US20180000705A1 - Shampoo Compositions Comprising a Chelant - Google Patents

Shampoo Compositions Comprising a Chelant Download PDF

Info

Publication number
US20180000705A1
US20180000705A1 US15/630,411 US201715630411A US2018000705A1 US 20180000705 A1 US20180000705 A1 US 20180000705A1 US 201715630411 A US201715630411 A US 201715630411A US 2018000705 A1 US2018000705 A1 US 2018000705A1
Authority
US
United States
Prior art keywords
shampoo composition
shampoo
chelants
hair
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/630,411
Other languages
English (en)
Inventor
Jennifer Mary Marsh
Casey Patrick Kelly
Mark Robert Sivik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US15/630,411 priority Critical patent/US20180000705A1/en
Assigned to THE PROCTER & GAMBLE COMPANY reassignment THE PROCTER & GAMBLE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARSH, JENNIFER MARY, SIVIK, MARK ROBERT, KELLY, CASEY PATRICK
Publication of US20180000705A1 publication Critical patent/US20180000705A1/en
Priority to US16/515,821 priority patent/US11166894B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/002Preparations for repairing the hair, e.g. hair cure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/51Chelating agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/592Mixtures of compounds complementing their respective functions
    • A61K2800/5922At least two compounds being classified in the same subclass of A61K8/18
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/596Mixtures of surface active compounds

Definitions

  • Described herein are shampoo compositions comprising a detersive surfactant, a chelant, and a carrier, wherein the shampoo composition inhibits both deposition/penetration of copper salts and other transition metal salts in the hair and removes such salts from hair fiber.
  • a method of cleansing hair with such shampoo compositions is also described herein.
  • Described herein is a shampoo composition
  • a shampoo composition comprising:
  • fluid includes liquids and gels.
  • log x refers to the common (or decadic) logarithm of x.
  • mixtures is meant to include a simple combination of materials and any compounds that may result from their combination.
  • component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
  • compositions, methods, uses, kits, and processes of the shampoo composition described herein can comprise, consist of, and consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein.
  • the terms “include,” “includes,” and “including,” are meant to be non-limiting and are understood to mean “comprise,” “comprises,” and “comprising,” respectively.
  • substantially free from or “substantially free of” as used herein means less than about 1%, or less than about 0.8%, or less than about 0.5%, or less than about 0.3%, or about 0%, by total weight of the composition.
  • “Hair,” as used herein, means mammalian hair including scalp hair, facial hair and body hair, particularly on hair on the human head and scalp.
  • Cosmetically acceptable means that the compositions, formulations or components described are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like. All compositions described herein which have the purpose of being directly applied to keratinous tissue are limited to those being cosmetically acceptable.
  • Derivatives includes but is not limited to, amide, ether, ester, amino, carboxyl, acetyl, acid, and/or alcohol derivatives of a given compound.
  • Polymer means a chemical formed from the polymerisation of two or more monomers, which may be the same or different.
  • the term “polymer” as used herein shall include all materials made by the polymerisation of monomers as well as natural polymers. Polymers made from only one type of monomer are called homopolymers. A polymer comprises at least two monomers. Polymers made from two or more different types of monomers are called copolymers. The distribution of the different monomers can be calculated statistically or block-wise—both possibilities are suitable for the shampoo composition. Except if stated otherwise, the term “polymer” used herein includes any type of polymer including homopolymers and copolymers.
  • charge density means the ratio of the number of positive charges on a monomeric unit of which a polymer is comprised to the M.Wt. of said monomeric unit. The charge density multiplied by the polymer M.Wt. determines the number of positively charged sites on a given polymer chain.
  • charge density is measured using standard elemental analysis of percentage nitrogen known to one skilled in the art. This value of percentage nitrogen, corrected for total protein analysis, can then be used to calculate the number or equivalence of positive charges per gram of polymer.
  • the charge density is a function of the monomers used in the synthesis.
  • Standard NMR techniques know to one skilled in the art would be used to confirm that ratio of cationic and non-ionic monomers in the polymer. This would then be used to calculate the number or equivalence of positive charges per gram of polymer. Once these values are know, the charge density is reported in milliequivalence (meq) per gram of cationic polymer.
  • log P is the n-octanol/water partition coefficients of the material.
  • component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
  • a shampoo composition comprising (a) from about 0.005% to about 5% of one or more chelants; (b) from about 2% to about 50% of one or more detersive surfactants, by weight of the shampoo composition; (c) from about 75% to about 98% of an aqueous carrier, by weight of the shampoo composition, wherein the shampoo composition has a pH of about 3 to about 8, and wherein the shampoo inhibits copper deposition on hair and facilitates the removal of copper deposited on hair.
  • the shampoo composition also delivers consumer desired shampooing in addition to inhibiting the deposition of copper (i.e. from the water used to rinse) on the hair.
  • the shampoo composition comprises from about 0.005% to about 5%, alternatively from about 0.01% to about 3%, alternatively from about 0.01% to about 1%, alternatively from about 0.01% to about 0.5%, alternatively from about 0.01% to about 0.1%, and alternatively from about 0.025% to about 0.05% of one or more chelants by weight of the shampoo composition, wherein the one or more chelants have a molecular structure as follows:
  • the relative affinity of a chelant at a specified pH for Cu +2 can be assessed by its Stability Constant.
  • the Stability Constant of a metal chelant interaction is defined as:
  • [ML] is the concentration of metal ligand complex at equilibrium
  • [M] is the concentration of free metal ion
  • [L] is the concentration of free ligand in a fully deprotonated form
  • K ML is the stability constant for the metal chelant complex.
  • the one or more chelants for use in the shampoo composition may be selected from the group consisting of triethylenetetramine, tetraethylenepenatmine, pentaethylenehexamine, tris(2-aminoethyl)amine, ethylenedinitrilotetrapropan-2-ol, 1,1′,1′′-[[2-hydroxypropyl)imino]bis(2,1-ethanediylnitrilo)]tetrakis-2-propanol, tetraethylenepentaamine-(1-EO), 1,5,9,13-tetraazatridecane, and mixtures thereof.
  • Table 1 provides relevant properties and performance of the one or more copper chelants described herein. Details on determination of copper removing performance is described in the Examples section.
  • the log of the formation constant log K ML of its complex with copper can be higher than 6, alternatively higher than 8, alternatively higher than 9, alternatively higher than 10, alternatively higher than 12, alternatively higher than 14, alternatively higher than 16, alternatively higher than 17, alternatively higher than 18, and alternatively higher than 20.
  • the log of the formation constant log K ML of its complex with copper can be from about 6 to about 28, alternatively from about 8 to about 27, alternatively from about 9 to about 26, alternatively from about 10 to about 25, alternatively from about 12 to about 24, alternatively from about 14 to about 24, alternatively from about 16 to about 24, alternatively from about 17 to about 24, alternatively from about 18 to about 24, and alternatively from about 20 to about 23.
  • the log P value of the one or more chelants can be from about ⁇ 5 to about 2, alternatively from about ⁇ 4 to about 1, alternatively from about ⁇ 3.5 to about 0, and alternatively from about ⁇ 2.9 to about ⁇ 2.5.
  • the molecular weight of the one or more chelants can be from about 50 to about 500, alternatively from about 75 to about 400, alternatively from about 100 to about 350, alternatively from about 125 to about 325, alternatively from about 140 to about 300, alternatively from about 140 to about 200.
  • the copper removing performance of the shampoo composition is determined by treating hair with clarifying shampoo containing the corresponding chelant for 20 cycles and comparing the copper content of the hair compared to the same treatment using shampoo without the chelant.
  • chelants that can be used to reduce copper content of hair have the following general structure:
  • M is hydrogen or a metal ion; p is 1 or 2; q is 1 or 2; and X is selected from the group containing hydrogen, methyl, ethyl, propyl, —CH 2 CH 2 OH, —CH 2 CH(CH 3 )OH), —CH 2 CH 2 NH 2 , —CH 2 CH(CH 3 )NH 2 , —CH 2 COOM, or —CH 2 CH 2 SH, and —CH 2 CH(CH 3 )SH).
  • Non-limiting examples include iminodiacetic acid, N-(2-hydroxyethyl)iminodiacetic acid, N-methyliminodiacetic acid, N-(2-aminoethyl)iminodiacetic acid, N-propyliminodiacetic acid, and nitrilotriacetic acid.
  • the shampoo composition comprises from about 2% to about 50%, alternatively from about 5% to about 25%, alternatively from about 7% to about 22%, alternatively from about 9% to about 18%, and alternatively from about 11% to about 15% of one or more detersive surfactants by weight of the shampoo composition.
  • concentration of the detersive surfactant component in the shampoo composition should be sufficient to provide the desired cleaning and lather performance.
  • the one or more detersive surfactants can be selected from the group consisting of anionic surfactants, amphoteric or zwitterionic surfactants, or mixtures thereof.
  • the one or more detersive surfactants can also be selected from the group consisting of anionic surfactants, cationic surfactants, non-ionic surfactants, amphoteric surfactants, and mixtures thereof.
  • detersive surfactants are set forth in U.S. Pat. No. 6,649,155; U.S. Patent Application Publication No. 2008/0317698; and U.S. Patent Application Publication No. 2008/0206355, which are incorporated herein by reference in their entirety.
  • Anionic surfactants suitable for use in the compositions are the alkyl and alkyl ether sulfates.
  • Other suitable anionic surfactants are the water-soluble salts of organic, sulfuric acid reaction products.
  • Still other suitable anionic surfactants are the reaction products of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide.
  • Other similar anionic surfactants are described in U.S. Pat. Nos. 2,486,921; 2,486,922; and 2,396,278, which are incorporated herein by reference in their entirety.
  • Exemplary anionic surfactants for use in the shampoo composition include ammonium lauryl sulfate, ammonium laureth sulfate, triethylamine lauryl sulfate, triethylamine laureth sulfate, triethanolamine lauryl sulfate, triethanolamine laureth sulfate, monoethanolamine lauryl sulfate, monoethanolamine laureth sulfate, diethanolamine lauryl sulfate, diethanolamine laureth sulfate, lauric monoglyceride sodium sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium lauryl sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sulfate, ammonium la
  • Suitable amphoteric or zwitterionic surfactants for use in the shampoo composition include those which are known for use in shampoo or other personal care cleansing. Concentrations of such amphoteric surfactants range from about 0.5 wt % to about 20 wt %, and from about 1 wt % to about 10 wt %. Non limiting examples of suitable zwitterionic or amphoteric surfactants are described in U.S. Pat. Nos. 5,104,646 and 5,106,609, which are incorporated herein by reference in their entirety.
  • Amphoteric detersive surfactants suitable for use in the shampoo composition include those surfactants broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • Exemplary amphoteric detersive surfactants for use in the present shampoo composition include cocoamphoacetate, cocoamphodiacetate, lauroamphoacetate, lauroamphodiacetate, and mixtures thereof.
  • Zwitterionic detersive surfactants suitable for use in the shampoo composition include those surfactants broadly described as derivatives of aliphatic quaternaryammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate or phosphonate.
  • zwitterionics such as betaines are selected.
  • Non limiting examples of other anionic, zwitterionic, amphoteric or optional additional surfactants suitable for use in the shampoo composition are described in McCutcheon's, Emulsifiers and Detergents, 1989 Annual, published by M. C. Publishing Co., and U.S. Pat. Nos. 3,929,678, 2,658,072; 2,438,091; 2,528,378, which are incorporated herein by reference in their entirety.
  • the shampoo composition may also comprise a cationic conditioning polymer, an aqueous carrier, and other additional ingredients described herein.
  • the shampoo composition described herein may comprise one or more cationic conditioning polymers.
  • This polymer may be selected from the group consisting of (a) a cationic guar polymer, (b) a cationic non-guar polymer, (c) a cationic tapioca polymer, (d) a cationic copolymer of acrylamide monomers and cationic monomers, (e) a synthetic, non-crosslinked, cationic polymer, which forms lyotropic liquid crystals upon combination with the detersive surfactant, and (f) mixtures thereof.
  • the shampoo composition further comprises from about 75% to about 98%, alternatively from about 80% to about 98% of a cosmetically acceptable carrier, by weight of the shampoo composition.
  • the carrier can be an aqueous carrier.
  • the amount and chemistry of the carrier is selected according to the compatibility with other components and other desired characteristic of the product.
  • the carrier is selected from the group consisting of: water and water solutions of lower alkyl alcohols.
  • Lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, such as ethanol and/or isopropanol.
  • the cosmetically acceptable carrier is a cosmetically acceptable aqueous carrier and is present at a level of from about 20% to about 95%, or from about 60% to about 85%.
  • the pH of the shampoo composition can be from about pH 3 to about pH 8, alternatively from about pH 4 to about pH 7, and alternatively from about pH 5 to about pH 6.
  • the shampoo composition may further comprise one or more benefit agents.
  • benefit agents include, but are not limited to, silicone emulsions, anti-dandruff actives, perfume microcapsules, gel networks, colorants, particles, and other insoluble skin or hair conditioning agents such as skin silicones, natural oils such as sun flower oil or castor oil.
  • silicone emulsions suitable for use herein include emulsions of insoluble polysiloxanes prepared in accordance with the descriptions provided in U.S. Pat. No. 4,476,282 and U.S. Patent Application Publication No. 2007/0276087. Accordingly, insoluble polysiloxanes referred to herein for the purpose of the invention include polysiloxanes such as alpha, omega hydroxy-terminated polysiloxanes or alpha, omega alkoxy-terminated polysiloxanes having a molecular weight within the range from about 50,000 to about 500,000 g/mol.
  • insoluble polysiloxane means that the water solubility of the polysiloxane is less than 0.05 wt %. In another embodiment, the water solubility of the polysiloxane is less than 0.02 wt %, or less than 0.01 wt %, or less than 0.001 wt %. According to an embodiment, the insoluble polysiloxane is present in the shampoo composition in an amount within the range from about 0.1 wt % to about 3 wt %, based on the total weight of the composition.
  • the insoluble polysiloxane can be present in an amount within the range from about 0.2 wt % to about 2.5 wt %, or from about 0.4 wt % to about 2.0 wt %, or from about 0.5 wt % to about 1.5 wt %, based on the total weight of the composition.
  • the insoluble polysiloxane used herein include alpha, omega hydroxy- or alkoxy-terminated polysiloxanes having a general formula I:
  • n is an integer
  • R is a substituted or unsubstituted C 1 to C 10 alkyl or aryl
  • R 1 is a hydrogen or a substituted or unsubstituted C 1 to C 10 alkyl or aryl.
  • R and R 1 may be independently selected from alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tertpentyl, hexyl such as n-hexyl, heptyl such as n-heptyl, octyl such as n-octyl and isooctyl such as 2,2,4-trimethyl-pentyl, nonyl such as n-nonyl, decyl such as n-decyl, dodecyl such as n-dodecyl, octadecyl such as n-octadecyl; or aryl groups such as phenyl, naphthyl, anthryl and phenanthryl
  • the insoluble polysiloxane has an average molecular weight within the range from about 50,000 to about 500,000 g/mol.
  • the insoluble polysiloxane may have an average molecular weight within the range from about 60,000 to about 400,000; from about 75,000 to about 300,000; from about 100,000 to about 200,000; or the average molecular weight may be about 150,000 g/mol.
  • dimethiconol may include significant quantities of cyclic polysiloxanes, such as octamethylcyclotetrasiloxane (D4) and decamethylcyclotetrasiloxane (D5).
  • the amount of D4 is less than about 2.0%, or less than about 1.5%, or less than about 1.0%, or less than about 0.5%, based on the total weight of all polysiloxanes.
  • the amount of D5 is less than about 0.5%, or less than about 0.4%, or less than about 0.3%, or less than about 0.2%, based on the total weight of all polysiloxanes.
  • the emulsion has a viscosity up to about 500,000 cPs.
  • the viscosity may be within the range from about 75,000 to about 300,000, from about 100,000 to about 200,000, or about 150,000 cPs.
  • the insoluble polysiloxane has an average particle size within the range from about 30 nm to about 10 micron.
  • the average particle size may be within the range from about 40 nm to about 5 micron, from about 50 nm to about 1 micron, from about 75 nm to about 500 nm, or about 100 nm, for example.
  • the average molecular weight of the insoluble polysiloxane, the viscosity of the silicone emulsion, and the size of the particle comprising the insoluble polysiloxane are determined by methods commonly used by those skilled in the art, such as the methods disclosed in Smith, A. L. The Analytical Chemistry of Silicones , John Wiley & Sons, Inc.: New York, 1991.
  • the viscosity of the silicone emulsion can be measured at 30° C. with a Brookfield viscosimeter with spindle 6 at 2.5 rpm.
  • the emulsion further includes an anionic surfactant that participates in providing high internal phase viscosity emulsions having particle sizes in the range from about 30 nm to about 10 micron.
  • the anionic surfactant is selected from organic sulfonic acids. Most common sulfonic acids used in the present process are alkylaryl sulfonic acid; alkylaryl polyoxyethylene sulphonic acid; alkyl sulfonic acid; and alkyl polyoxyethylene sulfonic acid. General formulas of the sulfonic acids are as shown below:
  • R 2 which may differ, is a monovalent hydrocarbon radical having at least 6 carbon atoms.
  • R 2 include hexyl, octyl, decyl, dodecyl, cetyl, stearyl, myristyl, and oleyl.
  • ‘m’ is an integer from 1 to 25.
  • anionic surfactants include but are not limited to octylbenzene sulfonic acid; dodecylbenzene sulfonic acid; cetylbenzene sulfonic acid; alpha-octyl sulfonic acid; alpha-dodecyl sulfonic acid; alpha-cetyl sulfonic acid; polyoxyethylene octylbenzene sulfonic acid; polyoxyethylene dodecylbenzene sulfonic acid; polyoxyethylene cetylbenzene sulfonic acid; polyoxyethylene octyl sulfonic acid; polyoxyethylene dodecyl sulfonic acid; and polyoxyethylene cetyl sulfonic acid.
  • 1 to 15% anionic surfactant is used in the emulsion process.
  • 3-10% anionic surfactant can be used to obtain an optimum result.
  • the silicone emulsion may further include an additional emulsifier together with the anionic surfactant, which along with the controlled temperature of emulsification and polymerization, facilitates making the emulsion in a simple and faster way.
  • Non-ionic emulsifiers having a hydrophilic lipophilic balance (HLB) value of 10 to 19 are suitable and include polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ethers and polyoxyalkylene sorbitan esters.
  • Some useful emulsifiers having an HLB value of 10 to 19 include, but are not limited to, polyethylene glycol octyl ether; polyethylene glycol lauryl ether; polyethylene glycol tridecyl ether; polyethylene glycol cetyl ether; polyethylene glycol stearyl ether; polyethylene glycol nonylphenyl ether; polyethylene glycol dodecylphenyl ether; polyethylene glycol cetylphenyl ether; polyethylene glycol stearylphenyl ether; polyethylene glycol sorbitan monostearate; and polyethylene glycol sorbitan monooleate.
  • composition may further comprise an anti-dandruff active, which may be an anti-dandruff active particulate.
  • the shampoo composition can also additionally comprise any suitable optional ingredients as desired.
  • optional ingredients should be physically and chemically compatible with the components of the composition, and should not otherwise unduly impair product stability, aesthetics, or performance.
  • CTFA Cosmetic Ingredient Handbook Tenth Edition (published by the Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C.) (2004) (hereinafter “CTFA”), describes a wide variety of nonlimiting materials that can be added to the composition herein.
  • a method of making a shampoo composition comprising a detersive surfactant, a cationic conditioning polymer, a chelant, and a carrier.
  • the method includes (i) combining the detersive surfactant and the cationic conditioning polymer in suitable carrier, and (ii) combining a chelant and a carrier composition that includes a product of step (i) to form the shampoo composition.
  • the shampoo composition has a viscosity of 4,000 cP to 20,000 cP, or from about 6,000 cP to about 12,000 cP, or from about 8,000 cP to about 11,000 cP, measured at 26.6° C. with a Brookfield R/S Plus Rheometer at 2 s ⁇ 1 .
  • cP means centipoises.
  • Also described herein is a method of inhibiting copper deposition on hair and facilitating the removal of copper deposited on hair comprising applying to the hair a shampomo composition described herein and rinsing the shampoo composition from the hair.
  • Inhibition of copper deposition on hair and facilitation of the removal of copper deposited on hair may also be achieved by applying a leave-on treatment to the hair after rinsing the conditioner from the hair.
  • the leave-on treatment may deliver consumer desired conditioning in addition to inhibiting the deposition of copper (i.e. from the water used to rinse) on the hair.
  • the leave-on treatment described herein may comprise from about 0.025% to about 0.50%, alternatively from about 0.05% to about 0.25% of one or more chelants described herein, by weight of the leave-on treatment.
  • the leave-on treatment may also comprise one or more rheology modifiers and an aqueous carrier.
  • the shampoo composition can be prepared by conventional formulation and mixing techniques. It will be appreciated that other modifications of the shampoo composition within the skill of those in the hair care formulation art can be undertaken without departing from the spirit and scope of this invention. All parts, percentages, and ratios herein are by weight unless otherwise specified. Some components may come from suppliers as dilute solutions. The amount stated reflects the weight percent of the active material, unless otherwise specified.
  • All testing are performed on colored hair switches (see Method of Measurement of Copper on Hair below) weighing approximately 4.0 grams and having a length of approximately 6 inches.
  • the hair switches are commercially available from IHIP (International Hair Importers).
  • Three hair switches per shampoo composition are used. An amount of 0.20 g of shampoo is spread via a syringe onto separate hair switch. That is, the dosage is 0.10 g of shampoo per g of hair.
  • Each application consists of adding shampoo to the hair, milking for 30 seconds followed by rinsing for 30 seconds. Shampoo is then reapplied (0.1 g/g), milked for 30 seconds and rinsed for 30 seconds.
  • test method is used to assess the ability of the compositions and regimens to remove copper from the hair and to inhibit copper deposition onto the hair.
  • Hair switches are colored once with an oxidative hair colorant. An extra blonde shade is used for the testing.
  • the hair switches are washed for 10 or 20 repeat wash cycles in tap water containing 7 grains per gallon water hardness (Ca/Mg) and 0.06 ⁇ g/g copper ions.
  • Each wash cycle consists of two applications of 0.1 g/g a shampoo to the hair switches.
  • Each application consists of adding shampoo to the hair, milking for 30 secs followed by rinsing for 30 secs.
  • Shampoo is then reapplied 0.1 g/g, milked for 30 secs, rinsed for 30 secs and then dried in a heat box (60° C.) until dry.
  • Samples of 100 mg of hair are digested overnight with 2 ml of high purity concentrated nitric acid.
  • the digestive mixture also contains 150 ⁇ L of 100 ⁇ g/g Yttrium internal standard (Inorganic Ventures, Christianburg, Va., USA).
  • samples are heated to 70-80° C. for one hour, cooled to room temperature and diluted to 15 mL with deionized water.
  • Copper content of the hair switches is determined by inductively coupled plasma atomic spectroscopy (ICP-OES)). For each leg, 3 different samples are analyzed.
  • the shampoo composition described herein is generally prepared by conventional methods. Such methods typically involve mixing of the ingredients in one or more steps to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like.
  • the compositions are prepared such as to optimize stability (physical stability, chemical stability, photostability) and/or delivery of the active materials.
  • the shampoo composition may be in a single phase or a single product, or the shampoo composition may be in a separate phases or separate products. If two products are used, the products may be used together, at the same time, or sequentially. Sequential use may occur in a short period of time, such as immediately after the use of one product, or it may occur over a period of hours or days.
  • Control Ex. 2 Components Wt % Wt % Sodium Laureth-1 Sulfate 1 10.50 10.50 Sodium Lauryl Sulfate 2 1.50 1.50 Cocamidopropyl betaine 1.00 1.00 Sodium benzoate 0.25 0.25 Citric Acid 0.70 0.70 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone 3 Sodium chloride 1.00 1.00 Tetrasodium EDTA dihydrate 0.16 0.16 2,3-Triethylenetetramine (TETA) 0.00 0.10 Deionized water Q.S. Q.S.
  • Chelant 2,3-Triethylenetetramine contributes to significant reduction of copper content on hair after 10 shampoo cycle treatments compared to treatment with shampoo composition that does not comprise the chelant.
  • 2,3-Triethylenetetramine acid contributes to an effective removal of copper from hair after 20 shampoo cycles both at low and a higher pH value. Without the chelant, lower pH shows higher copper removal from hair.
  • ethylenedinitrilotetrapropan-2-ol acid contributes to an effective removal of copper from hair after 20 shampoo cycles compared to the corresponding treatment with control shampoo that does not contain the chelant.
  • tris-2-aminoethylamine acid contributes to an effective removal of copper from hair after 10 shampoo cycles compared to the corresponding treatment with control clarifying shampoo that does not contain the chelant.
  • composition of Ex.16 Ex.17 Ex.18 Summary Control Clarifying Clarifying shampoo Clarifying shampoo Description of shampoo with simple with simple with simple surfactant, Composition surfactant and surfactant, a a Rheology Modifier Rheology Modifier Rheology Modifier and a chelant and a chelant Concentration of 0.00% 0.10% 0.10% Chelant in Shampoo Chelant used — Iminodiacetic acid N-(2- hydroxyethyl)iminodiacetic acid Shampoo pH 6.0 6.0 6.0 Shampoo cycles 20 20 20 Average final copper 84 51 56 concentration in hair (ppm) Standard deviation 6.5 2.7 1.7 Relative content of 100 61 67 Copper content on hair after treatment (versus control shampoo treatment)
  • chelants having 2-aminodiacetic acid molecular structures contributes to an effective removal of copper from hair after 20 shampoo cycles compared to the corresponding treatment with control clarifying shampoo that does not contain the chelant.
  • Control Ex. 21 Components Wt % Wt % Sodium Laureth-3 Sulfate 1 6.00 6.00 Sodium Lauryl Sulfate 2 9.50 9.50 Cocamidopropyl betaine 1.88 1.88 Tetrasodium EDTA dehydrate 0.16 0.16 Citric Acid (Anhydrous) 0.28 0.28 Sodium benzoate 0.25 0.25 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone 3 Sodium chloride 0.57 0.57 Hydroxypropylmethylcellulose 0.25 0.25 2,3-Triethylenetetramine (TETA) 0.0 0.10 Perfume 0.40 0.40 Distilled Water Q.S. Q.S.
  • Each treatment includes cleaning with conditioning shampoo followed by a rinse-off conditioner, followed by a leave-on treatment spray (when indicated).
  • Treatment v. Treatment v. Treatment AM content on hair AM AM after treatment (versus control shampoo treatment) Shampoo Ex. 21 Ex. 19(a) Ex. 23 Ex. 22
  • Addition of 2,3-Triethylenetetramine in any of the products of the regimen contributes to an effective removal of copper from hair after 20 conditioning shampoo/rinse-off conditioner/leave-on treatment regimen cycles compared to the corresponding treatment with control conditioning shampoo/control rinse-off conditioner.
  • the regimen where the chelant is added in the leave-on treatment is particularly effective in removing copper form hair.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
US15/630,411 2016-06-30 2017-06-22 Shampoo Compositions Comprising a Chelant Abandoned US20180000705A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/630,411 US20180000705A1 (en) 2016-06-30 2017-06-22 Shampoo Compositions Comprising a Chelant
US16/515,821 US11166894B2 (en) 2016-06-30 2019-07-18 Shampoo compositions comprising a chelant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662356943P 2016-06-30 2016-06-30
US15/630,411 US20180000705A1 (en) 2016-06-30 2017-06-22 Shampoo Compositions Comprising a Chelant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/515,821 Continuation US11166894B2 (en) 2016-06-30 2019-07-18 Shampoo compositions comprising a chelant

Publications (1)

Publication Number Publication Date
US20180000705A1 true US20180000705A1 (en) 2018-01-04

Family

ID=59270174

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/630,411 Abandoned US20180000705A1 (en) 2016-06-30 2017-06-22 Shampoo Compositions Comprising a Chelant
US16/515,821 Active US11166894B2 (en) 2016-06-30 2019-07-18 Shampoo compositions comprising a chelant

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/515,821 Active US11166894B2 (en) 2016-06-30 2019-07-18 Shampoo compositions comprising a chelant

Country Status (6)

Country Link
US (2) US20180000705A1 (ja)
EP (1) EP3478257A1 (ja)
JP (1) JP2019518053A (ja)
CN (1) CN109310603A (ja)
MX (1) MX2018015497A (ja)
WO (1) WO2018005256A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10973744B2 (en) 2016-06-30 2021-04-13 The Procter And Gamble Company Conditioner composition comprising a chelant
US11166894B2 (en) 2016-06-30 2021-11-09 The Procter And Gamble Company Shampoo compositions comprising a chelant
US11246816B2 (en) 2016-06-30 2022-02-15 The Procter And Gamble Company Shampoo compositions comprising a chelant
US11274266B2 (en) 2018-08-24 2022-03-15 The Procter & Gamble Company Treatment compositions comprising a surfactant system and an oligoamine
US11279901B2 (en) 2018-08-24 2022-03-22 The Procter & Gamble Company Treatment compositions comprising low levels of an oligoamine
US11458085B2 (en) 2016-06-30 2022-10-04 The Procter And Gamble Company Hair care compositions for calcium chelation
US11786447B2 (en) 2016-06-30 2023-10-17 The Procter & Gamble Company Conditioner composition comprising a chelant

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE406221A (ja) 1933-11-15
US2438091A (en) 1943-09-06 1948-03-16 American Cyanamid Co Aspartic acid esters and their preparation
BE498391A (ja) 1944-10-16
BE498392A (ja) 1945-11-09
US2528378A (en) 1947-09-20 1950-10-31 John J Mccabe Jr Metal salts of substituted quaternary hydroxy cycloimidinic acid metal alcoholates and process for preparation of same
US2658072A (en) 1951-05-17 1953-11-03 Monsanto Chemicals Process of preparing amine sulfonates and products obtained thereof
US3940482A (en) * 1971-04-21 1976-02-24 Colgate-Palmolive Company Solubilization of the zinc salt of 1-hydroxy-2-pyridinethione
US4185106A (en) 1972-07-11 1980-01-22 Hoechst Aktiengesellschaft Pyridones as antidandruff agents
US3929678A (en) 1974-08-01 1975-12-30 Procter & Gamble Detergent composition having enhanced particulate soil removal performance
US4089945A (en) 1975-06-30 1978-05-16 The Procter & Gamble Company Antidandruff shampoos containing metallic cation complex to reduce in-use sulfide odor
US4321156A (en) 1977-03-30 1982-03-23 S. C. Johnson & Son, Inc. Shampoo composition
CA1147262A (en) * 1980-12-02 1983-05-31 Irving R. Schmolka Hydroxyalkylated alkylene diamine in acid beauty aid composition
JPS57109711A (en) 1980-12-26 1982-07-08 Lion Corp Hair cosmetic
US4412943A (en) 1981-02-23 1983-11-01 Kao Soap Co., Ltd. Liquid detergent composition
DE3216585C2 (de) 1982-05-04 1984-07-26 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von feinteiligen, stabilen O/W-Emulsionen von Organopolysiloxanen
US4822604A (en) 1985-05-20 1989-04-18 S. C. Johnson & Son, Inc. Local treatment of dandruff, seborrheic dermatitis, and psoriasis
DE3602746A1 (de) 1986-01-30 1987-08-06 Wella Ag Haarbehandlungsmittel und verfahren zur verbesserung des zustandes der haare
JPS63150213A (ja) 1986-12-15 1988-06-22 Kao Corp シヤンプ−組成物
US4749507A (en) * 1987-02-12 1988-06-07 Clairol, Incorporated Process for removing hair dyes from hair and skin, and product for carrying out the process
US5106609A (en) 1990-05-01 1992-04-21 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5104646A (en) 1989-08-07 1992-04-14 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5100657A (en) 1990-05-01 1992-03-31 The Procter & Gamble Company Clean conditioning compositions for hair
AU3249293A (en) 1991-12-13 1993-07-19 Vitachlor Corporation Compositions and methods for removing minerals from hair
JP2665292B2 (ja) 1992-03-18 1997-10-22 ホーユー株式会社 毛髪化粧料
GB9210768D0 (en) 1992-05-20 1992-07-08 Unilever Plc Cosmetic composition
JP2587755B2 (ja) 1992-07-22 1997-03-05 花王株式会社 洗浄剤組成物
US5306489A (en) 1992-07-24 1994-04-26 Revlon Consumer Products Corporation Hair care products containing N-alkoxyalkylamides
JPH07258698A (ja) 1994-03-22 1995-10-09 Sunstar Inc 液体石鹸組成物
GB2288812B (en) 1994-04-26 1998-08-26 Procter & Gamble Cleansing compositions
JP3526327B2 (ja) 1994-10-04 2004-05-10 花王株式会社 リンス剤組成物
US5635167A (en) 1994-12-28 1997-06-03 L'avante Garde, Inc. Removal of minerals from human hair and animal keratin fibers
JPH09183996A (ja) 1995-12-28 1997-07-15 Kose Corp 洗浄剤組成物
US6579891B1 (en) 1995-12-29 2003-06-17 Novactyl, Inc. Agent and method for prevention and treatment of cancer in animals
JPH09291024A (ja) 1996-04-24 1997-11-11 Lion Corp 浴用剤組成物
US5847003A (en) 1996-06-04 1998-12-08 Avon Products, Inc. Oxa acids and related compounds for treating skin conditions
GB9615633D0 (en) 1996-07-25 1996-09-04 Procter & Gamble Shampoo compositions
WO1998004233A1 (en) 1996-07-31 1998-02-05 The Procter & Gamble Company Conditioning shampoo compositions comprising polyalkoxylated polyalkyleneamine
FR2753378B1 (fr) 1996-09-17 1998-11-20 Oreal Utilisation dans une composition en tant que stimulateur de tyrosinase d'au moins un derive de pyrimidine 3-oxyde, substitue en 6
DE19650102A1 (de) 1996-12-03 1998-06-04 Basf Ag Verwendung von Bis(dicarbonsäure)diaminoalkylen-Derivaten als biologisch abbaubare Komplexbildner für Erdalkali- und Schwermetallionen
US6432147B1 (en) 1996-12-23 2002-08-13 The Procter & Gamble Company Hair coloring compositions
JPH11139941A (ja) 1997-11-06 1999-05-25 Hoyu Co Ltd 毛髪処理剤組成物
JPH11180836A (ja) 1997-12-19 1999-07-06 Ajinomoto Co Inc 頭髪化粧料組成物
JP3807846B2 (ja) 1998-03-20 2006-08-09 株式会社資生堂 酸性染料洗浄用組成物
US6908608B1 (en) 1998-11-02 2005-06-21 Ciba Specialty Chemical Corporation Stabilization of body-care and household products
US8404257B1 (en) 1998-11-02 2013-03-26 Basf Se Stabilisation of body-care and household products
JP3208382B2 (ja) 1998-12-28 2001-09-10 花王株式会社 毛髪洗浄剤
JP3208381B2 (ja) 1998-12-28 2001-09-10 花王株式会社 毛髪化粧料
GB9913764D0 (en) 1999-06-14 1999-08-11 Procter & Gamble Hair care compositions
GB9913762D0 (en) 1999-06-14 1999-08-11 Procter & Gamble Hair care compositions
GB9913765D0 (en) 1999-06-14 1999-08-11 Procter & Gamble Hair care compoaitions
US6544500B1 (en) 1999-02-28 2003-04-08 The Procter & Gamble Company Hair care compositions
US6432394B2 (en) 1999-04-19 2002-08-13 Unilever Home & Personal Care Usa, Division Of Conopco, Inc Hair conditioning compositions comprising one or more dibasic amino acids
EP1046390A1 (en) 1999-04-20 2000-10-25 Calgon Corporation Compositions and methods for cleaning and removing contaminants from hair
US6649155B1 (en) 1999-05-03 2003-11-18 The Procter & Gamble Company Anti-dandruff and conditioning shampoos containing certain cationic polymers
EP1194461B1 (en) 1999-05-26 2008-10-08 Rhodia Inc. Block polymers, compositions and methods of use for foams, laundry detergents, shower rinses and coagulants
US6495498B2 (en) 1999-05-27 2002-12-17 Johnson & Johnson Consumer Companies, Inc. Detergent compositions with enhanced depositing, conditioning and softness capabilities
US6861397B2 (en) 1999-06-23 2005-03-01 The Dial Corporation Compositions having enhanced deposition of a topically active compound on a surface
GB9917452D0 (en) 1999-07-23 1999-09-29 Unilever Plc Method of hair treatment using organic amino compounds
GB9917453D0 (en) 1999-07-23 1999-09-29 Unilever Plc Method of hair treatment using organic amino compounds
DE19943597A1 (de) 1999-09-11 2001-03-15 Henkel Kgaa Verwendung basischer Aminosäuren als Fönschutz in Haarbehandlungsmitteln
US6287547B1 (en) 1999-10-12 2001-09-11 Sanyo Chemical Industries, Ltd. Hair treatment composition
JP3371098B2 (ja) 1999-11-04 2003-01-27 花王株式会社 洗浄剤組成物
US6365143B1 (en) * 2000-04-03 2002-04-02 Larry D. Lundmark Cleansing composition and method for removing chemically bound residues and mineral deposits from hair
IT1318571B1 (it) 2000-06-09 2003-08-27 Farmaka Srl Composizioni cosmetiche per la cura del cuoio capelluto e dei capelli.
US6602493B2 (en) 2001-02-15 2003-08-05 Avlon Industries, Inc. Hair relaxer system and method therefor
US7186275B2 (en) 2001-03-20 2007-03-06 The Procter & Gamble Company Compositions suitable for the treatment of hair comprising chelants and methods for reducing oxidative hair damage
US20040123402A1 (en) 2001-03-20 2004-07-01 The Procter & Gamble Company Oxidizing compositions comprising a chelant and a conditioning agent and methods of treating hair
JP4229236B2 (ja) 2001-04-23 2009-02-25 エムジーピー イングリーディエンツ アイエヌシー. 加水分解されたホホバプロテインを調製する方法および加水分解されたホホバプロテインを含む調合物
US6927196B2 (en) 2001-09-13 2005-08-09 The Procter & Gamble Company Transparent concentrated hair conditioning composition
US20030134772A1 (en) 2001-10-19 2003-07-17 Dykstra Robert Richard Benefit agent delivery systems
DE10163052A1 (de) 2001-12-21 2003-07-17 Henkel Kgaa Restrukturierung und Ausrüstung keratinischer Fasern
US7186274B2 (en) 2002-04-08 2007-03-06 L'oreal Method for treating human keratin fibers with organomodified metallic particles
ES2601463T3 (es) 2002-04-22 2017-02-15 The Procter & Gamble Company Composiciones para la higiene personal que comprenden un material que contiene cinc en una composición tensioactiva acuosa
MXPA04009515A (es) 2002-04-22 2005-07-26 Procter & Gamble Uso de materiales con comportamiento de ionoforos de zinc.
GB0209485D0 (en) 2002-04-25 2002-06-05 Procter & Gamble Durable fiber treatment composition
US9358195B2 (en) 2002-05-02 2016-06-07 Basf Se Stabilized body care products, household products, textiles and fabrics
US6743434B1 (en) 2002-05-14 2004-06-01 Larry D. Lundmark Carbonic emulsion skin care compositions and method for removing chemically bound residues and mineral deposits from hair
US20080206355A1 (en) 2002-06-04 2008-08-28 The Procter & Gamble Company Composition comprising a particulate zinc material, a pyrithione or a polyvalent metal salt of a pyrithione and a synthetic cationic polymer
DE10232780A1 (de) 2002-07-18 2004-02-12 Basf Ag Co-Tenside auf Basis von Aldehyden
JP4046570B2 (ja) 2002-07-31 2008-02-13 ポーラ化成工業株式会社 毛髪化粧料
US7547454B2 (en) 2002-11-07 2009-06-16 Shyam K Gupta Hydroxy acid complexes for antiaging and skin renovation
DE10259199A1 (de) 2002-12-16 2004-06-24 Henkel Kgaa Restrukturierung und Ausrüstung keratinischer Fasern
EP1466592A1 (en) 2003-04-07 2004-10-13 Kao Corporation Cleansing compositions
FR2853529B3 (fr) 2003-04-08 2005-07-01 Sephytal Shampooing vitalisant pour cheveux
FR2853530B3 (fr) 2003-04-08 2005-07-01 Sephytal Shampooing reparateur pour cheveux
FR2853531B3 (fr) 2003-04-08 2008-10-03 Sephytal Composition apres-shampooing pour cheveux
JP4050676B2 (ja) 2003-08-22 2008-02-20 花王株式会社 洗浄料
US20050095215A1 (en) 2003-11-03 2005-05-05 Popp Karl F. Antimicrobial shampoo compositions
US20050239723A1 (en) 2004-04-27 2005-10-27 Amin Avinash N Compositions and methods useful for treatment of acne
US7045493B2 (en) 2004-07-09 2006-05-16 Arkema Inc. Stabilized thickened hydrogen peroxide containing compositions
JP2006160708A (ja) 2004-12-10 2006-06-22 Shiseido Co Ltd 多層型毛髪化粧料
DE602004028031D1 (de) 2004-12-16 2010-08-19 Kpss Kao Gmbh Reinigungsmittel
US8022020B2 (en) 2005-01-18 2011-09-20 Bestline International Research, Inc. Universal synthetic penetrating lubricant, method and product-by-process
US7745382B2 (en) 2005-01-18 2010-06-29 Bestline International Research Inc. Synthetic lubricant additive with micro lubrication technology to be used with a broad range of synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam
EP1846478B2 (en) 2005-02-02 2021-09-08 Wacker Chemie AG Manufacture of stable low particle size organopolysiloxane emulsion
DE102005013438A1 (de) 2005-03-21 2006-09-28 Henkel Kgaa Haarbehandlungs-Kit mit Komplexbildnern
DE102005063096A1 (de) 2005-12-30 2007-07-05 Henkel Kgaa Pflegende Haarbehandlungssmittel mit kammartigen Polymeren I
JP2007329425A (ja) 2006-06-09 2007-12-20 Elpida Memory Inc 半導体集積回路の自動配線方法、プログラム及び記録媒体
US20080057015A1 (en) 2006-08-30 2008-03-06 Oblong John E Hair care compositions, methods, and articles of commerce that can help maintain a longer lasting hair style appearance
GB0617191D0 (en) 2006-08-31 2006-10-11 York Pharma Plc Improvements in pharmaceutical compositions
US8673274B2 (en) 2006-12-15 2014-03-18 The Procter & Gamble Company Composition comprising pyrithione or a polyvalent metal salt of a pyrithione and furametpyr
JP4865574B2 (ja) 2007-01-15 2012-02-01 ホーユー株式会社 毛髪処理剤組成物及び毛髪処理方法
US8349300B2 (en) 2007-04-19 2013-01-08 The Procter & Gamble Company Personal care compositions containing at least two cationic polymers and an anionic surfactant
EP2152102A2 (en) * 2007-05-07 2010-02-17 Technion Research & Development Foundation Ltd. Compositions, articles and methods for preventing or reducing tobacco-associated damage
JP5530588B2 (ja) 2007-06-14 2014-06-25 ホーユー株式会社 毛髪弾力性向上剤
US20090074700A1 (en) * 2007-09-14 2009-03-19 L'oreal Compositions and methods for imparting shine onto hair
US20090071493A1 (en) * 2007-09-14 2009-03-19 L'oreal Compositions and methods for conditioning hair
EP2067467A3 (en) * 2007-09-14 2012-12-12 L'Oréal Compositions and methods for treating keratinous substrates
US20090092561A1 (en) 2007-10-09 2009-04-09 Lupia Joseph A Body-care and household products and compositions comprising specific sulfur-containing compounds
BRPI0820061B1 (pt) 2007-11-05 2016-06-07 Procter & Gamble composições oxidantes de coloração de cabelos
KR100929956B1 (ko) 2008-01-11 2009-12-04 주식회사 엘지생활건강 지속성을 갖는 이제식 모발 컨디셔닝 조성물
KR20100119873A (ko) 2008-02-21 2010-11-11 바스프 에스이 양이온성 나노입자의 제조 및 상기 나노입자를 포함하는 개인 케어 조성물
KR20100089329A (ko) 2009-02-03 2010-08-12 삼성전자주식회사 표시장치의 및 이의 제조방법
US8637489B2 (en) 2009-02-09 2014-01-28 L'oreal Clear carrier compositions for lipophilic compounds, and method of treating keratinous substrates using such compositions
GB2468715A (en) * 2009-03-20 2010-09-22 Patrick Lehane Varying composition of an agent according to geographical location
EP2246033A1 (en) 2009-04-27 2010-11-03 KPSS-Kao Professional Salon Services GmbH Conditioning composition for hair
EP2246036A1 (en) 2009-04-27 2010-11-03 KPSS-Kao Professional Salon Services GmbH Aqueous cleansing composition
ITMI20091075A1 (it) 2009-06-17 2010-12-17 Valetudo Srl Composizioni farmaceutiche e cosmetiche comprendenti lactoferrina ciclopirox acido etidronico
JP5515517B2 (ja) 2009-08-27 2014-06-11 ライオン株式会社 毛髪化粧料
EP2534182B8 (en) 2010-02-12 2016-12-21 Rhodia Operations S.A. Compositions with freeze thaw stability
GB201011905D0 (en) 2010-07-15 2010-09-01 Unilever Plc Benefit delivery particle,process for preparing said particle,compositions comprising said particles and a method for treating substrates
WO2012021472A2 (en) 2010-08-09 2012-02-16 L'oreal S. A. Compositions and methods for sealing the surface of keratinous substrates
GB201013355D0 (en) 2010-08-09 2010-09-22 Lehane Patrick Improved cleaning and conditioning agents
DE102011079664A1 (de) 2011-07-22 2012-04-26 Henkel Kgaa Tensidische Zusammensetzung enthaltend Öl aus den Samen der Kapkastanie
CN103781460B (zh) 2011-08-24 2016-05-18 荷兰联合利华有限公司 包含右旋糖酐的有益剂递送颗粒
DE102011090030A1 (de) 2011-12-28 2013-07-04 Evonik Industries Ag Wässrige Haar- und Hautreinigungszusammensetzungen, enthaltend Biotenside
CN104093394A (zh) 2012-01-09 2014-10-08 宝洁公司 毛发护理组合物
US8942481B2 (en) 2012-03-11 2015-01-27 Universidad De Santiago De Compostela Three dimensional CMOS image processor for feature detection
US20130333715A1 (en) 2012-06-19 2013-12-19 The Procter & Gamble Company Shampoo compositions and methods of making same
US20140079660A1 (en) 2012-09-20 2014-03-20 Kao Corporation Cleansing composition for skin or hair
WO2014182766A1 (en) 2013-05-09 2014-11-13 The Procter & Gamble Company Hair care conditioning composition comprising histidine
US9198849B2 (en) 2013-07-03 2015-12-01 The Procter & Gamble Company Shampoo composition comprising low viscosity emulsified silicone polymers
US20150030644A1 (en) 2013-07-26 2015-01-29 The Procter & Gamble Company Amino Silicone Nanoemulsion
US9701929B2 (en) 2013-07-29 2017-07-11 The Procter & Gamble Company Consumer product compositions comprising organopolysiloxane emulsions
JP2016533340A (ja) 2013-09-27 2016-10-27 ザ プロクター アンド ギャンブル カンパニー 低粘度乳化シリコーンポリマーを含むヘアコンディショニング組成物
US20150182431A1 (en) 2013-12-31 2015-07-02 Sytheon Ltd Compositions and Methods for Treatment of Hair with Reduced Hair Damage
US9642788B2 (en) 2014-04-25 2017-05-09 The Procter & Gamble Company Shampoo composition comprising gel matrix and histidine
US9586063B2 (en) 2014-04-25 2017-03-07 The Procter & Gamble Company Method of inhibiting copper deposition on hair
US10539872B2 (en) 2014-07-15 2020-01-21 Tokyo Ohka Kogyo Co., Ltd. Photosensitive composition and compound
CN107106441B (zh) 2014-12-17 2020-09-25 诺赛尔股份有限公司 抑制铜在毛发上沉积的方法
US11246816B2 (en) 2016-06-30 2022-02-15 The Procter And Gamble Company Shampoo compositions comprising a chelant
US20180000715A1 (en) 2016-06-30 2018-01-04 The Procter & Gamble Company Hair Care Compositions For Calcium Chelation
US20180000705A1 (en) 2016-06-30 2018-01-04 The Procter & Gamble Company Shampoo Compositions Comprising a Chelant
US11786447B2 (en) 2016-06-30 2023-10-17 The Procter & Gamble Company Conditioner composition comprising a chelant
US20180000706A1 (en) 2016-06-30 2018-01-04 The Procter & Gamble Company Conditioner Composition Comprising a Chelant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10973744B2 (en) 2016-06-30 2021-04-13 The Procter And Gamble Company Conditioner composition comprising a chelant
US11166894B2 (en) 2016-06-30 2021-11-09 The Procter And Gamble Company Shampoo compositions comprising a chelant
US11246816B2 (en) 2016-06-30 2022-02-15 The Procter And Gamble Company Shampoo compositions comprising a chelant
US11458085B2 (en) 2016-06-30 2022-10-04 The Procter And Gamble Company Hair care compositions for calcium chelation
US11786447B2 (en) 2016-06-30 2023-10-17 The Procter & Gamble Company Conditioner composition comprising a chelant
US11274266B2 (en) 2018-08-24 2022-03-15 The Procter & Gamble Company Treatment compositions comprising a surfactant system and an oligoamine
US11279901B2 (en) 2018-08-24 2022-03-22 The Procter & Gamble Company Treatment compositions comprising low levels of an oligoamine

Also Published As

Publication number Publication date
US11166894B2 (en) 2021-11-09
US20190336426A1 (en) 2019-11-07
JP2019518053A (ja) 2019-06-27
WO2018005256A1 (en) 2018-01-04
EP3478257A1 (en) 2019-05-08
CN109310603A (zh) 2019-02-05
MX2018015497A (es) 2019-06-06

Similar Documents

Publication Publication Date Title
US11166894B2 (en) Shampoo compositions comprising a chelant
US11246816B2 (en) Shampoo compositions comprising a chelant
EP0651632B2 (en) Hair cosmetic composition
US10835469B2 (en) Method of inhibiting copper deposition on hair
US10973744B2 (en) Conditioner composition comprising a chelant
US10568820B2 (en) Method of inhibiting copper deposition on hair
EP3134066B1 (en) Method of inhibiting copper deposition on hair
EP2895141B1 (en) Hair care polymer
MX2014008328A (es) Composiciones para el cuidado del cabello.
US9839601B2 (en) Method of frizz reduction using a composition comprising a crosslinkable silicone
US10143644B2 (en) Composition comprising an anionic-ampholytic polymer association
JP6440835B2 (ja) 架橋性シリコーンを含む組成物を用いる縮れ低減方法
US6620410B1 (en) Hair care compositions and protection from ultraviolet radiation
US20230346668A1 (en) Hair treatment composition
EP3052197A1 (de) Leistungsgesteigerte haarpflegemittel
US20150313828A1 (en) Method of detangling hair
JPH04230615A (ja) 毛髪化粧料
JPH06192045A (ja) 毛髪化粧料
WO2024061814A1 (en) Conditioner with improved manageability
DE10151592A1 (de) Stylingshampoo auf Basis von Silikon/Acrylat Pfropfcopolymeren
US20220381688A1 (en) Method for determining rinse properties
EP3052075A1 (de) Haarbehandlungsmittel enthaltend oligopeptide und ester der hyaluronsäure

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE PROCTER & GAMBLE COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARSH, JENNIFER MARY;KELLY, CASEY PATRICK;SIVIK, MARK ROBERT;SIGNING DATES FROM 20170613 TO 20170614;REEL/FRAME:043508/0595

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION