US20170338625A1 - Semiconductor lasers and processes for the planarization of semiconductor lasers - Google Patents

Semiconductor lasers and processes for the planarization of semiconductor lasers Download PDF

Info

Publication number
US20170338625A1
US20170338625A1 US15/600,483 US201715600483A US2017338625A1 US 20170338625 A1 US20170338625 A1 US 20170338625A1 US 201715600483 A US201715600483 A US 201715600483A US 2017338625 A1 US2017338625 A1 US 2017338625A1
Authority
US
United States
Prior art keywords
laser structure
active region
laser
ridge
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/600,483
Other languages
English (en)
Inventor
Ali Badar Alamin DOW
Jason Daniel BOWKER
Malcolm R. Green
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MACOM Technology Solutions Holdings Inc
Original Assignee
MACOM Technology Solutions Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MACOM Technology Solutions Holdings Inc filed Critical MACOM Technology Solutions Holdings Inc
Priority to US15/600,483 priority Critical patent/US20170338625A1/en
Assigned to MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC. reassignment MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOWKER, JASON DANIEL, DOW, ALI BADAR ALAMIN, GREEN, MALCOLM R
Publication of US20170338625A1 publication Critical patent/US20170338625A1/en
Priority to US16/678,535 priority patent/US11605933B2/en
Priority to US18/174,250 priority patent/US20230246421A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0021Degradation or life time measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0203Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2202Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure by making a groove in the upper laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2213Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on polyimide or resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape

Definitions

  • the present disclosure relates generally to semiconductors, and more particularly, to semiconductor lasers and processes for the planarization of semiconductor lasers.
  • Semiconductor lasers are typically realized on a wafer by epitaxially depositing multiple layers of semiconductor materials such as InP, GaAs, GaN and ternary or quaternary semiconductor material on a wafer using Metalorganic Chemical Vapor Deposition (MOCVD) or Molecular Beam Epitaxy (MBE) deposition on a semiconductor substrate surface. Subsequently, multiple semiconductor fabrication steps are applied to the wafer to realize a laser optical cavity which contains a device active region with facets and metallic electrical contacts. Typically, facets are formed by cleaving or etching the semiconductor material. The application of an electrical potential allows for electrical current flow through the active region of the device which causes photons to be emitted out of the facets.
  • MOCVD Metalorganic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • laser diodes During the operation of semiconductor laser diodes, a large amount of heat is generated within the active region of the device. Generally, the performance of laser diodes is better when the active region is at a lower temperature. Most laser diodes are mounted active-side-up where the substrate is in contact with a thermally conductive material such as an AlN submount. Alternatively, laser diodes with appropriate designs may be mounted active-side-down to reduce a thermal path between the active region and the submount.
  • laser capacitance can impact the performance that can be obtained from a semiconductor laser. As such, reduction of capacitance associated with the laser at high frequencies may be necessary to allow appropriate performance of the laser.
  • a Buried-Heterostructure (BH) approach can be used for spreading heat away from the active region of a laser.
  • Such an approach typically involves etching through the active region and regrowing a high thermal conductivity thin film such as InP using either MOCVD or MBE to create a good thermal flow path from the active region to a device metal layer.
  • a high thermal conductivity thin film such as InP using either MOCVD or MBE.
  • MOCVD Metal-vapor deposition
  • MBE Metal-Heterostructure
  • a laser structure may include a substrate, an active region arranged on the substrate, and a waveguide arranged on the active region.
  • the waveguide may include a first surface and a second surface that join to form a first angle relative to the active region.
  • the laser structure may further include a material deposited on the first surface and the second surface of the waveguide.
  • the first angle may be less than ninety degrees.
  • the waveguide may further include a third surface and a fourth surface that join to form a second angle relative to the active region.
  • the material may be deposited on the third surface and the fourth surface.
  • the second angle may be less than ninety degrees.
  • the material may be one of MgO, MgF 2 , SiO 2 , or Si 3 N 4 .
  • the material may have a dielectric constant below 10 in a frequency range up to 50 GHz.
  • the material may be non-conducting.
  • the waveguide may include a fifth surface arranged between the first surface and the third surface
  • the laser structure may further include a first contact arranged on the fifth surface and a second contact arranged on the substrate.
  • the first contact may be configured to bias the laser structure by delivering electrical current to the laser structure.
  • the laser structure may further include at least one facet.
  • the at least one facet may be formed in the active region.
  • a laser structure may include a substrate, an active region arranged on the substrate, and a waveguide arranged on the active region.
  • the waveguide may include a first ridge and a second ridge.
  • the first ridge may form a first air gap and the second ridge may form a second air gap.
  • the laser structure may further include a metal layer arranged as a bridge over the first and second air gaps.
  • the first ridge may form a first angle of less than ninety degrees relative to the active region and the second ridge may form a second angle of less than ninety degrees relative to the active region.
  • a first contact may be arranged on a surface of the waveguide and the first contact may be configured to bias the laser structure by delivering electrical current to the laser structure.
  • the laser structure may further include at least one facet.
  • the at least one facet may be formed in the active region.
  • a method of fabricating a laser structure may include arranging an active region on a substrate and arranging a waveguide on the active region.
  • the waveguide may include a first ridge and a second ridge.
  • the method may further include depositing a polymer on the waveguide such that the polymer coats underneath the first ridge and second ridge, depositing at least one layer of resist on the polymer, depositing a metal layer on the at least one layer of resist, and removing the deposited polymer and the deposited at least one layer of resist.
  • the first ridge may form a first angle of less than ninety degrees relative to the active region and the second ridge may form a second angle of less than ninety degrees relative to the active region.
  • the method may further include arranging a first contact on a surface of the waveguide.
  • the first contact may be configured to bias the laser structure by delivering electrical current to the laser structure.
  • the method may further include forming at least one facet in the active region.
  • the at least one facet may be formed by etching.
  • a fixture for electron beam evaporation may include a wafer plate configured to support a laser structure and an integrated heater configured to emit heat at an evaporation temperature.
  • the heat emitted by the integrated heater may be adjustable and an angle of the fixture may be adjustable.
  • the wafer plate may be further configured to orient the laser structure relative to an evaporant.
  • the orientation of the laser structure may subject at least one ridge of the laser structure to the evaporant.
  • the orientation of the laser structure may be varied based on an angle of at least one ridge of the laser structure.
  • FIG. 1 shows a cross section of a semiconductor laser in accordance with embodiments of the present disclosure.
  • FIG. 2 shows a cross section of another semiconductor laser in accordance with embodiments of the present disclosure.
  • FIG. 3 shows a cross section of another semiconductor laser in accordance with embodiments of the present disclosure.
  • FIG. 4 shows a cross section of another semiconductor laser in accordance with embodiments of the present disclosure.
  • FIG. 5 shows top side views of an adjustable fixture configured to support a semiconductor structure in accordance with embodiments of the present disclosure.
  • FIG. 6A shows an adjustable fixture in accordance with embodiments of the present disclosure.
  • FIG. 6B shows an adjustable fixture in accordance with embodiments of the present disclosure.
  • FIG. 1 shows a cross section of a semiconductor laser 100 .
  • Laser 100 is a dovetail ridge waveguide laser structure with at least one electrical contact.
  • Laser 100 may include a bottom layer 102 .
  • Bottom layer 102 may be a metal layer, and may provide an electrical contact layer adjacent to layer 104 .
  • Layer 104 may be an N-type semiconductor, and may be located between layers 102 and active region 106 .
  • Layer 104 may be an InP substrate, for example.
  • Active region 106 may provide for the emission of photons from laser 100 .
  • Layer 108 may be located adjacent to active region 106 .
  • Layer 108 may be a P-type semiconductor.
  • Layer 108 may include a dovetail ridge waveguide (RWG) 116 .
  • Layer 110 may be located adjacent to layer 108 .
  • RWG dovetail ridge waveguide
  • Layer 110 may be an insulation layer.
  • layer 110 may be an insulation layer of SiO 2 deposited on layer 108 to cover exposed surfaces of layer 108 .
  • an opening 118 in layer 110 may be formed on the top of dovetail RWG 116 .
  • a top metal layer 112 may be deposited over layer 110 and over the opening in layer 110 on dovetail RWG 116 . Top metal layer 112 may therefore provide an electrical contact layer for biasing the device on the p-side via the opening in layer 110 on dovetail RWG 116 .
  • a bond pad 114 may be attached to top metal layer 112 .
  • Chemically assisted ion beam etch may be used to form etched facets on a face of laser 100 defined by the X and Y axes of laser 100 , shown in FIG. 1 .
  • the facets may be etched in active layer 106 . Cleaving could also be used to form the etched facets.
  • Laser 100 may provide a high degree of topology. Laser 100 , however, may include reduced p-side metal coverage and a reduced thermal conductivity path from active region 106 .
  • Dovetail RWG 116 may form a smaller ridge width relative to other ridge widths. The ridge width of dovetail RWG 116 may be configured to confine light, but may also be configured to allow a larger area for a p-side metal contact to reduce contact resistance.
  • Dovetail RWG 116 may be formed as part of layer 108 .
  • RWG 116 may include a top surface and two side surfaces. Each side surface may form an angle with another surface of layer 108 relative to active region 106 to form a ridge of RWG 116 . Each angle may be less than 90°.
  • FIG. 2 shows cross section of a semiconductor laser 200 .
  • Laser 200 is similar to laser 100 of FIG. 1 because it similarly includes active region 106 , and layers 102 , 104 , 108 , and 110 .
  • Laser 200 also includes dovetail RWG 116 and opening 118 .
  • Laser 200 further includes a polymer 202 disposed adjacent to layer 110 for capacitance reduction and planarization to significantly improve a thermal conductivity path from the active region.
  • Polymer 202 may be a photo-sensitive polymer.
  • Laser 200 also additionally includes layer 204 .
  • Layer 204 may be a metal layer, similar to layer 112 .
  • Semiconductor laser 200 may provide excellent planarization and significant capacitance reduction, as well as significant thermal conductivity improvements. However, laser 200 may exhibit changes to threshold current, laser wavelength, and/or a side mode suppression ratio after thermal processing such as metallization annealing and soldering. These performance changes may inhibit use of polymer 202 .
  • FIG. 3 shows a cross-section of semiconductor laser 300 .
  • Laser 300 is similar to lasers 100 and 200 in that it includes active region 106 , and layers 102 , 104 , and 108 .
  • Laser 300 also includes dovetail RWG 116 and opening 118 .
  • Laser 300 further includes a material 302 and metal layer 304 .
  • Laser 300 may be planarized using a lift-off process for the deposition of material 302 on layer 108 and dovetail RWG 116 such that opening 118 remains.
  • Material 302 may be formed from MgO, MgF 2 , SiO 2 , Si3N 4 , and/or other non-electrically conducting materials with low relative dielectric constant (for example, below 10) in a frequency range up to 50 GHz, or in the 10-50 GHz frequency range, for example.
  • the dielectric constant may be less than 10 in order to reduce capacitance, and may be closer to 1.
  • Material 302 may be evaporated onto laser 300 , and may form an evaporated thin film on laser 300 .
  • the evaporation may provide adherence to a variety of surfaces, such as semiconductors, insulators, and/or metals, and may further provide adherence to a variety of topologies and shapes formed by such surfaces, such as a dove tailed ridge.
  • the evaporation may further allow for targeted deposition.
  • Metal 304 may be similar to layer 204 discussed above.
  • MgO can be used as an illustrative example of the low relative dielectric material 302 that may be used for planarization.
  • MgO can adhere to a variety of surfaces and topography using evaporation. For example, electron beam evaporation of MgO onto a heated substrate of laser 300 (such as layer 108 , for example) that is patterned may allow for deposition to occur in targeted areas.
  • MgO has a thermal conductivity of 43 W/mK which may enable heat conduction from active region 106 of laser 300 .
  • MgO can also be used to planarize a surface of laser 300 allowing for less complicated metallization techniques which have improved characteristics.
  • current photosensitive planarization polymers may have poor thermal conductance.
  • Utilizing the dovetail ridges for low electrical resistance (and large contact area) of laser 300 , as well as electron beam or thermal evaporation of MgO on laser 300 may allow for a robust low cost fabrication process.
  • the planarization described may provide a durable technique in reducing the semiconductor laser device temperature that can also be applied to other semiconductor devices.
  • MgO may also include a complex refractive index that is appropriate for the semiconductor laser structure since it may have a reduced absorption at the laser wavelength.
  • the imaginary component of refractive index may be very low and the real component of refractive index may be appropriate for allowing appropriate waveguiding for laser 300 .
  • planarization of the present disclosure may improve the path for dissipating the heat from and active region (such as active region 106 ) of a semiconductor laser.
  • Heat may be generated in a dovetail RWG (e.g., RWG 116 ) by resistive or Joule heating, and heat may also be generated in the active region.
  • This heat can be conducted away from the laser through the substrate (which may, for example, be made from InP), laterally through a dielectric (for example, MgO), or through a metal contact on the top of the RWG.
  • FIG. 1 shows a structure where the metal layer 112 is deposited so as to wrap around the sides of the RWG 116 .
  • Deposition of the metal even in a planetary or rocking fixture, may lead to a thinner layer of metal layer 112 on the ridge sidewalls of RWG 116 as the sidewalls may never be normally facing to the metal deposition source.
  • the thinner layer of metal layer 112 may present a restricted thermal path from the top of RWG 116 to a bond pad 114 in FIG. 1 .
  • FIG. 3 shows a structure where the ridge areas to each side of RWG 116 have been filled with a dielectric (e.g., material 302 ). This planarizes the structure and allows metal 304 to be deposited at near to normal incidence.
  • the metal 304 may be deposited as a thicker flat layer that may offer a better path for heat energy to reach the bond pad area.
  • An air bridge has also been used to planarize the structure, and will be discussed in relation to FIG. 4 .
  • FIG. 4 shows a cross-section of semiconductor laser 400 .
  • Semiconductor laser 400 is similar to laser 300 in that it includes active region 106 , and layers 102 , 104 , and 108 .
  • Laser 400 also includes dovetail RWG 116 , opening 118 , layer 110 , and metal 304 .
  • Laser 400 also includes air gaps 402 .
  • Metal 304 acts as a metal air-bridge over air gaps 402 , and is configured to connect a bond pad to the top of laser 400 .
  • Laser 400 is formed by removing a polymer (formed from polymer 202 , for example) from either side of dovetail RWG 116 to form air gaps 402 . The polymer may be removed using solvents after metal 304 has been deposited on the structure, for example. Part or all of the polymer may be removed as follows.
  • a first layer of resist may be planarized onto the structure and patterned such that it fills each side of dovetail RWG 116 .
  • the first layer of resist may then be cured such that, for example, it is not soluble in a developer, but may still be soluble in acetone and other resist stripping agents.
  • a second layer of resist may then be patterned on top of the first layer to form a lift-off structure. After metal evaporation of metal 304 on the structure, the layers of resist may be removed, removing the polymer and leaving air gaps 402 between layer 110 and metal 304 . This design may reduce unstable laser operation and may provide a thick planarized metal film for heat conduction.
  • FIG. 5 shows top side views of adjustable fixture 502 .
  • a semiconductor laser may be attached to fixture 502 via a wafer plate, and evaporation may be performed to turn the laser into a semiconductor laser 300 .
  • fixture 502 may be positioned such that electron-beam evaporation of material 302 (such as MgO, for example) onto right and left sides of dovetail RWG 116 of the laser and underneath dovetail RWG 116 may be performed.
  • fixture 502 may be used for evaporation on the right side ridges of dovetail RWG 116 , and may provide for such evaporation at a time T 1 .
  • Fixture 502 may be repositioned, thereby repositioning the laser, and used for evaporation on the left side ridges of dovetail RWG 116 on the laser at a time T 2 .
  • Laser 300 may thereby be formed.
  • Fixture 502 may include an integrated heater that may adjust evaporation temperature for improved evaporated thin-film properties.
  • the flexibility of the setup provided by fixture 502 may allow for the accommodation of a wide range of angled dovetail structures.
  • FIGS. 6A and 6B show different configurations of fixture 502 .
  • FIG. 6A shows fixture 502 with heater 602 .
  • Fixture 502 supports a wafer 604 and holds it in place for evaporation of a material, such as material 302 via evaporation stream 606 , onto it.
  • Wafer 604 may be any kind of semiconductor device.
  • heater 602 may be used to adjust evaporation temperature when an evaporant stream 606 of material 302 is directed toward wafer 604 .
  • Fixture 502 may be adjusted to different angles such that evaporant stream 606 can be applied to different areas of wafer 604 .
  • the rate at which evaporation stream 606 is applied to wafer 604 may be adjustable.
  • FIG. 6B shows fixture 502 configured to support a laser 608 .
  • Heater 602 is not shown in FIG. 6B , but may be integrated into fixture 502 .
  • heater 602 may be an external unit as shown in FIG. 6A .
  • Laser 608 include the same elements as laser 300 , except material 302 evaporated onto it. Via evaporant stream 606 , material 302 may be evaporated onto laser 608 to form laser 300 .
  • fixture 502 may be angled such that laser 608 and dovetail RWG 116 is oriented toward evaporant stream 606 . Evaporant stream 606 may therefore be evaporated onto laser 608 and on a surface of RWG 116 .
  • material 302 may be MgO.
  • MgO may be deposited onto laser 608 via evaporant stream 606 .
  • Fixture 502 may be positioned at an angle of 45° as shown in FIG. 6B .
  • Fixture 502 may be adjustable such that it forms an angle ranging from 0° to 360°.
  • heater 602 can be varied from ambient temperature to 300° C., for example.
  • the temperature during evaporation may be 105° C. Changes in substrate temperature during evaporation may impact evaporated film density on laser 608 and optical/thermal properties of laser 608 .
  • Fixture 502 therefore provides for evaporation via electron beam evaporation at low substrate temperatures and control of evaporation angle and wafer temperature, and thereby provides planarization of devices, such as laser 608 .
  • Tunable semiconductor devices may therefore be produced.
  • Planarization using material 302 can be performed, where material 302 may be MgO, MgF 2 , SiO 2 , Si3N 4 , and/or other dielectrics. Thermal conductivity may be slightly improved using MgO and MgF 2 compared to SiO 2 . Such planarized structures may exhibit significant capacitance reduction and an improved thermal conductive path from the active region. Unlike the case of a polymer, device characteristics may remain stable after significant thermal processing, such as metallization annealing and soldering. Also, mechanical strength of the dovetail ridge may be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Semiconductor Lasers (AREA)
US15/600,483 2016-05-20 2017-05-19 Semiconductor lasers and processes for the planarization of semiconductor lasers Abandoned US20170338625A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/600,483 US20170338625A1 (en) 2016-05-20 2017-05-19 Semiconductor lasers and processes for the planarization of semiconductor lasers
US16/678,535 US11605933B2 (en) 2016-05-20 2019-11-08 Semiconductor lasers and processes for the planarization of semiconductor lasers
US18/174,250 US20230246421A1 (en) 2016-05-20 2023-02-24 Semiconductor lasers and processes for the planarization of semiconductor lasers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662339581P 2016-05-20 2016-05-20
US15/600,483 US20170338625A1 (en) 2016-05-20 2017-05-19 Semiconductor lasers and processes for the planarization of semiconductor lasers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/678,535 Continuation US11605933B2 (en) 2016-05-20 2019-11-08 Semiconductor lasers and processes for the planarization of semiconductor lasers

Publications (1)

Publication Number Publication Date
US20170338625A1 true US20170338625A1 (en) 2017-11-23

Family

ID=60325570

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/600,483 Abandoned US20170338625A1 (en) 2016-05-20 2017-05-19 Semiconductor lasers and processes for the planarization of semiconductor lasers
US16/678,535 Active 2037-10-31 US11605933B2 (en) 2016-05-20 2019-11-08 Semiconductor lasers and processes for the planarization of semiconductor lasers
US18/174,250 Pending US20230246421A1 (en) 2016-05-20 2023-02-24 Semiconductor lasers and processes for the planarization of semiconductor lasers

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/678,535 Active 2037-10-31 US11605933B2 (en) 2016-05-20 2019-11-08 Semiconductor lasers and processes for the planarization of semiconductor lasers
US18/174,250 Pending US20230246421A1 (en) 2016-05-20 2023-02-24 Semiconductor lasers and processes for the planarization of semiconductor lasers

Country Status (4)

Country Link
US (3) US20170338625A1 (ja)
JP (2) JP2019517147A (ja)
CN (1) CN109154697B (ja)
WO (1) WO2017201459A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312056B2 (ja) * 2019-01-07 2023-07-20 日機装株式会社 半導体発光素子および半導体発光素子の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029175A (en) * 1988-12-08 1991-07-02 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
US5615224A (en) * 1995-01-04 1997-03-25 The Regents Of The University Of California Apparatus and method for stabilization of the bandgap and associated properties of semiconductor electronic and optoelectronic devices
US6375364B1 (en) * 2000-01-06 2002-04-23 Corning Lasertron, Inc. Back facet flared ridge for pump laser
US6499888B1 (en) * 1999-12-20 2002-12-31 Corning Lasertron, Inc. Wide ridge pump laser
US7542497B2 (en) * 2006-07-18 2009-06-02 Binoptics Corporation AlGaInN-based lasers with dovetailed ridge
US7848375B1 (en) * 2007-05-30 2010-12-07 Finisar Corporation Ridge waveguide laser with flared facet
US20100316075A1 (en) * 2009-04-13 2010-12-16 Kaai, Inc. Optical Device Structure Using GaN Substrates for Laser Applications
US20110298006A1 (en) * 2010-06-02 2011-12-08 Panasonic Corporation Semiconductor light emitting device and method for fabricating the same

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872496A (en) 1973-09-13 1975-03-18 Sperry Rand Corp High frequency diode having simultaneously formed high strength bonds with respect to a diamond heat sink and said diode
US4813052A (en) * 1987-12-23 1989-03-14 The United States Of America As Represented By The Secretary Of The Air Force Dielectric ridge waveguide gas laser apparatus
FR2684239B1 (fr) * 1991-11-27 1994-03-04 France Telecom Procede de fabrication d'un guide d'onde optique planaire entierement a base de polymeres, et son utilisation dans un isolateur optique integre.
JPH07263751A (ja) * 1994-03-24 1995-10-13 Sharp Corp Ii−vi族化合物半導体装置及びその製造方法
DE19536463C2 (de) 1995-09-29 2002-02-07 Infineon Technologies Ag Verfahren zum Herstellen einer Mehrzahl von Laserdiodenbauelementen
KR100203307B1 (ko) * 1996-06-29 1999-06-15 김영환 레이저 다이오드의 제조방법
US6051871A (en) 1998-06-30 2000-04-18 The Whitaker Corporation Heterojunction bipolar transistor having improved heat dissipation
US6365968B1 (en) * 1998-08-07 2002-04-02 Corning Lasertron, Inc. Polyimide/silicon oxide bi-layer for bond pad parasitic capacitance control in semiconductor electro-optical device
TW452956B (en) 2000-01-04 2001-09-01 Siliconware Precision Industries Co Ltd Heat dissipation structure of BGA semiconductor package
AU2002363529A1 (en) 2001-11-09 2003-05-19 Coventor, Incorporated Micro-scale interconnect device with internal heat spreader and method for fabricating same
US6687274B2 (en) * 2002-02-04 2004-02-03 Eastman Kodak Company Organic vertical cavity phase-locked laser array device
GB0223321D0 (en) 2002-10-08 2002-11-13 Element Six Ltd Heat spreader
AU2003301055A1 (en) * 2002-12-20 2004-07-22 Cree, Inc. Methods of forming semiconductor devices having self aligned semiconductor mesas and contact layers and related devices
JP2004335530A (ja) * 2003-04-30 2004-11-25 Mitsubishi Electric Corp リッジ導波路型半導体レーザ
FR2857781B1 (fr) 2003-07-15 2005-09-30 Thales Sa Transistor bipolaire a heterojonction a transfert thermique ameliore
US7061022B1 (en) 2003-08-26 2006-06-13 United States Of America As Represented By The Secretary Of The Army Lateral heat spreading layers for epi-side up ridge waveguide semiconductor lasers
JP4164438B2 (ja) 2003-11-12 2008-10-15 株式会社日立製作所 半導体光素子の製造方法
JP2005191380A (ja) * 2003-12-26 2005-07-14 Sharp Corp 半導体レーザ素子及びその製造方法
JP2005252229A (ja) * 2004-02-06 2005-09-15 Sharp Corp 半導体装置、半導体レーザ装置、半導体装置の製造方法、半導体レーザ装置の製造方法、光ディスク装置および光伝送システム
CN101160699A (zh) * 2005-02-18 2008-04-09 宾奥普迪克斯股份有限公司 高可靠性的蚀刻小面光子器件
JP4940987B2 (ja) * 2006-03-20 2012-05-30 日亜化学工業株式会社 窒化物半導体レーザ素子及びその製造方法
US7858493B2 (en) 2007-02-23 2010-12-28 Finisar Corporation Cleaving edge-emitting lasers from a wafer cell
JP5313198B2 (ja) * 2010-03-30 2013-10-09 住友大阪セメント株式会社 導波路型偏光子
CN101969179B (zh) * 2010-11-24 2012-04-04 武汉华工正源光子技术有限公司 一种倒台型脊波导半导体激光器的制作方法
KR101797624B1 (ko) * 2011-06-02 2017-12-13 한국전자통신연구원 수퍼루미네센트 다이오드 및 그의 제조방법과, 그를 구비한 파장가변 외부공진레이저
WO2015129221A1 (ja) * 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 発光素子および発光装置
JP6416553B2 (ja) * 2014-09-02 2018-10-31 住友電気工業株式会社 半導体素子及び半導体素子の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029175A (en) * 1988-12-08 1991-07-02 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
US5615224A (en) * 1995-01-04 1997-03-25 The Regents Of The University Of California Apparatus and method for stabilization of the bandgap and associated properties of semiconductor electronic and optoelectronic devices
US6499888B1 (en) * 1999-12-20 2002-12-31 Corning Lasertron, Inc. Wide ridge pump laser
US6375364B1 (en) * 2000-01-06 2002-04-23 Corning Lasertron, Inc. Back facet flared ridge for pump laser
US7542497B2 (en) * 2006-07-18 2009-06-02 Binoptics Corporation AlGaInN-based lasers with dovetailed ridge
US7848375B1 (en) * 2007-05-30 2010-12-07 Finisar Corporation Ridge waveguide laser with flared facet
US20100316075A1 (en) * 2009-04-13 2010-12-16 Kaai, Inc. Optical Device Structure Using GaN Substrates for Laser Applications
US20110298006A1 (en) * 2010-06-02 2011-12-08 Panasonic Corporation Semiconductor light emitting device and method for fabricating the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
2.1 Silicon Dioxide properties (09/07/2018), pp.1-2. *
Masahiro et a. "Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 1.2 and 13.5 GHz" ISIJ International, Vol. 49 (2009), No. 9, pp. 1443-1448. *
Properties of SiO2 and Si3N4 at 300K, Page 1 (Year: 2019) *
S. Geis et al. "Dielectric constants of SiO2 and RF aerogels measured by response function method" Journal of Porous Materials 7, pp 423-433 (2000). *

Also Published As

Publication number Publication date
JP7436607B2 (ja) 2024-02-21
JP2019517147A (ja) 2019-06-20
WO2017201459A1 (en) 2017-11-23
CN109154697B (zh) 2020-11-10
US20200076164A1 (en) 2020-03-05
JP2023014105A (ja) 2023-01-26
US20230246421A1 (en) 2023-08-03
CN109154697A (zh) 2019-01-04
WO2017201459A4 (en) 2018-01-18
US11605933B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
Al-Omari et al. Low thermal resistance high-speed top-emitting 980-nm VCSELs
CN103545714B (zh) 一种具有新型近腔面电流非注入区结构的半导体激光器及制造方法
TW557619B (en) Ridge-waveguide semiconductor laser device
JP2006165519A (ja) 半導体発光素子
US7369592B2 (en) Semiconductor laser device
US7274720B2 (en) Semiconductor laser element having InGaAs compressive-strained quantum-well active layer
US20230246421A1 (en) Semiconductor lasers and processes for the planarization of semiconductor lasers
JP2009212521A (ja) 放熱特性が改善された半導体レーザ
JP2007158195A (ja) 半導体レーザ素子およびその製造方法
US5559819A (en) Semiconductor laser device
JP2010186791A (ja) 半導体発光素子及びその製造方法
US8379683B2 (en) Quantum cascade laser
US20030231684A1 (en) Semiconductor laser device
US20100003778A1 (en) Method of manufacturing semiconductor laser
Myzaferi et al. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes
CN109119889B (zh) 量子级联激光器
KR101136239B1 (ko) 레이저 다이오드 제조방법
JP2004523117A5 (ja)
KR100484490B1 (ko) 장파장 수직 공진 표면방출 레이저 및 그 제작방법
US20230327405A1 (en) Optical semiconductor device
JP2018098264A (ja) 量子カスケード半導体レーザ
JP5286198B2 (ja) 分布帰還形半導体レーザ
EP3369147B1 (fr) Ensemble comportant un laser à cascade quantique, et une embase associée
TWI857518B (zh) 半導體元件及半導體元件的製造方法
JP7391944B2 (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
AS Assignment

Owner name: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC., MASSACH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOW, ALI BADAR ALAMIN;BOWKER, JASON DANIEL;GREEN, MALCOLM R;REEL/FRAME:042478/0961

Effective date: 20170519

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING RESPONSE FOR INFORMALITY, FEE DEFICIENCY OR CRF ACTION

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION