US20180056637A1 - Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same - Google Patents

Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same Download PDF

Info

Publication number
US20180056637A1
US20180056637A1 US15/682,612 US201715682612A US2018056637A1 US 20180056637 A1 US20180056637 A1 US 20180056637A1 US 201715682612 A US201715682612 A US 201715682612A US 2018056637 A1 US2018056637 A1 US 2018056637A1
Authority
US
United States
Prior art keywords
heat
sheet
polyvinyl chloride
insulating transparent
phr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/682,612
Other languages
English (en)
Inventor
Te-Chao Liao
Ying-Te Huang
Chen-Ho LAI
Chao-Hsien Lin
Ching-Yao Yuan
Teng-Ko MA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nan Ya Plastics Corp
Original Assignee
Nan Ya Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nan Ya Plastics Corp filed Critical Nan Ya Plastics Corp
Assigned to NAN YA PLASTICS CORPORATION reassignment NAN YA PLASTICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, YING-TE, LAI, CHEN-HO, LIAO, TE-CHAO, LIN, CHAO-HSIEN, MA, TENG-KO, YUAN, CHING-YAO
Publication of US20180056637A1 publication Critical patent/US20180056637A1/en
Priority to US16/409,198 priority Critical patent/US10696030B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06905Using combined techniques for making the preform
    • B29C49/0691Using combined techniques for making the preform using sheet like material, e.g. sheet blow-moulding from joined sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D17/00Rubidium, caesium or francium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D17/00Rubidium, caesium or francium compounds
    • C01D17/003Compounds of alkali metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • B29C2049/4825Moulds with incorporated heating or cooling means for cooling moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/324Alkali metal phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a weatherable heat-insulating transparent polyvinyl chloride sheet (hereinafter referred to as weatherable PVC sheet) and a process for producing the same. More particularly, the weatherable PVC sheet possesses a long-term service life to keep more excellent in visible light transmittance property as well as infrared-blocking property than prior arts.
  • Heat-insulating transparent sheets themselves for use in being covered to building glasses, car windows or showcase freezers to transmit visible light and block infrared (IR) as well as ultraviolet (UV) are required to have physical properties excellent in not only visual transparency, but also infrared and ultraviolet cutting-off effect.
  • PVC sheet polyvinyl chloride
  • the PVC sheet when a PVC sheet is used to cover onto building glass and car windows, the PVC sheet must further have UV-shielding capacity to protect human body from UV sunburn because ultraviolet in wavelength ranged from 200 nm to 400 nm in sunlight can cause a certain level of damage to human body.
  • the conventional processes for producing the aforesaid PVC sheet include a dry-coating process and a wet-coating process, but the produced PVC sheet in practical application subject to physical properties decayed quickly has a shorter service life.
  • a PVC sheet 10 made by the dry-coating process has a metal, metallic oxide or inorganic material 12 uniformly attached on a plastic substrate 11 by a vacuum sputtering or evaporating process as a heat-insulating layer.
  • heat-insulating inorganic particles 22 are distributed uniformly in an appropriate resin 23 and solvent to form a coating liquid with appropriate viscosity for coating on a plastic substrate 21 .
  • the inorganic particles 22 and the resin 23 become a heat-insulating layer attached on the plastic substrate 21 .
  • the conventional method for making the aforesaid PVC sheet is complicatedly composed of at least two procedures.
  • the first procedure is to prepare a matrix membrane (or called substrate) and then the second procedure is to apply or deposit infrared-blocking or ultraviolet-shielding material onto the matrix membrane surface.
  • ATO antimony tin oxide
  • AZO antimony zinc oxide
  • LaB 6 lanthanum hexaboride
  • CeB 6 cerium hexaboride
  • a transparent heat-shielding film itself if formed from prior conventional method is irradiated with an accelerated weathering tester to perform a 300-hour service life test (or called QUV300 hr weatherability test) in line with ASTM G-154 specifications, resulted in that a physical property of regarding a sum of a visible light transmittance (VLT %) plus an infrared cut rate (IR cut %) of the transparent heat-shielding film itself is subject to decay at least 10 percentage (i.e., 10%). Accordingly, it is meant that the transparent heat-shielding film formed from prior conventional method is so inferior in weatherability.
  • the present invention provides a weatherable heat-insulating transparent polyvinyl chloride sheet having a thickness of ranging from 0.02 mm to 2.0 mm and possesses an excellent weatherability in respect of a visible light transmittance as well as infrared cut rate (IR cut %), and particularly, if performed a test in 300-hour service life in line with ASTM G-154 specification, having a physical property of regarding a sum of a visible light transmittance (VLT %) plus an infrared cut rate (IR cut %) of the sheet decayed smaller than five percentage.
  • the invented weatherable PVC sheet of the present invention has better retention of heat insulation effects, slower decay, and superior light transmittance as well as infrared shielding ability.
  • the present invention further provides a weatherable PVC sheet formed from a PVC mixture including (a) 100 PHR (parts per hundred resin) of a polyvinyl chloride resin; (b) 0.1-60 PHR of a plasticizer; (c) 1-10 PHR of epoxidized soybean oil (ESBO); (d) 0.1-10 PHR of a stabilizer; (e) 0.05-5.0 PHR of an ultraviolet absorber; (f) 0.05-0.2 PHR of a coupling agent; and (g) 5.5-7.5 PHR of a heat-insulation paste.
  • a weatherable PVC sheet formed from a PVC mixture including (a) 100 PHR (parts per hundred resin) of a polyvinyl chloride resin; (b) 0.1-60 PHR of a plasticizer; (c) 1-10 PHR of epoxidized soybean oil (ESBO); (d) 0.1-10 PHR of a stabilizer; (e) 0.05-5.0 PHR of an ultraviolet absorber; (f) 0.05-0.2 PHR of
  • the present invention features the composition (g) of heat-insulation paste of the PVC mixture for use in making the weatherable PVC sheet is made by preparing a mixture of a heat-insulation wolfram cesium powder (WCs), a dispersant and a plasticizer, and being ground to a nano-sized particle ranged from 40 nm to 110 nm.
  • heat-insulation paste of the PVC mixture has the following composition made to 100 wt %:
  • the present invention further features the wolfram cesium powder (WCs) of the heat-insulation paste of the PVC mixture has a particle size ranged from 0.005 ⁇ m to 2 ⁇ m, and is a kind of composite tungsten oxychloride powder with a chemical formula of Cs X N Y WO 3-Z Cl C , where Cs is cesium; N is tin (Sn) or antimony (Sb) or bismuth (Bi); W is wolfram; O is oxygen; and X, Y, Z, C are all positive numbers, with the following relationship satisfied:
  • the present invention further provides a process for producing the weatherable PVC sheet to allow the aforesaid PVC mixture, after undergone a calendaring process by a calendar, or undergone a T-Die process by a T-Die machine, or undergone a blow-molding process by a blow-molding machine, to become the weatherable PVC sheet, which possesses an excellent weatherability in respect of a visible light transmittance as well as infrared cut rate (IR cut %), and particularly, if performed a test in 300-hour service life in line with ASTM G-154 specification, having a physical property of regarding a sum of a visible light transmittance (VLT %) plus an infrared cut rate (IR cut %) of the sheet decayed smaller than five percentage.
  • VLT visible light transmittance
  • IR cut % infrared cut rate
  • the produced weatherable PVC sheet of the present invention itself due to having the inventive heat-insulation paste evenly distributed over the PVC sheet has a self-adhesive capacity so it is suitable for family use.
  • the weatherable PVC sheet may provide different levels of heat insulation and transmittance, and is suitable for various applications, such as building glass, car windows and showcase freezers, etc. It is also ideal for family do it yourself (DIY), industrial use and other applications where energy conservation is a concern.
  • FIG. 1 is a cross-sectional enlarged view of a heat-insulating transparent sheet produced by a conventional dry-coating process
  • FIG. 2 is a cross-sectional enlarged view of a heat-insulating transparent sheet produced by a conventional wet-coating process
  • FIG. 3 is a cross-sectional enlarged view of a weatherable PVC sheet of the present invention produced by a disclosed process of the present invention
  • FIG. 4 is a schematic view showing that two layers of the weatherable PVC sheet of FIG. 3 are stacked together as a multi-layered weatherable PVC sheet for use;
  • FIG. 5 is a schematic view showing that one layer of the weatherable PVC sheet of FIG. 3 is laminated with other plastic matrix together as a complex-layered weatherable PVC sheet for use;
  • FIG. 6 is a schematic view showing that a plastic matrix is interleaved into two layers of the weatherable PVC sheets of FIG. 3 together for use.
  • a weatherable heat-insulating transparent polyvinyl chloride sheet (or abbreviated as weatherable PVC sheet) 30 of the present invention is a soft, semi-hard or hard sheet having a thickness of ranging from 0.02 mm to 2.0 mm and contains a PVC substrate 31 having heat-insulation pastes 32 evenly distributed over the PVC substrate 31 .
  • the weatherable PVC sheet 30 is formed from a PVC mixture including (a) 100 PHR of a polyvinyl chloride resin; (b) 0.1-60 PHR of a plasticizer; (c) 1-10 PHR of epoxidized soybean oil (ESBO); (d) 0.1-10 PHR of a stabilizer; (e) 0.05-5.0 PHR of an ultraviolet absorber; (f) 0.05-0.2 PHR of a coupling agent; and (g) 5.5-7.5 PHR of the heat-insulation paste 32 .
  • a PVC mixture including (a) 100 PHR of a polyvinyl chloride resin; (b) 0.1-60 PHR of a plasticizer; (c) 1-10 PHR of epoxidized soybean oil (ESBO); (d) 0.1-10 PHR of a stabilizer; (e) 0.05-5.0 PHR of an ultraviolet absorber; (f) 0.05-0.2 PHR of a coupling agent; and (g) 5.5-7.5 PHR of the heat-insulation paste 32 .
  • the heat-insulation paste 32 of the PVC mixture of the present invention being ground to have a nano-sized particle ranged from 40 nm to 110 nm, is prepared by a mixture having the following composition made to 100 wt %:
  • WCs wolfram cesium powder
  • a dispersant preferably polymeric co-polymer dispersants
  • a plasticizer preferably 1,2-cyclohexanedicarboxylic acid diisononyl ester (DHIN).
  • the wolfram cesium powder (WCs) of the heat-insulation paste 32 is a kind of composite tungsten oxychloride powder with a chemical formula of Cs X N Y WO 3-Z Cl C , where Cs is cesium; N is tin (Sn) or antimony (Sb) or bismuth (Bi); W is wolfram; O is oxygen; and X, Y, Z, C are all positive numbers, with the following relationship satisfied:
  • the aforesaid dispersant may be one or more selected from polymeric co-polymer dispersants, silicon-containing dispersants, and fluorine-containing dispersants.
  • the dispersant serves to have the heat-insulation paste 32 evenly distributed over the weatherable PVC sheet 30 of the present invention.
  • heat-insulation paste 32 of the present invention sized in nano-sized particle ranged from 40 nm to 110 nm is performed with yttrium-zirconium beads. And, a mixture of the heat-insulation paste 32 of the present invention is prepared by having 10-18 wt % of wolfram cesium powder (WCs) added into 77-88 wt % of the plasticizer of DHIN, and 2-5 wt % of a polymeric dispersant is added.
  • WCs wolfram cesium powder
  • a process for grinding the mixture with yttrium-zirconium beads is performed to obtain a dispersed heat-insulation paste 32 with a particle size ranged from 40 nm to 110 nm.
  • the particle size of the dispersed heat-insulation paste 32 is determined by the following two grinding conditions:
  • Single-stage grinding parameters include grinding beads of 0.2-0.6 mm in diameter being used; medium filling rate of 80-95%; sieving size of 15-100 ⁇ m; grinding temperature below 50° C. and grinding time of 6-12 hours.
  • a process for producing the disclosed weatherable PVC sheet 30 of the present invention comprises the following steps:
  • the polyvinyl chloride (PVC) resin can be one or a composition of more than one of a PVC polymer or copolymer made by bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization.
  • the plasticizer used in step a) of the process for producing the weatherable PVC sheet 30 is one or more selected from plasticizers based on phosphates, phthalates, trimellitates, epoxides, polyesters, chlorinated hydrocarbons and aliphatic dicarboxylic esters.
  • the phthalate-based plasticizer is preferably one or more selected from C9-C11 dialkyl phthalate (commercially available from 911P made by Nan Ya Plastic Corporation, Taiwan), di-isononyl phthalate (DINP), di-2-ethylhexyl phthalate (DEHP), di-butyl phthalate (DBP), di-iso-decyl phthalate (DIDP) or di-2-ethylhexyl terePhthalate (DOTP).
  • C9-C11 dialkyl phthalate commercially available from 911P made by Nan Ya Plastic Corporation, Taiwan
  • DINP di-isononyl phthalate
  • DEHP di-2-ethylhexyl phthalate
  • DBP di-butyl phthalate
  • DIDP di-iso-decyl phthalate
  • DIDP di-2-ethylhexyl terePhthalate
  • the aliphatic dicarboxylic ester-based plasticizer is one or more selected from di-isononyl adipate (DINA) or dioctyl adipate (DOA).
  • DINA di-isononyl adipate
  • DOA dioctyl adipate
  • trimellitate-based is preferably one or more selected from tris (2-ethylhexyl) trimellitate (TOTM).
  • the polyester-based plasticizer is one or more selected from 1,2-cyclohexanedicarboxylic acid diisononyl ester (DHIN) and bis(2-ethylhexyl) cyclohexane-1,2-dicarboxylate (DHEH).
  • DHIN 1,2-cyclohexanedicarboxylic acid diisononyl ester
  • DHEH bis(2-ethylhexyl) cyclohexane-1,2-dicarboxylate
  • the heat-insulation paste 32 containing nano-sized composite tungsten oxychlorides of 0.005-2 ⁇ m used in step a) has a particle size of 40 nm-110 nm, and the particle size of the heat-insulation paste 32 depends on practical needs for various physical properties such as transparency and haze.
  • the stabilizer used may be one or more composite stabilizers selected from Ba—Zn stabilizers, Ca—Zn stabilizers and organic tin stabilizers.
  • an auxiliary may be added and selected from one or more of modifiers, dispersants, and ultraviolet absorbers.
  • the additive auxiliary agent serves to evenly distribute the heat-insulation paste 32 of the present invention over in the PVC substrate 31 of the weatherable PVC sheet 30 .
  • the coupling agent may be one or more of an organic silane compound coupling agent, an organic Zr—Al compound coupling agent and organic titanium aluminide, which is favorable to processing and prevents precipitation.
  • the ultraviolet (UV) absorber may be one or more selected from a hydroxy-phenyl benzotriazole ultraviolet absorber, and a hydroxybenzophenone ultraviolet absorber.
  • the disclosed weatherable PVC sheet 30 of the present invention may be used with one layer or may be stacked into a multi-layered structure for increased thickness to replace glass.
  • a multi-layered weatherable PVC sheet 40 of the present invention is formed from two layers of the weatherable PVC sheet 30 stacked together for use.
  • a complex-layered weatherable PVC sheet 50 of the invention is formed from laminating one layer of the weatherable PVC sheet 30 with other plastic matrix 40 together for use.
  • another complex-layered weatherable PVC sheet 60 of the present invention is formed from interleaving one layer of plastic matrix 40 into two layers of the weatherable PVC sheet 30 of the present invention together for use.
  • the weatherable PVC sheet 30 produced from the aforesaid process of the present invention possesses an excellent weatherability in respect of a visible light transmittance as well as infrared cut rate (IR cut %), and particularly, if performed a test in 300-hour service life in line with ASTM G-154 specification, having a physical property of regarding a weatherability decay rate (%), which is defined from the difference ratio in percentage of VLT % plus IR cut % (i.e., VLT %+IR cut %) before and after the test, is decayed smaller than five percentage (i.e., 5%).
  • the transmittance and the haze of a PVC sheet are tested with the TC-H ⁇ Haze Meter produced by Tokyo Denshoku Co., Ltd. of Japan, and the test is conducted according to the JIS K7705 testing standard.
  • VLT visible light transmittance
  • the infrared cut rate of a PVC sheet is tested with the LT-3000 infrared cut rate tester produced by HOYA of Japan, and the test is conducted according to the JIS R3106 testing standard.
  • the ultraviolet cut rate of a PVC sheet is tested with the LT-3000 infrared cut rate tester produced by HOYA of Japan, and the test is conducted according to the JIS R3106 testing standard.
  • the 300-hour service life test (or QUV300 hr weatherability test) is performed to a specimen of PVC sheet with the following parameters:
  • the specimen of the PVC sheet received (1) a test for visible light transmission and haze, and (2) a test for infrared shielding ability, where test specimen of the PVC sheet were tested for the sum of a visible light transmittance (VLT %) plus an infrared cut rate (IR cut %) of the PVC sheet.
  • VLT visible light transmittance
  • IR cut infrared cut rate
  • a weatherability decay rate (%) of the PVC sheet is defined from the difference ratio in percentage of VLT %+IR cut % before and after the test.
  • wolfram cesium powder 10 parts by weight of wolfram cesium powder (WCs) was added into 88 parts by weight of a plasticizer (DHIN). Then 2 parts by weight of a polymeric dispersant was added.
  • WCs wolfram cesium powder
  • DHIN plasticizer
  • the mixture was dispersed by performing a single-stage grinding of using 1 mm-yttrium-zirconium-bead with the grinding parameters including grinding beads: 0.2-0.6 mm; medium filling rate: 80-95%; sieve: 15-100 ⁇ m; temperature controlling: below 50° C.; and grinding time: 6-12 hours.
  • wolfram cesium powder 15 parts by weight of wolfram cesium powder (WCs) was added into 83 parts by weight of a plasticizer (DHIN). Then 2 parts by weight of a polymeric dispersant was added. Two-stage grinding was performed, wherein the first stage referred to as coarse grinding was performed using the same parameters of the sample of WCs1, and the second stage referred to as fine grinding was performed using the following parameters including grinding beads: 0.05-0.2 mm; medium filling rate 80-95%; sieve: 15-100 ⁇ m; temperature controlling: below 50° C.; and grinding time: 4-8 hours.
  • wolfram cesium powder 15 parts by weight of wolfram cesium powder (WCs) was added into 82 parts by weight of a plasticizer (DHIN). Then 3 parts by weight of a polymeric dispersant was added.
  • WCs wolfram cesium powder
  • DHIN plasticizer
  • the mixture was dispersed by performing a single-stage grinding with the grinding parameters including grinding beads: 0.2-0.6 mm; medium filling rate: 80-95%; sieve: 15-100 ⁇ m; temperature controlling: below 50° C.; and grinding time: 6-12 hours.
  • wolfram cesium powder 15 parts by weight of wolfram cesium powder (WCs) was added into 82 parts by weight of a plasticizer (DHIN). Then 3 parts by weight of a polymeric dispersant was added. Two-stage grinding was performed, wherein the first stage referred to as coarse grinding was performed using the same parameters of the sample of WCs3, and the second stage referred to as fine grinding was performed using the following parameters including grinding beads: 0.05-0.3 mm; medium filling rate 80-95%; sieve: 15-100 ⁇ m; temperature controlling: below 50° C.; and grinding time: 4-8 hours.
  • wolfram cesium powder 15 parts by weight of wolfram cesium powder (WCs) was added into 80 parts by weight of a plasticizer (DHIN). Then 5 parts by weight of a polymeric dispersant was added.
  • WCs wolfram cesium powder
  • DHIN plasticizer
  • the mixture was dispersed by performing a single-stage grinding with the grinding parameters including grinding beads: 0.2-0.6 mm; medium filling rate: 80-95%; sieve: 15-100 ⁇ m; temperature controlling: below 50° C.; and grinding time: 6-12 hours.
  • wolfram cesium powder 18 parts by weight of wolfram cesium powder (WCs) was added into 77 parts by weight of a plasticizer (DHIN). Then 5 parts by weight of a polymeric dispersant was added. Two-stage grinding was performed, wherein the first stage referred to as coarse grinding was performed using the same parameters of the sample of WCs5, and the second stage referred to as fine grinding was performed using the following parameters including grinding beads: 0.05-0.3 mm; medium filling rate 80-95%; sieve: 15-100 ⁇ m; temperature controlling: below 50° C.; and grinding time: 4-8 hours.
  • a heat-insulating transparent polyvinyl chloride sheet with 0.2 mm thickness and 40 PHR hardness was made as below:
  • the produced PVC sheet is performed a 300-hour service life test in line with ASTM G-154 to, and the results are shown in Table 2.
  • VLT %+IR cut % after QUV300 hr weatherability test according to the Table 2, the difference of VLT % plus IR cut % of the produced PVC sheet before and after the test is decayed from 170% to 168%, i.e., the weatherability decay rate (%) of the produced PVC sheet is smaller than 1.2%, it means the PVC sheet itself having an excellent weatherability, after a QUV300 hr weatherability test in line with ASTM G-154.
  • VLT %+IR cut % after QUV300 hr weatherability test according to the Table 2, the difference of VLT % plus IR cut % of the produced PVC sheet of Examples 2 and 3 before and after the test is decayed from 170% to 168% and from 169% to 167% respectively, i.e., the weatherability decay rate (%) of the produced PVC sheet of the Examples 2 and 3 smaller than 1.2%, it means each the PVC sheets itself having an excellent weatherability respectively, after a QUV300 hr weatherability test in line with ASTM G-154.
  • heat-insulation paste different, the other materials, formula and procedures for making heat-insulating transparent polyvinyl chloride sheets were the same as those used in Example 1.
  • the resulting heat-insulating transparent polyvinyl chloride sheets were 0.1 mm and 0.3 mm in thickness, respectively, both with a hardness of 40 PHR.
  • the weatherability decay rate (%) of the produced PVC sheet of the Examples 4 and 5 is smaller than 2.4% and 1.2%, it means each the PVC sheets itself having an excellent weatherability respectively, after a QUV300 hr weatherability test in line with ASTM G-154.
  • heat-insulation paste and a plasticizer DHIN up to 60 PHR Except for the heat-insulation paste and a plasticizer DHIN up to 60 PHR, the other materials, formula and procedures for making heat-insulating transparent polyvinyl chloride sheets were the same as those used in Example 1.
  • the heat-insulating transparent polyvinyl chloride sheet so made had a thickness of 0.5 mm and a hardness of 60 PHR.
  • the produced PVC sheet is performed a 300-hour service life test in line with ASTM G-154 to, and the results are shown in Table 2.
  • the weatherability decay rate (%) of the produced PVC sheet of the Example 6 is smaller than 0.6%, it means the PVC sheet itself having an excellent weatherability, after a QUV300 hr weatherability test in line with ASTM G-154.
  • heat-insulating transparent polyvinyl chloride sheets were the same as those used in Example 1.
  • the heat-insulating transparent polyvinyl chloride sheet so made was 0.2 mm, 40 PHR.
  • the weatherability decay rate (%) of the produced PVC sheet of the Examples 7 and 8 is smaller than 1.2% and 3.6%, it means each the PVC sheets itself having an excellent weatherability respectively, after a QUV300 hr weatherability test in line with ASTM G-154.
  • heat-insulating transparent polyvinyl chloride sheets were the same as those used in Example 1.
  • the heat-insulating transparent polyvinyl chloride sheet so made was 0.2 mm in thickness and 0.1 PHR in hardness.
  • the produced PVC sheet is performed a 300-hour service life test in line with ASTM G-154 to, and the results are shown in Table 2.
  • the weatherability decay rate (%) of the produced PVC sheet of the Example 9 is smaller than 2.3%, it means the PVC sheet itself having an excellent weatherability, after a QUV300 hr weatherability test in line with ASTM G-154.
  • thermoplasticizer used was a combination of DHIN and DINP, each 30 PHR, and except that 0.05 PHR of an ultraviolet absorber and 2 PHR of epoxidized soybean oil are used, the other materials, formula and procedures for making heat-insulating transparent polyvinyl chloride sheets were the same as those used in Example 1.
  • the heat-insulating transparent polyvinyl chloride sheet so made was 0.3 mm in thickness, and 60 PHR in hardness.
  • the produced PVC sheet is performed a 300-hour service life test in line with ASTM G-154 to, and the results are shown in Table 2.
  • the weatherability decay rate (%) of the produced PVC sheet of the Example 10 is smaller than 0.6%, it means the PVC sheet itself having an excellent weatherability, after a QUV300 hr weatherability test in line with ASTM G-154.
  • Example 6 The composition was similar to Example 6. Four layers of the 0.5 mm heat-insulation sheet of Example 6 were laminated under 180° C. and 5 kg/m 2 into a heat-insulating transparent polyvinyl chloride sheet having a thickness of 2.0 mm and a hardness of 60 PHR.
  • the produced PVC sheet is performed a 300-hour service life test in line with ASTM G-154 to, and the results are shown in Table 2.
  • the weatherability decay rate (%) of the produced PVC sheet of the Example 11 is smaller than 1.2%, it means the PVC sheet itself having an excellent weatherability, after a QUV300 hr weatherability test in line with ASTM G-154.
  • ATO heat-insulation particles were used to make a heat-insulating transparent polyvinyl chloride sheet had a thickness of 0.3 mm and a hardness of 40 PHR.
  • the produced PVC sheet is performed a 300-hour service life test in line with ASTM G-154 to, and the results are shown in Table 2.
  • the weatherability decay rate (%) of the produced PVC sheet of the Comparative Example 1 is greater than 10%, which is decayed significantly, after a QUV300 hr weatherability test in line with ASTM G-154.
  • the resulting heat-insulation polyvinyl chloride sheet was still transparent, and had infrared shielding ability and ultraviolet rejecting ability. It was better than Comparative Example 1, but inferior to all the examples. After 300 hours of Quv irradiation, its transparency and heat-insulation effect further decayed significantly.
  • the produced PVC sheet is performed a 300-hour service life test in line with ASTM G-154 to, and the results are shown in Table 2.
  • the weatherability decay rate (%) of the produced PVC sheet of the Comparative Example 2 is greater than 28%, which is decayed very significantly, after a QUV300 hr weatherability test in line with ASTM G-154.
  • Example 1 Except that no coupling agent was used, the other materials, formula and procedures the same as those used in Example 1 were used to make a heat-insulating transparent polyvinyl chloride sheet having a thickness of 0.2 mm and a hardness of 40 PHR.
  • the heat-insulation paste is precipitated during processing, and the final product was not stable. Accordingly, no test for physical properties was performed.
  • the resulting polyvinyl chloride transparent sheet had a thickness of 0.2 mm and a hardness of 40 PHR.
  • the produced PVC sheet is performed a 300-hour service life test in line with ASTM G-154 to, and the results are shown in Table 2.
  • the weatherability decay rate (%) of the produced PVC sheet of the Comparative Example 4 is greater than 7%, which is decayed significantly, after a QUV300 hr weatherability test in line with ASTM G-154.
  • 2 PVC is available from commercial PVC trade name of S70.
  • 3 DHIN represented plasticizer of 1,2-cyclohexanedicarboxylic acid diisononyl ester.
  • 4 DINP represented plasticizer of di-isononyl phthalate.
  • 5 ESBO represented epoxidized soybean oil.
  • 6 VLT (%) represented test of visible light transmittance to PVC sheet according to the JIS K7705 test standard.
  • QUV300 hr represented a 300-hour service life test performed by a QUV weathering testing machine in line with ASTM G-154 test standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
US15/682,612 2016-08-25 2017-08-22 Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same Abandoned US20180056637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/409,198 US10696030B2 (en) 2016-08-25 2019-05-10 Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105127201A TWI604029B (zh) 2016-08-25 2016-08-25 Transparent insulation PVC tape and its preparation method
TW105127201 2016-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/409,198 Continuation-In-Part US10696030B2 (en) 2016-08-25 2019-05-10 Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same

Publications (1)

Publication Number Publication Date
US20180056637A1 true US20180056637A1 (en) 2018-03-01

Family

ID=60493818

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/682,612 Abandoned US20180056637A1 (en) 2016-08-25 2017-08-22 Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same
US16/409,198 Active US10696030B2 (en) 2016-08-25 2019-05-10 Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/409,198 Active US10696030B2 (en) 2016-08-25 2019-05-10 Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same

Country Status (3)

Country Link
US (2) US20180056637A1 (zh)
CN (1) CN107446269B (zh)
TW (1) TWI604029B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109776827A (zh) * 2019-01-28 2019-05-21 杨明忠 一种医用pvc硬片的制备方法
US20220079345A1 (en) * 2019-11-28 2022-03-17 Dakang Holding Co., Ltd. Furniture light-emitting assembly and light-emitting seat having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982192A (zh) * 2019-12-09 2020-04-10 江苏巨麦新材料科技有限公司 一种隔热型pvc片材及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120783A (en) * 1989-11-16 1992-06-09 Kyowa Chemical Industry Co., Ltd. Stabilized halogen-containing resin compositions
US8257632B2 (en) * 2007-10-09 2012-09-04 Nan Ya Plastics Corporation Heat-insulating transparent PVC sheet
US20130200292A1 (en) * 2012-02-08 2013-08-08 Nan Ya Plastics Corporation Transparent heat-shielding material excellent in infrared-blocking properties and transparent heat-shielding film made of the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847698B2 (ja) * 2004-12-22 2011-12-28 電気化学工業株式会社 ストレッチフィルム
CN101157829B (zh) * 2007-09-21 2010-07-07 南亚塑胶工业股份有限公司 一种隔热聚氯乙烯透明胶布
CN101289561A (zh) * 2008-06-02 2008-10-22 温州大学 一种转光膜材料及其制备方法
TWI458803B (zh) * 2009-02-16 2014-11-01 Nanya Plastics Corp 一種透明隔熱聚氯乙烯膠布及其製法
CN101497727B (zh) * 2009-03-04 2012-05-23 南亚塑胶工业股份有限公司 一种pvc树脂组合物及其制品
EP2451746B1 (en) * 2009-07-07 2019-02-27 Basf Se Composition comprising potassium cesium tungsten bronze particles and use of these particles
CN101962516B (zh) * 2009-07-22 2013-10-09 南亚塑胶工业股份有限公司 一种透明隔热聚氯乙烯胶布及其制法
JP5692499B2 (ja) * 2009-08-17 2015-04-01 住友金属鉱山株式会社 赤外線遮蔽材料微粒子分散液と赤外線遮蔽粘着膜形成用塗布液、赤外線遮蔽粘着膜と赤外線遮蔽光学部材、および、プラズマディスプレイパネル用多層フィルターとプラズマディスプレイパネル
JP5757952B2 (ja) * 2009-09-30 2015-08-05 ダウ グローバル テクノロジーズ エルエルシー エポキシ化脂肪酸エステル可塑剤を有する熱安定化ポリマー組成物
CN102643563B (zh) * 2012-03-30 2014-09-10 南亚塑胶工业股份有限公司 一种透明隔热材料及其制法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120783A (en) * 1989-11-16 1992-06-09 Kyowa Chemical Industry Co., Ltd. Stabilized halogen-containing resin compositions
US8257632B2 (en) * 2007-10-09 2012-09-04 Nan Ya Plastics Corporation Heat-insulating transparent PVC sheet
US20130200292A1 (en) * 2012-02-08 2013-08-08 Nan Ya Plastics Corporation Transparent heat-shielding material excellent in infrared-blocking properties and transparent heat-shielding film made of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109776827A (zh) * 2019-01-28 2019-05-21 杨明忠 一种医用pvc硬片的制备方法
US20220079345A1 (en) * 2019-11-28 2022-03-17 Dakang Holding Co., Ltd. Furniture light-emitting assembly and light-emitting seat having the same
US11633045B2 (en) * 2019-11-28 2023-04-25 Dakang Holding Co., Ltd. Furniture light-emitting assembly and light-emitting seat having the same

Also Published As

Publication number Publication date
US10696030B2 (en) 2020-06-30
TWI604029B (zh) 2017-11-01
US20190330462A1 (en) 2019-10-31
CN107446269B (zh) 2020-10-09
CN107446269A (zh) 2017-12-08
TW201809177A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
US10933613B2 (en) Heat-ray shielding film and method for manufacturing the same, and heat-ray shielding laminated transparent base material
US9726796B2 (en) Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, a heat-ray shielding film using the heat-ray shielding fine particle-containing composition and a heat-ray shielding laminated transparent base material using the heat-ray shielding film
JP5245283B2 (ja) 熱線遮蔽塩化ビニルフィルム製造用組成物およびその製造方法、並びに、熱線遮蔽塩化ビニルフィルム
US10696030B2 (en) Heat-insulating transparent polyvinyl chloride sheet having excellent weatherability and process for producing the same
WO2010101211A1 (ja) 熱線遮蔽性積層体、及びこれを用いた熱線遮蔽性合わせガラス
TWI717408B (zh) 黏著劑層、近紅外線遮蔽膜、層合結構體、積層體、及黏著劑組成物
KR20110128836A (ko) 불화비닐리덴계 수지필름
EP2818515B1 (en) Fluororesin film
US20140370263A1 (en) Plasticizable heat-insulating composition, transparent heat-insulating intermediate sheet and transparent heat-insulating sandwich-structured panel
EP3783400A1 (en) Light control body and light control windowpane
JP5775349B2 (ja) 熱線遮蔽合わせガラス用中間膜、及び熱線遮蔽合わせガラス
US8257632B2 (en) Heat-insulating transparent PVC sheet
JP5895895B2 (ja) 熱線遮蔽塩化ビニルフィルム製造用組成物およびその製造方法、並びに、熱線遮蔽塩化ビニルフィルム、熱線遮蔽合わせ透明基材
US11420425B2 (en) Laminated glass
US20090092812A1 (en) Transparent PVC sheet for cutting-off infrared and ultra-violet
JP5427721B2 (ja) 二酸化バナジウム粒子分散液、合わせガラス用中間膜及び合わせガラス
US10414127B2 (en) Interlayer for laminated glass and laminated glass
KR20150085024A (ko) 불소계 수지 필름, 그 제조 방법 및 태양전지 모듈
KR20220151689A (ko) 감소된 황색을 갖는 중합체 중간층
JP2005119957A (ja) 赤外線非透過性酸化亜鉛系粒子の製造方法
JP2022513744A (ja) 減少した色を有するポリマー中間膜

Legal Events

Date Code Title Description
AS Assignment

Owner name: NAN YA PLASTICS CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIAO, TE-CHAO;HUANG, YING-TE;LAI, CHEN-HO;AND OTHERS;REEL/FRAME:043351/0493

Effective date: 20170720

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION