US20180038075A1 - Construction Machine - Google Patents

Construction Machine Download PDF

Info

Publication number
US20180038075A1
US20180038075A1 US15/553,283 US201615553283A US2018038075A1 US 20180038075 A1 US20180038075 A1 US 20180038075A1 US 201615553283 A US201615553283 A US 201615553283A US 2018038075 A1 US2018038075 A1 US 2018038075A1
Authority
US
United States
Prior art keywords
fuel
urea water
tank
accommodating case
suction port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/553,283
Other languages
English (en)
Inventor
Yoshihito Yamada
Wataru Kondo
Tetsuya Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Assigned to HITACHI CONSTRUCTION MACHINERY CO., LTD. reassignment HITACHI CONSTRUCTION MACHINERY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KONDO, WATARU, MATSUMOTO, TETSUYA, YAMADA, YOSHIHITO
Publication of US20180038075A1 publication Critical patent/US20180038075A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0883Tanks, e.g. oil tank, urea tank, fuel tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/04Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • F02M37/32Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
    • F02M37/40Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements with means for detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0891Lids or bonnets or doors or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/02Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/08Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a construction machine on which a urea water tank storing urea water as a liquid reducing agent is mounted, for example.
  • a hydraulic excavator as a typical example of a construction machine is constituted by a lower traveling structure, an upper revolving structure rotatably mounted on the lower traveling structure, and a working mechanism tiltably provided on a front part of the upper revolving structure.
  • the upper revolving structure includes a revolving frame constituting a support structural body, an engine mounted on a rear side of the revolving frame and driving a hydraulic pump, a hydraulic oil tank provided on the revolving frame at a position on a front side of the engine and storing a hydraulic oil to be supplied to the hydraulic pump, a fuel tank provided on the revolving frame, adjacent to the front side of the hydraulic oil tank, and storing a fuel to be supplied to the engine, a NOx purifying device provided by being connected to an exhaust pipe of the engine and removing nitrogen oxides (hereinafter referred to as NOx) contained in an exhaust gas, and a urea water tank storing urea water to be supplied to the NOx purifying device.
  • NOx nitrogen oxides
  • the urea water tank is to be provided on a hydraulic excavator
  • such constitution is known that the urea water tank is installed by using a tool box provided on the front side of the fuel tank, and a supply work of the urea water is performed from front of the tool box (see Patent Document 1, for example).
  • a fuel filling opening for supplying a fuel is provided on an upper surface position of the fuel tank.
  • a worker needs to ride on an upper surface portion of the tool box as a step and to make an access to the fuel filing opening of the fuel tank.
  • Patent Document 1 during the supply work of the urea water, a cover for opening/closing an opening of the tool box is opened upward.
  • a water supply work of the urea water and a fuel filling work of the fuel tank cannot be performed at the same time, which leads to a problem that workability of the supply works is lowered.
  • the present invention was made in view of the aforementioned problem of the prior art, and an object of the present invention is to provide a construction machine which can improve the workability during the supply work by performing supply works to the urea water tank and to the fuel tank at the same time.
  • a construction machine is constituted by a lower traveling structure, an upper revolving structure rotatably mounted on the lower traveling structure, and a working mechanism tiltably provided on a front part of the upper revolving structure
  • the upper revolving structure includes; a revolving frame constituting a support structural body, an engine mounted on a rear side of the revolving frame and driving a hydraulic pump, a hydraulic oil tank provided on the revolving frame at a position on a front side of the engine and storing a hydraulic oil to be supplied to the hydraulic pump, a fuel tank provided on the revolving frame, adjacent to the front side of the hydraulic oil tank, and storing a fuel to be supplied to the engine, a NOx purifying device provided by being connected to an exhaust pipe of the engine and removing nitrogen oxides contained in an exhaust gas, and a urea water tank storing urea water to be supplied to the NOx purifying device.
  • a characteristic of the constitution adopted by the present invention is that, a hollow accommodating case is provided on a front part of the revolving frame at a position on a front side of the fuel tank; a fuel supply pump for supplying the fuel stored in an external fuel storage source to the fuel tank is provided by being connected in the fuel tank; a fuel suction port for sucking the fuel toward the fuel supply pump is provided in the accommodating case by being opened to an outside; the urea water tank is provided by being accommodated in the accommodating case; a water supply port of the urea water is provided in the urea water tank by being opened to the outside; and the fuel suction port and the water supply port of the urea water are juxtaposed and arranged in the accommodating case.
  • the supply work can be performed to the urea water tank and the fuel tank at the same time, which can improve workability during the supply works.
  • FIG. 1 is a front view showing a hydraulic excavator that is applied to the embodiment of the present invention.
  • FIG. 2 is a plan view showing the hydraulic excavator in a state where a part of a working mechanism and a housing cover is omitted.
  • FIG. 3 is a plan view showing a revolving frame as a single body.
  • FIG. 4 is a perspective view showing a state where a hydraulic oil tank, a fuel tank, a urea water tank, each of accommodating cases, a fuel suction port and the like are mounted on the revolving frame.
  • FIG. 5 is a sectional view of the revolving frame, the fuel tank, the urea water tank, each of the accommodating cases and the like showing from an arrow V-V direction in FIG. 2 .
  • FIG. 6 is a perspective view showing a front side portion of the revolving frame in a state where the urea water tank and the fuel suction port are exposed by opening an opening/closing cover of a first accommodating case.
  • FIG. 7 is a perspective view showing the front side portion of the revolving frame from which each of the accommodating cases is omitted when seen from a position similar to that in FIG. 6 .
  • FIG. 8 is a partially broken plan view showing the front side portion of the revolving frame from which each of the accommodating cases is omitted.
  • FIG. 9 is a perspective view showing the front side portion of the revolving frame, a fuel supply pump, a fuel suction port and the like while a partition plate, a urea water tank and the like are omitted.
  • FIG. 10 is a sectional view of the front side portion of the revolving frame, the fuel supply pump, the fuel suction port and the like showing from an arrow X-X direction in FIG. 8 .
  • the hydraulic excavator 1 as a construction machine used in an excavating work of earth and sand or the like is constituted by an automotive crawler-type lower traveling structure 2 , an upper revolving structure 3 rotatably mounted on the lower traveling structure 2 , and a working mechanism 4 tiltably provided on a front side of the upper revolving structure 3 .
  • the working mechanism 4 includes a boom 4 A, an arm 4 B, and a bucket 4 C, and they are rotated by a boom cylinder 4 D, an arm cylinder 4 E, and a bucket cylinder 4 F.
  • a foot part 4 A 1 of the boom 4 A constituting the working mechanism 4 is rotatably pin-connected to left and right boom mounting portions located on upper parts of left and right vertical plates 7 and 8 .
  • the upper revolving structure 3 is constituted by a revolving frame 5 , an engine 17 , a hydraulic oil tank 22 , a fuel tank 23 , a NOx purifying device 24 , a urea water tank 25 , a first accommodating case 28 , a fuel supply pump 34 , a fuel suction port 35 and the like which will be described later.
  • the revolving frame 5 is to constitute a support structural body of the upper revolving structure 3 .
  • This revolving frame 5 is constituted by including a thick bottom plate 6 extending in a front-rear direction, a left vertical plate 7 and a right vertical plate 8 installed upright on the bottom plate 6 and extending in the front-rear direction with a predetermined interval in a left-right direction, a front plate 9 connecting front side portions of the left and right vertical plates 7 and 8 in the left-right direction, a plurality of left extension beams 10 extending from the bottom plate 6 and the left vertical plate 7 to the left side, a plurality of right extension beams 11 extending from the bottom plate 6 and the right vertical plate 8 to the right side, a left side frame 12 joined to a distal end portion of each of the left extension beams 10 and extending on the left side of the bottom plate 6 in the front-rear direction, and a right side frame 13 joined to a distal end portion of each of the right extension beams
  • a screw seat 8 A is provided on a right surface of the right vertical plate 8 at a position in the vicinity of a rear side of a mounting plate 14 A of a front side beam 14 which will be described later.
  • the fuel supply pump 34 which will be described later is mounted on this screw seat 8 A.
  • the front side beam 14 is provided on a front right side of the revolving frame 5 by extending in the left-right direction between a front part of the right vertical plate 8 and a front part of the right side frame 13 .
  • the mounting plate 14 A is installed upright on a left end of this front side beam 14 so as to extend to a rear side.
  • a mounting bracket 14 B extending in a vertical direction is provided on a right surface of this mounting plate 14 A.
  • a fuel filter 38 and the like which will be described later are provided on this mounting bracket 14 B.
  • the front side beam 14 , the right extension beam 11 faced with the front side beam 14 , and a front part of the right side frame 13 constitute the support structural body surrounding to support the first accommodating case 28 which will be described later.
  • An undercover 15 is provided at a position on the bottom part side on an inner side surrounded by the bottom plate 6 , the right extension beam 11 , the right side frame 13 , and the front side beam 14 (see FIG. 3 ).
  • a footstep plate 16 is provided on the front part of the front side beam 14 by protruding to the front side, and the footstep plate 16 constitutes a step on which a foot is first stepped when riding on the upper revolving structure 3 .
  • the engine 17 is mounted on a laterally placed state on a rear side of the revolving frame 5 .
  • This engine 17 is constituted as a diesel engine, and an exhaust pipe 18 for exhausting an exhaust gas is provided on its exhaust side.
  • a heat exchanger 19 is provided on the revolving frame 5 at a position on the left side of the engine 17 .
  • This heat exchanger 19 is constituted by a radiator for cooling an engine cooling water, an oil cooler for cooling a hydraulic oil, an intercooler for cooling air suctioned by the engine 17 from a suction side and the like.
  • a hydraulic pump 20 is provided on the right side of the engine 17 .
  • This hydraulic pump 20 delivers the hydraulic oil from the hydraulic oil tank 22 as a pressurized oil by being driven by the engine 17 .
  • a cab 21 is provided on a front left side of the revolving frame 5 or more specifically, on the left side of the foot part 4 A 1 of the boom 4 A constituting the working mechanism 4 .
  • This cab 21 is on which an operator gets onboard in order to operate the hydraulic excavator 1 and has an operator's seat on which the operator is seated, levers and pedals for various operations and the like (none of them is shown) disposed therein.
  • the hydraulic oil tank 22 is provided on the right side of the revolving frame 5 at a position on a front side of the engine 17 .
  • This hydraulic oil tank 22 is to store the hydraulic oil to be supplied to the hydraulic pump 20 and is formed as a cuboid-shaped pressure-resistant tank extending in the vertical direction, for example.
  • the fuel tank 23 is provided on the right side of the revolving frame 5 so as to be adjacent to the front side of the hydraulic oil tank 22 .
  • This fuel tank 23 is to store a fuel to be supplied to the engine 17 and is formed as a cuboid-shaped hollow container, for example.
  • a fuel filling opening 23 A for filling the fuel is provided on an upper surface of the fuel tank 23 by protruding upward. This fuel filling opening 23 A is used when the fuel is to be filled from a fuel filling vehicle.
  • a connecting port 23 B is provided at a position on the upper side on a rear surface of the fuel tank 23 .
  • a supply hose 36 C of an oil supply line 36 which will be described later is connected to this connecting port 23 B.
  • the NOx purifying device 24 is connected to the exhaust pipe 18 at a position on the right side of the engine 17 (see FIG. 2 ).
  • This NOx purifying device 24 is to remove nitrogen oxides (NOx) in the exhaust gas by using a urea water solution (hereinafter referred to as a urea water) which is a reducing agent.
  • a urea water solution hereinafter referred to as a urea water
  • the NOx purifying device 24 is constituted by an accommodating tubular body 24 A connected to the exhaust pipe 18 , a urea selective reduction catalyst 24 B accommodated on an upstream side in the accommodating tubular body 24 A, an oxidation catalyst 24 C arranged on a downstream side of the urea selective reduction catalyst 24 B, and a urea water injection valve (not shown) provided on an upstream side of the urea selective reduction catalyst 24 B or in the exhaust pipe 18 , for example.
  • the urea water injection valve is connected to the urea water tank 25 through a supply pump and a supply pipeline (none of them is shown).
  • the NOx purifying device 24 injects the urea water into the exhaust gas by the urea water injection valve, causes a reduction reaction of NOx in the exhaust gas by using ammonia generated from the urea water by the urea selective reduction catalyst 24 B and decomposes it to water and nitrogen. Then, ammonia in the exhaust gas is decreased by the oxidation catalyst 24 C.
  • the urea water tank 25 is provided by being accommodated in an accommodating space 30 of the first accommodating case 28 which will be described later. This urea water tank 25 is to store the urea water to be supplied to the NOx purifying device 24 .
  • the urea water tank 25 is fixed to a tank bracket 26 installed upright on the undercover 15 at a position in the vicinity on the front side of the fuel tank 23 by using a fixing belt 27 in a state placed on the undercover 15 of the revolving frame 5 , for example.
  • the urea water tank 25 is formed as a sealed container having an outside dimension contained within a range of an approximately right half of the accommodating space 30 .
  • the urea water tank 25 is constituted by a front surface part 25 A, a rear surface part 25 B, a left side surface part 25 C, a right side surface part 25 D, a top surface part 25 E, and a bottom surface part 25 F.
  • the top surface part 25 E of the urea water tank 25 has its front side portion 25 E 1 inclined downward.
  • a water supply port 25 G for supplying the urea water is provided on this front side portion 25 E 1 toward a diagonally upper side and opened to the outside.
  • the water supply port 25 G is arranged at a position where an opening/closing cover 29 of the first accommodating case 28 which will be described later is opened, and a supply work can be performed from the front in a state where an opening 28 F is left open.
  • a gauge 25 H is provided on the front side portion 25 E 1 of the top surface part 25 E at a position on a left side of the water supply port 25 G. This gauge 25 H is for inspection of a water amount, a deterioration state and the like of the urea water in the urea water tank 25 .
  • the first accommodating case 28 is provided on a front side from the fuel tank 23 , that is, at a position on a front right part of the revolving frame 5 . As shown in FIG. 5 and FIG. 7 , the first accommodating case 28 uses a space on the undercover 15 surrounded by the right extension beam 11 of the revolving frame 5 , a front part of the right side frame 13 , and a front side beam 14 . Thereby, the first accommodating case 28 can define the accommodating space 30 having a large capacity inside thereof.
  • the first accommodating case 28 is formed as a case having a hollow structure made of a cuboid. Specifically, the first accommodating case 28 is formed having a length dimension in the front-rear direction from a front end of the fuel tank 23 to a front end of the front side beam 14 of the revolving frame 5 , a width dimension in the left-right direction equal to a width dimension of the fuel tank 23 , and a height dimension in the vertical direction covering the urea water tank 25 and the like, for example. As shown in FIG.
  • the first accommodating case 28 is constituted by a front surface part 28 A formed by standing upright from the front end of the front side beam 14 of the revolving frame 5 , a rear surface part 28 B installed upright at a position close to the front end of the fuel tank 23 , a left side surface part 28 C and aright side surface part 28 D installed upright so as to stand between the front surface part 28 A and the rear surface part 28 B, and a top surface part 28 E having a substantially regular square shape closing an upper side of each of the surface parts 28 A to 28 D.
  • the rear surface part 28 B is formed as a square frame-shaped plate body having a center part largely opened. However, since the rear surface part 28 B is faced with and close to the front end of the fuel tank 23 , the rear surface part 28 B is substantially in a closed state. Thereby, as shown in FIG. 5 , the first accommodating case 28 has a bottom-out structure and by being bolted to the front side of the revolving frame 5 , the accommodating case 28 defines the large accommodating space 30 together with the undercover 15 of the revolving frame 5 on the lower side.
  • the opening 28 F having a large width in the left-right direction over the front surface part 28 A and the top surface part 28 E is provided with the first accommodating case 28 .
  • the water supply port 25 G of the urea water tank 25 , the fuel suction port 35 and the like are arranged in this opening 28 F.
  • the opening/closing cover 29 constitutes a part of the first accommodating case 28 and is mounted on the first accommodating case 28 so as to cover the opening 28 F.
  • a rear part of an upper plate 29 A which becomes a second step subsequent to the footstep plate 16 is mounted on the rear part of the top surface part 28 E capable of being opened/closed through a hinge 29 B working as a fulcrum of the opening/closing cover 29 .
  • the opening/closing cover 29 can prevent entry of earth and sand or dusts by locking in a state closed and covering the opening 28 F or can prevent tampering or the like.
  • the opening 28 F can be opened, and the water supply port 25 G, the fuel suction port 35 and the like can be exposed to the outside.
  • the accommodating space 30 is defined in the first accommodating case 28 at a position on the front right portion of the revolving frame 5 .
  • the accommodating space 30 is formed having a large capacity within a range from the top surface part 28 E to the undercover 15 of the revolving frame 5 .
  • the urea water tank 25 , the fuel supply pump 34 to fill the fuel tank 23 , the fuel suction port 35 and the like are accommodated by being juxtaposed in the left-right direction.
  • the accommodating space 30 is divided by a partition plate 31 installed upright on the undercover 15 at a position in the middle of the left-right direction into a tank space part 30 A and a pump space part 30 B.
  • the urea water tank 25 is accommodated in the tank space part 30 A located on the right side (right side frame 13 side) in the left-right direction.
  • the fuel supply pump 34 , the fuel suction port 35 , an operation switch 37 , the fuel filter 38 , a clogging indicator 39 and the like which will be described later are accommodated in the pump space part 30 B.
  • a second accommodating case 32 is provided on a rear side above the first accommodating case 28 .
  • a length dimension of this second accommodating case 32 in the front-rear direction is set to approximately a half of the length dimension of the first accommodating case 28 in the front-rear direction, for example.
  • a width dimension of the second accommodating case 32 in the left-right direction is set to a dimension shorter than that of the first accommodating case 28 , for example.
  • the second accommodating case 32 is mounted on the top surface part 28 E of the first accommodating case 28 , and its inside is an article accommodating space 33 (see FIG. 5 ).
  • Various consumables such as a tool box, a spare bottle of urea water and the like (not shown) can be accommodated in this article accommodating space 33 .
  • the fuel supply pump 34 is provided in the first accommodating case 28 , that is, at a left depth portion of the pump space part 30 B of the accommodating space 30 .
  • This fuel supply pump 34 is to supply the fuel stored in a container (not shown) which is an external fuel storage source to the fuel tank 23 .
  • the fuel supply pump 34 is constituted by a main body part including a plunger pump, a gear pump, a trochoid pump, a vane pump or the like and the fuel supply pump 34 is driven by an electric motor, for example.
  • the fuel supply pump 34 is fixed to a side surface of the right vertical plate 8 by bolting a mounting bracket 34 A to a screw seat 8 A provided on the right vertical plate 8 of the revolving frame 5 .
  • a suction hose 36 A which will be described later is connected to the suction side of the fuel supply pump 34
  • a delivery hose 36 B is connected to the delivery side.
  • the fuel suction port 35 is provided at a distal end of the suction hose 36 A and suctions the fuel into the fuel supply pump 34 .
  • This fuel suction port 35 is used by one side joint of one-touch joints called a quick coupling.
  • the fuel suction port 35 formed as the joint has a check valve (not shown) for preventing outflow (backflow) of the fuel other than in the fuel filling work is provided therein.
  • the fuel suction port 35 is arranged in the accommodating space 30 in the first accommodating case 28 and is provided opened to an outside from the opening 28 F.
  • the fuel suction port 35 is arranged by being juxtaposed with the water supply port 25 G of the urea water tank 25 in the left-right direction.
  • the fuel suction port 35 is arranged at a position where the fuel filling work can be performed from the front in a state where the opening/closing cover 29 of the first accommodating case 28 is opened similarly to the water supply port 25 G of the urea water tank 25 . Further, the fuel suction port 35 is arranged at an interval from the water supply port 25 G so that the water supply work of the urea water and the fuel filling work can be performed at the same time.
  • the fuel suction port 35 is bolted to the mounting bracket 14 B provided on the front side beam 14 of the revolving frame 5 . Thereby, the fuel suction port 35 is arranged closer to the left side (the right vertical plate 8 side) in the pump space part 30 B of the accommodating space 30 and fixed toward the front side so that the fuel filling hose of the external fuel storage source can be easily connected.
  • the oil supply line 36 is to supply the fuel suctioned through the fuel suction port 35 to the fuel tank 23 .
  • a pressure-resistant hose having flexibility is used as this oil supply line 36 .
  • a pipe member made of metal can be used as a part of the oil supply line 36 .
  • the oil supply line 36 is constituted by the suction hose 36 A connecting the fuel suction port 35 and the suction side of the fuel supply pump 34 to each other, a delivery hose 36 B connecting the delivery side of the fuel supply pump 34 and an inflow side of the fuel filter 38 which will be described later to each other, and the supply hose 36 C connecting an outflow side of the fuel filter 38 and the connecting port 23 B of the fuel tank 23 to each other.
  • the operation switch 37 is provided in the vicinity of the fuel suction port 35 in the first accommodating case 28 .
  • the operation switch 37 is located in the pump space part 30 B of the accommodating space 30 and is mounted on the front side of the partition plate 31 , adjacent to the fuel suction port 35 .
  • This operation switch 37 can drive and stop the fuel supply pump 34 by being operated with a button by a worker. In this case, since the operation switch 37 is close to the fuel suction port 35 , a connecting work of the hose for fuel filling and the fuel filling work by the fuel supply pump 34 can be performed smoothly.
  • the fuel filter 38 is mounted on the mounting bracket 14 B of the front side beam 14 at a position below the fuel suction port 35 .
  • the fuel filter 38 is constituted by a connecting part 38 A on an upper side and a filter part 38 B on a lower side.
  • the delivery hose 36 B is connected to an inflow side of the connecting part 38 A, and the supply hose 36 C is connected to an outflow side.
  • the fuel filter 38 can catch foreign substances such as dusts and the like contained in the fuel delivered from the fuel supply pump 34 and can supply a clean fuel to the fuel tank 23 .
  • the clogging indicator 39 is provided by being connected to the connecting part 38 A of the fuel filter 38 .
  • the clogging indicator 39 is to display a clogged state of the fuel filter 38 , and a differential pressure gauge or the like is used as the clogging indicator 39 , for example. Since this clogging indicator 39 is arranged in the vicinity of the fuel suction port 35 and the operation switch 37 , inspection can be easily performed during the fuel filling work.
  • the hydraulic excavator 1 has the constitution as above and its operation will be described next.
  • the operator who got onboard on the cab 21 drives the hydraulic pump 20 by starting the engine 17 .
  • the lower traveling structure 2 can be advanced or retreated.
  • the working mechanism 4 can be tiltably moved so as to perform an excavating work of earth and sand or the like.
  • nitrogen oxides (NOx) which are harmful substances are exhausted from its exhaust pipe 18 .
  • the urea water in the urea water tank 25 is supplied to the urea water injection valve of the NOx purifying device 24 .
  • the NOx purifying device 24 generates ammonia by injecting the urea water into the exhaust gas from the urea water injection valve.
  • the nitrogen oxides are reduced to water and nitrogen and are ejected to an outside via the oxidation catalyst 24 C in the urea selective reduction catalyst 24 B, whereby an emission of the nitrogen oxides can be reduced.
  • the worker stands on the front right side of the upper revolving structure 3 and opens the opening/closing cover 29 of the first accommodating case 28 upward. Thereby, the water supply port 25 G of the urea water tank 25 accommodated in the accommodating space 30 can be exposed to the outside through the opening 28 F, and the urea water can be supplied from the water supply port 25 G in this state.
  • the operation switch 37 is operated so as to drive the fuel supply pump 34 .
  • the fuel suctioned from the external fuel storage source through the hose can be supplied (replenished) to the fuel tank 23 through the oil supply line 36 .
  • the water supply port 25 G of the urea water tank 25 and the fuel suction port 35 are provided by being juxtaposed so as to open to the outside in the first accommodating case 28 arranged on the front part of the revolving frame 5 . Accordingly, the fuel filling work can be performed from on the ground without getting on the upper revolving structure 3 . As a result, the water supply work of the urea water into the urea water tank 25 and the fuel filling work into the fuel tank 23 can be performed at the same time. Thereby, since the works required for supply of the fuel and the urea water can be performed easily and in a shorter time, workability during the supply works can be improved.
  • the first accommodating case 28 can close the opening 28 F by closing the opening/closing cover 29 , entry of earth and sand or dusts into the first accommodating case 28 can be prevented by this opening/closing cover 29 . Moreover, the urea water tank 25 , the operation switch 37 and the like in the first accommodating case 28 can be protected by the opening/closing cover 29 from tampering.
  • the operation switch 37 of the fuel supply pump 34 is provided at a position in the vicinity of the fuel suction port 35 , the operation of the operation switch 37 can be easily performed during the fuel filling. Thereby, workability when the fuel is filled can be improved.
  • the clogging indicator 39 displaying the clogged state of the fuel filter 38 is provided in the first accommodating case 28 , the clogging indicator 39 can be visually recognized easily during the fuel filling, and the clogged state of the fuel filter 38 can be easily checked.
  • the water supply port 25 G and the gauge 25 H of the urea water tank 25 are provided adjacent to each other. Thereby, when the urea water is to be supplied through the water supply port 25 G, supply can be performed while checking the gauge 25 H, and the supply work of the urea water can be performed easily.
  • the urea water tank 25 is provided on the right side frame 13 side in the first accommodating case 28
  • the fuel suction port 35 is provided on the right vertical plate 8 side in the first accommodating case 28 .
  • the present invention is not limited thereto, but it may be so constituted that the urea water tank is provided on the right vertical plate side, and the fuel suction port is provided on the right side frame side.
  • the fuel filter 38 is provided in the middle of the delivery hose 36 B of the oil supply line 36 , but it may be provided in the middle of the suction hose between the fuel suction port and the fuel tank.
  • a crawler-type hydraulic excavator 1 is described as an example.
  • the present invention is not limited thereto, but it may be also applied to a wheel-type hydraulic excavator. Other than that, it may be also widely applied to other construction machines such as a hydraulic crane and the like.
US15/553,283 2015-06-03 2016-03-08 Construction Machine Abandoned US20180038075A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-113147 2015-06-03
JP2015113147A JP6588239B2 (ja) 2015-06-03 2015-06-03 建設機械
PCT/JP2016/057133 WO2016194430A1 (ja) 2015-06-03 2016-03-08 建設機械

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057133 A-371-Of-International WO2016194430A1 (ja) 2015-06-03 2016-03-08 建設機械

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/600,844 Continuation US10975549B2 (en) 2015-06-03 2019-10-14 Construction machine

Publications (1)

Publication Number Publication Date
US20180038075A1 true US20180038075A1 (en) 2018-02-08

Family

ID=57440442

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/553,283 Abandoned US20180038075A1 (en) 2015-06-03 2016-03-08 Construction Machine
US16/600,844 Active US10975549B2 (en) 2015-06-03 2019-10-14 Construction machine

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/600,844 Active US10975549B2 (en) 2015-06-03 2019-10-14 Construction machine

Country Status (5)

Country Link
US (2) US20180038075A1 (de)
EP (1) EP3305993B1 (de)
JP (1) JP6588239B2 (de)
CN (1) CN107407067B (de)
WO (1) WO2016194430A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11312230B2 (en) * 2018-03-23 2022-04-26 Hitachi Construction Machinery Co., Ltd. Work vehicle
US11325465B2 (en) 2018-03-23 2022-05-10 Hitachi Construction Machinery Co., Ltd. Work vehicle
US11891774B2 (en) 2021-03-26 2024-02-06 Caterpillar Inc. Structurally integrated fuel tank

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902560B2 (ja) * 2016-12-15 2021-07-14 株式会社堀場製作所 尿素水のアルカリ度評価方法
JP6781174B2 (ja) * 2018-01-26 2020-11-04 日立建機日本株式会社 尿素水補給装置を備えた油圧ショベル
KR20200090399A (ko) * 2019-01-21 2020-07-29 두산인프라코어 주식회사 펌프 브래킷 및 이를 포함하는 건설기계
JP7167075B2 (ja) * 2020-03-16 2022-11-08 日立建機株式会社 作業車両
WO2022065351A1 (ja) * 2020-09-28 2022-03-31 日立建機株式会社 建設機械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162686A (ja) * 2008-01-09 2009-07-23 Hitachi Constr Mach Co Ltd フィルタ目詰まり検出装置およびフィルタ目詰まり検出装置付き燃料給油装置
US20100025494A1 (en) * 2008-07-31 2010-02-04 Mcdonald Jeffrey D Pesticide application system
US20130071295A1 (en) * 2010-05-31 2013-03-21 Caterpillar Sarl Work machine
US20150016932A1 (en) * 2012-03-16 2015-01-15 Hitachi Construction Machinery Co., Ltd. Construction machine
US20150113147A1 (en) * 2013-04-18 2015-04-23 Iboss, Inc. Allocating a Pool of Shared Bandwidth

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283724A (ja) * 2005-04-04 2006-10-19 Hitachi Constr Mach Co Ltd 建設機械の燃料フィルタ目詰まり検知装置
JP4800983B2 (ja) * 2007-02-14 2011-10-26 日立建機株式会社 建設機械
JP5093016B2 (ja) * 2008-09-17 2012-12-05 コベルコ建機株式会社 燃料供給装置
JP2010101306A (ja) * 2008-09-24 2010-05-06 Yamashin-Filter Corp 液供給装置、燃料供給装置
JP5056774B2 (ja) * 2009-03-04 2012-10-24 コベルコ建機株式会社 作業機械
JP2010261373A (ja) * 2009-05-08 2010-11-18 Kobelco Contstruction Machinery Ltd 作業機械
JP2011012661A (ja) * 2009-07-06 2011-01-20 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
JP5402451B2 (ja) 2009-09-17 2014-01-29 コベルコ建機株式会社 建設機械
JP5562777B2 (ja) * 2010-09-16 2014-07-30 日立建機株式会社 建設機械
JP2011173590A (ja) * 2011-04-11 2011-09-08 Kobelco Contstruction Machinery Ltd 作業機械
US8695827B2 (en) * 2012-05-01 2014-04-15 Deere & Company Diesel exhaust fluid and fuel fill system
JP6067414B2 (ja) * 2013-02-27 2017-01-25 日立建機株式会社 旋回式建設機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162686A (ja) * 2008-01-09 2009-07-23 Hitachi Constr Mach Co Ltd フィルタ目詰まり検出装置およびフィルタ目詰まり検出装置付き燃料給油装置
US20100025494A1 (en) * 2008-07-31 2010-02-04 Mcdonald Jeffrey D Pesticide application system
US20130071295A1 (en) * 2010-05-31 2013-03-21 Caterpillar Sarl Work machine
US20150016932A1 (en) * 2012-03-16 2015-01-15 Hitachi Construction Machinery Co., Ltd. Construction machine
US20150113147A1 (en) * 2013-04-18 2015-04-23 Iboss, Inc. Allocating a Pool of Shared Bandwidth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11312230B2 (en) * 2018-03-23 2022-04-26 Hitachi Construction Machinery Co., Ltd. Work vehicle
US11325465B2 (en) 2018-03-23 2022-05-10 Hitachi Construction Machinery Co., Ltd. Work vehicle
US11891774B2 (en) 2021-03-26 2024-02-06 Caterpillar Inc. Structurally integrated fuel tank

Also Published As

Publication number Publication date
JP6588239B2 (ja) 2019-10-09
EP3305993A4 (de) 2019-01-16
CN107407067A (zh) 2017-11-28
WO2016194430A1 (ja) 2016-12-08
EP3305993B1 (de) 2020-12-02
CN107407067B (zh) 2020-11-06
JP2016223242A (ja) 2016-12-28
EP3305993A1 (de) 2018-04-11
US10975549B2 (en) 2021-04-13
US20200040551A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
US10975549B2 (en) Construction machine
US9027697B2 (en) Construction machine
US10161107B2 (en) Construction machine
KR101628798B1 (ko) 환원제 탱크 및 작업 차량
US9366007B2 (en) Construction machine
JP5949793B2 (ja) 建設機械
US9010809B2 (en) Oil storage tank and construction vehicle
JP2012062693A (ja) 建設機械
JP6541972B2 (ja) ショベル
US9677248B2 (en) Work vehicle
JP6307019B2 (ja) 建設機械
WO2018047240A1 (ja) タンク及びタンクの製造方法
JP6765784B2 (ja) ショベル
JP5895951B2 (ja) 建設機械
JP7339453B2 (ja) 建設機械
CN116917614A (zh) 工程机械

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI CONSTRUCTION MACHINERY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMADA, YOSHIHITO;KONDO, WATARU;MATSUMOTO, TETSUYA;REEL/FRAME:043387/0461

Effective date: 20170727

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION