivated plant is the plant vigor. The plant vigor becomes manifest in several aspects such as the general visual appearance.
  • Improved plant vigor can be characterized, among others, by the following improved properties of the cultivated plant: improved vitality of the cultivated plant, improved plant growth, improved plant development, improved visual appearance, improved plant stand (less plant verse/lodging), improved emergence, enhanced root growth and/or more developed root system, enhanced nodulation, in particular rhizobial nodulation, bigger leaf blade, bigger size, increased plant height, increased tiller number, increased number of side shoots, increased number of flowers per plant, increased shoot growth, enhanced photosynthetic activity (e.g. based on increased stomatal conductance and/or increased CO2 assimilation rate), enhanced pigment content-, earlier flowering, earlier fruiting, earlier and improved germination, earlier grain maturity, less non-productive tillers, less dead basal leaves, less input needed (such as fertilizers or water), greener leaves, complete maturation under shortened vegetation periods, less seeds needed, easier harvesting, faster and more uniform ripening, longer shelf-life, longer panicles, delay of senescence, stronger and/or more productive tillers, better extractability of ingredients, improved quality of seeds (for being seeded in the following seasons for seed production) and/or reduced production of ethylene and/or the inhibition of its reception by the cultivated plant.
  • Another indicator for the condition of the cultivated plant is the “quality” of a cultivated plant and/or its products. According to the present invention, enhanced quality means that certain plant characteristics such as the content or composition of certain ingredients are increased or improved by a measurable or noticeable amount over the same factor of the control plant produced under the same conditions. Enhanced quality can be characterized, among others, by following improved properties of the cultivated plant or its product: increased nutrient content, increased protein content, increased content of fatty acids, increased metabolite content, increased carotenoid content, increased sugar content, increased amount of essential amino acids, improved nutrient composition, improved protein composition, improved composition of fatty acids, improved metabolite composition, improved carotenoid composition, improved sugar composition, improved amino acids composition, improved or optimal fruit color, improved leaf color, higher storage capacity, higher processability of the harvested products.
  • Another indicator for the condition of the cultivated plant is the plants tolerance or resistance to biotic and/or abiotic stress factors. Biotic and abiotic stress, especially over longer terms, can have harmful effects on cultivated plants. Biotic stress is caused by living organisms while abiotic stress is caused for example by environmental extremes. According to the present invention, “enhanced tolerance or resistance to biotic and/or abiotic stress factors” means (1.) that certain negative factors caused by biotic and/or abiotic stress are diminished in a measurable or noticeable amount as compared to control plants exposed to the same conditions and (2.) that the negative effects are not diminished by a direct action of the carboxamide compound I, preferably compound i) of formula (I), or a mixture of (i) the carboxamide compound I, preferably compound i) of formula (I) as component I with (ii) at least one compound II as component II on the stress factors, e.g. by its insecticidal action, but rather by a stimulation of the cultivated plants' own defensive reactions against said stress factors.
  • Negative factors caused by biotic stress such as pathogens and pests are widely known and range from dotted leaves to total destruction of the cultivated plant. Biotic stress can be caused by living organisms, such as competing plants (for example weeds), microorganisms (such as phythopathogenic fungi and/or bacteria) and/or viruses.
  • Negative factors caused by abiotic stress are also well-known and can often be observed as reduced plant vigor (see above), for example: dotted leaves, “burned leaves”, reduced growth, less flowers, less biomass, less crop yields, reduced nutritional value of the crops, later crop maturity, to give just a few examples. Abiotic stress can be caused for example by: extremes in temperature such as heat or cold (heat stress/cold stress), strong variations in temperature, temperatures unusual for the specific season, drought (drought stress), extreme wetness, high salinity (salt stress), radiation (for example by increased UV radiation due to the decreasing ozone layer), increased ozone levels (ozone stress), organic pollution (for example by phytho-toxic amounts of pesticides), inorganic pollution (for example by heavy metal contaminants).
  • As a result of biotic and/or abiotic stress factors, the quantity and the quality of the stressed cultivated plants, their crops and fruits decrease. As far as quality is concerned, reproductive development is usually severely affected with consequences on the crops which are important for fruits or seeds. Synthesis, accumulation and storage of proteins are mostly affected by temperature; growth is slowed by almost all types of stress; polysaccharide synthesis, both structural and storage is reduced or modified: these effects result in a decrease in biomass (yield) and in changes in the nutritional value of the product.
  • Advantageous properties, obtained especially from treated seeds, are e.g. improved germination and field establishment, better vigor and/or a more homogen field establishment.
  • As pointed out above, the above identified indicators for the health condition of a cultivated plant may be interdependent and may result from each other. For example, an increased resistance to biotic and/or abiotic stress may lead to a better plant vigor, e.g. to better and bigger crops, and thus to an increased yield. Inversely, a more developed root system may result in an increased resistance to biotic and/or abiotic stress. However, these interdependencies and interactions are neither all known nor fully understood and therefore the different indicators are described separately.
  • In one embodiment the methods of the present invention effectuate an increased yield of a cultivated plant or its product.
  • In another embodiment the methods of the present invention effectuate an increased vigor of a cultivated plant or its product.
  • In another embodiment the methods of the present invention effectuate in an increased quality of a cultivated plant or its product.
  • In yet another embodiment the methods of the present invention effectuate an increased tolerance and/or resistance of a cultivated plant or its product against biotic stress.
  • In yet another embodiment the methods of the present invention effectuate an increased tolerance and/or resistance of a cultivated plant or its product against abiotic stress.
  • In a preferred embodiment of the invention, the methods of the present invention increase the yield of cultivated plants.
  • In a preferred embodiment of the invention, embodiment of the invention, the methods of the present invention increase the yield of cultivated plants such as the plant weight and/or the plant biomass (e.g. overall fresh weight) and/or the grain yield and/or the number of tillers.
  • In another preferred embodiment of the invention, embodiment of the invention, the methods of the present invention increase the plant vigor of cultivated plants.
  • In a more preferred embodiment of the invention, the methods of the present invention increase the yield of cultivated plants.
  • In a most preferred embodiment of the invention, the methods of the present invention increase the yield of cultivated plants such as the plant weight and/or the plant biomass (e.g. overall fresh weight) and/or the grain yield and/or the number of tillers.
  • Thus, the present invention also relates to methods increasing the plant health, in particular the yield of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound i) of formula (I), or a mixture of (1) the carboxamide compound i) of formula (I) as component I with (2) at least one compound II as component II to a cultivated plant, parts of such plant, its plant propagation material, or at its locus of growth.
  • Thus, the present invention also relates to methods increasing the plant health, in particular the yield of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (aI), or a mixture of (1) the carboxamide compound ii) of formula (Ia) as component I with (2) at least one compound II as component II to a cultivated plant, parts of such plant, its plant propagation material, or at its locus of growth.
  • Thus, the present invention also relates to methods increasing the plant health, in particular the yield of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii), or a mixture of (1) a mixture comprising the carboxamide compounds i) and ii) as component I with (2) at least one compound II as component II to a cultivated plant, parts of such plant, its plant propagation material, or at its locus of growth.
  • The present invention also comprises plant propagation material, preferably seed, of a cultivated plant treated with the carboxamide compound i) of formula (I), or a mixture of the carboxamide compound i) of formula (I) as component I with at least one compound II as component
  • The present invention further also comprises plant propagation material, preferably seed, of a cultivated plant treated with the carboxamide compound ii) of formula (Ia), or a mixture of the carboxamide compound ii) of formula (Ia) as component I with at least one compound II as component II.
  • The present invention further also comprises plant propagation material, preferably seed, of a cultivated plant treated with a mixture comprising the carboxamide compounds i) and ii), or a mixture comprising the carboxamide compounds i) and ii) as component I together with at least one compound II as component II.
  • The term cultivated plant(s) includes to “modified plant(s)” and “transgenic plant(s)”. In one embodiment of the invention, the term “cultivated plants” refers to “modified plants”. In one embodiment of the invention, the term “cultivated plants” refers to “transgenic plants”. “Modified plants” are those which have been modified by conventional breeding techniques. The term “modification” means in relation to modified plants a change in the genome, epigenome, transcriptome or proteome of the modified plant, as compared to the control, wild type, mother or parent plant whereby the modification confers a trait (or more than one trait) or confers the increase of a trait (or more than one trait) as listed below. Preferably, the term “cultivated plant” refers to a plant, which has been modified by mutagenesis or genetic engineering.
  • The modification may result in the modified plant to be a different, for example a new plant variety than the parental plant.
  • “Transgenic plants” are those, which genetic material has been modified by the use of recombinant DNA techniques that under natural circumstances can not readily be obtained by cross breeding, mutations or natural recombination, whereby the modification confers a trait (or more than one trait) or confers the increase of a trait (or more than one trait) as listed below as compared to the wild-type plant. Preferably, the term “transgenic plant” refers to a plant, which has been modified by genetic engineering.
  • In one embodiment, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant, preferably increase a trait as listed below as compared to the wild-type plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), or to post-transcriptional modifications of oligo- or polypeptides e.g. by glycosylation or polymer additions such as prenylated, acetylated, phosphorylated or farnesylated moieties or PEG moieties.
  • In one embodiment under the term “modification” when referring to a transgenic plant or parts thereof is understood that the activity, expression level or amount of a gene product or the metabolite content is changed, e.g. increased or decreased, in a specific volume relative to a corresponding volume of a control, reference or wild-type plant or plant cell, including the de novo creation of the activity or expression.
  • In one embodiment the activity of a polypeptide is increased or generated by expression or overexpresion of the gene coding for said polypeptide which confers a trait or confers the increase of a trait as listed below as compared to the control plant. The term “expression” or “gene expression” means the transcription of a specific gene or specific genes or specific genetic construct. The term “expression” or “gene expression” in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA), regulatory RNA (e.g. miRNA, RNAi, RNAa) or mRNA with or without subsequent translation of the latter into a protein. In another embodiment the term “expression” or “gene expression” in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA) or mRNA with or without subsequent translation of the latter into a protein. In yet another embodiment it means the transcription of a gene or genes or genetic construct into mRNA.
  • The process includes transcription of DNA and processing of the resulting mRNA product. The term “increased expression” or “overexpression” as used herein means any form of expression that is additional to the original wild-type expression level.
  • The term “expression of a polypeptide” is understood in one embodiment to mean the level of said protein or polypeptide, preferably in an active form, in a cell or organism.
  • In one embodiment the activity of a polypeptide is decreased by decreased expression of the gene coding for said polypeptide which confers a trait or confers the increase of a trait as listed below as compared to the control plant. Reference herein to “decreased expression” or “reduction or substantial elimination” of expression is taken to mean a decrease in endogenous gene expression and/or polypeptide levels and/or polypeptide activity relative to control plants. It comprises further reducing, repressing, decreasing or deleting of an expression product of a nucleic acid molecule.
  • The terms “reduction”, “repression”, “decrease” or “deletion” relate to a corresponding change of a property in an organism, a part of an organism such as a tissue, seed, root, tuber, fruit, leave, flower etc. or in a cell. Under “change of a property” it is understood that the activity, expression level or amount of a gene product or the metabolite content is changed in a specific volume or in a specific amount of protein relative to a corresponding volume or amount of protein of a control, reference or wild type. Preferably, the overall activity in the volume is reduced, decreased or deleted in cases if the reduction, decrease or deletion is related to the reduction, decrease or deletion of an activity of a gene product, independent whether the amount of gene product or the specific activity of the gene product or both is reduced, decreased or deleted or whether the amount, stability or translation efficacy of the nucleic acid sequence or gene encoding for the gene product is reduced, decreased or deleted.
  • The terms “reduction”, “repression”, “decrease” or “deletion” include the change of said property in only parts of the subject of the present invention, for example, the modification can be found in compartment of a cell, like an organelle, or in a part of a plant, like tissue, seed, root, leave, tuber, fruit, flower etc. but is not detectable if the overall subject, i.e. complete cell or plant, is tested. Preferably, the “reduction”, “repression”, “decrease” or “deletion” is found cellular, thus the term “reduction, decrease or deletion of an activity” or “reduction, decrease or deletion of a metabolite content” relates to the cellular reduction, decrease or deletion compared to the wild type cell. In addition the terms “reduction”, “repression”, “decrease” or “deletion” include the change of said property only during different growth phases of the organism used in the inventive process, for example the reduction, repression, decrease or deletion takes place only during the seed growth or during blooming. Furthermore the terms include a transitional reduction, decrease or deletion for example because the used method, e.g. the antisense, RNAi, snRNA, dsRNA, siRNA, miRNA, ta-siRNA, cosuppression molecule, or ribozyme, is not stable integrated in the genome of the organism or the reduction, decrease, repression or deletion is under control of a regulatory or inducible element, e.g. a chemical or otherwise inducible promoter, and has therefore only a transient effect.
  • Methods to achieve said reduction, decrease or deletion in an expression product are known in the art, for example from the international patent application WO 2008/034648, particularly in paragraphs [0020.1.1.1], [0040.1.1.1], [0040.2.1.1] and [0041.1.1.1].
  • Reducing, repressing, decreasing or deleting of an expression product of a nucleic acid molecule in modified plants is known. Examples are canola i.e. double nill oilseed rape with reduced amounts of erucic acid and sinapins.
  • Such a decrease can also be achieved for example by the use of recombinant DNA technology, such as antisense or regulatory RNA (e.g. miRNA, RNAi, RNAa) or siRNA approaches. In particular RNAi, snRNA, dsRNA, siRNA, miRNA, ta-siRNA, cosuppression molecule, ribozyme, or antisense nucleic acid molecule, a nucleic acid molecule conferring the expression of a dominant-negative mutant of a protein or a nucleic acid construct capable to recombine with and silence, inactivate, repress or reduces the activity of an endogenous gene may be used to decrease the activity of a polypeptide in a transgenic plant or parts thereof or a plant cell thereof used in one embodiment of the methods of the invention. Examples of transgenic plants with reduced, repressed, decreased or deleted expression product of a nucleic acid molecule are Carica papaya (Papaya plants) with the event name X17-2 of the University of Florida, Prunus domestica (Plum) with the event name C5 of the United States Department of Agriculture—Agricultural Research Service, or those listed in rows T9-48 and T9-49 of table 9 below. Also known are plants with increased resistance to nematodes for example by reducing, repressing, decreasing or deleting of an expression product of a nucleic acid molecule, e.g. from the PCT publication WO 2008/095886.
  • The reduction or substantial elimination is in increasing order of preference at least 10%, 20%, 30%, 40% or 50%, 60%, 70%, 80%, 85%, 90%, or 95%, 96%, 97%, 98%, 99% or more reduced compared to that of control plants. Reference herein to an “endogenous” gene not only refers to the gene in question as found in a plant in its natural form (i.e., without there being any human intervention), but also refers to that same gene (or a substantially homologous nucleic acid/gene) in an isolated form subsequently (re)introduced into a plant (a transgene). For example, a transgenic plant containing such a transgene may encounter a substantial reduction of the transgene expression and/or substantial reduction of expression of the endogenous gene.
  • The terms “control” or “reference” are exchangeable and can be a cell or a part of a plant such as an organelle like a chloroplast or a tissue, in particular a plant, which was not modified or treated according to the herein described process according to the invention. Accordingly, the plant used as control or reference corresponds to the plant as much as possible and is as identical to the subject matter of the invention as possible. Thus, the control or reference is treated identically or as identical as possible, saying that only conditions or properties might be different which do not influence the quality of the tested property other than the treatment of the present invention.
  • It is possible that control or reference plants are wild-type plants. However, “control” or “reference” may refer to plants carrying at least one genetic modification, when the plants employed in the process of the present invention carry at least one genetic modification more than said control or reference plants. In one embodiment control or reference plants may be transgenic but differ from transgenic plants employed in the process of the present invention only by said modification contained in the transgenic plants employed in the process of the present invention.
  • The term “wild type” or “wild-type plants” refers to a plant without said genetic modification. These terms can refer to a cell or a part of a plant such as an organelle like a chloroplast or a tissue, in particular a plant, which lacks said genetic modification but is otherwise as identical as possible to the plants with at least one genetic modification employed in the present invention. In a particular embodiment the “wild-type” plant is not transgenic.
  • Preferably, the wild type is identically treated according to the herein described process according to the invention. The person skilled in the art will recognize if wild-type plants will not require certain treatments in advance to the process of the present invention, e.g. non-transgenic wild-type plants will not need selection for transgenic plants for example by treatment with a selecting agent such as a herbicide.
  • The control plant may also be a nullizygote of the plant to be assessed. The term “nullizygotes” refers to a plant that has undergone the same production process as a transgenic, yet has lost the once acquired genetic modification (e.g. due to mendelian segregation) as the corresponding transgenic. If the starting material of said production process is transgenic, then nullizygotes are also transgenic but lack the additional genetic modification introduced by the production process. In the process of the present invention the purpose of wild-type and nullizygotes is the same as the one for control and reference or parts thereof. All of these serve as controls in any comparison to provide evidence of the advantageous effect of the present invention.
  • Preferably, any comparison is carried out under analogous conditions. The term “analogous conditions” means that all conditions such as, for example, culture or growing conditions, soil, nutrient, water content of the soil, temperature, humidity or surrounding air or soil, assay conditions (such as buffer composition, temperature, substrates, pathogen strain, concentrations and the like) are kept identical between the experiments to be compared. The person skilled in the art will recognize if wild-type, control or reference plants will not require certain treatments in advance to the process of the present invention, e.g. non-transgenic wild-type plants will not need selection for transgenic plants for example by treatment with herbicide.
  • In case that the conditions are not analogous the results can be normalized or standardized based on the control.
  • The “reference”, “control”, or “wild type” is preferably a plant, which was not modified or treated according to the herein described process of the invention and is in any other property as similar to a plant, employed in the process of the present invention of the invention as possible. The reference, control or wild type is in its genome, transcriptome, proteome or metabolome as similar as possible to a plant, employed in the process of the present invention of the present invention. Preferably, the term “reference-” “control-” or “wild-type-” plant, relates to a plant, which is nearly genetically identical to the organelle, cell, tissue or organism, in particular plant, of the present invention or a part thereof preferably 90% or more, e.g. 95%, more preferred are 98%, even more preferred are 99.00%, in particular 99.10%, 99.30%, 99.50%, 99.70%, 99.90%, 99.99%, 99.999% or more. Most preferable the “reference”, “control”, or “wild type” is a plant, which is genetically identical to the plant, cell, a tissue or organelle used according to the process of the invention except that the responsible or activity conferring nucleic acid molecules or the gene product encoded by them have been amended, manipulated, exchanged or introduced in the organelle, cell, tissue, plant, employed in the process of the present invention.
  • Preferably, the reference and the subject matter of the invention are compared after standardization and normalization, e.g. to the amount of total RNA, DNA, or protein or activity or expression of reference genes, like housekeeping genes, such as ubiquitin, actin or ribosomal proteins.
  • The genetic modification carried in the organelle, cell, tissue, in particular plant used in the process of the present invention is in one embodiment stable e.g. due to a stable transgenic integration or to a stable mutation in the corresponding endogenous gene or to a modulation of the expression or of the behaviour of a gene, or transient, e.g. due to an transient transformation or temporary addition of a modulator such as an agonist or antagonist or inducible, e.g. after transformation with a inducible construct carrying a nucleic acid molecule under control of a inducible promoter and adding the inducer, e.g. tetracycline.
  • In one embodiment preferred plants, from which “modified plants” and/or “transgenic plants” are be selected from the group consisting of cereals, such as maize (corn), wheat, barley sorghum, rice, rye, millet, triticale, oat, pseudocereals (such as buckwheat and quinoa), alfalfa, apples, banana, beet, broccoli, Brussels sprouts, cabbage, canola (rapeseed), carrot, cauliflower, cherries, chickpea, Chinese cabbage, Chinese mustard, collard, cotton, cranberries, creeping bentgrass, cucumber, eggplant, flax, grape, grapefruit, kale, kiwi, kohlrabi, melon, mizuna, mustard, papaya, peanut, pears, pepper, persimmons, pigeonpea, pineapple, plum, potato, raspberry, rutabaga, soybean, squash, strawberries, sugar beet, sugarcane, sunflower, sweet corn, tobacco, tomato, turnip, walnut, watermelon and winter squash,
  • more preferably from the group consisting of alfalfa, canola (rapeseed), cotton, rice, maize, cerals (such as wheat, barley, rye, oat), soybean, fruits and vegetables (such as potato, tomato, melon, papaya), pome fruits (such as apple and pear), vine, sugarbeet, sugarcane, rape, citrus fruits (such as citron, lime, orange, pomelo, grapefruit, and mandarin) and stone fruits (such as cherry, apricot and peach), most preferably from cotton, rice, maize, cerals (such as wheat, barley, rye, oat), sorghum, squash, soybean, potato, vine, pome fruits (such as apple), citrus fruits (such as citron and orange), sugarbeet, sugarcane, rape, oilseed rape and tomatoes utmost preferably from cotton, rice, maize, wheat, barley, rye, oat, soybean, potato, vine, apple, pear, citron and orange.
  • In another embodiment of the invention the cultivated plant is a gymnosperm plant, especially a spruce, pine or fir.
  • In some preferred embodiments, the invention relates to methods and uses, wherein the carboxamide compound i) of formula (I) is applied in an application type which corresponds in each case to one row of Table AP-T.
  • In some preferred embodiments, the invention relates to methods and uses, wherein the carboxamide compound i) of formula (I) as component I and at least one compound II as defined above as component II, are applied in an application type which corresponds in each case to one row of Table AP-T.
  • In some other embodiments, the invention relates to methods and uses, wherein the carboxamide compound ii) of formula (Ia) is applied in an application type which corresponds in each case to one row of Table AP-T.
  • In still some other embodiments, the invention relates to methods and uses, wherein a mixture comprising the carboxamide compounds i) and ii) is applied in an application type which corresponds in each case to one row of Table AP-T.
  • TABLE AP-T
    Appl.
    type Crop Pest
    AP-T-1 Soybeans Spodoptera littoralis
    AP-T-2 Soybeans Anticarsia
    gemmatalis
    AP-T-3 Soybeans Spodoptera exigua
    AP-T-4 Soybeans Stinkbug
    AP-T-5 Soybeans Helicoverpa sp.
    AP-T-6 Soybeans Spodoptera eridania
    AP-T-7 Corn Spodoptera Frugiperta
    AP-T-8 Corn Spodoptera exigua
    AP-T-9 Rice Sesamia inferens
    AP-T-10 Rice Cnaphalocerus
    medinalis
    AP-T-11 Rice Chilo suppressalis
    AP-T-12 Rice Leptocorisa oratorius
    AP-T-13 Rice Brown plant hopper
    AP-T-14 Cotton Spodoptera littoralis
    AP-T-15 Cotton Thrips spp.
    AP-T-16 Cotton Spodoptera eridania
    AP-T-17 Cotton Helicoverpa sp.
  • The cultivated plants are plants, which comprise at least one trait. The term “trait” refers to a property, which is present in the plant either by genetic engineering or by conventional breeding techniques. Each trait has to be assessed in relation to its respective control. Examples of traits are: herbicide tolerance, insect resistance by expression of bacterial toxins, fungal resistance or viral resistance or bacterial resistance, antibiotic resistance, stress tolerance, maturation alteration, content modification of chemicals present in the cultivated plant, preferably increasing the content of fine chemicals advantageous for applications in the field of the food and/or feed industry, the cosmetics industry and/or the pharmaceutical industry, modified nutrient uptake, preferably an increased nutrient use efficiency and/or resistance to conditions of nutrient deficiency, improved fiber quality, plant vigor, modified colour, fertility restoration, and male sterility.
  • Principally, cultivated plants may also comprise combinations of the aforementioned traits, e.g. they may be tolerant to the action of herbicides and express bacertial toxins.
  • Principally, all cultivated plants may also provide combinations of the aforementioned properties, e.g. they may be tolerant to the action of herbicides and express bacertial toxins.
  • In the detailed description below, the term “plant” refers to a cultivated plant.
  • Tolerance to herbicides can be obtained by creating insensitivity at the site of action of the herbicide by expression of a target enzyme which is resistant to herbicide; rapid metabolism (conjugation or degradation) of the herbicide by expression of enzymes which inactivate herbicide; or poor uptake and translocation of the herbicide. Examples are the expression of enzymes which are tolerant to the herbicide in comparison to wild type enzymes, such as the expression of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which is tolerant to glyphosate (see e.g. Heck et. al, Crop Sci. 45, 2005, 329-339; Funke et. al, PNAS 103, 2006, 13010-13015; U.S. Pat. No. 5,188,642, U.S. Pat. No. 4,940,835, U.S. Pat. No. 5,633,435, U.S. Pat. No. 5,804,425, U.S. Pat. No. 5,627,061), the expression of glutamine synthase which is tolerant to glufosinate and bialaphos (see e.g. U.S. Pat. No. 5,646,024, U.S. Pat. No. 5,561,236) and DNA constructs coding for dicamba-degrading enzymes (see e.g. U.S. Pat. No. 7,105,724). Gene constructs can be obtained, for example, from micro-organism or plants, which are tolerant to said herbicides, such as the Agrobacterium strain CP4 EPSPS which is resistant to glyphosate; Streptomyces bacteria which are resistance to glufosinate; Arabidopsis, Daucus carota, Pseudomonoas spp. or Zea mais with chimeric gene sequences coding for HDDP (see e.g. WO 1996/38567, WO 2004/55191); Arabidopsis thaliana which is resistant to protox inhibitors (see e.g. US 2002/0073443).
  • Tolerance to glyphosate can also be achieved by any one of the genes 2mepsps, epsps, gat4601, goxv247 or mepsps.
  • Tolerance to glufosinate can be achieved by any one of the genes bar, pat or pat(syn).
  • Preferably, the herbicide tolerant plant can be selected from cereals such as wheat, barley, rye, oat; canola, sorghum, soybean, rice, oil seed rape, sugar beet, sugarcane, grapes, lentils, sunflowers, alfalfa, pome fruits; stone fruits; peanuts; coffee; tea; strawberries; turf; vegetables, such as tomatoes, potatoes, cucurbits and lettuce, more preferably, the plant is selected from soybean, maize (corn), rice, cotton, oilseed rape in particular canola, tomatoes, potatoes, sugarcane, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat. More preferably, the cultivated plant is selected from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize), Glycine max L. (soybean), Triticum aestivum (wheat), and Oryza sativa L. (rice), preferably from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize) and Glycine max L. (soybean). Particularly preferably, the cultivated plant is Glycine max L. (soybean).
  • Examples of commercial available transgenic plants with tolerance to herbicides, are the corn varieties “Roundup Ready Corn”, “Roundup Ready 2” (Monsanto), “Agrisure GT”, “Agrisure GT/CB/LL”, “Agrisure GT/RW”, “Agrisure 3000GT” (Syngenta), “YieldGard VT Rootworm/RR2” and “YieldGard VT Triple” (Monsanto) with tolerance to glyphosate; the corn varieties “Liberty Link” (Bayer), “Herculex I”, “Herculex RW”, “Herculex Xtra” (Dow, Pioneer), “Agrisure GT/CB/LL” and “Agrisure CB/LL/RW” (Syngenta) with tolerance to glufosinate; the soybean varieties “Roundup Ready Soybean” (Monsanto) and “Optimum GAT” (DuPont, Pioneer) with tolerance to glyphosate; the cotton varieties “Roundup Ready Cotton” and “Roundup Ready Flex” (Monsanto) with tolerance to glyphosate; the cotton variety “FiberMax Liberty Link” (Bayer) with tolerance to glufosinate; the cotton variety “BXN” (Calgene) with tolerance to bromoxynil; the canola varieties “Navigator” and “Compass” (Rhone-Poulenc) with bromoxynil tolerance; the canola variety “Roundup Ready Canola” (Monsanto) with glyphosate tolerance; the canola variety “InVigor” (Bayer) with glufosinate tolerance; the rice variety “Liberty Link Rice” (Bayer) with glulfosinate tolerance and the alfalfa variety “Roundup Ready Alfalfa” with glyphosate tolerance. Further transgenic plants with herbicide tolerance are commonly known, for instance alfalfa, apple, eucalyptus, flax, grape, lentils, oil seed rape, peas, potato, rice, sugar beet, sunflower, tobacco, tomatom turf grass and wheat with tolerance to glyphosate (see e.g. U.S. Pat. No. 5,188,642, U.S. Pat. No. 4,940,835, U.S. Pat. No. 5,633,435, U.S. Pat. No. 5,804,425, U.S. Pat. No. 5,627,061); beans, soybean, cotton, peas, potato, sunflower, tomato, tobacco, corn, sorghum and sugarcane with tolerance to dicamba (see e.g. U.S. Pat. No. 7,105,724 and U.S. Pat. No. 5,670,454); pepper, apple, tomato, millet, sunflower, tobacco, potato, corn, cucumber, wheat and sorghum with tolerance to 2,4-D (see e.g. U.S. Pat. No. 6,153,401, U.S. Pat. No. 6,100,446, WO 2005107437, U.S. Pat. No. 5,608,147 and U.S. Pat. No. 5,670,454); sugarbeet, potato, tomato and tobacco with tolerance to glufosinate (see e.g. U.S. Pat. No. 5,646,024, U.S. Pat. No. 5,561,236); canola, barley, cotton, lettuce, melon, millet, oats, potato, rice, rye, sorghum, soybean, sugarbeet, sunflower, tobacco, tomato and wheat with tolerance to acetolactate synthase (ALS) inhibiting herbicides, such as triazolopyrimidine sulfonamides, sulfonylureas and imidazolinones (see e.g. U.S. Pat. No. 5,013,659, WO 2006060634, U.S. Pat. No. 4,761,373, U.S. Pat. No. 5,304,732, U.S. Pat. No. 6,211,438, U.S. Pat. No. 6,211,439 and U.S. Pat. No. 6,222,100); cereals, sugar cane, rice, corn, tobacco, soybean, cotton, rapeseed, sugar beet and potato with tolerance to HPPD inhibitor herbicides (see e.g. WO 2004/055191, WO 199638567, WO 1997049816 and U.S. Pat. No. 6,791,014); wheat, soybean, cotton, sugar beet, rape, rice, sorghum and sugar cane with tolerance to protoporphyrinogen oxidase (PPO) inhibitor herbicides (see e.g. US 2002/0073443, US 20080052798, Pest Management Science, 61, 2005, 277-285). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Plants, which are capable of synthesising one or more selectively acting bacterial toxins, comprise for example at least one toxin from toxin-producing bacteria, especially those of the genus Bacillus, in particular plants capable of synthesising one or more insecticidal proteins from Bacillus cereus or Bacillus popliae; or insecticidal proteins from Bacillus thuringiensis, such as delta.-endotoxins, e.g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c, or vegetative insecticidal proteins (VIP), e.g. VIP1, VIP2, VIP3 or VIP3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or Xenorhabdus spp., such as Photorhabdus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsine inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.
  • In one embodiment a plant is capable of producing a toxin, lectin or inhibitor if it contains at least one cell comprising a nucleic acid sequence encoding said toxin, lectin, inhibitor or inhibitor producing enzyme, and said nucleic acid sequence is transcribed and translated and if appropriate the resulting protein processed and/or secreted in a constitutive manner or subject to developmental, inducible or tissue-specific regulation.
  • In the context of the present invention there are to be understood delta.-endotoxins, for example CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c, or vegetative insecticidal proteins (VIP), for example VIP1, VIP2, VIP3 or VIP3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701). An example for a truncated toxin is a truncated Cry1A(b), which is expressed in the Bt11 maize from Syngenta Seed SAS, as described below. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of CryIIIA055, a cathepsin-D-recognition sequence is inserted into a CryIIIA toxin (see WO 2003/018810).
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A451 878 and WO 2003/052073.
  • Examples of genes conferring resistance to coleopteran insects include cry34Ab1, cry35 Ab1, cry3A, cry3Bb1, dvsnf7, and mcry3A.
  • Examples of genes conferring resistance to lepidopteran insects include cry1A, cry1A.105, cry1Ab, cry1Ab-Ac, cry1Ac, cry1C, cry1F, cry1Fa2, cry2Ab2, cry2Ae, cry9c, mocry1F, pinII, vip3A(a), and vip3Aa20.
  • The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cry1-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A0 367 474, EP-A-0 401 979 and WO 1990/13651.
  • The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
  • Preferably, the plant capable of expression of bacterial toxins is selected from cereals such as wheat, barley, rye, oat; canola, cotton, eggplant, lettuce, sorghum, soybean, rice, oil seed rape, sugar beet, sugarcane, grapes, lentils, sunflowers, alfalfa, pome fruits; stone fruits; peanuts;
  • coffee; tea; strawberries; turf; vegetables, such as tomatoes, potatoes, cucurbits and lettuce, more preferably, the plant is selected from cotton, soybean, maize (corn), rice, tomatoes, potatoes, oilseed rape and cereals such as wheat, barley, rye and oat, most preferably from cotton, soybean, maize, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat. More preferably, the cultivated plant is selected from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize), Glycine max L. (soybean), Triticum aestivum (wheat), and Oryza sativa L. (rice), preferably from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize) and Glycine max L. (soybean). Particularly preferably, the cultivated plant is Glycine max L. (soybean).
  • Examples of commercial available transgenic plants capable of expression of bacterial toxins are the corn varieties “YieldGard corn rootworm” (Monsanto), “YieldGard VT” (Monsanto), “Herculex RW” (Dow, Pioneer), “Herculex Rootworm” (Dow, Pioneer) and “Agrisure CRW” (Syngenta) with resistance against corn rootworm; the corn varieties “YieldGard corn borer” (Monsanto), “YieldGard VT Pro” (Monsanto), “Agrisure CB/LL” (Syngenta), “Agrisure 3000GT” (Syngenta), “Hercules I”, “Hercules II” (Dow, Pioneer), “KnockOut” (Novartis), “NatureGard” (Mycogen) and “StarLink” (Aventis) with resistance against corn borer, the corn varieties “Herculex I” (Dow, Pioneer) and “Herculex Xtra” (Dow, Pioneer) with resistance against western bean cutworm, corn borer, black cutworm and fall armyworm; the corn variety “YieldGard Plus” (Monsanto) with resistance against corn borer and corn rootworm; the cotton variety “Bollgard I“ ” (Monsanto) with resistance against tobacco budworm; the cotton varieties “Bollgard II” (Monsanto), WideStrike” (Dow) and “VipCot” (Syngenta) with resistance against tobacco budworm, cotton bollworm, fall armyworm, beet armyworm, cabbage looper, soybean lopper and pink bollworm; the potato varieties “NewLeaf”, “NewLeaf Y” and “NewLeaf Plus” (Monsanto) with tobacco hornworm resistance and the eggplant varieties “Bt brinjal”, “Dumaguete Long Purple”, “Mara” with resistance against brinjal fruit and shoot borer, bruit borer and cotton bollworm (see e.g. U.S. Pat. No. 5,128,130). Further transgenic plants with insect resistance are commonly known, such as yellow stemborer resistant rice (see e.g. Molecular Breeding, Volume 18, 2006, Number 1), lepidopteran resistant lettuce (see e.g. U.S. Pat. No. 5,349,124), resistant soybean (see e.g. U.S. Pat. No. 7,432,421) and rice with resistance against Lepidopterans, such as rice stemborer, rice skipper, rice cutworm, rice caseworm, rice leaffolder and rice armyworm (see e.g. WO 2001021821). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Preferably, plants, which are capable of synthesising antipathogenic substances are selected from soybean, maize (corn), rice, tomatoes, potato, banana, papaya, tobacco, grape, plum and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, tomatoes, potato, banana, papaya, oil seed rape, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Plants, which are capable of synthesising antipathogenic substances having a selective action are for example plants expressing the so-called “pathogenesis-related proteins” (PRPs, see e.g. EP-A-0 392 225) or so-called “antifungal proteins” (AFPs, see e.g. U.S. Pat. No. 6,864,068). A wide range of antifungal proteins with activity against plant pathogenic fungi have been isolated from certain plant species and are common knowledge. Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 93/05153, WO 95/33818, and EP-A-0 353 191. Transgenic plants which are resistant against fungal, viral and bacterial pathogens are produced by introducing plant resistance genes. Numerous resistant genes have been identified, isolated and were used to improve plant resistant, such as the N gene which was introduced into tobacco lines that are susceptible to Tobacco Mosaic Virus (TMV) in order to produce TMV-resistant tobacco plants (see e.g. U.S. Pat. No. 5,571,706), the Prf gene, which was introduced into plants to obtain enhanced pathogen resistance (see e.g. WO 199802545) and the Rps2 gene from Arabidopsis thaliana, which was used to create resistance to bacterial pathogens including Pseudomonas syringae (see e.g. WO 199528423). Plants exhibiting systemic acquired resistance response were obtained by introducing a nucleic acid molecule encoding the TIR domain of the N gene (see e.g. U.S. Pat. No. 6,630,618). Further examples of known resistance genes are the Xa21 gene, which has been introduced into a number of rice cultivars (see e.g. U.S. Pat. No. 5,952,485, U.S. Pat. No. 5,977,434, WO 1999/09151, WO 1996/22375), the Rcg1 gene for colletotrichum resistance (see e.g. US 2006/225152), the prp1 gene (see e.g. U.S. Pat. No. 5,859,332, WO 2008/017706), the ppv-cp gene to introduce resistance against plum pox virus (see e.g. US PP15,154Ps), the P1 gene (see e.g. U.S. Pat. No. 5,968,828), genes such as Blb1, Blb2, Blb3 and RB2 to introduce resistance against Phytophthora infestans in potato (see e.g. U.S. Pat. No. 7,148,397), the LRPKml gene (see e.g. WO1999064600), the P1 gene for potato virus Y resistance (see e.g. U.S. Pat. No. 5,968,828), the HA5-1 gene (see e.g. U.S. Pat. No. 5,877,403 and U.S. Pat. No. 6,046,384), the PIP gene to introduce a broad resistant to viruses, such as potato virus X (PVX), potato virus Y (PVY), potato leafroll virus (PLRV) (see e.g. EP 0707069) and genes such as Arabidopsis N116, ScaM4 and ScaM5 genes to obtain fungal resistance (see e.g. U.S. Pat. No. 6,706,952 and EP 1018553). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called “pathogenesis-related proteins”” (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 1995/33818) or protein or polypeptide factors involved in plant pathogen defense (so-called “plant disease resistance genes”, as described in WO 2003/000906).
  • Antipathogenic substances produced by the plants are able to protect the plants against a variety of pathogens, such as fungi, viruses and bacteria. Useful plants of elevated interest in connection with present invention are cereals, such as wheat, barley, rye and oat; soybean; maize; rice; alfalfa, cotton, sugar beet, sugarcane, tobacco, potato, banana, oil seed rape; pome fruits; stone fruits; peanuts; coffee; tea; strawberries; turf; vines and vegetables, such as tomatoes, potatoes, cucurbits, papaya, melon, lenses and lettuce, more preferably selected from soybean, maize (corn), alfalfa, cotton, potato, banana, papaya, rice, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, potato, tomato, oilseed rape, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Transgenic plants with resistance against fungal pathogens, are, for examples, soybeans with resistance against Asian soybean rust (see e.g. WO 2008/017706); plants such as alfalfa, corn, cotton, sugar beet, oileed, rape, tomato, soybean, wheat, potato and tobacco with resistance against Phytophtora infestans (see e.g. U.S. Pat. No. 5,859,332, U.S. Pat. No. 7,148,397, EP 1334979); corn with resistance against leaf blights, ear rots and stalk rots (such as anthracnose leaf bligh, anthracnose stalk rot, diplodia ear rot, Fusarium verticilioides, Gibberella zeae and top dieback, see e.g. US 2006/225152); apples with resistance against apple scab (Venturia inaequalis, see e.g. WO 1999064600); plants such as rice, wheat, barley, rye, corn, oats, potato, melon, soybean and sorghum with resistance against fusarium diseases, such as Fusarium graminearum, Fusarium sporotrichioides, Fusarium lateritium, Fusarium pseudograminearum Fusarium sambucinum, Fusarium culmorum, Fusarium poae, Fusarium acuminatum, Fusarium equiseti (see e.g. U.S. Pat. No. 6,646,184, EP 1477557); plants, such as corn, soybean, cereals (in particular wheat, rye, barley, oats, rye, rice), tobacco, sorghum, sugarcane and potatoes with broad fungal resistance (see e.g. U.S. Pat. No. 5,689,046, U.S. Pat. No. 6,706,952, EP 1018553 and U.S. Pat. No. 6,020,129).
  • Transgenic plants with resistance against bacterial pathogens and which are covered by the present invention, are, for examples, rice with resistance against Xylella fastidiosa (see e.g. U.S. Pat. No. 6,232,528); plants, such as rice, cotton, soybean, potato, sorghum, corn, wheat, balrey, sugarcane, tomato and pepper, with resistance against bacterial blight (see e.g. WO 2006/42145, U.S. Pat. No. 5,952,485, U.S. Pat. No. 5,977,434, WO 1999/09151, WO 1996/22375); tomato with resistance against Pseudomonas syringae (see e.g. Can. J. Plant Path., 1983, 5: 251-255).
  • Transgenic plants with resistance against viral pathogens, are, for examples, stone fruits, such as plum, almond, apricot, cherry, peach, nectarine, with resistance against plum pox virus (PPV, see e.g. US PP15,154Ps, EP 0626449); potatoes with resistance against potato virus Y (see e.g. U.S. Pat. No. 5,968,828); plants such as potato, tomato, cucumber and leguminosaes which are resistant against tomato spotted wilt virus (TSWV, see e.g. EP 0626449, U.S. Pat. No. 5,973,135); corn with resistance against maize streak virus (see e.g. U.S. Pat. No. 6,040,496); papaya with resistance against papaya ring spot virus (PRSV, see e.g. U.S. Pat. No. 5,877,403, U.S. Pat. No. 6,046,384); cucurbitaceae, such as cucumber, melon, watermelon and pumpkin, and solanaceae, such as potato, tobacco, tomato, eggplant, paprika and pepper, with resistance against cucumber mosaic virus (CMV, see e.g. U.S. Pat. No. 6,849,780); cucurbitaceae, such as cucumber, melon, watermelon and pumkin, with resistance against watermelon mosaic virus and zucchini yellow mosaic virus (see e.g. U.S. Pat. No. 6,015,942); potatoes with resistance against potato leafroll virus (PLRV, see e.g. U.S. Pat. No. 5,576,202); potatoes with a broad resistance to viruses, such as potato virus X (PVX), potato virus Y (PVY), potato leafroll virus (PLRV) (see e.g. EP 0707069).
  • Further examples of deregulated orcommercially available transgenic plants with modified genetic material capable of expression of antipathogenic substances are the following plants: Carica papaya (papaya), Event: 55-1/63-1; Cornell University, Carica papaya (Papaya); Event: (X17-2); University of Florida, Cucurbita pepo (Squash); Event: (CZW-3); Asgrow (USA); Seminis Vegetable Inc. (Canada), Cucurbita pepo (Squash); Event: (ZW20); Upjohn (USA); Seminis Vegetable Inc. (Canada), Prunus domestica (Plum); Event: (C5); United States Department of Agriculture—Agricultural Research Service, Solanum tuberosum L. (Potato); Event: (RBMT15-101, SEMT15-02, SEMT15-15); Monsanto Company and Solanum tuberosum L. (Potato); Event: (RBMT21-129, RBMT21-350, RBMT22-082); Monsanto Company.
  • Transgenic plants with resistance against nematodes and which may be used in the methods of the present invention are, for examples, soybean plants with resistance to soybean cyst nematodes.
  • Methods have been proposed for the genetic transformation of plants in order to confer increased resistance to plant parasitic nematodes. U.S. Pat. Nos. 5,589,622 and 5,824,876 are directed to the identification of plant genes expressed specifically in or adjacent to the feeding site of the plant after attachment by the nematode.
  • Also known in the art are transgenic plants with reduced feeding structures for parasitic nematodes, e.g. plants resistant to herbicides except of those parts or those cells that are nematode feeding sites and treating such plant with a herbicide to prevent, reduce or limit nematode feeding by damaging or destroying feeding sites (e.g. U.S. Pat. No. 5,866,777).
  • Use of RNAi to target essential nematode genes has been proposed, for example, in PCT Publication WO 2001/96584, WO 2001/17654, US 2004/0098761, US 2005/0091713, US 2005/0188438, US 2006/0037101, US 2006/0080749, US 2007/0199100, and US 2007/0250947.
  • Transgenic nematode resistant plants have been disclosed, for example in the PCT publications WO 2008/095886 and WO 2008/095889.
  • Plants which are resistant to antibiotics, such as kanamycin, neomycin and ampicillin. The naturally occurring bacterial nptII gene expresses the enzyme that blocks the effects of the antibiotics kanamycin and neomycin. The ampicillin resistance gene ampR (also known as blaTEM1) is derived from the bacterium Salmonella paratyphi and is used as a marker gene in the transformation of micro-organisms and plants. It is responsible for the synthesis of the enzyme beta-lactamase, which neutralises antibiotics in the penicillin group, including ampicillin. Transgenic plants with resistance against antibiotics, are, for examples potato, tomato, flax, canola, oilseed rape and corn (see e.g. Plant Cell Reports, 20, 2001, 610-615. Trends in Plant Science, 11, 2006, 317-319. Plant Molecular Biology, 37, 1998, 287-296. Mol Gen Genet., 257, 1998, 606-13.). Plant Cell Reports, 6, 1987, 333-336. Federal Register (USA), Vol. 60, No. 113, 1995, page 31139. Federal Register (USA), Vol. 67, No. 226, 2002, page 70392. Federal Register (USA), Vol. 63, No. 88, 1998, page 25194. Federal Register (USA), Vol. 60, No. 141, 1995, page 37870. Canadian Food Inspection Agency, FD/OFB-095-264-A, October 1999, FD/OFB-099-127-A, October 1999. Preferably, the plant is selected from soybean, maize (corn), rice, cotton, oilseed rape, potato, sugarcane, alfalfa, tomatoes and cereals, such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, oilseed rape, tomato, potato, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Plants which are tolerant to stress conditions (see e.g. WO 2000/04173, WO 2007/131699, CA 2521729 and US 2008/0229448) are plants, which show increased tolerance to abiotic stress conditions such as drought, high salinity, high light intensities, high UV irradiation, chemical pollution (such as high heavy metal concentration), low or high temperatures, limited supply of nutrients (i.e. nitrogen, phosphorous) and population stress. Preferably, transgenic plants with resistance to stress conditions, are selected from rice, corn, soybean, sugarcane, alfalfa, wheat, tomato, potato, barley, rapeseed, beans, oats, sorghum and cotton with tolerance to drought (see e.g. WO 2005/048693, WO 2008/002480 and WO 2007/030001); corn, soybean, wheat, cotton, rice, rapeseed and alfalfa with tolerance to low temperatures (see e.g. U.S. Pat. No. 4,731,499 and WO 2007/112122); rice, cotton, potato, soybean, wheat, barley, rye, sorghum, alfalfa, grape, tomato, sunflower and tobacco with tolerance to high salinity (see e.g. U.S. Pat. No. 7,256,326, U.S. Pat. No. 7,034,139, WO 2001/030990). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from soybean, maize (corn), rice, cotton, sugarcane, alfalfa, sugar beet, potato, oilseed rape, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, oilseed rape, tomato, potato, sugarcane, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Altered maturation properties, are for example delayed ripening, delayed softening and early maturity. Preferably, transgenic plants with modified maturation properties, are, selected from tomato, melon, raspberry, strawberry, muskmelon, pepper and papaya with delayed ripening (see e.g. U.S. Pat. No. 5,767,376, U.S. Pat. No. 7,084,321, U.S. Pat. No. 6,107,548, U.S. Pat. No. 5,981,831, WO 1995035387, U.S. Pat. No. 5,952,546, U.S. Pat. No. 5,512,466, WO 1997001952, WO 1992/008798, Plant Cell. 1989, 53-63. Plant Molecular Biology, 50, 2002). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from fruits, such as tomato, vine, melon, papaya, banana, pepper, raspberry and strawberry; stone fruits, such as cherry, apricot and peach; pome fruits, such as apple and pear; and citrus fruits, such as citron, lime, orange, pomelo, grapefruit, and mandarin; more preferably from tomato, vine, apple, banana, orange and strawberry, most preferably tomatoes.
  • Content modification is synthesis of modified chemical compounds (if compared to the corresponding control plant) or synthesis of enhanced amounts of chemical (if compounds compared to the corresponding control plant) and corresponds to an increased or reduced amount of vitamins, amino acids, proteins and starch, different oils and a reduced amount of nicotine.
  • Commercial examples are the soybean varieties “Vistive II” and “Visitive III” with low-linolenic/medium oleic content; the corn variety “Mavera high-value corn” with increased lysine content; and the soybean variety “Mavera high value soybean” with yielding 5% more protein compared to conventional varieties when processed into soybean meal. Further transgenic plants with altered content are, for example, potato and corn with modified amylopectin content (see e.g. U.S. Pat. No. 6,784,338, US 20070261136); canola, corn, cotton, grape, catalpa, cattail, rice, soybean, wheat, sunflower, balsam pear and vernonia with a modified oil content (see e.g. U.S. Pat. No. 7,294,759, U.S. Pat. No. 7,157,621, U.S. Pat. No. 5,850,026, U.S. Pat. No. 6,441,278, U.S. Pat. No. 6,380,462, U.S. Pat. No. 6,365,802, U.S. Pat. No. 6,974,898, WO 2001/079499, US 2006/0075515 and U.S. Pat. No. 7,294,759); sunflower with increased fatty acid content (see e.g. U.S. Pat. No. 6,084,164); soybeans with modified allergens content (so called “hypoallergenic soybean, see e.g. U.S. Pat. No. 6,864,362); tobacco with reduced nicotine content (see e.g. US 20060185684, WO 2005000352 and WO 2007064636); canola and soybean with increased lysine content (see e.g. Bio/Technology 13, 1995, 577-582); corn and soybean with altered composition of methionine, leucine, isoleucine and valine (see e.g. U.S. Pat. No. 6,946,589, U.S. Pat. No. 6,905,877); soybean with enhanced sulfur amino acid content (see e.g. EP 0929685, WO 1997041239); tomato with increased free amino acid contents, such as asparagine, aspartic acid, serine, threonine, alanine, histidine and glutamic acid (see e.g. U.S. Pat. No. 6,727,411); corn with enhanced amino acid content (see e.g. WO 05077117); potato, corn and rice with modified starch content (see e.g. WO 1997044471 and U.S. Pat. No. 7,317,146); tomato, corn, grape, alfalfa, apple, beans and peas with modified flavonoid content (see e.g. WO 2000/04175); corn, rice, sorghum, cotton, soybeans with altered content of phenolic compounds (see e.g. US 20080235829). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from soybean, maize (corn), rice, cotton, sugarcane, potato, tomato, oilseed rape, flax and cereals such as wheat, barley, rye and oat, most preferably soybean, maize (corn), rice, oilseed rape, potato, tomato, cotton, vine, apple, pear, citron, orange and cereals such as wheat, barley, rye and oat.
  • Enhanced nutrient utilization is e.g. assimilation or metabolism of nitrogen or phosphorous. Preferably, transgenic plants with enhanced nitrogen assimilatory and utilization capacities are selected from for example, canola, corn, wheat, sunflower, rice, tobacco, soybean, cotton, alfalfa, tomato, wheat, potato, sugar beet, sugar cane and rapeseed (see e.g. WO 1995/009911, WO 1997/030163, U.S. Pat. No. 6,084,153, U.S. Pat. No. 5,955,651 and U.S. Pat. No. 6,864,405). Plants with improved phosphorous uptake are, for example, tomato and potato (see e.g. U.S. Pat. No. 7,417,181). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from soybean, maize (corn), rice, cotton, sugarcane, alfalfa, potato, oilseed rape and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), rice, cotton, oilseed rape, tomato, potato, vine, apple, pear, citron, orange and cereals such as wheat, barley.
  • Transgenic plants with male sterility are preferably selected from canola, corn, tomato, rice, Indian mustard, wheat, soybean and sunflower (see e.g. U.S. Pat. No. 6,720,481, U.S. Pat. No. 6,281,348, U.S. Pat. No. 5,659,124, U.S. Pat. No. 6,399,856, U.S. Pat. No. 7,345,222, U.S. Pat. No. 7,230,168, U.S. Pat. No. 6,072,102, EP1 135982, WO 2001/092544 and WO 1996/040949). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Preferably, the plant is selected from soybean, maize (corn), rice, cotton, oilseed rape, tomato, potato, vine, apple, pear, citron, orange and cereals such as wheat, barley.
  • Further examples of deregulated or commercially available transgenic plants with modified genetic material being male sterile are
  • Brassica napus (Argentine Canola: (Event: MS1, RF1=>PGS1; Bayer CropScience (formerly Plant Genetic Systems); Brassica napus (Event: MS1, RF2=>PGS2; Bayer CropScience (formerly Plant Genetic Systems); Brassica napus (Event: MS8xRF3; Bayer CropScience (Aventis CropScience (AgrEvo)); Brassica napus (Event: PHY14, PHY35; Bayer CropScience (formerly Plant Genetic Systems); Brassica napus (Event: PHY36; Bayer CropScience (formerly Plant Genetic Systems); Cichorium intybus (Chicory: (Event: RM3-3, RM3-4, RM3-6; Bejo Zaden BV; Zea mays L. (Maize: (Event: 676, 678, 680; Pioneer Hi-Bred International Inc.; Zea mays L. (Event: MS3; Bayer CropScience (Aventis CropScience (AgrEvo)) and Zea mays L. (Event: MS6; Bayer CropScience (Aventis CropScience (AgrEvo)).
  • Plants, which produce higher quality fiber are e.g. transgenic cotton plants. The such improved quality of the fiber is related to improved micronaire of the fiber, increased strength, improved staple length, improved length unifomity and color of the fibers (see e.g. WO 1996/26639, U.S. Pat. No. 7,329,802, U.S. Pat. No. 6,472,588 and WO 2001/17333). The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • As set forth above, cultivated plants may comprise one or more traits, e.g. selected from the group consisting of herbicide tolerance, insect resistance, fungal resistance, viral resistance, bacterial resistance, stress tolerance, maturation alteration, content modification, modified nutrient uptake and male sterility (see e.g. WO 2005033319 and U.S. Pat. No. 6,376,754).
  • Examples of commercial available transgenic plants with two combined properties are the corn varieties “YieldGard Roundup Ready” and YieldGard Roundup Ready 2″ (Monsanto) with glyphosate tolerance and resistance to corn borer; the corn variety “Agrisure CB/LL” (Syntenta) with glufosinate tolerance and corn borer resistance; the corn variety “Yield Gard VT Rootworm/RR2” with glyphosate tolerance and corn rootworm resistance; the corn variety “Yield Gard VT Triple” with glyphosate tolerance and resistance against corn rootworm and corn borer; the corn variety “Herculex I” with glufosinate tolerance and lepidopteran resistance (Cry1F), i.e. against western bean cutworm, corn borer, black cutworm and fall armyworm; the corn variety “YieldGard Corn Rootworm/Roundup Ready 2” (Monsanto) with glyphosate tolerance and corn rootworm resistance; the corn variety “Agrisure GT/RW” (Syngenta) with gluphosinate tolerance and lepidopteran resistance (Cry3A), i.e. against western corn rootworm, northern corn rootworm and Mexican corn rootworm; the corn variety “Herculex RW” (Dow, Pioneer) with glufosinate tolerance and lepidopteran resistance (Cry34/35Ab1), i.e. against western corn rootworm, northern corn rootworm and Mexican corn rootworm; the corn variety “Yield Gard VT Rootworm/RR2” with glyphosate tolerance and corn rootworm resistance; the soybean variety “Optimum GAT” (DuPont, Pioneer) with glyphosate tolerance and ALS herbicide tolerance; the corn variety “Mavera high-value corn” with glyphosate tolerance, resistance to corn rootworm and European corn borer and high lysine trait.
  • Examples of commercial available transgenic plants with three traits are the corn variety “Herculex I/Roundup Ready 2” with glyphosate tolerance, gluphosinate tolerance and lepidopteran resistance (Cry1F), i.e. against western bean cutworm, corn borer, black cutworm and fall armyworm; the corn variety “YieldGard Plus/Roundup Ready 2” (Monsanto) with glyphosate tolerance, corn rootworm resistance and corn borer resistance; the corn variety “Agrisure GT/CB/LL” (Syngenta) with tolerance to glyphosate tolerance, tolerance to gluphosinate and corn borer resistance; the corn variety “Herculex Xtra” (Dow, Pioneer) with glufosinate tolerance and lepidopteran resistance (Cry1F+Cry34/35Ab1), i.e. against western corn rootworm, northern corn rootworm, Mexican corn rootworm, western bean cutworm, corn borer, black cutworm and fall armyworm; the corn varieties “Agrisure CB/LL/RW” (Syngenta) with glufosinate tolerance, corn borer resistance (Cry1Ab) and lepidopteran resistance (Cry3A), i.e. against western corn rootworm, northern corn rootworm and Mexican corn rootworm; the corn variety “Agrisure 3000GT” (Syngenta) with glyphosate tolerance+corn borer resistance (Cry1Ab) and lepidopteran resistance (Cry3A), i.e. against western corn rootworm, northern corn rootworm and Mexican corn rootworm. The methods of producing such transgenic plants are generally known to the person skilled in the art.
  • An example of a commercial available transgenic plant with four traits is “Hercules QuadStack” with glyphosate tolerance, glufosinate tolerance, corn borer resistance and corn rootworm resistance.
  • In one embodiment of the invention, the commercial transgenic plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, preferably with one trait of glyphosate tolerance and two traits of lepidopteran resistance. Preferably, the glyphosate tolerance is through expression of the EPSPS encoding gene from A. tumefaciens strain CP4, more preferably it is based on the transgenic event MON89788 (see A1-14, T1-100). Also preferably, the lepidopteran resistance is a resistance to lepidopteran pests of soybean, preferably through expression of the Cry1AC encoding gene from B. thuringiensis, preferably against velvetbean caterpillar (Anticarsia gemmatalis) and soybean looper (Pseudoplusia includens), more preferably it is based on the transgenic event MON87701.
  • More preferably, the glyphosate tolerance is based on the transgenic event MON89788 and the trait of lepidopteran resistance is achieved through expression of the Cry1AC encoding gene from B. thuringiensis, preferably against velvetbean caterpillar (Anticarsia gemmatalis) and soybean looper (Pseudoplusia includens), more preferably based on the transgenic event MON87701.
  • Most preferably, the commercial transgenic plant is “Intacta RR2 PRO” soybean (Monsanto) which claims to offer tolerance to glyphosate herbicide and protection against major soybean pests (velvetbean caterpilar, soybean looper, soybean budborer, bean shoot borer, bollworm, corn stalk borer, Helicoverpa, e.g. Helicoverpa armigera), along with increased yield potential.
  • In another embodiment, the commercial transgenic plant is a soybean variety selected from “Roundup Ready 2 Yield”, “Intacta RR2 Pro” and “Vistive Gold” (all Monsanto), or “Stearidonic Acid (SDA) Omega-3” (higher content of SDA in soybean, Monsanto). In another embodiment, the trait is Bacillus thuringiensis Cry1A.105 and cry2Ab2 and Vector PV-GMIR13196, for Mon87751 soybean (Monsanto).
  • In a further embodiment, the commercial transgenic plant is a corn variety which has aboveground insect protection from “Genuity VT Triple PRO” or “Herculex Xtra” or both of them, and herbicide tolerance from “Roundup Ready 2” and Liberty Link, preferably corn varieties selected from “Genuity SmartStax”, “Genuity VT Triple PRO” and “Genuity VT Double PRO” (all Monsanto), optionally as RIB (refuge-in-bag) solution. In a further embodiment, the commercial transgenic corn plant variety has a drought tolerance trait, preferably “Genuity DroughtGard”. In another embodiment, the trait is double-stranded ribonucleic acid (dsRNA), Bacillus thuringiensis Cry3Bb1 protein and vector PV-ZMIR10871 for MON87411 corn.
  • In a further embodiment, the commercial transgenic plant is a cotton variety selected from “Bollgard II” (insect protection), “Roundup Ready Flex” (herbicide tolerance) and “Bollgard II with Roundup Ready Flex” (both), all Monsanto.
  • Preferably, the cultivated plants are plants, which comprise at least one trait selected from herbicide tolerance, insect resistance by expression of bacertial toxins, fungal resistance or viral resistance or bacterial resistance by expression of antipathogenic substances, stress tolerance, content modification of chemicals present in the cultivated plant compared to the corresponding control plant.
  • Most preferably, the cultivated plants are plants, which are tolerant to the action of herbicides and plants, which express bacterial toxins, which provides resistance against animal pests (such as insects or arachnids or nematodes), wherein the bacterial toxin is preferably a toxin from Bacillus thuriginensis. Herein, the plant is preferably selected from cotton, rice, maize, wheat, barley, rye, oat, soybean, potato, vine, apple, pear, citron and orange.
  • In one embodiment, the plant is soybean.
  • In one embodiment, the invention relates to a method for controlling pests and/or increasing the plant health of a cultivated plant with at least one modification as compared to the respective non-modified control plant, wherein the plant is soybean, which method comprises applying the carboxamide compound i) of formula (I), or a mixture of (1) the carboxamide compound i) of formula (I) as component I with (2) at least one compound II as component II.
  • In another embodiment, the invention relates to a method for controlling pests and/or increasing the plant health of a cultivated plant with at least one modification as compared to the respective non-modified control plant, wherein the plant is soybean, which method comprises applying the carboxamide compound ii) of formula (Ia), or a mixture of (1) the carboxamide compound ii) of formula (Ia) as component I with (2) at least one compound II as component II.
  • In another embodiment, the invention relates to a method for controlling pests and/or increasing the plant health of a cultivated plant with at least one modification as compared to the respective non-modified control plant, wherein the plant is soybean, which method comprises applying a mixture comprising the carboxamide compounds i) and ii), or a mixture of (1) a mixture comprising the carboxamide compounds i) and ii) as component I with (2) at least one compound II as component II.
  • In an utmost preferred embodiment, the cultivated plants are plants, which are tolerant to the action of herbicides. Further guidance for specific combinations within this utmost preferred embodiment can be found in tables 1, 2, 14 and tables A, B and C.
  • If such plants are used in the methods according to the present invention, the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise a herbicide III, to which the plant is tolerant.
  • If such plants are used in the methods according to the present invention, the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise a herbicide III, to which the plant is tolerant.
  • If such plants are used in the methods according to the present invention, the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) the mixture comprising the carboxide compounds i) and ii) with (2) at least one compound II may additionally comprise a herbicide III, to which the plant is tolerant.
  • For example, if the cultivated plant is a cultivated plant tolerant to glyphosate, the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise glyphosate.
  • For example, if the cultivated plant is a cultivated plant tolerant to glyphosate, the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise glyphosate.
  • For example, if the cultivated plant is a cultivated plant tolerant to glyphosate, the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise glyphosate.
  • For example, if the cultivated plant is a cultivated plant tolerant to glufonsinate, the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (i) the carboxamide compound i) of formula (I) with (ii) at least one compound II may additionally comprise glufonisate.
  • For example, if the cultivated plant is a cultivated plant tolerant to glufonsinate, the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise glufonsinate.
  • For example, if the cultivated plant is a cultivated plant tolerant to glufonsinate, the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise glufonsinate.
  • For example, if the cultivated plant is a cultivated plant tolerant to a imidazolinone herbicide, the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (i) the carboxamide compound i) of formula (I) with (ii) at least one compound II may additionally comprise at least one imidazolinone herbicide. Herein, the imidazolinone herbicide is selected from imazamox, imazethapyr, imazapic, imazapyr, imazamethabenz or imazaquin.
  • For example, if the cultivated plant is a cultivated plant tolerant to a imidazolinone herbicide, the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise at least one imidazolinone herbicide. Herein, the imidazolinone herbicide is selected from imazamox, imazethapyr, imazapic, imazapyr, imazamethabenz or imazaquin.
  • For example, if the cultivated plant is a cultivated plant tolerant to a imidazolinone herbicide, the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise at least one imidazolinone herbicide. Herein, the imidazolinone herbicide is selected from imazamox, imazethapyr, imazapic, imazapyr, imazamethabenz or imazaquin.
  • For example, if the cultivated plant is a cultivated plant tolerant to dicamba, the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise dicamba.
  • For example, if the cultivated plant is a cultivated plant tolerant to dicamba, the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise dicamba.
  • For example, if the cultivated plant is a cultivated plant tolerant to dicamba, the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise dicamba.
  • For example, if the cultivated plant is a cultivated plant tolerant to sethoxidim, the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise sethoxidim.
  • For example, if the cultivated plant is a cultivated plant tolerant to sethoxidim, the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise sethoxidim.
  • For example, if the cultivated plant is a cultivated plant tolerant to sethoxidim, the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise sethoxidim.
  • For example, if the cultivated plant is a cultivated plant tolerant to cycloxidim, the mixture comprising the carboxamide compound i) of formula (I), or the mixture of (1) the carboxamide compound i) of formula (I) with (2) at least one compound II may additionally comprise cyloxidim.
  • For example, if the cultivated plant is a cultivated plant tolerant to cycloxidim, the mixture comprising the carboxamide compound ii) of formula (Ia), or the mixture of (1) the carboxamide compound ii) of formula (Ia) with (2) at least one compound II may additionally comprise cycloxidim.
  • For example, if the cultivated plant is a cultivated plant tolerant to cycloxidim, the mixture comprising a mixture comprising the carboxamide compounds i) and ii), or the mixture of (1) a mixture comprising the carboxamide compounds i) and ii) with (2) at least one compound II may additionally comprise cycloxidim.
  • Thus, the present invention also relates to ternary mixtures, comprising the carboxamide compound i) of formula (I), an insecticide II and a herbicide III. The present invention also relates to ternary mixtures, comprising the carboxamide compound ii) of formula (Ia), an insecticide II and a herbicide III. The present invention also relates to ternary mixtures, comprising the mixture comprising the carboxamide compounds i) and ii), an insecticide II and a herbicide III.
  • In particular, the present invention also relates to ternary mixtures comprising two insecticides and a fungicide.
  • In another particular embodiment, the present invention also relates to ternary mixtures comprising two fungicides and one insecticide.
  • In another particular embodiment, the present invention also relates to ternary mixtures comprising an insectide, a fungicide and a herbicide.
  • In dependence to the application methods of the present inventions, some mixture partners may be especially preferred.
  • For example, in the mixtures for foliar application comprising at least one other active compound II as component II, that compound II is preferably selected from teflubenzuron, chlorefenapyr or from the class of diamides
  • Thus for foliar application, mixtures, wherein the at least one compound II is teflubenzuron can be preferred.
  • Alternatively or additionally, mixtures, wherein the at least one compound II is chlorfenapyr can be preferred.
  • Alternatively or additionally, mixtures, wherein the at least one compound II is a ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide. Most preferably the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide.
  • For example regarding other application methods, in the mixtures for seed treatment application comprising at least one other active compound II as component II, that compound II is preferably selected from thiamethoxam, fipronil or from the class of diamides
  • Thus for foliar application, mixtures, wherein the at least one compound II is thiamethoxam can be preferred.
  • Alternatively or additionally, mixtures, wherein the at least one compound II is fipronil can be preferred.
  • Alternatively or additionally, mixtures, wherein the at least one compound II is a ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide. Most preferably the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide.
  • Preferably, the cultivated plants are plants, which comprise at least one trait selected from herbicide tolerance, insect resistance for example by expression of one or more bacterial toxins, fungal resistance or viral resistance or bacterial resistance by expression of one or more antipathogenic substances, stress tolerance, nutrient uptake, nutrient use efficiency, content modification of chemicals present in the cultivated plant compared to the corresponding control plant.
  • More preferably, the cultivated plants are plants, which comprise at least one trait selected from herbicide tolerance, insect resistance by expression of one or more bacterial toxins, fungal resistance or viral resistance or bacterial resistance by expression of one or more antipathogenic substances, stress tolerance, content modification of one or more chemicals present in the cultivated plant compared to the corresponding control plant.
  • Most preferably, the cultivated plants are plants, which are tolerant to the action of herbicides and plants, which express one or more bacterial toxins, which provides resistance against one or more animal pests (such as insects or arachnids or nematodes), wherein the bacterial toxin is preferably a toxin from Bacillus thuriginensis. Herein, the cultivated plant is preferably selected from soybean, maize (corn), rice, cotton, sugarcane, alfalfa, potato, oilseed rape, tomatoes and cereals such as wheat, barley, rye and oat, most preferably from soybean, maize (corn), cotton, rice and cereals such as wheat, barley, rye and oat.
  • Preference is given to cultivated plants, which are tolerant to the action of herbicides.
  • Thus, in one preferred embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant is a plant, which is rendered tolerant to herbicides, more preferably to herbicides such as glutamine synthetase inhibitors, 5-enol-pyrovyl-shikimate-3-phosphate-synthase inhibitors, acetolactate synthase (ALS) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, auxine type herbicides, most preferably to herbicides such as glyphosate, glufosinate, imazapyr, imazapic, imazamox, imazethapyr, imazaquin, imazamethabenz methyl, dicamba and 2,4-D.
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a plant, which is rendered tolerant to herbicides, more preferably to herbicides such as glutamine synthetase inhibitors, 5-enol-pyrovyl-shikimate-3-phosphate-synthase inhibitors, acetolactate synthase (ALS) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, auxine type herbicides, most preferably to herbicides such as glyphosate, glufosinate, imazapyr, imazapic, imazamox, imazethapyr, imazaquin, imazamethabenz methyl, dicamba and 2,4-D.
  • In still another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant is a plant, which is rendered tolerant to herbicides, more preferably to herbicides such as glutamine synthetase inhibitors, 5-enol-pyrovyl-shikimate-3-phosphate-synthase inhibitors, acetolactate synthase (ALS) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, auxine type herbicides, most preferably to herbicides such as glyphosate, glufosinate, imazapyr, imazapic, imazamox, imazethapyr, imazaquin, imazamethabenz methyl, dicamba and 2,4-D.
  • In a further one preferred embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant is a plant, which express at least one insecticidal toxin, preferably a toxin from Bacillus species, more preferably from Bacillus thuringiensis.
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a plant, which express at least one insecticidal toxin, preferably a toxin from Bacillus species, more preferably from Bacillus thuringiensis.
  • In still another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant is a plant, which express at least one insecticidal toxin, preferably a toxin from Bacillus species, more preferably from Bacillus thuringiensis.
  • In the cases, where the cultivated plant has an arthropodicidal, preferably insecticidal, trait, it often occurs that the pest that should be combated becomes resistant to that trait.
  • Resistance may be defined as ‘a heritable change in the sensitivity of a pest population that is reflected in the repeated failure of a product to achieve the expected level of control when used according to the label recommendation for that pest species’. (IRAC) Resistance therefore means that the original activity of a pesticide against the target organisms (arthropods, insects) decreases or is even lost, due to genetic or metabolic adaptation of the target organism.
  • “Resistant” to an insecticide is understood to mean resistant to at least one insecticide or insecticidal trait, i.e. the insect may be resistant to only one, but also to several insecticides or insecticidal traits.
  • In the present context of cultivated plants with at least one insecticidal trait, the resistance is against an insecticidal effect which is due to a genetic modification of a plant (modified or transgenic plant), which caused a resistance of the plant or crop to certain pests, especially insect pests, in susceptible insects.
  • This is to be understood to include plants that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those mentioned herein, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as endotoxins, e. g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, for example Photorhabdus spp. or Xenorhabdus spp., and so on.
  • Therefore, in a most preferred embodiment, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant has at least one insecticidal trait, and wherein the harmful insects are resistant to that at least one insecticidal trait of the plant.
  • In another embodiment, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant has at least one insecticidal trait, and wherein the harmful insects are resistant to that at least one insecticidal trait of the plant.
  • In still another embodiment, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compound i) and ii), wherein the plant has at least one insecticidal trait, and wherein the harmful insects are resistant to that at least one insecticidal trait of the plant.
  • Preferably, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant has at least one lepidopteran or coleopteran trait, and wherein the harmful insects are resistant to that lepidopteran or coleopteran insecticidal trait of the plant.
  • The present invention also relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant has at least one lepidopteran or coleopteran trait, and wherein the harmful insects are resistant to that lepidopteran or coleopteran insecticidal trait of the plant.
  • The present invention also relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant has at least one lepidopteran or coleopteran trait, and wherein the harmful insects are resistant to that lepidopteran or coleopteran insecticidal trait of the plant.
  • Methods and uses of the invention as described herein may also involve a step of assessing whether insects are resistant to certain insecticides.
  • This step will in general involve collecting a sample of insects from the area (e.g. crop, field, habitat) to be treated, before actually applying the carboxamide compound I, preferably compound i) of formula (I), and testing (for example using any suitable phenotypic, biochemical or molecular biological technique applicable) for resistance/sensitivity.
  • In one embodiment, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant has at least one insecticidal trait, e.g. as listed in table A14 or B, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • In another embodiment, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant has at least one insecticidal trait, e.g. as listed in table A14 or B, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • In still another embodiment, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant has at least one insecticidal trait, e.g. as listed in table A14 or B, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • In a further preferred embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant is a plant, which shows increased resistance against fungal, viral and bacterial diseases, more preferably a plant, which expresses antipathogenic substances, such as antifungal proteins, or which has systemic acquired resistance properties.
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a plant, which shows increased resistance against fungal, viral and bacterial diseases, more preferably a plant, which expresses antipathogenic substances, such as antifungal proteins, or which has systemic acquired resistance properties.
  • In still another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with a mixture comprising carboxamide compounds i) and ii) as component I and at least one compound II as component II, wherein the plant is a plant, which shows increased resistance against fungal, viral and bacterial diseases, more preferably a plant, which expresses antipathogenic substances, such as antifungal proteins, or which has systemic acquired resistance properties.
  • In another utmost preference, the cultivated plants are plants, which are given in table A.
  • In a more preferred embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • In a more preferred embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating plant propagation materials, preferably seeds with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating plant propagation materials, preferably seeds with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • In another embodiment more preferred embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating cultivated plants, parts of such plants, plant propagation materials, or at their locus of growth with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of cultivated plants by treating plant propagation materials, preferably seeds with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant corresponds to a row of table A as defined above.
  • For the purpose of the present invention, the cultivated plant is preferably selected from the group consisting of soybean, cotton and maize, wherein the plant has been made tolerant to the action of certain herbicides as described above. It is particularly preferred that the cultivated plant is selected from the group consisting of soybean, cotton and maize, wherein the plant has been made tolerant to the action of glyphosate herbicides.
  • In one embodiment, the cultivated plant is a plant, which has been made tolerant to the action of glyphosate herbicides. In addition to the tolerance to glyphosate herbicides, the plant may have been made tolerant to other herbicides and/or resistant to certain insects, and/or the plant may have been genetically modified otherwise, e.g. in terms of abiotic stress tolerance, altered growth/yield, disease resistance, modified product quality or pollination control system.
  • In a particularly preferred embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the mixture comprising the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • In a particularly preferred embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the mixture comprising the carboxamide compound i) of formula
  • (I) as component I and at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • In particular, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant having the insecticidal trait corresponds to a row of table A14, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • TABLE A14
    Developer/commercial
    No traits event crop plants
    A14-1 Glufosinate tolerance + DAS44406-6 Glycine max L. Dow AgroSciences
    Glyphosate tolerance + (soybean) LLC
    2,4-D herbicide tolerance
    A14-2 Glufosinate tolerance + DAS68416-4 × Glycine max L. Dow AgroSciences
    Glyphosate tolerance + MON89788 (soybean) LLC
    2,4-D herbicide tolerance
    A14-3 Glyphosate tolerance + FG72 (FGØ72- Glycine max L. Bayer CropScience
    Isoxaflutole tolerance 2, FGØ72-3) (soybean) and MS Technologies
    LLC
    A14-4 Glyphosate tolerance + MON 87712 Glycine max L. Monsanto Company
    Enhanced Photosynthesis/ (soybean)
    Yield
    A14-5 Glyphosate tolerance + MON87701 × Glycine max L. available, Monsanto
    Lepidopteran resistance MON89788 (soybean) Company;
    Intacta ™ Roundup
    Ready ™ 2 Pro
    A14-6 Glyphosate tolerance + MON87705 Glycine max L. available, Monsanto
    Modified oil/fatty acid (soybean) Company;
    Vistive Gold ™
    A14-7 Glyphosate tolerance + MON87705 × Glycine max L. Monsanto Company
    Modified oil/fatty acid MON89788 (soybean)
    A14-8 Glyphosate tolerance + MON87708 Glycine max L. available, Monsanto
    Dicamba tolerance (soybean) Company, Genuity ®
    Roundup Ready ™ 2
    Xtend ™
    A14-9 Glyphosate tolerance + MON87708 × Glycine max L. Monsanto Company
    Dicamba tolerance MON89788 (soybean)
    A14-10 Glyphosate tolerance + MON87769 Glycine max L. Monsanto Company
    Modified oil/fatty acid (soybean)
    A14-11 Glyphosate tolerance + MON87769 × Glycine max L. Monsanto Company
    Modified oil/fatty acid MON89788 (soybean)
    A14-12 Glyphosate tolerance + COT102 × Gossypium hirsutum L. available, Monsanto
    Lepidopteran resistance + MON15985 × (cotton) Company;
    Antibiotic resistance + MON88913 Bollgard ® III ×
    Visual marker Roundup Ready ™
    Flex ™
    A14-13 Glufosinate tolerance + 3006-210-23 × Gossypium hirsutum L. available, Dow
    Glyphosate tolerance + 281-24-236 × (cotton) AgroSciences LLC;
    Lepidopteran resistance + MON88913 × Widestrike ™ ×
    Antibiotic resistance COT102 Roundup Ready
    Flex ™ × VIPCOT ™
    Cotton
    A14-14 Glyphosate tolerance + COT102 × Gossypium hirsutum L. available, Syngenta
    Lepidopteran resistance + COT67B × (cotton) and Monsanto Company;
    Antibiotic resistance MON88913 VIPCOT ™
    Roundup Ready
    Flex ™ Cotton
    A14-15 Glufosinate tolerance + GHB614 × Gossypium hirsutum L. available, Bayer
    Glyphosate tolerance LLCotton25 (cotton) CropScience;
    GlyTol ™ Liberty
    Link ™
    A14-16 Glufosinate tolerance + GHB614 × Gossypium hirsutum L. Bayer CropScience
    Glyphosate tolerance + LLCotton25 × (cotton)
    Lepidopteran resistance + MON15985
    Antibiotic resistance +
    Visual marker
    A14-17 Glyphosate tolerance + GHB614 × Gossypium hirsutum L. Bayer CropScience
    Lepidopteran resistance MON15985 (cotton)
    A14-18 Glufosinate tolerance + GHB614 × Gossypium hirsutum L. available, Bayer
    Glyphosate tolerance + T304-40 × (cotton) CropScience;
    Lepidopteran resistance GHB119 GlyTol ™ Liberty
    Link ™
    A14-19 Glyphosate tolerance + MON1698 Gossypium hirsutum L. available, Monsanto
    Antibiotic resistance (cotton) Company;
    Roundup Ready ™
    Cotton
    A14-20 Glufosinate tolerance + 3272 × Bt11 × Zea mays L. Syngenta
    Glyphosate tolerance + GA21 (corn, maize)
    Lepidopteran resistance +
    Modified alpha amylase +
    Mannose metabolism
    A14-21 Glufosinate tolerance + 3272 × BT11 × Zea mays L. Syngenta
    Glyphosate tolerance + MIR604 × (corn, maize)
    Coleopteran resistance + GA21
    Lepidopteran resistance +
    Modified alpha amylase +
    Mannose metabolism
    A14-22 Glyphosate tolerance + 3272 × GA21 Zea mays L. Syngenta
    Modified alpha amylase + (corn, maize)
    Mannose metabolism
    A14-23 Glyphosate tolerance + 3272 × Zea mays L. Syngenta
    Coleopteran resistance + MIR604 × (corn, maize)
    Modified alpha amylase + GA21
    Mannose metabolism
    A14-24 Glufosinate tolerance + 5307 × Zea mays L. available, Syngenta;
    Glyphosate tolerance + MIR604 × Bt11 × (corn, maize) Agrisure ® Duracade ™
    Coleopteran resistance + TC1507 × 5122
    Lepidopteran resistance + GA21
    Modified alpha amylase +
    Mannose metabolism
    A14-25 Glufosinate tolerance + 5307 × Zea mays L. available, Syngenta;
    Glyphosate tolerance + MIR604 × Bt11 × (corn, maize) Agrisure ® Duracade ™
    Coleopteran resistance + TC1507 × 5222
    Lepidopteran resistance + GA21 ×
    Modified alpha amylase + MIR162
    Mannose metabolism
    A14-26 Glufosinate tolerance + 59122 × GA21 Zea mays L. Syngenta
    Glyphosate tolerance + (corn, maize)
    Coleopteran resistance
    A14-27 Glufosinate tolerance + 59122 × Zea mays L. Syngenta
    Glyphosate tolerance + MIR604 × (corn, maize)
    Coleopteran resistance + GA21
    Mannose metabolism
    A14-28 Glufosinate tolerance + 59122 × Zea mays L. Syngenta
    Glyphosate tolerance + MIR604 × (corn, maize)
    Coleopteran resistance + TC1507 ×
    Lepidopteran resistance + GA21
    Mannose metabolism
    A14-29 Glufosinate tolerance + 59122 × Zea mays L. DuPont (Pioneer Hi-
    Glyphosate tolerance + MON810 × (corn, maize) Bred International
    Coleopteran resistance + NK603 Inc.)
    Lepidopteran resistance
    A14-30 Glufosinate tolerance + 59122 × Zea mays L. Monsanto Company
    Glyphosate tolerance + MON88017 (corn, maize)
    Coleopteran resistance
    A14-31 Glufosinate tolerance + 59122 × Zea mays L. Syngenta
    Glyphosate tolerance + TC1507 × (corn, maize)
    Coleopteran resistance + GA21
    Lepidopteran resistance
    A14-32 Glufosinate tolerance + 98140 × 59122 Zea mays L. Dow AgroSciences
    Glyphosate tolerance + (corn, maize) LLC and DuPont
    Sulfonylurea tolerance + (Pioneer Hi-Bred
    Coleopteran resistance International Inc.)
    A14-33 Glufosinate tolerance + 98140 × Zea mays L. Dow AgroSciences
    Glyphosate tolerance + TC1507 (corn, maize) LLC and DuPont
    Sulfonylurea tolerance + (Pioneer Hi-Bred
    Lepidopteran resistance International Inc.)
    A14-34 Glufosinate tolerance + 98140 × Zea mays L. Dow AgroSciences
    Glyphosate tolerance + TC1507 × (corn, maize) LLC and DuPont
    Sulfonylurea tolerance + 59122 (Pioneer Hi-Bred
    Coleopteran resistance + International Inc.)
    Lepidopteran resistance
    A14-35 Glufosinate tolerance + Bt11 × 59122 × Zea mays L. Syngenta
    Glyphosate tolerance + GA21 (corn, maize)
    Coleopteran resistance +
    Lepidopteran resistance
    A14-36 Glufosinate tolerance + Bt11 × 59122 × Zea mays L. Syngenta
    Glyphosate tolerance + MIR604 × (corn, maize)
    Coleopteran resistance + GA21
    Lepidopteran resistance +
    Mannose metabolism
    A14-37 Glufosinate tolerance + BT11 × 59122 × Zea mays L. available, Syngenta;
    Glyphosate tolerance + MIR604 × (corn, maize) Agrisure ® 3122
    Coleopteran resistance + TC1507 ×
    Lepidopteran resistance + GA21
    Mannose metabolism
    A14-38 Glufosinate tolerance + Bt11 × 59122 × Zea mays L. Syngenta
    Glyphosate tolerance + TC1507 × (corn, maize)
    Coleopteran resistance + GA21
    Lepidopteran resistance
    A14-39 Glufosinate tolerance + Bt11 × MIR162 × Zea mays L. available, Syngenta;
    Glyphosate tolerance + GA21 (corn, maize) Agrisure ® Viptera ™
    Lepidopteran resistance + 3110
    Mannose metabolism
    resistance
    A14-40 Glufosinate tolerance + Bt11 × MIR162 × Zea mays L. available, Syngenta;
    Glyphosate tolerance + MIR604 × (corn, maize) Agrisure ® Viptera ™
    Coleopteran resistance + GA21 3111, Agrisure ®
    Lepidopteran resistance + Viptera ™ 4
    Mannose metabolism
    A14-41 Glufosinate tolerance + Bt11 × MIR162 × Zea mays L. available, Syngenta;
    Glyphosate tolerance + TC1507 × (corn, maize) Agrisure ™ Viptera
    Lepidopteran resistance + GA21 3220
    Mannose metabolism
    A14-42 Glufosinate tolerance + Bt11 × TC1507 × Zea mays L. Syngenta
    Glyphosate tolerance + GA21 (corn, maize)
    Lepidopteran resistance
    A14-43 Glyphosate tolerance + DAS40278 × Zea mays L. Dow AgroSciences
    2,4-D herbicide tolerance NK603 (corn, maize) LLC
    A14-44 Glyphosate tolerance HCEM485 Zea mays L. Stine Seed Farm,
    (corn, maize) Inc (USA)
    A14-45 Glyphosate tolerance + MIR162 × Zea mays L. Syngenta
    Lepidopteran resistance + GA21 (corn, maize)
    Mannose metabolism
    A14-46 Glyphosate tolerance + MIR162 × Zea mays L. Syngenta
    Coleopteran resistance + MIR604 × (corn, maize)
    Lepidopteran resistance + GA21
    Mannose metabolism
    A14-47 Glyphosate tolerance + MIR162 × Zea mays L. Syngenta
    Coleopteran resistance + TC1507 × (corn, maize)
    Lepidopteran resistance + GA21
    Mannose metabolism
    A14-48 Glyphosate tolerance + MIR604 × Zea mays L. available, Syngenta;
    Coleopteran resistance + GA21 (corn, maize) Agrisure ™ GT/RW
    Mannose metabolism
    A14-49 Glyphosate tolerance + MIR604 × Zea mays L. DuPont (Pioneer Hi-
    Coleopteran resistance + NK603 (corn, maize) Bred International
    Mannose metabolism Inc.)
    A14-50 Glyphosate tolerance + MON801 Zea mays L. Monsanto Company
    Lepidopteran resistance + (MON80100) (corn, maize)
    antibiotic resistance
    A14-51 Glyphosate tolerance + MON810 Zea mays L. available, Monsanto
    Lepidopteran resistance + (corn, maize) Company; Yield-
    antibiotic resistance Card ™, Maize-
    Gard ™
    A14-52 Glyphosate tolerance + MON87411 Zea mays L. Monsanto Company
    Coleopteran resistance (corn, maize)
    A14-53 Glyphosate tolerance MON87427 Zea mays L. available, Monsanto
    (corn, maize) Company; Roundup
    Ready ™ Maize
    A14-54 Glyphosate tolerance + MON87427 × Zea mays L. Monsanto Company
    Coleopteran resistance + MON89034 × (corn, maize)
    Lepidopteran resistance MON88017
    A14-55 Glyphosate tolerance + + MON87427 × Zea mays L. Monsanto Company
    Lepidopteran resistance MON89034 × (corn, maize)
    NK603
    A14-56 Glufosinate tolerance + MON87427 × Zea mays L. Monsanto Company
    Glyphosate tolerance + MON89Ø34 × (corn, maize)
    Coleopteran resistance + TC15Ø7 ×
    Lepidopteran resistance MON88Ø17 ×
    59122
    A14-57 Glyphosate tolerance + MON87460 × Zea mays L. Monsanto Company
    Coleopteran resistance + MON89034 × (corn, maize)
    Lepidopteran resistance + MON88017
    Drought stress tolerance +
    Antibiotic resistance
    A14-58 Glyphosate tolerance + + MON87460 × Zea mays L. Monsanto Company
    Lepidopteran resistance + MON89034 × (corn, maize)
    Drought stress tolerance + NK603
    Antibiotic resistance
    A14-59 Glyphosate tolerance + MON87460 × Zea mays L. Monsanto Company
    Drought stress tolerance + NK603 (corn, maize)
    Antibiotic resistance
    A14-60 Glufosinate tolerance + MON89034 × Zea mays L. Monsanto Company
    Glyphosate tolerance + 59122 × (corn, maize)
    Coleopteran resistance + MON88017
    Lepidopteran resistance
    A14-61 Glufosinate tolerance + MON89034 × Zea mays L. Monsanto Company
    Glyphosate tolerance + TC1507 × (corn, maize)
    Coleopteran resistance + MON88017
    Lepidopteran resistance
    A14-62 Glufosinate tolerance + MON89034 × Zea mays L. available, Monsanto
    Glyphosate tolerance + TC1507 × (corn, maize) Company; Genuity ®
    Coleopteran resistance + MON88017 × SmartStax ™
    Lepidopteran resistance 59122
    A14-63 Glufosinate tolerance + MON89034 × Zea mays L. Dow AgroSciences
    Glyphosate tolerance + TC1507 × (corn, maize) LLC
    Coleopteran resistance + MON88017 ×
    Lepidopteran resistance + 59122 ×
    2,4-D herbicide tolerance DAS40278
    A14-64 Glufosinate tolerance + MON89034 × Zea mays L. Dow AgroSciences
    Glyphosate tolerance + TC1507 × (corn, maize) LLC
    Coleopteran resistance + MON88017 ×
    Lepidopteran resistance + DAS40278
    2,4-D herbicide tolerance
    A14-65 Glufosinate tolerance + MON89034 × Zea mays L. available, Monsanto
    Glyphosate tolerance + TC1507 × (corn, maize) Company and Dow
    Lepidopteran resistance NK603 AgroSciences LLC;
    Power Core ™
    A14-66 Glufosinate tolerance + MON89034 × Zea mays L. Dow AgroSciences
    Glyphosate tolerance + TC1507 × (corn, maize) LLC
    Lepidopteran resistance + NK603 ×
    2,4-D herbicide tolerance DAS40278
    A14-67 Glufosinate tolerance + NK603 × Zea mays L. Syngenta and Monsanto
    Glyphosate tolerance + MON810 × (corn, maize) Company
    Coleopteran resistance + 4114 × MIR604
    Lepidopteran resistance +
    Antibiotic resistance +
    Mannose metabolism
    A14-68 Glufosinate tolerance + NK603 × T25 Zea mays L. available, Monsanto
    Glyphosate tolerance + (corn, maize) Company; Roundup
    Antibiotic resistance Ready ™ Liberty
    Link ™ Maize
    A14-69 Glufosinate tolerance + TC1507 × Zea mays L. available, DuPont
    Glyphosate tolerance + 59122 × (corn, maize) (Pioneer Hi-Bred
    Coleopteran resistance + MON810 × International Inc.);
    Lepidopteran resistance + MIR604 × Optimum ™ Intrasect
    Mannose metabolism NK603 Xtrenne
    A14-70 Glufosinate tolerance + TC1507 × Zea mays L. DuPont (Pioneer Hi-
    Glyphosate tolerance + MON810 × (corn, maize) Bred International
    Coleopteran resistance + MIR604 × Inc.)
    Lepidopteran resistance + NK603
    Antibiotic resistance +
    Mannose metabolism
    A14-71 Glufosinate tolerance + TC1507 × Zea mays L. available, DuPont
    Glyphosate tolerance + 59122 × (corn, maize) (Pioneer Hi-Bred
    Coleopteran resistance + MON810 × International Inc.);
    Lepidopteran resistance NK603 Optimum ™ Intrasect
    XTRA
    A14-72 Glufosinate tolerance + TC1507 × Zea mays L. Monsanto Company
    Glyphosate tolerance + 59122 × (corn, maize) and Dow AgroSciences
    Coleopteran resistance + MON88017 LLC
    Lepidopteran resistance
    A14-73 Glufosinate tolerance + TC1507 × Zea mays L. available, Dow
    Glyphosate tolerance + 59122 × (corn, maize) AgroSciences LLC
    Coleopteran resistance + NK603 and DuPont (Pioneer
    Lepidopteran resistance Hi-Bred International
    Inc.); Herculex
    XTRA ™ RR
    A14-74 Glufosinate tolerance + TC1507 × Zea mays L. DuPont (Pioneer Hi-
    Glyphosate tolerance + GA21 (corn, maize) Bred International
    Lepidopteran resistance Inc.)
    A14-75 Glufosinate tolerance + TC1507 × Zea mays L. available, DuPont
    Glyphosate tolerance + MIR604 × (corn, maize) (Pioneer Hi-Bred
    Coleopteran resistance + NK603 International Inc.);
    Lepidopteran resistance + Optimum ™ TRIsect
    Mannose metabolism
    A14-76 Glufosinate tolerance + TC1507 × Zea mays L. DuPont (Pioneer Hi-
    Glyphosate tolerance + MON810 × (corn, maize) Bred International
    Lepidopteran resistance + MIR162 × Inc.)
    Mannose metabolism NK603
    A14-77 Glufosinate tolerance + TC1507 × Zea mays L. available, DuPont
    Glyphosate tolerance + MON810 × (corn, maize) (Pioneer Hi-Bred
    Lepidopteran resistance NK603 International Inc.);
    Optimum ™ Intrasect
    A14-78 Glufosinate tolerance + TC1507 × Zea mays L. Monsanto Company
    Glyphosate tolerance + MON88017 (corn, maize) and Dow AgroSciences
    Coleopteran resistance + LLC
    Lepidopteran resistance
    A14-79 Glyphosate tolerance VCO-Ø1981-5 Zea mays L. Genective S. A.
    (corn, maize)
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the mixture comprising the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • In a particularly preferred embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the mixture comprising the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • In particular, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant having the insecticidal trait corresponds to a row of table A14, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • In still another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the mixture comprising 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • In a particularly preferred embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the mixture comprising 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant is a glyphosate herbicide tolerant plant and corresponds to a row of table A14.
  • In particular, the present invention relates to a method of controlling harmful insects by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant having the insecticidal trait corresponds to a row of table A14, and wherein the harmful insects are resistant to an insecticidal trait of the plant.
  • Insect resistance, in particular lepidopteran resistance is of growing importance in GMO crops. Furthermore, it has been found that insects often become resistant to the crops, which have been modified in terms of insect resistance. It has been found that the carboxamide compound I, preferably compound i) of formula (I) are particularly suitable for combating insects, which have become resistant to the crops, which have been modified in terms of insect resistance. In particular, the carboxamide compound I, preferably compound i) of formula (I) may advantageously be applied in soybeans, which have been made resistant to insects.
  • In one embodiment, the cultivated plant is soybean, which has been made resistant to lepidoperan insects. In addition to the resistance to lepidoperan insects, the soybean may have been made tolerant to certain herbicides and/or resistant to other insects, and/or the soybean may have been genetically modified otherwise, e.g. in terms of abiotic stress tolerance, altered growth/yield, disease resistance, modified product quality or pollination control system.
  • In a particularly preferred embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • In a particularly preferred embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the carboxamide compound i) of formula (I), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • In another embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the carboxamide compound I, preferably compound ii) of formula (Ia), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • In another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • In another embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with a mixture comprising the carboxamide compounds i) and ii), wherein the plant is a lepidopteran insect resistant soybean and corresponds to a row of table B as provided above.
  • Lepidopteran resistance of soybeans is typically achieved by introducing a gene selected from the group consisting of: cry1Ac (gene source: Bacillus thuringiensis subsp. Kurstaki strain H D73), cry1F (gene source: Bacillus thuringiensis var. aizawai), cry1A.105 (gene source: Bacillus thuringiensis subsp. Kumamotoensis), cry2Ab2 (gene source: Bacillus thuringiensis subsp. Kumamotoensis), and combinations thereof. In addition, the soybeans may be modified e.g. in terms of herbicide tolerance by introducing a suitable gene such as pat (gene source: Streptomyces viridochromogenes), which provides glufosinate tolerance or cp4 epsps (aroA:CP4) (gene source: Agrobacterium tumefaciens strain CP4), which provides glyphosate tolerance. Preferably, the soybeans are additionally modified in terms of glyphosate tolerance by introducing the gene cp4 epsps (aroA:CP4).
  • In a particularly preferred embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound i) of formula (I), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • In a particularly preferred embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the carboxamide compound i) of formula (I), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • of formula
  • In another embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with the carboxamide compound ii) of formula (Ia), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • In another embodiment, the present invention therefore relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with the carboxamide compound ii) of formula (Ia), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • In still another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or their locus of growth with a mixture comprising the carboxamide compounds i) and ii), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • In still another embodiment, the present invention relates to a method of controlling harmful insects and/or increasing the health of plants by treating plant propagation material, preferably seeds with a mixture comprising the carboxamide compounds i) and ii), wherein the plant is a lepidopteran insect resistant soybean, which has been modified by introducing at least one gene or at least one gene combination, which corresponds to a row of table C as provided above.
  • The present invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound i) of formula (I), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is
      • (i) Gossypium hirsutum L. (cotton) or Zea mays L. (maize) and comprises at least one gene selected from the group consisting of dvsnf7, cry1A, cry1Ab-Ac, cry1C, cry2Ab2, cry2Ae, mocry1F; or
      • (ii) Glycine max L. (soybean), Triticum aestivum (wheat) or Oryza sativa L. (rice) and comprises at least one gene selected from the group consisting of cry34Ab1, cry35 Ab1, cry3A, cry3Bb1, dvsnf7, mcry3A, cry1A, cry1A.105, cry1Ab, cry1Ab-Ac, cry1Ac, cry1C, cry1F, cry1Fa2, cry2Ab2, cry2Ae, cry9c, mocry1F, pinII, vip3A(a), vip3Aa20.
  • The invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (Ia), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is
      • (i) Gossypium hirsutum L. (cotton) or Zea mays L. (maize) and comprises at least one gene selected from the group consisting of dvsnf7, cry1A, cry1Ab-Ac, cry1C, cry2Ab2, cry2Ae, mocry1F; or
      • (ii) Glycine max L. (soybean), Triticum aestivum (wheat) or Oryza sativa L. (rice) and comprises at least one gene selected from the group consisting of cry34Ab1, cry35 Ab1, cry3A, cry3Bb1, dvsnf7, mcry3A, cry1A, cry1A.105, cry1Ab, cry1Ab-Ac, cry1Ac, cry1C, cry1F, cry1Fa2, cry2Ab2, cry2Ae, cry9c, mocry1F, pinII, vip3A(a), vip3Aa20.
  • The invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is
      • (i) Gossypium hirsutum L. (cotton) or Zea mays L. (maize) and comprises at least one gene selected from the group consisting of dvsnf7, cry1A, cry1Ab-Ac, cry1C, cry2Ab2, cry2Ae, mocry1F; or
      • (ii) Glycine max L. (soybean), Triticum aestivum (wheat) or Oryza sativa L. (rice) and comprises at least one gene selected from the group consisting of cry34Ab1, cry35 Ab1, cry3A, cry3Bb1, dvsnf7, mcry3A, cry1A, cry1A.105, cry1Ab, cry1Ab-Ac, cry1Ac, cry1C, cry1F, cry1Fa2, cry2Ab2, cry2Ae, cry9c, mocry1F, pinII, vip3A(a), vip3Aa20.
  • Preferably, present invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound i) of formula (I), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is modified by at least one gene according to one row of table D.
  • TABLE D
    No. crop gene
    D-1 cotton dvsnf7
    D-2 cotton cry1A
    D-3 cotton cry1Ab-Ac
    D-4 cotton cry1C
    D-5 cotton cry2Ab2
    D-6 cotton cry2Ae
    D-7 cotton mocry1F
    D-8 maize dvsnf7
    D-9 maize cry1A
    D-10 maize cry1Ab-Ac
    D-11 maize cry1C
    D-12 maize cry2Ab2
    D-13 maize cry2Ae
    D-14 maize mocry1F
    D-15 soybean cry34Ab1
    D-16 soybean cry35 Ab1
    D-17 soybean cry3A
    D-18 soybean cry3Bb1
    D-19 soybean dvsnf7
    D-20 soybean mcry3A
    D-21 soybean cry1A
    D-22 soybean cry1A.105
    D-23 soybean cry1Ab
    D-24 soybean cry1Ab-Ac
    D-25 soybean cry1Ac
    D-26 soybean cry1C
    D-27 soybean cry1F
    D-28 soybean cry1Fa2
    D-29 soybean cry2Ab2
    D-30 soybean cry2Ae
    D-31 soybean cry9c
    D-32 soybean mocry1F
    D-33 soybean pinII
    D-34 soybean vip3A(a)
    D-35 soybean vip3Aa20
    D-36 wheat cry34Ab1
    D-37 wheat cry35 Ab1
    D-38 wheat cry3A
    D-39 wheat cry3Bb1
    D-40 wheat dvsnf7
    D-41 wheat mcry3A
    D-42 wheat cry1A
    D-43 wheat cry1A.105
    D-44 wheat cry1Ab
    D-45 wheat cry1Ab-Ac
    D-46 wheat cry1Ac
    D-47 wheat cry1C
    D-48 wheat cry1F
    D-49 wheat cry1Fa2
    D-50 wheat cry2Ab2
    D-51 wheat cry2Ae
    D-52 wheat cry9c
    D-53 wheat mocry1F
    D-54 wheat pinII
    D-55 wheat vip3A(a)
    D-56 wheat vip3Aa20
    D-57 rice cry34Ab1
    D-58 rice cry35 Ab1
    D-59 rice cry3A
    D-60 rice cry3Bb1
    D-61 rice dvsnf7
    D-62 rice mcry3A
    D-63 rice cry1A
    D-64 rice cry1A.105
    D-65 rice cry1Ab
    D-66 rice cry1Ab-Ac
    D-67 rice cry1Ac
    D-68 rice cry1C
    D-69 rice cry1F
    D-70 rice cry1Fa2
    D-71 rice cry2Ab2
    D-72 rice cry2Ae
    D-73 rice cry9c
    D-74 rice mocry1F
    D-75 rice pinII
    D-76 rice vip3A(a)
    D-77 rice vip3Aa20
  • In another embodiment, the invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (Ia), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is modified by at least one gene according to one row of table D.
  • In another embodiment, the invention also relates to a method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is modified by at least one gene according to one row of table D.
  • Further preferred embodiments of the invention are those methods of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or at their locus of growth with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein the plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • Further embodiments of the invention are those methods of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or at their locus of growth with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein the plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • Further embodiments of the invention are those methods of controlling harmful insects and/or increasing the health of plants by treating cultivated plants, parts of such plants or at their locus of growth with the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein the plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In a more preferred embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is teflubenzuron and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is teflubenzuron and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is teflubenzuron and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In a more preferred embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is chlorfenapyr and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is chlorfenapyr and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is chlorfenapyr and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In a more preferred embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1. Most preferably the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1. Most preferably the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide.
  • In still another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by foliar application on cultivated plants or on foliar parts of such plants of the mixture of 1) a mixture comprising the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1. Most preferably the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide.
  • In a more preferred embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is thiamethoxam and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is thiamethoxam and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In still another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of 1) a mixture of the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is thiamethoxam and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In a more preferred embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is fipronil and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is fipronil and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In still another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of 1) a mixture of the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is fipronil and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1.
  • In a more preferred embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound i) of formula (I) as component I and at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1. Most preferably the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture of the carboxamide compound ii) of formula (Ia) as component I and at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1. Most preferably the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide.
  • In another embodiment, the present invention relates of methods of controlling harmful insects and/or increasing the health of plants by treating plant propagation material of cultivated plants, especially seeds, with the mixture 1) a mixture of the carboxamide compounds i) and ii) as component I and 2) at least one compound II as component II, wherein component II is ryanodine receptor-modulator selected from flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole or from a group consisting of N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide and the cultivated plant expresses one or more genes selected from CP4 epsps, pat, bar, Cry1Ab, Cry1Ac, Cry3Bb1, Cry2Ab, Cry1F, Cry34Ab1 and Cry35Ab1. Most preferably the ryanodine receptor-modulator is N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide or N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide.
  • In view of the above, some following embodiments are particularly preferred in connection with the methods of the invention relating to cultivated pants.
  • Preferred are e.g. methods for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound i) of formula (I), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth.
  • Other embodiments of this invention are methods for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (Ia), to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth.
  • Other embodiments of this invention are e.g. methods for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth.
  • Especially preferred are those methods, wherein the cultivated plant is a plant with at least one property selected from: herbicide tolerance, insect resistance, fungal resistance or viral resistance or bacterial resistance, stress tolerance, maturation alteration, content modification of chemicals present in the cultivated plant, modified nutrient uptake, antibiotic resistance and male sterility compared to the corresponding control plant respectively.
  • Especially more preferred are those methods, wherein the yield of the cultivated plant is increased.
  • In particular preferred are those methods, wherein the cultivated plant is
  • a plant with at least one trait of the category herbicide tolerance,
    a plant with at least one trait of the category insect resistance, or
    a plant with at least two traits, wherein at least one trait is of the category of herbicide tolerance and at least one trait is of the category of insect resistance.
  • In case the cultivated plant has at least one trait of the category herbicide tolerance, the herbicide resistance is preferably selected from the group consisting of glyphosate tolerance, glufosinate tolerance, and imidazolinone tolerance, and is particularly preferably glyphosate tolerance.
  • In case the cultivated plant has at least one trait of the category insect resistance, the insect resistance is preferably selected from the group consisting of lepidoperan resistance and coleopteran resistance, and is particularly preferably lepidopteran resistance.
  • In case the cultivated plant has at least one trait of the category insect resistance, preferably at least two genes confer insect resistance to the cultivated plant.
  • Furthermore those methods are preferably applied to cultivated plants, wherein the cultivated plant is selected from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize), Glycine max L. (soybean), Triticum aestivum (wheat), and Oryza sativa L. (rice), preferably from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize) and Glycine max L. (soybean).
  • Among these cultivated plants preferably are selected:
  • Gossypium hirsutum L. (cotton) or Zea mays L. (maize) and comprises at least one gene selected from the group consisting of dvsnf7, cry1A, cry1Ab-Ac, cry1C, cry2Ab2, cry2Ae, mocry1F; or
    Glycine max L. (soybean), Triticum aestivum (wheat) or Oryza sativa L. (rice) and comprises at least one gene selected from the group consisting of cry34Ab1, cry35 Ab1, cry3A, cry3Bb1, dvsnf7, mcry3A, cry1A, cry1A.105, cry1Ab, cry1Ab-Ac, cry1Ac, cry1C, cry1F, cry1Fa2, cry2Ab2, cry2Ae, cry9c, mocry1F, pinII, vip3A(a), vip3Aa20.
  • Regarding the modification of the preferred treated cultivated plants in the methods mentioned above, the modification is selected from the events provided in table A14.
  • A method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound i) of formula (I) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, wherein the glyphosate tolerance is preferably through the expression of the cp4epsps gene, and more preferably based on the transgenic event MON89788, and wherein the lepidopteran resistance is preferably through expression of the Cry1AC encoding gene from B. thuringiensis, preferably against velvetbean caterpillar (Anticarsia gemmatalis) and soybean looper (Pseudoplusia includens), and more preferably based on the transgenic event MON87701.
  • Another method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of the carboxamide compound ii) of formula (Ia) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, wherein the glyphosate tolerance is preferably through the expression of the cp4epsps gene, and more preferably based on the transgenic event MON89788, and wherein the lepidopteran resistance is preferably through expression of the Cry1AC encoding gene from B. thuringiensis, preferably against velvetbean caterpillar (Anticarsia gemmatalis) and soybean looper (Pseudoplusia includens), and more preferably based on the transgenic event MON87701.
  • Still another method for controlling pests and/or increasing the plant health of a cultivated plant as compared to the respective non-modified control plant, comprising the application of a mixture comprising the carboxamide compounds i) and ii) to a plant with at least one modification, parts of such plant, plant propagation material, or at its locus of growth, wherein the cultivated plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, wherein the glyphosate tolerance is preferably through the expression of the cp4epsps gene, and more preferably based on the transgenic event MON89788, and wherein the lepidopteran resistance is preferably through expression of the Cry1AC encoding gene from B. thuringiensis, preferably against velvetbean caterpillar (Anticarsia gemmatalis) and soybean looper (Pseudoplusia includens), and more preferably based on the transgenic event MON87701.
  • Preferably the cultivated plant is “Intacta RR2 PRO” soybean (Monsanto), which claims to offer tolerance to glyphosate herbicide and protection against major soybean pests (velvetbean caterpilar, soybean looper, soybean budborer, bean shoot borer, bollworm, corn stalk borer, Helicoverpa, e.g. Helicoverpa armigera), along with increased yield potential.
  • Regarding the application of the carboxamide compound i) of formula (I) in those methods, the carboxamide compound i) of formula (I) is applied to the plant propagation material of the cultivated plant. Preferably the plant propagation material are the seeds.
  • Regarding the application of the carboxamide compound ii) of formula (Ia) in those methods, the carboxamide compound ii) of formula (Ia) is applied to the plant propagation material of the cultivated plant. Preferably the plant propagation material are the seeds.
  • Regarding the application of a mixture comprising the carboxamide compounds i) and ii) in those methods, the mixture comprising the carboxamide compounds i) and ii) is applied to the plant propagation material of the cultivated plant. Preferably the plant propagation material are the seeds.
  • In those methods described above, the carboxamide compound i) of formula (I) is applied in a mixture of (1) the carboxamide compound i) of formula (I), and (2) at least one further pesticidal compound II as component II, wherein the pesiticdal compound II is an insecticide or a fungicide.
  • those methods described above, the carboxamide compound ii) of formula (Ia) is applied in a mixture of (1) the carboxamide compound ii) of formula (Ia), and (2) at least one further pesticidal compound II as component II, wherein the pesiticdal compound II is an insecticide or a fungicide.
    those methods described above, the carboxamide compound i) of formula (I) is applied in a mixture of (1) a mixture comprising the carboxamide compounds i) and ii) and (2) at least one further pesticidal compound II as component II, wherein the pesiticdal compound II is an insecticide or a fungicide.
  • Formulations
  • In the following, suitable formulations and applications in connection with the present application are disclosed. These preferred embodiments relate (1) to the mixture of the invention comprising the carboxamide compound i) of formula (I) as well as uses and methods comprising the application of said mixture and (2) to uses and methods comprising the application of the carboxamide compound i) of formula (I) according to the invention.
  • When it is in the following referred to “the compound i) of formula (I)”, to “the compound of the present invention” or “the mixture of the invention”, it is to be understood that the embodiments are disclosed in combination with (1) the mixture of the invention as well as uses and methods comprising the application of said mixture and (2) uses and methods comprising the application of the carboxamide compound i) of formula (I) according to the invention, respectively.
  • The mixture of the invention or the carboxamide compound i) of formula (I) may be provided in the form of an agrochemical composition comprising the carboxamide compound i) of formula (I) together with one or more other pesticidal active ingredient(s) and an auxiliary.
  • An agrochemical composition comprises a pesticidally effective amount the carboxamide compound i) of formula (I), a pesticidally effective amount of the carboxamide compound ii) of formula (Ia) or a pesticidally effective amount of the mixture comprising the carboxamide compounds i) and ii).
  • Other embodiments relate (1) to the mixture of the invention comprising the carboxamide compound ii) of formula (Ia) as well as uses and methods comprising the application of said mixture and (2) to uses and methods comprising the application of the carboxamide compound ii) of formula (Ia) according to the invention.
  • When it is in the following referred to “the compound ii) of formula (Ia)”, to “the compound of the present invention” or “the mixture of the invention”, it is to be understood that the embodiments are disclosed in combination with (1) the mixture of the invention as well as uses and methods comprising the application of said mixture and (2) uses and methods comprising the application of the carboxamide compound ii) of formula (Ia) according to the invention, respectively.
  • The mixture of the invention or the carboxamide compound ii) of formula (Ia) may be provided in the form of an agrochemical composition comprising the carboxamide compound ii) of formula (Ia) together with one or more other pesticidal active ingredient(s) and an auxiliary.
  • Still other embodiments relate (1) to the mixture of the invention comprising the mixture comprising the carboxamide compounds i) and ii) as well as uses and methods comprising the application of said mixture and (2) to uses and methods comprising the application of the mixture comprising the carboxamide compounds i) and ii) according to the invention.
  • When it is in the following referred to “mixture comprising the carboxamide compounds i) and ii)”, to “the compound of the present invention” or “the mixture of the invention”, it is to be understood that those embodiments are disclosed in combination with (1) the mixture of the invention as well as uses and methods comprising the application of said mixture and (2) uses and methods comprising the application of a mixture comprising the carboxamide compounds i) and ii) according to the invention, respectively.
  • The mixture of the invention or the mixture comprising the carboxamide compounds i) and ii) may be provided in the form of an agrochemical composition comprising the mixture comprising the carboxamide compounds i) and ii) together with one or more other pesticidal active ingredient(s) and an auxiliary.
  • An agrochemical composition comprises a pesticidally effective amount the carboxamide compound i) of formula (I), a pesticidally effective amount of the carboxamide compound ii) of formula (Ia) or a pesticidally effective amount of the mixture comprising the carboxamide compounds i) and ii).
  • The term “pesticidally effective amount” is defined below.
  • The formulations comprising the carboxamide compound i) of formula (I), compound ii) of formula (la) or a mixture comprising the carboxamide compounds i) and ii) of the present invention can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the “Catalogue of pesticide formulation types and international coding system”, Technical Mono-graph No. 2, 6th Ed. May 2008, CropLife International.
  • The compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
  • Examples for suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
  • Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclo¬hexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
  • Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharide powders, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
  • Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol. 1: Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
  • Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyl¬naphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
  • Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are homo- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate.
  • Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B—C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.
  • Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the active ingredients(s) on the target. Examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
  • Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
  • Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.
  • Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
  • Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
  • Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).
  • Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
  • Examples for composition types and their preparation are:
  • i) Water-soluble concentrates (SL, LS)
  • 10-60 wt % of the pesticidal active compound(s), and 5-15 wt % wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) up to 100 wt %. The active substance dissolves upon dilution with water.
  • ii) Dispersible concentrates (DC)
  • 5-25 wt % of the pesticidal active compound(s), and 1-10 wt % dispersant (e. g. polyvinylpyrrolidone) are dissolved in up to 100 wt % organic solvent (e.g. cyclohexanone). Dilution with water gives a dispersion.
  • iii) Emulsifiable concentrates (EC)
  • 15-70 wt % of the pesticidal active compound(s), and 5-10 wt % emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in up to 100 wt % water-insoluble organic solvent (e.g. aromatic hydrocarbon). Dilution with water gives an emulsion.
  • iv) Emulsions (EW, EO, ES)
  • 5-40 wt % of the pesticidal active compound(s), and 1-10 wt % emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt % water-insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into up to 100 wt % water by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.
  • v) Suspensions (SC, OD, FS)
  • In an agitated ball mill, 20-60 wt % of the pesticidal active compound(s), are comminuted with addition of 2-10 wt % dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1-2 wt % thickener (e.g. xanthan gum) and up to 100 wt % water to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt % binder (e.g. polyvinylalcohol) is added.
  • vi) Water-dispersible granules and water-soluble granules (WG, SG)
  • 50-80 wt % of the pesticidal active compound(s), are ground finely with addition of up to 100 wt % dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
  • vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)
  • 50-80 wt % of the pesticidal active compound(s), are ground in a rotor-stator mill with ad-dition of 1-5 wt % dispersants (e.g. sodium lignosulfonate), 1-3 wt % wetting agents (e.g. alcohol ethoxylate) and up to 100 wt % solid carrier, e.g. silica gel. Dilution with water gives a stable dispersion or solution of the active substance.
  • viii) Gel (GW, GF)
  • In an agitated ball mill, 5-25 wt % of the pesticidal active compound(s), are comminuted with addition of 3-10 wt % dispersants (e.g. sodium lignosulfonate), 1-5 wt % thickener (e.g. carboxymethylcellulose) and up to 100 wt % water to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.
  • ix) Microemulsion (ME)
  • 5-20 wt % of the pesticidal active compound(s), are added to 5-30 wt % organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt % surfactant blend (e.g. alkohol ethoxylate and arylphenol ethoxylate), and water up to 100%. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
  • x) Microcapsules (CS)
  • An oil phase comprising 5-50 wt % of the pesticidal active compound(s), 0-40 wt % water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt % acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radi-cal initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt % of the pesticidal active compound(s), 0-40 wt % water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylme-thene-4,4′-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the for-mation of a polyurea microcapsule. The monomers amount to 1-10 wt %. The wt % relate to the total CS composition.
  • xi) Dustable powders (DP, DS)
  • 1-10 wt % of pesticidal active compound(s), are ground finely and mixed intimately with up to 100 wt % solid carrier, e.g. finely divided kaolin.
  • xii) Granules (GR, FG)
  • 0.5-30 wt % of v, is ground finely and associated with up to 100 wt % solid carrier (e.g. silicate). Granulation is achieved by extrusion, spray-drying or the fluidized bed.
  • xiii) Ultra-low volume liquids (UL)
  • 1-50 wt % of pesticidal active compound(s), are dissolved in up to 100 wt % organic solvent, e.g. aromatic hydrocarbon.
  • The compositions types i) to xi) may optionally comprise further auxiliaries, such as 0.1-1 wt % bactericides, 5-15 wt % anti-freezing agents, 0.1-1 wt % anti-foaming agents, and 0.1-1 wt % colorants.
  • The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and most preferably between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and other pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.
  • The user applies the composition according to the invention usually from a predosage de-vice, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
  • According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
  • In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e.g. components comprising pesticidal active compound(s), may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate.
  • In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e. g. components comprising pesticidal active compound(s), can be applied jointly (e.g. after tank mix) or consecutively.
  • Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, suspoemulsions (SE), powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pregerminated the latter. Preferably, the formulations are applied such that germination is not included.
  • The active substance concentrations in ready-to-use formulations, which may be obtained after two-to-tenfold dilution, are preferably from 0.01 to 60% by weight, more preferably from 0.1 to 40% by weight.
  • In a preferred embodiment a FS formulation is used for seed treatment. Typically, a FS formulation may comprise 1-800 g/l of active ingredient, 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
  • Especially preferred FS formulations of the compound I, preferably compound i) of formula (I), for seed treatment usually comprise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient, from 0.1 to 20% by weight (1 to 200 g/l) of at least one surfactant, e.g. 0.05 to 5% by weight of a wetter and from 0.5 to 15% by weight of a dispersing agent, up to 20% by weight, e.g. from 5 to 20% of an anti-freeze agent, from 0 to 15% by weight, e.g. 1 to 15% by weight of a pigment and/or a dye, from 0 to 40% by weight, e.g. 1 to 40% by weight of a binder (sticker/adhesion agent), optionally up to 5% by weight, e.g. from 0.1 to 5% by weight of a thickener, optionally from 0.1 to 2% of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1% by weight and a filler/vehicle up to 100% by weight.
  • In the treatment of seed, the application rates of the carboxamide compound i) of formula (I), of the carboxamide compound ii) of formula (Ia) or of a mixture comprising the carboxamide compounds i) and ii), are generally from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, more preferably from 1 g to 1000 g per 100 kg of seed and in particular from 1 g to 200 g per 100 kg of seed, e.g. from 1 g to 100 g or from 5 g to 100 g per 100 kg of seed.
  • The invention therefore also relates to seed comprising one of the carboxamide compound i) of formula (I), the carboxamide compound ii) of formula (Ia) or the mixture comprising the carboxamide compounds i) and ii). The amount of the carboxamide compound i) of formula (I), the carboxamide compound ii) of formula (Ia) or the mixture comprising the carboxamide compounds i) and ii) will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed. For specific crops such as lettuce the rate can be higher.
  • EXAMPLE
  • The present invention may be illustrated by the following example.
  • The interaction between the carboxamide compound of the present invention (or compositions comprising it) and the cultivated plant may be evaluated in different test systems. As well for the comparison to non-cultivated plants or to mixtures (comprising the carboxamide compound) synergism may be shown.
  • Synergism can be described as an interaction where the combined effect of two or more compounds is greater than the sum of the individual effects of each of the compounds. The presence of a synergistic effect in terms of percent control, between two mixing partners (X and Y) can be calculated using the Colby equation (Colby, S. R., 1967, Calculating Synergistic and Antagonistic Responses in Herbicide Combinations, Weeds, 15, 20-22):
  • When the observed combined control effect is greater than the expected combined control effect (E), then the combined effect is synergistic.
  • The following tests can demonstrate the control efficacy of compounds, mixtures or compositions of this invention on specific pests. However, the pest control protection afforded by the compounds, mixtures or compositions is not limited to the species described. In certain instances, combinations of a compound of this invention with other invertebrate pest control compounds or agents are found to exhibit synergistic effects against certain important invertebrate pests.
  • The analysis of synergism or antagonism between the mixtures or compositions is determined using Colby's equation.
  • B1: Test on cultivated soybeans
    Trial is carried out under greenhouse conditions on soybean (genetically modified plant variety, e.g. roundup, growth stage 109). 12 treatments are compared in a complete randomized blocks (4 replications) with plot size of 1 m×3 meters. Only selected plants are considered for artificial infestation and evaluations.
    Due to glyphosate timing for application on such cultivated soybeans, all treatments are applied in older plants (GS 109) otherwise a significant phytotoxicity is expected. Application is done, using 400 l/ha. All treatments are applied using a CO2 backpack (nozzle type TXVK-10). Temperature at the time of applications is around 25 to 30° C. and air humidity is between 30 and 100%. Soil condition is e.g. R4 (when <75% of surface is dried up) and the moisture is moist (normal).
    Roundup Original® (Glyfosate-sal isopropilamina @360 g/L) is used in the rate of 867 g a.i./ha. Artificial infestation is done one day after the application. The species used is Anticarsia gemmatalis (Hübner) [Thermesia elegantula (Herrich-Schaffer, 1869)], Noctuidae. 5 plants/plot are infested with 3 larvae (stage L2) using an entomological metallic tweezers, totaling 15 larvae per repetition. Larvae used in this trial are e.g. provided by BASF in-house rearing laboratory, Campinas, Brazil.
    A second infestation is held seven days after application in the same plants and using the same larval numbers. A third infestation might be done if necessary in order to observe residual activity.
    The mortality (number) and eating damage (%) are evaluated with 01, 02, 05, 07, 14 and 21 DAA (days after application), comparing to untreated control plants.
    Increased mortalities in combination with the application of roundup can be observed when compared to the untreated control plants:
    Additionally, after 5 days after application at 12.5 g a.i./ha a reduction of feeding damage compared to the untreated controls can be observed. In another test, a non-cultivated (non-GM) soybean variety is treated with 12.5 g a.i./ha and showed less reduction in feeding damage compared to the untreated controls.

Claims (26)

1. A method for controlling pests on at least one of cultivated plants that have been modified by genetic engineering, their plant propagation material for the cultivated plants, and a locus of growth of the cultivated plants, the method comprising applying a pesticidal active carboxamide compound I selected from the group consisting of:
i) compound i) of formula (I)
Figure US20190021322A9-20190124-C00003
ii) compound ii) of formula (Ia)
Figure US20190021322A9-20190124-C00004
and
iii) mixtures comprising the carboxamide compounds i) and ii),
to at least one of a plant, plant propagation material, a locus of growth of the plant, pests, food supply of the pests, habitat of the pests, and breeding grounds of the pests.
2. The method according to claim 1, wherein the pesticidal active carboxamide compound I is compound i) of formula (I).
3. (canceled)
4. (canceled)
5. The method according to claim 1 wherein the cultivated plant is one of:
(i) a plant with at least one trait of a category of herbicide tolerance,
(ii) a plant with at least one trait of a category of insect resistance, and
(iii) a plant with at least two traits, wherein at least a first trait of the at least two traits is of the category of herbicide tolerance and at least a second trait of the at least two traits is of the category of insect resistance.
6. The method according to claim 5, wherein the herbicide tolerance is selected from the group consisting of glyphosate tolerance, glufosinate tolerance, and imidazolinone tolerance.
7. The method according to claim 5, wherein the insect resistance is selected from the group consisting of lepidopteran resistance and coleopteran resistance.
8. The method according to claim 1, wherein the cultivated plant is a plant with insect resistance, wherein at least two genes confer the insect resistance to the cultivated plant.
9. The method according to claim 1, wherein the cultivated plant is selected from the group consisting of Gossypium hirsutum L. (cotton), Zea mays L. (maize), Glycine max L. (soybean), Triticum aestivum (wheat), and Oryza sativa L. (rice).
10. The method according to claim 1, wherein the pests are selected from insects from the order of one of Lepidoptera, Coleoptera, and Thysanoptera.
11. The method according to claim 10, wherein the pests are selected from insects from the order of Lepidoptera.
12. The method according to claim 11, wherein the pests are selected from the group consisting of Anticarsia gemmatalis, Chlysodeixis includens (=Pseudoplusia includens), Helicoverpa armigera (=Heliothis armigera), Spodoptera frugiperda, Spodoptera eridania, Spodoptera cosmioides, and combinations thereof.
13. The method according to claim 1, wherein the cultivated plant is a soybean plant exhibiting insect resistance.
14. The method according to claim 1, wherein the plant is a soybean plant that has been modified by genetic engineering, wherein the soybean plant exhibits insect resistance provided by one or more genes selected from the group consisting of cry1Ac, cry1F, cry1A.105, cry2Ab2, and combinations thereof.
15. The method according to claim 1, wherein applying the pesticidal active carboxamide compound I comprises applying the pesticidal active carboxamide compound I to foliage of the plants.
16. The method according to claim 1, wherein applying the pesticidal active carboxamide compound I comprises applying the pesticidal active carboxamide compound I to one of the seeds and the plant propagation material of the plants.
17. The method according to claim 15, wherein applying the pesticidal active carboxamide compound I further comprises applying the pesticidal active carboxamide compound I in an amount of from 1 g to 100 g per hectare.
18. The method according to claim 1, wherein the pesticidal active carboxamide compound I is component I of a mixture that comprises at least one further pesticidal compound II as component II, wherein the pesticidal compound II is selected from one of insecticides, fungicides, and biopesticides.
19. The method according to claim 18, wherein the mixture comprises the pesticidal active carboxamide compound I as component I and further comprises at least one fungicidal active ingredient selected from one of thiophanate-methyl, triticonazole, pyraclostrobin, and fluxapyroxad as component II.
20. The method according to claim 18, wherein the mixture comprises the pesticidal active carboxamide compound I as component I and further comprises at least one other insecticidal active ingredient selected from the group consisting of fipronil, α-cypermethrin, bifenthrin, tefluthrin, cyhalothrin, clothianidin, dinotefuran, imidacloprid, thiacloprid, thiamethoxam, spinosad, spientoram, emamectin, abamectin, pymetrozine, flonicamid, chlorfenapyr, buprofezin, metaflumizone, cyflumetofen, flubenidamid, chlorantraniliprole, tetraniliprole, cyantraniliprole, sulfoxalor, afidopyropen, flubendiamid, chlorantraniliprole, cyclaniliprole, tetraniliprole, cyantraniliprole, and another ryanodine receptor-modulators selected from N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)¬carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(diethyl-lambda-4-sulfanyl idene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanyl idene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, and N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoro¬methyl)pyrazole-3-carboxamide as component II.
21. (canceled)
22. A method for increasing the plant health of a cultivated plant as compared to a respective non-modified control plant, comprising applying at least one of a pesticidal active carboxamide compound I as defined in claim 1, and a mixture comprising the pesticidal active carboxamide compound I, to at least one of a plant with at least one modification, parts of the plant, plant propagation material, or a locus of growth of the plant.
23. The method according to claim 22, the applying causing an increase in a yield of the cultivated plant.
24. A method for at least one of controlling pests on a cultivated plant and increasing plant health of the cultivated plant as compared to a respective non-modified control plant, the method comprising applying at least one of a pesticidal active carboxamide compound I as defined in claim 1 and a mixture comprising the pesticidal active carboxamide compound I, to at least one of a plant with at least one modification, parts of the plant, plant propagation material, or a locus of growth of the plant, wherein the cultivated plant is at least one of:
(i) at least one of Gossypium hirsutum L. (cotton) and Zea mays L. (maize) and comprises at least one gene selected from the group consisting of dvsnf7, cry1A, cry1Ab-Ac, cry1C, cry2Ab2, cry2Ae, and mocry1F; and
(ii) at least one of Glycine max L. (soybean), Triticum aestivum (wheat), and Oryza sativa L. (rice) and comprises at least one gene selected from the group consisting of cry34Ab1, cry35 Ab1, cry3A, cry3Bb1, dvsnf7, mcry3A, cry1A, cry1A.105, cry1Ab, cry1Ab-Ac, cry1Ac, cry1C, cry1F, cry1Fa2, cry2Ab2, cry2Ae, cry9c, mocry1F, pinII, vip3A(a), and vip3Aa20.
25. A method for at least one of controlling pests on a cultivated plant and increasing plant health of the cultivated plant as compared to a respective non-modified control plant, the method comprising applying at least one of a pesticidal active carboxamide compound I as defined in claim 1, and a mixture comprising the pesticidal active carboxamide compound I, to at least one of a plant with at least one modification, parts of the plant, plant propagation material, or a locus of growth of the plant, wherein the cultivated plant is a soybean variety with glyphosate tolerance and lepidopteran resistance, wherein the glyphosate tolerance is through the expression of the cp4epsps gene and wherein the lepidopteran resistance is through expression of the Cry1AC encoding gene from B. thuringiensis, against velvetbean caterpillar (Anticarsia gemmatalis) and soybean looper (Pseudoplusia includens).
26. Seed of a cultivated plant as defined in claim 5, wherein such seed is treated with at least one of a pesticidal active carboxamide compound I as defined in claim 1 and a mixture comprising a pesticidal active carboxamide compound I as defined in claim 18.
US15/563,120 2015-04-07 2016-04-06 Use of an insecticidal carboxamide compound against pests on cultivated plants Active 2036-07-16 US11064696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/563,120 US11064696B2 (en) 2015-04-07 2016-04-06 Use of an insecticidal carboxamide compound against pests on cultivated plants

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562143847P 2015-04-07 2015-04-07
EP15201358 2015-12-18
EP15201358 2015-12-18
EP15201358.7 2015-12-18
PCT/EP2016/057502 WO2016162371A1 (en) 2015-04-07 2016-04-06 Use of an insecticidal carboxamide compound against pests on cultivated plants
US15/563,120 US11064696B2 (en) 2015-04-07 2016-04-06 Use of an insecticidal carboxamide compound against pests on cultivated plants

Publications (3)

Publication Number Publication Date
US20180199570A1 US20180199570A1 (en) 2018-07-19
US20190021322A9 true US20190021322A9 (en) 2019-01-24
US11064696B2 US11064696B2 (en) 2021-07-20

Family

ID=54979486

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/563,120 Active 2036-07-16 US11064696B2 (en) 2015-04-07 2016-04-06 Use of an insecticidal carboxamide compound against pests on cultivated plants

Country Status (3)

Country Link
US (1) US11064696B2 (en)
CA (1) CA2980505A1 (en)
WO (1) WO2016162371A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310373B1 (en) * 2013-10-18 2021-10-08 바스프아그로케미칼 프로덕츠 비.브이. Agricultural mixtures comprising carboxamide compound
US11219211B2 (en) 2015-03-11 2022-01-11 Basf Agrochemical Products B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
US11297837B2 (en) 2016-02-19 2022-04-12 Basf Se Pesticidally activi mixtures comprising anthranilamide compounds
MX2019015881A (en) * 2017-06-23 2020-02-07 Basf Se Pesticidal mixtures comprising a pyrazole compound.
WO2019086678A1 (en) 2017-11-06 2019-05-09 Basf Se Indicating soil additives for improving soil water infiltration and/or modulating soil water repellence
CN111770686A (en) * 2018-03-07 2020-10-13 巴斯夫农业化学品有限公司 Method for increasing resistance of cereal plants
CN113980990B (en) * 2021-11-26 2022-07-26 中国农业科学院生物技术研究所 Transgenic insect-resistant herbicide-resistant corn and cultivation method thereof

Family Cites Families (273)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325503A (en) 1965-02-18 1967-06-13 Diamond Alkali Co Polychloro derivatives of mono- and dicyano pyridines and a method for their preparation
US3296272A (en) 1965-04-01 1967-01-03 Dow Chemical Co Sulfinyl- and sulfonylpyridines
DE3338292A1 (en) 1983-10-21 1985-05-02 Basf Ag, 6700 Ludwigshafen 7-AMINO-AZOLO (1,5-A) -PYRIMIDINE AND FUNGICIDES CONTAINING THEM
CA1249832A (en) 1984-02-03 1989-02-07 Shionogi & Co., Ltd. Azolyl cycloalkanol derivatives and agricultural fungicides
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
US6211439B1 (en) 1984-08-10 2001-04-03 Mgi Pharma, Inc Herbicide resistance in plants
BR8600161A (en) 1985-01-18 1986-09-23 Plant Genetic Systems Nv CHEMICAL GENE, HYBRID, INTERMEDIATE PLASMIDIO VECTORS, PROCESS TO CONTROL INSECTS IN AGRICULTURE OR HORTICULTURE, INSECTICIDE COMPOSITION, PROCESS TO TRANSFORM PLANT CELLS TO EXPRESS A PLANTINIDE TOXIN, PRODUCED BY CULTURES, UNITED BY BACILLA
NZ217113A (en) 1985-08-07 1988-06-30 Monsanto Co Production of eucaryotic plants which are glyphosate resistant, vectors (transformation and expression), chimeric gene and plant cells
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
DE3545319A1 (en) 1985-12-20 1987-06-25 Basf Ag ACRYLIC ACID ESTERS AND FUNGICIDES THAT CONTAIN THESE COMPOUNDS
ES2018274T5 (en) 1986-03-11 1996-12-16 Plant Genetic Systems Nv VEGETABLE CELLS RESISTANT TO GLUTAMINE SYNTHETASE INHIBITORS, PREPARED BY GENETIC ENGINEERING.
CN1050538A (en) 1986-05-02 1991-04-10 施托福化学公司 Fungicidal pyridyl imines composition and Fungicidal method
EP0256503B1 (en) 1986-08-12 1992-12-02 Mitsubishi Kasei Corporation Pyridinecarboxamide derivatives and their use as fungicide
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
DE3629890A1 (en) 1986-08-29 1988-03-10 Schering Ag MICROORGANISMS AND PLASMIDES FOR THE 2,4-DICHLORPHENOXYACETIC ACID (2,4-D) MONOOXIGENASE - FORMATION AND METHOD FOR PRODUCING THIS PLASMIDE AND STEM
US4731499A (en) 1987-01-29 1988-03-15 Pioneer Hi-Bred International, Inc. Hybrid corn plant and seed
US5689046A (en) 1987-09-30 1997-11-18 Bayer Aktiengesellschaft Stilbene synthase gene
US5128130A (en) 1988-01-22 1992-07-07 Mycogen Corporation Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens
DE68923728T2 (en) 1988-04-25 1996-02-22 Monsanto Co Insect-resistant lettuce plants.
CA1340685C (en) 1988-07-29 1999-07-27 Frederick Meins Dna sequences encoding polypeptides having beta-1,3-glucanase activity
US5169629A (en) 1988-11-01 1992-12-08 Mycogen Corporation Process of controlling lepidopteran pests, using bacillus thuringiensis isolate denoted b.t ps81gg
CA2005658A1 (en) 1988-12-19 1990-06-19 Eliahu Zlotkin Insecticidal toxins, genes encoding these toxins, antibodies binding to them and transgenic plant cells and plants expressing these toxins
DE69034081T2 (en) 1989-03-24 2004-02-12 Syngenta Participations Ag Disease resistant transgenic plant
US5955651A (en) 1989-05-03 1999-09-21 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
GB8910624D0 (en) 1989-05-09 1989-06-21 Ici Plc Bacterial strains
CA2015951A1 (en) 1989-05-18 1990-11-18 Mycogen Corporation Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
US6329570B1 (en) 1989-07-19 2001-12-11 Calgene, Llc Cotton modification using ovary-tissue transcriptional factors
ATE121267T1 (en) 1989-11-07 1995-05-15 Pioneer Hi Bred Int LARVAE-KILLING LECTINS AND BASED PLANT RESISTANCE AGAINST INSECTS.
AU628229B2 (en) 1989-11-10 1992-09-10 Agro-Kanesho Co. Ltd. Hexahydrotriazine compounds and insecticides
US5750864A (en) 1994-06-17 1998-05-12 Epitope, Inc. Regulated expression of heterologous genes in plants
US5639949A (en) 1990-08-20 1997-06-17 Ciba-Geigy Corporation Genes for the synthesis of antipathogenic substances
US5633435A (en) 1990-08-31 1997-05-27 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
GB9019736D0 (en) 1990-09-10 1990-10-24 Univ Leeds Ind Service Ltd Plant parasitic nematode control
GB9024323D0 (en) 1990-11-08 1990-12-19 Ici Plc Regulation of gene expression
SE467358B (en) 1990-12-21 1992-07-06 Amylogene Hb GENETIC CHANGE OF POTATISE BEFORE EDUCATION OF AMYLOPECT TYPE STARCH
US5512466A (en) 1990-12-26 1996-04-30 Monsanto Company Control of fruit ripening and senescence in plants
NZ244091A (en) 1991-08-29 1994-10-26 Zeneca Ltd Biocidal proteins derived from plants, their manufacture, coding sequences and uses
JP2828186B2 (en) 1991-09-13 1998-11-25 宇部興産株式会社 Acrylate-based compounds, their preparation and fungicides
UA48104C2 (en) 1991-10-04 2002-08-15 Новартіс Аг Dna fragment including sequence that codes an insecticide protein with optimization for corn, dna fragment providing directed preferable for the stem core expression of the structural gene of the plant related to it, dna fragment providing specific for the pollen expression of related to it structural gene in the plant, recombinant dna molecule, method for obtaining a coding sequence of the insecticide protein optimized for corn, method of corn plants protection at least against one pest insect
AU2928492A (en) 1991-11-20 1993-06-15 Mogen International N.V. A method for obtaining plants with reduced susceptibility to plant-parasitic nematodes
EP0631629B1 (en) 1992-03-20 2003-12-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Fungus-responsive chimaeric gene
US5409823A (en) 1992-09-24 1995-04-25 Ciba-Geigy Corporation Methods for the production of hybrid seed
DE4317845A1 (en) 1993-05-28 1994-12-01 Bayer Ag Deoxyribonucleic acids
US5824876A (en) 1993-06-28 1998-10-20 Advanced Technologies (Cambridge) Limited Plant parasitic nematode control
ES2093578T1 (en) 1993-10-06 1997-01-01 Univ New York TRANSGENIC PLANTS THAT PRESENT IMPROVED ASSIMILATION OF NITROGEN.
US6864405B1 (en) 1993-10-06 2005-03-08 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
US5608147A (en) 1994-01-11 1997-03-04 Kaphammer; Bryan J. tfdA gene selectable markers in plants and the use thereof
GB9403423D0 (en) 1994-02-23 1994-04-13 Unilever Plc Novel exo-(1-4)- beta-D galactanase
US5859351A (en) 1994-04-13 1999-01-12 The Regents Of The University Of California Prf protein and nucleic acid sequences: compositions and methods for plant pathogen resistance
US5981730A (en) 1994-04-13 1999-11-09 The General Hospital Corporation RPS gene family, primers, probes, and detection methods
US5968828A (en) 1994-05-19 1999-10-19 Helsinki University Licensing Ltd. Oy Virus-resistant transgenic plants comprising cells transformed with a polynucleotide encoding a potyviridae P1 protein or P1 protein fragment
US5576202A (en) 1994-05-19 1996-11-19 Helsinki University Licensing, Ltd. Virus-resistant transgenic plants
US5530195A (en) 1994-06-10 1996-06-25 Ciba-Geigy Corporation Bacillus thuringiensis gene encoding a toxin active against insects
US5571706A (en) 1994-06-17 1996-11-05 The United States Of America As Represented By The Secretary Of Agriculture Plant virus resistance gene and methods
KR970007864B1 (en) 1994-07-21 1997-05-17 진로 주식회사 Process of plant which expressing pip of phytolacca insularis nakai
US5795753A (en) 1994-12-08 1998-08-18 Pioneer Hi-Bred International Inc. Reversible nuclear genetic system for male sterility in transgenic plants
US5750868A (en) 1994-12-08 1998-05-12 Pioneer Hi-Bred International, Inc. Reversible nuclear genetic system for male sterility in transgenic plants
DE4444708A1 (en) 1994-12-15 1996-06-20 Basf Ag Use of auxin-type herbicides for the treatment of transgenic crop plants
WO1996021032A1 (en) 1994-12-30 1996-07-11 Asgrow Seed Company Transgenic plants exhibiting heterologous virus resistance
US5877403A (en) 1994-12-30 1999-03-02 Seminis Vegetable Seeds, Inc. Papaya ringspot virus protease gene
EP0871739A1 (en) 1994-12-30 1998-10-21 Seminis Vegetable Seeds, Inc. Plants resistant to c strains of cucumber mosaic virus
AU710145B2 (en) 1995-01-17 1999-09-16 Regents Of The University Of California, The Procedures and materials for conferring disease resistance in plants
US5977434A (en) 1995-01-17 1999-11-02 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
US5952485A (en) 1995-01-17 1999-09-14 The Regents Of The University Of California Procedures and materials for conferring disease resistance in plants
FR2734842B1 (en) 1995-06-02 1998-02-27 Rhone Poulenc Agrochimie DNA SEQUENCE OF A HYDROXY-PHENYL PYRUVATE DIOXYGENASE GENE AND OBTAINING PLANTS CONTAINING A HYDROXY-PHENYL PYRUVATE DIOXYGENASE GENE, TOLERANT TO CERTAIN HERBICIDES
US5767376A (en) 1995-06-07 1998-06-16 University Of Hawaii At Manoa Nucleic acids encoding a papaya ACC synthase gene
CN1192784A (en) 1995-06-07 1998-09-09 先锋高级育种国际公司 Induction of male sterility in plants by expression of high levels of avidin
US6046384A (en) 1995-06-07 2000-04-04 Seminis Vegetable Seeds, Inc. Papaya ringspot virus NIa protease gene
US6040496A (en) 1995-06-30 2000-03-21 Novartis Finance Corporation Use of translationally altered RNA to confer resistance to maize dwarf mosaic virus and other monocotyledonous plant viruses
AU710874B2 (en) 1995-06-30 1999-09-30 Dna Plant Technology Corporation Delayed ripening tomato plants
GB9525474D0 (en) 1995-12-13 1996-02-14 Zeneca Ltd Antifungal proteins
WO1997030163A1 (en) 1996-02-14 1997-08-21 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
US6084153A (en) 1996-02-14 2000-07-04 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
US20020073443A1 (en) 1996-02-28 2002-06-13 Heifetz Peter B. Herbicide tolerance achieved through plastid transformation
US6084164A (en) 1996-03-25 2000-07-04 Pioneer Hi-Bred International, Inc. Sunflower seeds with enhanced saturated fatty acid contents
GB9606906D0 (en) 1996-04-02 1996-06-05 Zeneca Ltd Ripening-related dna from melon
GB9607517D0 (en) 1996-04-11 1996-06-12 Gene Shears Pty Ltd The use of DNA Sequences
HUP0202676A2 (en) 1996-04-30 2002-12-28 Pioneer Hi-Bred International Inc. Transgenic plants with enhanced sulfur amino acid content
DE19619917A1 (en) 1996-05-17 1997-11-20 Max Planck Gesellschaft Potato plants with a reduced activity of the cytosolic starch phosphorylase and a changed germination behavior
US6232528B1 (en) 1996-06-26 2001-05-15 University Of Florida Research Foundation Incorporated Disease resistance in vitis
PL330847A1 (en) 1996-06-27 1999-06-07 Du Pont Plant gene of p-hydroxyphenylpyrogronianic dioxygenase
US5952546A (en) 1996-06-27 1999-09-14 Dna Plant Technology Corporation Delayed ripening tomato plants with T-DNA bearing a truncated ACC2 synthase gene
US5850026A (en) 1996-07-03 1998-12-15 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
DE19650197A1 (en) 1996-12-04 1998-06-10 Bayer Ag 3-thiocarbamoylpyrazole derivatives
US6376754B1 (en) 1997-03-07 2002-04-23 Asgrow Seed Company Plants having resistance to multiple herbicides and its use
US7105724B2 (en) 1997-04-04 2006-09-12 Board Of Regents Of University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms
TW460476B (en) 1997-04-14 2001-10-21 American Cyanamid Co Fungicidal trifluoromethylalkylamino-triazolopyrimidines
US20020092041A1 (en) 1997-08-13 2002-07-11 Pamela C. Ronald Procedures and materials for conferring disease resistance in plants
SK284626B6 (en) 1997-09-18 2005-08-04 Basf Aktiengesellschaft Benzamidoxim derivatives, intermediate products for preparing them, fungicide compounds containing them and using them as fungicides
DE19750012A1 (en) 1997-11-12 1999-05-20 Bayer Ag Isothiazole carboxamides
AU1621799A (en) 1997-12-04 1999-06-16 Dow Agrosciences Llc Fungicidal compositions and methods, and compounds and methods for the preparation thereof
AR017831A1 (en) 1997-12-10 2001-10-24 Pioneer Hi Bred Int METHOD FOR ALTERING THE COMPOSITION OF AMINO ACIDS OF A NATIVE PROTEIN OF INTEREST, PREPARED PROTEIN, AND POLINUCLEOTIDE
US7329802B1 (en) 1998-02-17 2008-02-12 Henry Daniell Genetic engineering of cotton to increase fiber strength, water absorption and dye binding
US7041875B1 (en) 1998-03-18 2006-05-09 Eduardo Blumwald Genetic engineering salt tolerance in crop plants
IT1299184B1 (en) 1998-06-08 2000-02-29 Istituto Agrario Di San Michel NUCLEOTIDE SEQUENCES OF THE APPLE LRPKM1 GENE, AMINO ACID SEQUENCES AND THEIR USES.
WO2000004175A1 (en) 1998-07-14 2000-01-27 Unilever Plc Methods and composition for modulating flavonoid content
US6693185B2 (en) 1998-07-17 2004-02-17 Bayer Bioscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
US6365802B2 (en) 1998-08-14 2002-04-02 Calgene Llc Methods for increasing stearate content in soybean oil
CN1243002C (en) 1998-11-17 2006-02-22 组合化学工业株式会社 Pyrimidinylbenzimidazole and triazinylbenzimidazole derivatives and agricultural/horticultural bactericides
IT1303800B1 (en) 1998-11-30 2001-02-23 Isagro Ricerca Srl DIPEPTID COMPOUNDS HAVING HIGH FUNGICIDE AND AGRICULTURAL USE.
EP1018553B1 (en) 1999-01-08 2005-03-30 Korea Kumho Petrochemical Co. Ltd. Transgenic plants with divergent SCaM4 or SCaM5 gene to achieve multiple disease resistance
JP3417862B2 (en) 1999-02-02 2003-06-16 新東工業株式会社 Silica gel highly loaded with titanium oxide photocatalyst and method for producing the same
AU770077B2 (en) 1999-03-11 2004-02-12 Dow Agrosciences Llc Heterocyclic substituted isoxazolidines and their use as fungicides
WO2000060061A2 (en) 1999-03-31 2000-10-12 Syngenta Participations Ag Transgenic plant resistant to mycotoxins and methods
US6346655B1 (en) 1999-03-31 2002-02-12 Syngenta Participations Ag Trichothecne-Resistant transgenic plants
US6586617B1 (en) 1999-04-28 2003-07-01 Sumitomo Chemical Takeda Agro Company, Limited Sulfonamide derivatives
UA73307C2 (en) 1999-08-05 2005-07-15 Куміаі Кемікал Індастрі Ко., Лтд. Carbamate derivative and fungicide of agricultural/horticultural destination
US6579455B1 (en) 1999-09-09 2003-06-17 Pti Advanced Filtration Filter and valve apparatus
US6472588B1 (en) 1999-09-10 2002-10-29 Texas Tech University Transgenic cotton plants with altered fiber characteristics transformed with a sucrose phosphate synthase nucleic acid
WO2001021821A2 (en) 1999-09-17 2001-03-29 Aventis Cropscience N.V. Insect-resistant rice plants
JP2001095406A (en) 1999-09-30 2001-04-10 Japan Tobacco Inc Creation of male sterile plants
AU3596701A (en) 1999-10-13 2001-05-08 Avestha Gengraine Technologies Private Limited Isolated nucleic acid sequence conferring salt tolerance in rice plant
US6727411B2 (en) 1999-12-13 2004-04-27 Ajinomoto Co., Inc. Method of producing transgenic plants having improved amino acid composition
DE10021412A1 (en) 1999-12-13 2001-06-21 Bayer Ag Fungicidal active ingredient combinations
US6706952B1 (en) 1999-12-15 2004-03-16 Syngenta Participations Ag Arabidopsis gene encoding a protein involved in the regulation of SAR gene expression in plants
ATE290785T1 (en) 2000-01-25 2005-04-15 Syngenta Participations Ag HERBICIDAL COMPOSITION
US6376548B1 (en) 2000-01-28 2002-04-23 Rohm And Haas Company Enhanced propertied pesticides
IL167958A (en) 2000-02-04 2010-11-30 Sumitomo Chemical Co 2-thio 3-hydroxypyridine derivatives
US6864362B2 (en) 2000-03-16 2005-03-08 E. I. Du Pont De Nemours And Company Hypoallergenic transgenic soybeans
US6630618B2 (en) 2000-03-21 2003-10-07 The United States Of America As Represented By The Secretary Of Agriculture Transgenic plants having non-pathogen induced systemic acquired resistance (SAR)
ATE476514T1 (en) 2000-04-18 2010-08-15 Commw Scient Ind Res Org METHOD FOR MODIFYING COTTON OIL CONTENT
WO2001092544A1 (en) 2000-05-30 2001-12-06 University Of Delhi Regulation of lethal gene expression in plants
WO2001096584A2 (en) 2000-06-12 2001-12-20 Akkadix Corporation Materials and methods for the control of nematodes
FR2812883B1 (en) 2000-08-11 2002-10-18 Aventis Cropscience Sa USE OF HPPD INHIBITORS AS SELECTING AGENTS IN PLANT TRANSFORMATION
AR030576A1 (en) 2000-08-25 2003-08-27 Syngenta Participations Ag INSECTICIDE TOXINS AND NUCLEIC ACID SEQUENCES CODING THEM
RU2003110962A (en) 2000-09-18 2004-10-20 Е.И.Дюпон де Немур энд Компани (US) Pyridinyl amides and imides for use as fungicides
AU2864002A (en) 2000-11-17 2002-05-27 Dow Agrosciences Llc Compounds having fungicidal activity and processes to make and use same
US6720481B1 (en) 2001-02-27 2004-04-13 Pioneer Hi-Bred International, Inc. Canola cultivar 46A42
US7154023B2 (en) 2001-03-08 2006-12-26 The Ohio State University Research Foundation Transgenic plants with altered levels of phenolic compounds
MXPA03009323A (en) 2001-04-11 2004-04-18 Cornell Res Foundation Inc Nucleic acid molecules relating to papaya ripening.
JP5034142B2 (en) 2001-04-20 2012-09-26 住友化学株式会社 Plant disease control composition
US20060157072A1 (en) 2001-06-08 2006-07-20 Anthony Albino Method of reducing the harmful effects of orally or transdermally delivered nicotine
WO2003000906A2 (en) 2001-06-22 2003-01-03 Syngenta Participations Ag Plant disease resistance genes
US7294759B2 (en) 2001-06-29 2007-11-13 E. I. Du Pont De Nemours And Company Alteration of oil traits in plants
DE10136065A1 (en) 2001-07-25 2003-02-13 Bayer Cropscience Ag pyrazolylcarboxanilides
AR037228A1 (en) 2001-07-30 2004-11-03 Dow Agrosciences Llc ACID COMPOUNDS 6- (ARIL OR HETEROARIL) -4-AMYNOPYCOLINIC, HERBICIDE COMPOSITION THAT UNDERSTANDS AND METHOD TO CONTROL UNWANTED VEGETATION
FR2828196A1 (en) 2001-08-03 2003-02-07 Aventis Cropscience Sa New iodochromone derivatives, useful for the prevention or cure of plant fungal disorders, especially in cereals, vines, fruits, legumes or ornamental plants
JP3668736B2 (en) 2001-08-07 2005-07-06 独立行政法人農業生物資源研究所 A novel rice gene that regulates salt stress tolerance
KR100879693B1 (en) 2001-08-17 2009-01-21 상꾜 아그로 가부시키가이샤 2-Cyclopropyl-6-methylphenol
NZ531160A (en) 2001-08-20 2005-12-23 Nippon Soda Co Tetrazoyl oxime derivative as active ingredient in agricultural chemical to control plant disease
US7230167B2 (en) 2001-08-31 2007-06-12 Syngenta Participations Ag Modified Cry3A toxins and nucleic acid sequences coding therefor
AU2002361696A1 (en) 2001-12-17 2003-06-30 Syngenta Participations Ag Novel corn event
GB0130199D0 (en) 2001-12-17 2002-02-06 Syngenta Mogen Bv New nematode feeding assay
US7230168B2 (en) 2001-12-20 2007-06-12 The Curators Of The University Of Missouri Reversible male sterility in transgenic plants by expression of cytokinin oxidase
AU2002354251A1 (en) 2001-12-21 2003-07-09 Nissan Chemical Industries, Ltd. Bactericidal composition
TWI327462B (en) 2002-01-18 2010-07-21 Sumitomo Chemical Co Condensed heterocyclic sulfonyl urea compound, a herbicide containing the same, and a method for weed control using the same
DE10204390A1 (en) 2002-02-04 2003-08-14 Bayer Cropscience Ag Disubstituted thiazolylcarboxanilides
EP1334979A1 (en) 2002-02-08 2003-08-13 Kweek-en Researchbedrijf Agrico B.V. Gene conferring resistance to Phytophthera infestans (late-blight) in Solanaceae
DE60314600T2 (en) 2002-03-05 2007-12-27 Syngenta Participations Ag O-CYCLOPROPYL-CARBOXANILIDES AND THEIR USE AS FUNGICIDES
WO2004005485A2 (en) 2002-07-10 2004-01-15 Kansas State University Research Foundation Compositions and methods for controlling parasitic nematodes
US7148397B2 (en) 2002-08-29 2006-12-12 The United States Of America As Represented By The Secretary Of Agriculture Solanum bulbocastanum late blight resistance gene and use thereof
GB0227966D0 (en) 2002-11-29 2003-01-08 Syngenta Participations Ag Organic Compounds
FR2848568B1 (en) 2002-12-17 2005-04-15 Rhobio CHIMERIC GENE FOR THE EXPRESSION OF HYDROXY-PHENYL PYRUVATE DIOXYGENASE IN TRANSPLASTOMIC PLASTS AND PLANTS COMPRISING SUCH A GENE HERBICIDE TOLERANT
WO2004083193A1 (en) 2003-03-17 2004-09-30 Sumitomo Chemical Company, Limited Amide compound and bactericide composition containing the same
CN1784495B (en) 2003-04-09 2011-01-12 拜尔生物科学公司 Methods and means for increasing the tolerance of plants to stress conditions
CN1812811A (en) 2003-06-04 2006-08-02 维克多烟草公司 Method of reducing the harmful effects of orally or transdermally delivered nicotine
IL157538A0 (en) 2003-08-21 2004-03-28 Bar Ilan Res & Dev Company Ltd Plant resistant to cytoplasm-feeding parasites
DE602004029089D1 (en) 2003-10-02 2010-10-21 Monsanto Technology Llc STACKING CHARACTERISTICS TO IMPROVE COMMERCIAL PLANTS IN TRANSGENIC PLANTS
HUP0303778A2 (en) 2003-11-19 2007-06-28 Mezoegazdasagi Biotechnologiai Plant with increased drought resistance
TWI355894B (en) 2003-12-19 2012-01-11 Du Pont Herbicidal pyrimidines
US7317146B2 (en) 2003-12-31 2008-01-08 Pioneer Hi-Bred International, Inc. Production of cereal grain with reduced starch granule size and uses thereof
WO2005073165A1 (en) 2004-01-28 2005-08-11 Mitsui Chemicals, Inc. Amide derivatives, process for production of the same, and method for application thereof as insecticide
AR047598A1 (en) 2004-02-10 2006-01-25 Monsanto Technology Llc TRANSGENIZED CORN SEED WITH GREATER AMINO ACID CONTENT
CA2553715C (en) 2004-02-18 2012-08-28 Ishihara Sangyo Kaisha, Ltd. Anthranilamide compounds, process for their production and pesticides containing them
US7622301B2 (en) 2004-02-24 2009-11-24 Basf Plant Science Gmbh Compositions and methods using RNA interference for control of nematodes
BRPI0508337A (en) 2004-03-10 2007-07-24 Basf Ag compounds, processes for their preparation, fungicidal agent, seed, and process for combating phytopathogenic harmful fungi
BRPI0508281B1 (en) 2004-03-10 2015-04-14 Basf Ag Compounds, process for their preparation, fungicidal agent, seed, and process for combating phytopathogenic harmful fungi
US7838733B2 (en) 2004-04-30 2010-11-23 Dow Agrosciences Llc Herbicide resistance genes
US20080020999A1 (en) 2004-06-03 2008-01-24 Klapproth Michael C Fungicidal Mixtures Of Amidinylphenyl Compounds
BRPI0512118A (en) 2004-06-18 2008-02-06 Basf Ag compound, process to combat harmful fungi, and fungicidal agent
BRPI0512121A (en) 2004-06-18 2008-02-06 Basf Ag compound, process for combating harmful fungi, fungicidal agent, and use of compounds
CN101128588A (en) 2004-08-11 2008-02-20 孟山都技术有限公司 Enhanced zein reduction in transgenic corn seed
GB0418048D0 (en) 2004-08-12 2004-09-15 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
US7659444B2 (en) 2004-08-13 2010-02-09 Basf Plant Science Gmbh Compositions and methods using RNA interference for control of nematodes
WO2006042145A2 (en) 2004-10-07 2006-04-20 Cornell Research Foundation, Inc. THE RICE BACTERIAL BLIGHT DISEASE RESISTANCE GENE xa5
CN101056534B (en) 2004-10-13 2012-10-10 乔治亚大学研究基金会公司 Nematode resistant transgenic plants
AU2005296529B2 (en) 2004-10-20 2011-03-24 Ihara Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
AR051690A1 (en) 2004-12-01 2007-01-31 Basf Agrochemical Products Bv MUTATION INVOLVED IN THE INCREASE OF TOLERANCE TO IMIDAZOLINONE HERBICIDES IN PLANTS
US20080229448A1 (en) 2004-12-20 2008-09-18 Mendel Biotechnology, Inc. Plant Stress Tolerance from Modified Ap2 Transcription Factors
DE502006001074D1 (en) 2005-02-16 2008-08-21 Basf Se 5-ALKOXYALKYL-6-ALKYL-7-AMINO-AZOLOPYRIMIDINE, METHOD FOR THE PRODUCTION THEREOF, AND ITS USE FOR THE CONTROL OF HARMFUL FUNGI AND THE MEDIUM CONTAINING THE SAME
DE102005007160A1 (en) 2005-02-16 2006-08-24 Basf Ag Pyrazolecarboxylic acid anilides, process for their preparation and compositions containing them for controlling harmful fungi
DE102005008021A1 (en) 2005-02-22 2006-08-24 Bayer Cropscience Ag New spiroketal-substituted cyclic ketoenol compounds used for combating animal parasites, undesired plant growth and/or undesired microorganisms
DE102005009458A1 (en) 2005-03-02 2006-09-07 Bayer Cropscience Ag pyrazolylcarboxanilides
US20060225152A1 (en) 2005-04-04 2006-10-05 E.I. Du Pont De Nemours And Company Polynucleotides and methods for making plants resistant to fungal pathogens
US7417181B2 (en) 2005-04-07 2008-08-26 The Samuel Roberts Noble Foundation Plants with increased phosphorous uptake
AP2344A (en) 2005-07-07 2011-12-28 Basf Ag N-Thio-anthranilamid compounds and their use as pesticides.
WO2007013150A1 (en) 2005-07-27 2007-02-01 Mitsui Chemicals, Inc. Pest control composition
AU2005336142B2 (en) 2005-09-06 2011-09-01 Stichting Wageningen Research A transgenic plant having enhanced drought tolerance
EP2251336A1 (en) 2005-10-14 2010-11-17 Sumitomo Chemical Company, Limited Hydrazide compounds as intermediates of pesticides
TWI396682B (en) 2006-01-13 2013-05-21 Dow Agrosciences Llc 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
WO2007090624A2 (en) 2006-02-09 2007-08-16 Syngenta Participations Ag A method of protecting a plant propagation material, a plant, and/or plant organs
AR059433A1 (en) 2006-02-10 2008-04-09 Monsanto Technology Llc IDENTIFICATION AND USE OF WHITE GENES FOR THE CONTROL OF PARASITE PLANT NEMATODES
DE102006015197A1 (en) 2006-03-06 2007-09-13 Bayer Cropscience Ag Active ingredient combination with insecticidal properties
US20070214515A1 (en) 2006-03-09 2007-09-13 E.I.Du Pont De Nemours And Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2007101369A1 (en) 2006-03-09 2007-09-13 East China University Of Science And Technology Preparation method and use of compounds having high biocidal activities
US20080092255A1 (en) 2006-03-27 2008-04-17 Edgerton Michael D Methods of producing and using cold temperature tolerant plants, seeds, and crops
WO2008034648A1 (en) 2006-04-05 2008-03-27 Metanomics Gmbh Process for the production of a fine chemical
US20070261136A1 (en) 2006-05-02 2007-11-08 Pioneer Hi-Bred International, Inc. High Amylopectin Maize
WO2007131699A2 (en) 2006-05-12 2007-11-22 Bayer Bioscience N.V. Novel stress-related microrna molecules and uses thereof
US7632982B2 (en) 2006-06-23 2009-12-15 Monsanto Technology Llc Drought responsive promoters HVA22e and PLDδ identified from Arabidopsis thaliana
CN101511865A (en) 2006-08-10 2009-08-19 巴斯福植物科学有限公司 Method of increasing resistance against soybean rust in transgenic plants
DE102006057036A1 (en) 2006-12-04 2008-06-05 Bayer Cropscience Ag New biphenyl substituted spirocyclic ketoenol derivatives useful for the manufacture of herbicides and for combating parasites
CA2674499A1 (en) 2007-02-06 2008-08-14 Basf Plant Science Gmbh Use of alanine racemase genes to confer nematode resistance to plants
MX2009007608A (en) 2007-02-06 2009-07-27 Basf Plant Science Gmbh Compositions and methods using rna interference for control of nematodes.
US7432421B2 (en) 2007-02-28 2008-10-07 Pioneer Hi-Bred International, Inc. Soybean variety XB30E07
WO2008134969A1 (en) 2007-04-30 2008-11-13 Sinochem Corporation Benzamide compounds and applications thereof
HUE035062T2 (en) 2008-01-15 2018-05-02 Bayer Ip Gmbh Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
TW201002208A (en) 2008-04-07 2010-01-16 Bayer Cropscience Ag Combinations of biological control agents and insecticides or fungicides
CN101333213B (en) 2008-07-07 2011-04-13 中国中化股份有限公司 1-substituted pyridyl-pyrazol acid amide compounds and use thereof
BRPI0916218B1 (en) 2008-07-17 2018-11-27 Bayer Cropscience Ag heterocyclic compounds as pesticides compositions
US8853440B2 (en) * 2008-08-13 2014-10-07 Mitsui Chemicals Agro, Inc. Method for producing amide derivative
US8686044B2 (en) * 2008-08-13 2014-04-01 Mitsui Chemicals Agro, Inc. Amide derivative, pest control agent containing the amide derivative, and use of the amide derivative
CN102119143B (en) 2008-08-13 2017-07-21 三井化学Agro株式会社 Amide derivatives, the noxious organism control agent containing the amide derivatives and its application method
TWI607996B (en) 2008-09-24 2017-12-11 巴地斯顏料化工廠 Pyrazole compounds for controlling invertebrate pests
CN101715774A (en) 2008-10-09 2010-06-02 浙江化工科技集团有限公司 Preparation and use of compound having insecticidal activity
BRPI0914500A2 (en) * 2008-10-21 2015-08-11 Basf Se "pest control method, method of increasing plant health of a cultivated plant, seed of a cultivated plant, composition, method of producing an agricultural product, use of a composition and uses of a pesticide"
AR075467A1 (en) * 2008-10-22 2011-04-06 Basf Se USE OF OXIDASE PROTOPORPHYRINOGEN INHIBITORS IN CULTIVATED PLANTS
WO2010046463A1 (en) 2008-10-23 2010-04-29 Basf Se Use of selected insecticides on cultivated plants
CN101747276B (en) 2008-11-28 2011-09-07 中国中化股份有限公司 Ether compound with nitrogenous quinary alloy and application thereof
GB0823002D0 (en) 2008-12-17 2009-01-28 Syngenta Participations Ag Isoxazoles derivatives with plant growth regulating properties
CN101747320B (en) 2008-12-19 2013-10-16 华东理工大学 Dialdehyde-built nitrogen or oxygen-containing heterocyclic compound with insect-killing activity and preparation method
UA107791C2 (en) 2009-05-05 2015-02-25 Dow Agrosciences Llc Pesticidal compositions
MA33331B1 (en) 2009-05-06 2012-06-01 Syngenta Participations Ag 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDES FOR USE IN COMBATING PESTS
WO2011028657A1 (en) 2009-09-01 2011-03-10 Dow Agrosciences Llc Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
CN102093389B (en) 2009-12-09 2014-11-19 华东理工大学 Duplex and oxygen bridge heterlcyclic ring anabasine compound and preparation method thereof
KR101719854B1 (en) 2009-12-22 2017-03-24 미쓰이가가쿠 아그로 가부시키가이샤 Plant disease control composition and method for controlling plant diseases by applying the composition
WO2011085575A1 (en) 2010-01-15 2011-07-21 江苏省农药研究所股份有限公司 Ortho-heterocyclyl formanilide compounds, their synthesis methods and use
CN102126994B (en) 2010-01-19 2014-07-09 中化蓝天集团有限公司 Benzophenone hydrazone derivative and preparation method and application thereof
CN102740695B (en) 2010-01-29 2015-04-22 三井化学Agro株式会社 Composition for control of animal parasites, and method for control of animal parasites
JP2011157296A (en) 2010-01-29 2011-08-18 Mitsui Chemicals Agro Inc Pest-controlling composition
JP2011157295A (en) 2010-01-29 2011-08-18 Mitsui Chemicals Agro Inc Insect damage-controlling composition for plant seed, and method for preventing insect damage
JP2011157294A (en) 2010-01-29 2011-08-18 Mitsui Chemicals Agro Inc Pest-controlling composition
MY162552A (en) 2010-04-28 2017-06-15 Sumitomo Chemical Co Plant disease control composition and its use
CA2800369C (en) 2010-05-31 2018-07-10 Basf Se Method for increasing the health of a plant
CN103119036B (en) 2010-06-28 2018-05-08 拜耳知识产权有限责任公司 Heterocyclic compound as insecticide
CA2808144C (en) 2010-08-31 2019-01-22 Meiji Seika Pharma Co., Ltd. Amine derivatives as pest control agents
CN101935291B (en) 2010-09-13 2013-05-01 中化蓝天集团有限公司 Cyano phthalic diamide compounds, preparation method thereof and use thereof as agricultural chemical pesticide
CN101967139B (en) 2010-09-14 2013-06-05 中化蓝天集团有限公司 Fluoro methoxylpyrazole-containing o-formylaminobenzamide compound, synthesis method and application thereof
BR112013014913A2 (en) 2010-12-20 2016-07-19 Basf Se pesticide mixtures, pesticidal or parasiticidal composition, method to protect vegetables from insect attack or infestation, to control insects, to control harmful phytopathogenic fungi, to protect vegetables from harmful phytopathogenic fungi, to protect material propagation of plants, for the protection of animals against parasitic infestation or infection, for the treatment of parasites infected or infected with
RS54848B1 (en) 2011-04-21 2016-10-31 Basf Se Novel pesticidal pyrazole compounds
EP2532233A1 (en) 2011-06-07 2012-12-12 Bayer CropScience AG Active compound combinations
WO2013003977A1 (en) 2011-07-01 2013-01-10 合肥星宇化学有限责任公司 Compound of 2,5-disubstituted-3-nitroimino-1,2,4-triazoline and preparation method and use as pesticide thereof
KR101641800B1 (en) 2011-07-13 2016-07-21 바스프 아그로 비.브이. Fungicidal substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
WO2013010862A1 (en) 2011-07-15 2013-01-24 Basf Se Fungicidal alkyl-substituted 2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
AR087516A1 (en) 2011-08-12 2014-03-26 Basf Se N-TIO-ANTRANILAMIDE COMPOUNDS AND THEIR USES AS PESTICIDES
CN103827103A (en) 2011-08-12 2014-05-28 巴斯夫欧洲公司 N-thio-anthranilamide compounds and their use as pesticides
JP6005652B2 (en) 2011-09-26 2016-10-12 日本曹達株式会社 Agricultural / horticultural fungicide composition
AU2012317415B2 (en) 2011-09-29 2016-08-25 Mitsui Chemicals Crop & Life Solutions, Inc. Production method for 4, 4-difluoro-3,4-dihydroisoquinoline derivative
WO2013050317A1 (en) 2011-10-03 2013-04-11 Syngenta Limited Polymorphs of an isoxazoline derivative
TWI577286B (en) 2011-10-13 2017-04-11 杜邦股份有限公司 Solid forms of nematocidal sulfonamides
ES2590466T7 (en) 2011-12-21 2018-05-22 Basf Se Use of strobilurin-type compounds to combat phytopathogenic fungi resistant to Qo inhibitors
PE20190346A1 (en) 2012-02-27 2019-03-07 Bayer Ip Gmbh ACTIVE COMPOUND COMBINATIONS
CA2864993C (en) 2012-02-29 2020-03-24 Meiji Seika Pharma Co., Ltd. Pest control composition including novel iminopyridine derivative
US9282739B2 (en) 2012-04-27 2016-03-15 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
JP6107377B2 (en) 2012-04-27 2017-04-05 住友化学株式会社 Tetrazolinone compounds and uses thereof
MX351463B (en) 2012-08-31 2017-10-16 Zoetis Services Llc Crystalline forms of 1-(5'-(5-(3,5-dichloro-4-fluorophenyl)-5-(tr ifluoromethyl)-4,5-dihydroisoxazol-3-yl)-3'h-spiro[azetidine-3,1 '-isobenzofuran]-1-yl)-2-(methylsulfonyl)ethanone.
US20150250174A1 (en) * 2012-10-01 2015-09-10 Basf Se Use of n-thio-anthranilamide compounds on cultivated plants
WO2014090918A1 (en) 2012-12-13 2014-06-19 Novartis Ag Process for the enantiomeric enrichment of diaryloxazoline derivatives
WO2014119752A1 (en) * 2013-01-31 2014-08-07 三井化学アグロ株式会社 Condensed cyclic pyrimidine compound, and noxious organism control agent comprising same
CN105121416B (en) 2013-02-14 2018-12-04 日产化学工业株式会社 The crystalline polymorphic form and its manufacturing method of isoxazoline substituted benzamide compound
TWI652014B (en) 2013-09-13 2019-03-01 美商艾佛艾姆希公司 Heterocyclic substituted bicycloazole insecticide
EA201600326A1 (en) 2013-10-18 2016-10-31 Басф Агрокемикэл Продактс Б.В. APPLICATION OF PESTICIDAL ACTIVE DERIVATIVE CARBOXAMIDE IN METHODS OF APPLICATION AND TREATMENT OF SEEDS AND SOIL
MX2016005028A (en) 2013-10-18 2016-10-26 Basf Agrochemical Products Bv Insecticidal active mixtures comprising carboxamide compound.
KR102310373B1 (en) 2013-10-18 2021-10-08 바스프아그로케미칼 프로덕츠 비.브이. Agricultural mixtures comprising carboxamide compound
CR20160397A (en) * 2014-01-31 2016-10-27 Basf Se PIRAZOLES FOR THE CONTROL OF INVERTEBRATE PESTS
AR099677A1 (en) * 2014-03-07 2016-08-10 Sumitomo Chemical Co FUSION HETEROCYCLIC COMPOUND AND ITS USE FOR PEST CONTROL
WO2016059240A1 (en) * 2014-10-16 2016-04-21 Basf Se Method and pesticidal mixtures for controlling pentatomidae pests
JP2015131815A (en) * 2015-02-07 2015-07-23 住友化学株式会社 Plant disease control composition and use thereof
AU2016231152A1 (en) 2015-03-11 2017-09-28 Basf Agrochemical Products B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
MX2017013395A (en) 2015-04-17 2018-06-13 Basf Agrochemical Products Bv Method for controlling non-crop pests.
JP2015166386A (en) 2015-06-05 2015-09-24 住友化学株式会社 Pest control method in soybean
JP2015199758A (en) * 2015-06-15 2015-11-12 住友化学株式会社 Composition for agricultural chemicals and method for promoting plant growth

Also Published As

Publication number Publication date
US11064696B2 (en) 2021-07-20
CA2980505A1 (en) 2016-10-13
WO2016162371A1 (en) 2016-10-13
US20180199570A1 (en) 2018-07-19
BR112017021450A2 (en) 2018-07-03

Similar Documents

Publication Publication Date Title
EP3601298B1 (en) Process for preparing chiral 2,3-dihydrothiazolo[3,2-a]pyrimidin-4-ium compounds
US11064696B2 (en) Use of an insecticidal carboxamide compound against pests on cultivated plants
CN108779121A (en) Dicyclic compound
WO2016038067A1 (en) Use of afidopyropene in genetically modified plants
CN106795178A (en) Substituted pyrimidines compound for preventing and treating animal pest
CN107428741A (en) The cyclic compound substituted by fused ring system
CN105939999A (en) Pyrazoles for controlling invertebrate pests
CN107108493A (en) The oxazoline compound replaced by carbocyclic fused member ring systems
US20190082696A1 (en) Method for controlling pests of plants
US11076600B2 (en) Mixtures of cis-jasmone and bacillus amyloliquefaciens
JP7433244B2 (en) Mixtures containing benzpyrimoxane and oxazosulfil and methods of use and application thereof
WO2016091674A1 (en) Use of cyclaniliprole on cultivated plants
EP3628157A1 (en) Method of controlling insecticide resistant insects and virus transmission to plants
CN108699075A (en) Spirocyclic derivatives
CN108137537A (en) The imino-compound with 2- chlorine pyrimidine -5- base substituent groups as nuisance control agent
US11297837B2 (en) Pesticidally activi mixtures comprising anthranilamide compounds
ES2812779T3 (en) Compositions containing cis-jasmone and Bacillus amyloliquefaciens
CN115443267A (en) Pesticidal compounds
CN116234444A (en) Mixtures with insecticidal activity comprising sulfur-containing heterocyclylalkoxy compounds, oxides or salts thereof
WO2016030108A1 (en) Use of chlorfenapyr and teflubenzuron on genetically modified plants
TW202012418A (en) Pyrimidinium compounds and their mixtures for combating animal pests
WO2018055479A1 (en) Use of pyripyropene compounds for reducing viral transmission
WO2016034352A1 (en) Use of n-thio-anthranilamide compounds on cultivated plants
WO2016146586A1 (en) Use of cyclaniliprole on cultivated plants
BR112017021450B1 (en) PEST CONTROL METHODS, PLANT HEALTH IMPROVEMENT METHOD AND COATED SEED

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BASF SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIKULJAK, TATJANA;REINHARD, ROBERT;DAESCHNER, KLAUS;SIGNING DATES FROM 20170802 TO 20170808;REEL/FRAME:043838/0890

Owner name: BASF CORPORATION, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AREVALO, ALEJANDRO;REEL/FRAME:043839/0004

Effective date: 20170807

AS Assignment

Owner name: BASF AGROCHEMICAL PRODUCTS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BASF SE;REEL/FRAME:044147/0877

Effective date: 20171113

Owner name: BASF AGROCHEMICAL PRODUCTS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BASF CORPORATION;REEL/FRAME:044146/0960

Effective date: 20171106

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO EX PARTE QUAYLE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE