US20170292182A1 - Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating - Google Patents

Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating Download PDF

Info

Publication number
US20170292182A1
US20170292182A1 US15/479,451 US201715479451A US2017292182A1 US 20170292182 A1 US20170292182 A1 US 20170292182A1 US 201715479451 A US201715479451 A US 201715479451A US 2017292182 A1 US2017292182 A1 US 2017292182A1
Authority
US
United States
Prior art keywords
sprayed coating
coating
yttrium fluoride
powder
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/479,451
Other languages
English (en)
Inventor
Noriaki Hamaya
Yasushi Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Assigned to SHIN-ETSU CHEMICAL CO., LTD. reassignment SHIN-ETSU CHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMAYA, NORIAKI, TAKAI, YASUSHI
Publication of US20170292182A1 publication Critical patent/US20170292182A1/en
Priority to US17/101,137 priority Critical patent/US20210079509A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • This invention relates to an yttrium fluoride sprayed coating suited for use as a low-dusting corrosion resistant coating on parts which are exposed to a corrosive plasma atmosphere such as a corrosive halogen-base gas in the processes for manufacturing semiconductor, liquid crystal, organic EL and inorganic EL devices, and a corrosion resistant coating of a multilayer structure including the yttrium fluoride sprayed coating.
  • a dielectric film etching system In the prior art process for fabricating semiconductor devices, a dielectric film etching system, gate etching system, CVD system and the like are used. Since the high-integration technology involving the micropatterning process often utilizes a plasma, the chamber members must have corrosion resistance in the plasma. Also, the members are formed of high purity materials in order to prevent impurity contamination.
  • Typical treatment gases for use in the semiconductor device fabricating process are halogen-base gases, for example, fluorine-base gases such as SF 6 , CF 4 , CHF 3 , ClF 3 , HF and NF 3 and chlorine-base gases such as Cl 2 , BCl 3 , HCl, CCl 4 and SiCl 4 .
  • the halogen-base gas is introduced into a chamber, where a high frequency energy such as microwave is applied to create a plasma from the gas, with which treatment is carried out.
  • the chamber members exposed to the plasma are required to have corrosion resistance.
  • the equipment used for plasma treatment typically includes parts or components which are provided with corrosion resistant coatings on their surface.
  • parts or members of metallic aluminum substrates or aluminum oxide ceramic substrates having coatings formed thereon by spraying yttrium oxide (Patent Document 1) and yttrium fluoride (Patent Documents 2 and 3) to the substrate surface are known to be fully corrosion resistant and used in practice.
  • the material for protecting the inner wall of chamber members exposed to plasma include ceramics such as quartz and alumina, surface anodized aluminum, and sprayed coatings on ceramic substrates.
  • Patent Document 4 discloses a plasma resistant member including a layer of Group 3A metal (in the Periodic Table) in a surface region exposed to a plasma in a corrosive gas. The metal layer typically has a thickness of 50 to 200 ⁇ m.
  • the ceramic members suffer from problems including a high working cost and dusting, that is, if the member is exposed to a plasma in a corrosive gas atmosphere for a long time, the reactive gas causes corrosion to proceed from the surface whereby surface constituting crystal grains spall off, generating particles. Spall-off particles deposit on a semiconductor wafer or lower electrode, adversely affecting the production yield of etching step. It is thus necessary to remove the reaction product that causes particle contamination. Even when the member surface is formed of a material having corrosion resistance to plasma, it is still necessary to prevent metal contamination from the substrate. Further in the case of anodized aluminum and sprayed coatings, if the substrate to be coated is a metal, contamination with the metal can adversely affect the quality yield of etching step.
  • reaction product reacts with airborne moisture or water in the case of aqueous cleaning, to generate an acid which, in turn, penetrates to the interface between the sprayed coating and the metal substrate, causing damage to the substrate interface. This can reduce the adhesion strength at the interface and cause the coating to be stripped, detracting from the essential plasma resistance.
  • yttrium-base particles may spall off the surface of yttrium-base coatings on the parts during etching treatment and fall onto silicon wafers to interfere with the etching treatment. This causes to reduce the production yield of semiconductor devices. There is a tendency that the number of yttrium-base particles spalling off the yttrium-base coating surface is large at the early stage of etching treatment and decreases with the lapse of etching time.
  • Patent Documents 5 to 9 relating to the spraying technology are also incorporated herein by reference.
  • An object of the invention is to provide a corrosion resistant coating which is effective for suppressing the penetration from member surface of halogen-base corrosive gas used in the semiconductor processing system, has sufficient corrosion resistance with respect to a plasma thereof (i.e., plasma resistance), protects as much as possible the substrate from damage by acid penetration even after repeated acid cleaning for removing any reaction product deposited on the member surface during plasma etching, and minimizes metal contamination and particle generation from the reaction product and due to spall-off from the coating.
  • a thermally sprayed yttrium fluoride coating having an yttrium fluoride crystal structure containing YF 3 , Y 5 O 4 F 7 , YOF or the like, an oxygen concentration of 1 to 6% by weight, and a hardness of at least 350 HV, and especially a crack amount of up to 5% and a porosity of up to 5%, both based on the surface area of the coating, and a carbon content of up to 0.01% by weight exhibits satisfactory corrosion resistance with respect to a plasma, is effective for preventing the substrate from damage by acid penetration during acid cleaning, and minimizes particle generation.
  • an yttrium fluoride sprayed coating having a crack amount of up to 5% is readily deposited by using a granulated powder consisting essentially of 9 to 27% by weight of Y 5 O 4 F 7 and the balance of YF 3 , or a powder mixture consisting essentially of 95 to 85% by weight of a granulated powder of yttrium fluoride and 5 to 15% by weight of a granulated powder of yttrium oxide as the spray material; and that when a lower layer in the form of a rare earth oxide sprayed coating having a porosity of up to 5% is combined with the yttrium fluoride sprayed coating, the resulting composite coating exerts a better acid penetration suppressing effect, is more effective for preventing damage, and provides more reliable corrosion resistant performance.
  • the invention provides an yttrium fluoride sprayed coating deposited on a substrate surface, having a thickness of 10 to 500 ⁇ m, an oxygen concentration of 1 to 6% by weight, and a hardness of at least 350 HV.
  • the sprayed coating has a crack amount of up to 5% based on the surface area of the coating and/or a porosity of up to 5% based on the surface area of the coating.
  • the sprayed coating has an yttrium fluoride crystal structure composed of Y 3 , and at least one compound selected from the group consisting of Y 5 O 4 F 7 , YOF and Y 2 O 3 .
  • the sprayed coating has a carbon content of up to 0.01% by weight.
  • the invention provides an yttrium fluoride spray material for forming the yttrium fluoride sprayed coating defined above, which is a granulated powder consisting essentially of 9 to 27% by weight of Y 5 O 4 F 7 and the balance of YF 3 , or a powder mixture consisting essentially of 95 to 85% by weight of a granulated powder of yttrium fluoride and 5 to 15% by weight of a granulated powder of yttrium oxide.
  • a granulated powder consisting essentially of 9 to 27% by weight of Y 5 O 4 F 7 and the balance of YF 3
  • a powder mixture consisting essentially of 95 to 85% by weight of a granulated powder of yttrium fluoride and 5 to 15% by weight of a granulated powder of yttrium oxide.
  • the invention provides a corrosion resistant coating having a multilayer structure comprising a lower layer in the form of a rare earth oxide sprayed coating having a thickness of 10 to 500 ⁇ m and a porosity of up to 5% and an outermost surface layer in the form of the yttrium fluoride sprayed coating defined above.
  • the rare earth element of the rare earth oxide sprayed coating is typically at least one element selected from the group consisting of Y, Sc, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • the yttrium fluoride sprayed coating of the invention exhibits excellent corrosion resistance during treatment in a halogen-base gas atmosphere or halogen-base gas plasma atmosphere, functions to protect the substrate from damage by acid penetration during acid cleaning, and minimizes particle generation from the reaction product and due to spall-off from the coating. From the spray material, the yttrium fluoride sprayed coating is readily obtained.
  • the corrosion resistant coating obtained by combining the yttrium fluoride sprayed coating with a lower layer in the form of a rare earth oxide sprayed coating having a porosity of up to 5% enhances the effect of suppressing acid penetration and the effect of preventing the coating itself from damage, offering a more reliable corrosion resisting performance.
  • FIG. 1 is an electron micrograph showing a surface of an yttrium fluoride sprayed coating deposited in Comparative Example 1.
  • FIG. 2 is a partial enlarged view of the micrograph of FIG. 1 , processed so as to emphasize cracks.
  • FIG. 2 is obtained by enlarging a central portion of FIG. 1 and image processing so that cracks look white.
  • FIG. 3 is an electron micrograph showing a surface of an yttrium fluoride sprayed coating deposited in Example 2.
  • FIG. 4 is a partial enlarged view of the micrograph of FIG. 3 , processed so as to emphasize cracks.
  • FIG. 4 is obtained by enlarging a central portion of FIG. 3 and image processing so that cracks look white.
  • the thermally sprayed coating of the invention is an yttrium fluoride sprayed coating which exhibits excellent corrosion resistance with respect to a halogen-base gas atmosphere or halogen-base gas plasma atmosphere, and has an yttrium fluoride crystal structure containing YF 3 , Y 5 O 4 F 7 , YOF and the like, preferably an yttrium fluoride crystal structure consisting of YF 3 and at least one compound selected from among Y 5 O 4 F 7 , YOF and Y 2 O 3 .
  • the yttrium fluoride sprayed coating has an oxygen concentration of 1 to 6% by weight and a hardness of at least 350 HV.
  • the yttrium fluoride sprayed coating having a low oxygen concentration and a high hardness is of dense film quality containing less cracks and less open pores, which is effective for suppressing particle contamination and penetration of halogen-base corrosive gases.
  • the preferred oxygen concentration is in a range of 2 to 4.8% by weight and the preferred hardness is in a range of at least 250 HV, more preferably 350 to 470 HV.
  • the sprayed coating should preferably have a crack amount or cracked area of up to 5%, more preferably up to 4%, based on the surface area of the coating.
  • the sprayed coating should preferably have a porosity of up to 5%, more preferably up to 3%, based on the surface area of the coating.
  • the crack amount and porosity may be quantitated by image analysis of a sprayed coating surface, specifically by determining a percentage of the relevant area relative to the overall image area. It is noted that when the coating is used in a cut state, the area of the cross section is included in the surface area of the coating. The detail and measuring method of crack amount and porosity will be described later.
  • the sprayed coating preferably has a carbon content of up to 0.01% by weight. Such a minimal carbon content is effective for suppressing any distortion of the crystal system caused by carbon, and a change of film quality under the influence of plasma gas and heat, achieving stabilization of film quality.
  • the carbon content is more preferably up to 0.005% by weight.
  • the yttrium fluoride of which the sprayed coating is made is inert to a halogen-base plasma gas and effective for suppressing particle generation resulting from reactive gas and thus minimizing any process variation during semiconductor device fabrication.
  • the yttrium fluoride preferably has a yttrium fluoride crystal structure consisting of YF 3 and at least one compound selected from Y 5 O 4 F 7 , YOF and Y 2 O 3 as mentioned above, but is not limited thereto.
  • rare earth fluorides have a phase transition point depending on the identity of rare earth element.
  • fluorides of Y, Sm, Eu, Gd, Er, Tm, Yb and Lu undergo a phase change and cracking upon cooling from the sintering temperature. It is thus difficult to manufacture sintered bodies thereof.
  • the main cause resides in their crystal structure.
  • an yttrium fluoride sprayed coating has crystal structures of two types, high- and low-temperature types, with a transition temperature of 1355K.
  • the sprayed coating is preferably of an yttrium fluoride crystal structure consisting of YF 3 and at least one compound selected from Y 5 O 4 F 7 , YOF and Y 2 O 3 as mentioned above, which is effective for suppressing crack generation.
  • the thickness of the sprayed coating is in a range of 10 to 500 ⁇ m, preferably 30 to 300 ⁇ m. If the coating is less than 10 ⁇ m, it may be less corrosion resistant with respect to the halogen-based gas atmosphere or halogen-based gas plasma atmosphere and less effective for suppressing the generation of particle contamination. If the coating is more than 500 ⁇ m, an improvement corresponding to the thickness increment is not expectable and failures such as coating strip by thermal stress may occur.
  • the yttrium fluoride sprayed coating is preferably prepared by spraying the spray material defined below although the method is not limited thereto.
  • An yttrium fluoride spray material is obtained by mixing 95 to 85% by weight of YF 3 source powder with 5 to 15% by weight of Y 2 O 3 source powder, granulating the powder mixture such as by spray drying, and firing the granulated powder in vacuum or inert gas atmosphere at a temperature of 600 to 1,000° C., preferably 700 to 900° C. for 1 to 12 hours, preferably 2 to 5 hours into a single granulated powder.
  • each of the source powders is preferably a collection of single particles having a particle size (D 50 ) of 0.01 to 3 ⁇ m, and the granulated powder after firing preferably has a particle size (D 50 ) of 10 to 60 ⁇ m. It is confirmed by XRD analysis that the thus fired powder (granulated powder) has a crystal structure which is a mixture of Y 5 O 4 F 7 and YF 3 , specifically consisting of 9 to 27% by weight of Y 5 O 4 F 7 and the balance of YF 3 .
  • the fired powder (single granulated powder) may be used as the spray material from which the inventive sprayed coating is formed.
  • An unfired powder mixture obtained by mixing 95 to 85% by weight of YF 3 source powder (granulated powder) with 5 to 15% by weight of Y 2 O 3 source powder (granulated powder) may also be used as the spray material.
  • a sprayed coating having an yttrium fluoride crystal structure consisting essentially of YF 3 and at least one compound selected from Y 5 O 4 F 7 , YOF and Y 2 O 3 is obtained.
  • the thus sprayed coating is a consolidated film having least cracks in its surface and a hardness of about 350 to 470 HV.
  • the sprayed coating has an oxygen content of 2 to 4% by weight.
  • the porosity of the coating may be reduced, specifically to 5% or less.
  • the sprayed coating preferably has a crack amount of up to 5% based on the surface area thereof.
  • One effective means for reducing the crack amount is by polishing the surface of the sprayed coating. That is, cracks may be removed by polishing the yttrium fluoride coating sprayed as above to remove a surface layer of 10 to 50 ⁇ m thick. Even after cracks in the outermost surface layer are removed by polishing, if the remaining coating has a low hardness and a substantial porosity, then it does not assume a dense film quality. It is then necessary that even after removal of cracks by polishing, the coating maintain a high hardness of at least 350 HV and a low porosity.
  • the advantage of the means of reducing cracks by surface grinding or polishing is that since the surface roughness is reduced by polishing, the specific surface area of the coating at its surface is reduced so that initial particles may be reduced.
  • the thermal spraying conditions under which the yttrium fluoride sprayed coating is deposited are not particularly limited.
  • any of plasma spraying, SPS spraying, detonation spraying and vacuum spraying may be carried out in a suitable atmosphere, while controlling the distance between the nozzle and the substrate and the spraying speed (gas species, gas flow rate). Spraying is continued until the desired thickness is reached.
  • helium gas may be used as the secondary gas because the use of helium gas allows the velocity of fused flame to be increased so that a denser coating is obtained.
  • the substrate on which the yttrium fluoride spray coating is deposited is not particularly limited. It is typically selected from metal and ceramic substrates used in the semiconductor device fabrication system. In the case of an aluminum metal substrate, an aluminum substrate having an anodized surface is acceptable for acid resistance.
  • the sprayed coating have a crack amount and a porosity both of up to 5% based on the surface area thereof, such a low crack amount and a low porosity can be achieved using the spray material of the invention.
  • the crack amount and porosity will be described later in detail.
  • bonded sites In a cross section of a sprayed coating, there are present bonded sites, non-bonded sites and perpendicular fractures as described in “Spraying Technology Handbook” (Ed. by Spraying Society of Japan, published by Gijutsu Kaihatsu Center, May 1998).
  • the perpendicular fractures are defined as open pores. Closed pores between bonded sites and non-bonded spaces do not allow for penetration of gas and acid water, whereas perpendicular fractures (or open pores) and horizontal fractures in non-bonded spaces (or open pores), which are in communication with the interface between the sprayed coating and the substrate, allow for penetration of gas and acid water to the substrate interface.
  • the reactive gas penetrates to the sprayed coating-substrate interface.
  • a reaction product formed at the coating surface reacts with water to generate an acid, which in turn, dissolves in water and penetrates into the bulk of the sprayed coating, eventually reacts with the substrate metal at the substrate interface to form a reaction gas, which acts to urge the sprayed coating afloat, causing the coating to peel. It is presumed that a similar series of actions take place with water or acid used for repetitive cleaning. The mechanisms are described below.
  • a mixed gas plasma of CCl 4 , CF 4 , CHF 3 , NF 4 , etc. is used; for etching of Al wiring, a mixed gas plasma of CCl 4 , BCl 3 , SiCl 4 , etc. is used; for etching of W wiring, a mixed gas plasma of CF 4 , CCl 4 , O 2 , etc. is used.
  • a SiH 2 Cl 2 —H 2 mixed gas is used for Si film formation; a SiH 2 Cl 2 —NH 3 —H 2 mixed gas is used for Si 3 N 4 formation; and a TiCl 4 —NH 3 mixed gas is used for TiN film formation.
  • AlCl 3 aluminum chloride
  • AlCl 3 aluminum chloride
  • the deposit along with water penetrates into the bulk of the sprayed coating, and accumulates at the interface between the sprayed coating and the aluminum substrate. Then, accumulation of aluminum chloride occurs at the interface during cleaning and drying.
  • Aluminum chloride reacts with water to convert to aluminum hydroxide and to create hydrochloric acid.
  • the hydrochloric acid reacts with the underlying aluminum metal to generate hydrogen gas, which acts to urge the sprayed coating at the interface afloat to induce partial breaks to the sprayed coating, causing the coating to peel. That is, a so-called film floating phenomenon occurs.
  • the substrate is damaged and the substrate life is shortened, giving various adverse effects to the fabrication process.
  • cracks (fractures) at the coating surface and open pores (perpendicular fractures) in the coating bulk may be minimized.
  • the invention is successful in reducing the crack amount and porosity to or below 5%, thereby preventing penetration of gas, acid water and reaction product from the sprayed coating surface, thus inhibiting reaction of acid with metal at the sprayed coating-substrate interface, and eventually preventing coating peel.
  • the “crack” associated with the “crack amount” refers to cracks present at the outermost surface of a coating immediately after spraying
  • the “pore” associated with the “porosity” refers to pores appearing in a cross section of a sprayed coating after mirror finish polishing, inclusive of both open and closed pores.
  • the crack amount and porosity may be determined as follows. Notably, since it is difficult in a substantial sense to measure only open pores, the porosity relating to both open and closed pores is measured in the practice of the invention. As long as the porosity thus measured is 5% or less, the occurrence of failure due to open pores can be almost inhibited.
  • An yttrium fluoride sprayed coating having a low porosity may be effectively deposited by using the fired powder (single granulated powder) or the powder mixture, both defined above, as the spray material, and/or by using detonation spraying or suspension plasma spraying (SPS) as the thermal spraying technique.
  • the flame velocity is about 300 m/sec when the secondary gas is hydrogen or about 500 to 600 m/sec when the secondary gas is helium gas.
  • a flame velocity of about 1,000 to 2,500 m/sec is available, which means that a high level of energy is obtained when a flame of fused spray powder impinges against the substrate at a high velocity, ensuring to form a sprayed coating having a high hardness and a high density and containing less open pores.
  • D 50 particle size which is as small as about 1 ⁇ m
  • the residual stress within splats may be reduced. This achieves a size reduction of micro-cracks (fractures) in the coating surface and open pores (perpendicular fractures) in the coating bulk whereby the crack amount is minimized.
  • the yttrium fluoride sprayed coating may be formed on the surface of substrates of metals or ceramics used in the semiconductor fabrication system, thereby endowing the substrates with improved corrosion resistance and preventing particle generation.
  • a corrosion resistant coating of multilayer structure is obtained.
  • the multilayer coating is more effective for suppressing acid penetration and more resistant to damages, offering more reliable corrosion resistant performance.
  • the rare earth element in the rare earth oxide sprayed coating to constitute the lower layer is preferably selected from among Y, Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and mixtures thereof, more preferably from among Y, Sc, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and mixtures thereof.
  • the lower layer may be formed by thermally spraying an oxide of the rare earth element to a substrate surface.
  • the yttrium fluoride sprayed coating is formed on the lower layer in a stacking manner, yielding a corrosion resistant composite coating.
  • the lower layer has a porosity of preferably up to 5%, more preferably up to 3%, based on the surface area of the coating. Such a low porosity may be achieved by the following method, for example, although the method is not particularly limited.
  • a dense rare earth oxide sprayed coating having a porosity of up to 5% and containing less open pores may be formed by using a single particle powder having a particle size (D 50 ) of 0.5 to 30 ⁇ m, preferably 1 to 20 ⁇ m, as the source powder for the rare earth oxide, and performing plasma spraying, SPS spraying or detonation spraying so that single particles may be fully fused and sprayed. Since the single particle powder used as the spray material consists of fine particles of solid interior having a smaller particle size than the conventional granulated spray powder, splats become of smaller diameter and less cracks are generated. These effects ensure to form a sprayed coating having a porosity of up to 5%, with extremely less open pores, and a low surface roughness. It is noted that “single particle powder” is a powder of spherical particles, angular particles, or ground particles of solid interior.
  • a 6061 aluminum alloy substrate of 20 mm squares and 5 mm thick was degreased on their surfaces with acetone and roughened on one surface with corundum abrasive grains.
  • an yttrium oxide sprayed coating of 100 ⁇ m thick was deposited as the lower layer by using an atmospheric plasma spraying system, yttrium oxide powder (single angular particles) having an average particle size (D 50 ) of 8 ⁇ m, and argon and hydrogen gases as the plasma gas, and operating the system at a power of 40 kW, a spray distance of 100 mm, and a buildup of 30 ⁇ m/pass.
  • the lower layer had a porosity of 3.2%.
  • the porosity measuring method is the same as the measurement of a porosity of a surface layer to be described below.
  • a spray powder (spray material) was prepared by mixing 95 wt % of yttrium fluoride powder A having an average particle size (D 50 ) of 1 ⁇ m with 5 wt % of yttrium oxide powder B having an average particle size (D 50 ) of 0.2 ⁇ m, granulating the mixture by spray drying, and firing at 800° C. in a nitrogen gas atmosphere.
  • the spray powder thus obtained was measured for an average particle size (D 50 ), bulk density, and angle of repose, with the results shown in Table 1.
  • the spray powder was also analyzed by XRD, finding that it consisted of YF 3 and Y 5 O 4 F 7 , with a content of Y 5 O 4 F 7 being 9.1 wt %, as shown in Table 1.
  • the spray powder (spray material) was plasma sprayed on the lower layer of the yttrium oxide sprayed coating under the same conditions as used for the lower layer deposition. In this way, an yttrium fluoride sprayed coating of 100 ⁇ m thick was deposited as a surface layer on the lower layer, yielding a corrosion resistant coating of two-layer structure having an overall thickness of 200 ⁇ m as a specimen.
  • the surface layer of the yttrium fluoride sprayed coating was analyzed by XRD, finding that it had an yttrium fluoride crystal structure consisting of YF 3 and Y 5 O 4 F 7 .
  • the surface layer or sprayed coating was measured for surface roughness Ra, Y concentration, F concentration, O concentration, C concentration, surface crack amount, porosity, and hardness HV. The results are shown in Table 1. The crack amount, porosity and hardness were measured by the following methods.
  • a 6061 aluminum alloy substrate of 20 mm squares and 5 mm thick was degreased on their surfaces with acetone and roughened on one surface with corundum abrasive grains.
  • an yttrium oxide sprayed coating of 100 ⁇ m thick was deposited as the lower layer by using an atmospheric plasma spraying system, yttrium oxide powder (granulated powder) having an average particle size (D 50 ) of 20 ⁇ m, and argon and hydrogen gases as the plasma gas, and operating the system at a power of 40 kW, a spray distance of 100 mm, and a buildup of 30 ⁇ m/pass.
  • the lower layer had a porosity of 2.8%.
  • a spray powder (spray material) was prepared by mixing 90 wt % of yttrium fluoride powder A having an average particle size (D 50 ) of 1.7 ⁇ m with 10 wt % of yttrium oxide powder B having an average particle size (D 50 ) of 0.3 ⁇ m, granulating the mixture by spray drying, and firing at 800° C. in a nitrogen gas atmosphere.
  • the spray powder thus obtained was measured for an average particle size (D 50 ), bulk density, and angle of repose, with the results shown in Table 1.
  • the spray powder was also analyzed by XRD, finding that it consisted of YF 3 and Y 5 O 4 F 7 , with a content of Y 5 O 4 F 7 being 17.3 wt %, as shown in Table 1.
  • the spray powder (spray material) was plasma sprayed on the lower layer of the yttrium oxide sprayed coating under the same conditions as used for the lower layer deposition. In this way, an yttrium fluoride sprayed coating of 100 ⁇ m thick was deposited as a surface layer on the lower layer, yielding a corrosion resistant coating of two-layer structure having an overall thickness of 200 ⁇ m as a specimen.
  • the surface layer of the yttrium fluoride sprayed coating was analyzed by XRD, finding that it had an yttrium fluoride crystal structure consisting of YF 3 and Y 5 O 4 F 7 .
  • the surface layer or sprayed coating was measured for surface roughness Ra, Y, F, O, C concentrations, surface crack amount, porosity, and hardness as in Example 1. The results are shown in Table 1.
  • An alumina ceramic substrate of 20 mm squares and 5 mm thick was degreased on their surfaces with acetone and roughened on one surface with corundum abrasive grains.
  • an yttrium oxide sprayed coating of 100 ⁇ m thick was deposited as the lower layer by using a detonation spraying system, yttrium oxide powder having an average particle size (D 50 ) of 30 ⁇ m, and oxygen and ethylene gases, and operating the system at a spray distance of 100 mm and a buildup of 15 ⁇ m/pass.
  • the lower layer had a porosity of 1.8%.
  • a spray powder (spray material) was prepared by mixing 85 wt % of yttrium fluoride powder A having an average particle size (D 50 ) of 1.4 ⁇ m with 15 wt % of yttrium oxide powder B having an average particle size (D 50 ) of 0.5 ⁇ m on a ball mill, and firing at 800° C. in a nitrogen gas atmosphere.
  • the spray powder thus obtained was measured for an average particle size (D 50 ), with the result shown in Table 1.
  • the spray powder was also analyzed by XRD, finding that it consisted of YF 3 and Y 5 O 4 F 7 , with a content of Y 5 O 4 F 7 being 26.4 wt %, as shown in Table 1.
  • the spray powder (spray material) was dispersed in deionized water to form a slurry having a concentration of 30 wt %.
  • the slurry was SPS sprayed on the lower layer of the yttrium oxide sprayed coating by using an atmospheric plasma spraying system, argon, nitrogen and hydrogen gases as the plasma gas, and operating the system at a power of 100 kW, a spray distance of 70 mm, and a buildup of 30 ⁇ m/pass.
  • an yttrium fluoride sprayed coating of 100 ⁇ m thick was deposited as a surface layer on the lower layer, yielding a corrosion resistant coating of two-layer structure having an overall thickness of 200 ⁇ m as a specimen.
  • the surface layer of the yttrium fluoride sprayed coating was analyzed by XRD, finding that it had an yttrium fluoride crystal structure consisting of YF 3 , YOF and Y 2 O 3 .
  • the surface layer or sprayed coating was measured for surface roughness Ra, Y, F, O, C concentrations, surface crack amount, porosity, and hardness as in Example 1. The results are shown in Table 1.
  • a 6061 aluminum alloy substrate of 20 mm squares and 5 mm thick was degreased on their surfaces with acetone and roughened on one surface with corundum abrasive grains.
  • an yttrium oxide sprayed coating of 100 ⁇ m thick was deposited as the lower layer by using an atmospheric plasma spraying system, yttrium oxide powder (spherical single particles) having an average particle size (D 50 ) of 18 ⁇ m, and argon and hydrogen gases as the plasma gas, and operating the system at a power of 40 kW, a spray distance of 100 mm, and a buildup of 30 ⁇ m/pass.
  • the lower layer had a porosity of 2.8%.
  • a spray powder (spray material) was prepared by mixing yttrium fluoride granulated powder A having an average particle size (D 50 ) of 45 ⁇ m and yttrium oxide granulated powder B having an average particle size (D 50 ) of 40 ⁇ m in a weight ratio of 90:10 to form a powder mixture.
  • the spray powder was measured for an average particle size (D 50 ), bulk density, and angle of repose, with the results shown in Table 1.
  • the spray powder was also analyzed by XRD, finding that it was a mere mixture of YF 3 and Y 2 O 3 .
  • the spray powder (spray material) was plasma sprayed on the lower layer of the yttrium oxide sprayed coating under the same conditions as used for the lower layer deposition. In this way, an yttrium fluoride sprayed coating of 100 ⁇ m thick was deposited as a surface layer on the lower layer, yielding a corrosion resistant coating of two-layer structure having an overall thickness of 200 ⁇ m as a specimen.
  • the surface layer of the yttrium fluoride sprayed coating was analyzed by XRD, finding that it had an yttrium fluoride crystal structure consisting of YF 3 , Y 5 O 4 F 7 , and Y 2 O 3 .
  • the surface layer or sprayed coating was measured for surface roughness Ra, Y, F, O, C concentrations, surface crack amount, porosity, and hardness as in Example 1. The results are shown in Table 1.
  • a 6061 aluminum alloy substrate of 20 mm squares and 5 mm thick was degreased on their surfaces with acetone and roughened on one surface with corundum abrasive grains.
  • an yttrium oxide sprayed coating of 100 ⁇ m thick was deposited as the lower layer by using an atmospheric plasma spraying system, yttrium oxide powder (granulated powder) having an average particle size (D 50 ) of 20 ⁇ m, and argon and hydrogen gases as the plasma gas, and operating the system at a power of 40 kW, a spray distance of 100 mm, and a buildup of 30 ⁇ m/pass.
  • the lower layer had a porosity of 2.8%.
  • yttrium fluoride granulated powder A having an average particle size (D 50 ) of 40 ⁇ m alone as the spray material
  • plasma spraying was performed under the same conditions as used for the lower layer deposition.
  • an yttrium fluoride sprayed coating of 100 ⁇ m thick was deposited as a surface layer on the lower layer of the yttrium oxide sprayed coating, yielding a corrosion resistant coating of two-layer structure having an overall thickness of 200 ⁇ m as a specimen.
  • the spray powder was measured for bulk density and angle of repose.
  • the surface layer of the yttrium fluoride sprayed coating was analyzed by XRD and measured for surface roughness Ra, Y, F, O, C concentrations, surface crack amount, porosity, and hardness as in Example 1. The results are shown in Table 1.
  • a 6061 aluminum alloy substrate of 20 mm squares and 5 mm thick was degreased on their surfaces with acetone and roughened on one surface with corundum abrasive grains.
  • yttrium fluoride granulated powder A having an average particle size (D 50 ) of 30 ⁇ m, and argon and hydrogen gases as the plasma gas, and operating the system at a power of 40 kW, a spray distance of 100 mm, and a buildup of 30 ⁇ m/pass, an yttrium fluoride sprayed coating of 200 ⁇ m thick was deposited on the roughened surface of the substrate.
  • a corrosion resistant coating in the form of a monolayer yttrium fluoride sprayed coating was obtained as a specimen.
  • Example 1 the spray powder was measured for bulk density and angle of repose, and the yttrium fluoride sprayed coating was analyzed by XRD and measured for surface roughness Ra, Y, F, O, C concentrations, surface crack amount, porosity, and hardness. The results are shown in Table 1.
  • a 6061 aluminum alloy substrate of 20 mm squares and 5 mm thick was degreased on their surfaces with acetone and roughened on one surface with corundum abrasive grains.
  • an yttrium oxide sprayed coating of 100 ⁇ m thick was deposited as the lower layer by using an atmospheric plasma spraying system, yttrium oxide powder (granulated powder) having an average particle size (D 50 ) of 20 ⁇ m, and argon and hydrogen gases as the plasma gas, and operating the system at a power of 40 kW, a spray distance of 100 mm, and a buildup of 30 ⁇ m/pass.
  • the lower layer had a porosity of 2.8%.
  • a spray powder (spray material) was prepared by mixing 65 wt % of yttrium fluoride powder A having an average particle size (D 50 ) of 1 ⁇ m with 35 wt % of yttrium oxide powder B having an average particle size (D 50 ) of 0.2 ⁇ m, granulating the mixture by spray drying, and firing at 800° C. in a nitrogen gas atmosphere.
  • the spray powder thus obtained was measured for an average particle size (D 50 ), bulk density, and angle of repose, with the results shown in Table 1.
  • the spray powder was also analyzed by XRD, finding that it consisted of YF 3 and Y 5 O 4 F 7 , with a content of Y 5 O 4 F 7 being 49.8 wt %, as shown in Table 1.
  • the spray powder (spray material) was plasma sprayed on the lower layer of the yttrium oxide sprayed coating under the same conditions as used for the lower layer deposition. In this way, an yttrium fluoride sprayed coating of 100 ⁇ m thick was deposited as a surface layer on the lower layer, yielding a corrosion resistant coating of two-layer structure having an overall thickness of 200 ⁇ m as a specimen.
  • the surface layer of the yttrium fluoride sprayed coating was analyzed by XRD, finding that it had an yttrium fluoride crystal structure consisting of YOF, Y 5 O 4 F 7 , and Y 7 O 6 F 9 .
  • the surface layer or sprayed coating was measured for surface roughness Ra, Y, F, O, C concentrations, surface crack amount, porosity, and hardness as in Example 1. The results are shown in Table 1.
  • a 6061 aluminum alloy substrate of 20 mm squares and 5 mm thick was degreased on their surfaces with acetone and roughened on one surface with corundum abrasive grains.
  • an yttrium oxide sprayed coating of 100 ⁇ m thick was deposited as the lower layer by using an atmospheric plasma spraying system, yttrium oxide powder (granulated powder) having an average particle size (D 50 ) of 20 ⁇ m, and argon and hydrogen gases as the plasma gas, and operating the system at a power of 40 kW, a spray distance of 100 mm, and a buildup of 30 ⁇ m/pass.
  • the lower layer had a porosity of 2.8%.
  • a spray powder (spray material) was prepared by mixing 50 wt % of yttrium fluoride powder A having an average particle size (D 50 ) of 1 ⁇ m with 50 wt % of yttrium oxide powder B having an average particle size (D 50 ) of 0.2 ⁇ m, granulating the mixture by spray drying, and firing at 800° C. in a nitrogen gas atmosphere.
  • the spray powder thus obtained was measured for an average particle size (D 50 ), bulk density, and angle of repose, with the results shown in Table 1.
  • the spray powder was also analyzed by XRD, finding that it consisted of YF 3 , Y 5 O 4 F 7 , and Y 2 O 3 , with a content of Y 5 O 4 F 7 being 59.1 wt %, as shown in Table 1.
  • the spray powder (spray material) was plasma sprayed on the lower layer of the yttrium oxide sprayed coating under the same conditions as used for the lower layer deposition. In this way, an yttrium fluoride sprayed coating of 100 ⁇ m thick was deposited as a surface layer on the lower layer, yielding a corrosion resistant coating of two-layer structure having an overall thickness of 200 ⁇ m as a specimen.
  • the surface layer of the yttrium fluoride sprayed coating was analyzed by XRD, finding that it had an yttrium fluoride crystal structure consisting of YOF and Y 5 O 4 F 7 .
  • the surface layer or sprayed coating was measured for surface roughness Ra, Y, F, O, C concentrations, surface crack amount, porosity, and hardness as in Example 1. The results are shown in Table 1.
  • the specimen was set in a reactive ion plasma tester, where a plasma corrosion resistance test was carried out under conditions: frequency 13.56 MHz, plasma power 1,000 W, gas species CF 4 +O 2 (20 volt), flow rate 50 sccm, gas pressure 50 mTorr, and time 20 hours. Under a laser microscope, the height of a step formed between the masked and exposed sections by corrosion was measured. An average value from measurements at 4 points was reported as an index of corrosion resistance. The results are shown in Table 1.
  • the yttrium fluoride sprayed coatings of Examples 1 to 4 are hard dense coatings containing less cracks and less open pores than those of Comparative Examples 1 to 4.
  • FIGS. 1 and 2 are analytic image photographs on surface of the sprayed coating in Comparative Example 1;
  • FIGS. 3 and 4 are analytic image photographs on surface of the sprayed coating in Example 2.
  • a comparison of FIGS. 1 and 2 with FIGS. 3 and 4 reveals that the sprayed coating of the invention contains extremely less cracks than the conventional coating.
  • the corrosion resistant coatings in Examples 1 to 4 including the yttrium fluoride sprayed coating as a surface layer are effective for preventing spall-off particles from generating because the amount of Y 2 O 3 dissolved in the particle generation evaluation test is noticeably small as compared with the coatings of Comparative Examples 1 to 4.
  • the corrosion resistant coatings in Examples 1 to 4 have satisfactory corrosion resistance to plasma etching because the height of a step generated by corrosion in the corrosion resistance test is significantly small as compared with the coatings of Comparative Examples 1 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Drying Of Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Analytical Chemistry (AREA)
US15/479,451 2016-04-12 2017-04-05 Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating Abandoned US20170292182A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/101,137 US20210079509A1 (en) 2016-04-12 2020-11-23 Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016079258A JP6443380B2 (ja) 2016-04-12 2016-04-12 イットリウム系フッ化物溶射皮膜、及び該溶射皮膜を含む耐食性皮膜
JP2016-079258 2016-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/101,137 Division US20210079509A1 (en) 2016-04-12 2020-11-23 Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating

Publications (1)

Publication Number Publication Date
US20170292182A1 true US20170292182A1 (en) 2017-10-12

Family

ID=59999244

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/479,451 Abandoned US20170292182A1 (en) 2016-04-12 2017-04-05 Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating
US17/101,137 Pending US20210079509A1 (en) 2016-04-12 2020-11-23 Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/101,137 Pending US20210079509A1 (en) 2016-04-12 2020-11-23 Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating

Country Status (5)

Country Link
US (2) US20170292182A1 (zh)
JP (1) JP6443380B2 (zh)
KR (4) KR20170116962A (zh)
CN (2) CN112779488B (zh)
TW (2) TWI724150B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200002799A1 (en) * 2017-03-01 2020-01-02 Shin-Etsu Chemical Co., Ltd. Spray coating, sraying powder, spraying powder manufacturing method and spray coating manufacturing method
US11016233B2 (en) * 2017-11-21 2021-05-25 Ngk Insulators, Ltd. Optical waveguide structure, phosphor element, and method for manufacturing optical waveguide structure
CN112831744A (zh) * 2020-12-31 2021-05-25 沈阳富创精密设备股份有限公司 一种应用于半导体设备的陶瓷涂层的制备方法
USD947280S1 (en) 2020-03-31 2022-03-29 Ccl Label, Inc. Label sheet assembly with matrix cuts
CN114256039A (zh) * 2021-12-21 2022-03-29 苏州众芯联电子材料有限公司 一种干刻下部电极的制作工艺
USD968509S1 (en) 2020-07-02 2022-11-01 Ccl Label, Inc. Label sheet assembly with raised tactile features
US11851768B2 (en) * 2018-07-17 2023-12-26 Shin-Etsu Chemical Co., Ltd. Film-forming powder, film forming method, and film-forming powder preparing method
US11987880B2 (en) 2019-12-23 2024-05-21 Hitachi High-Tech Corporation Manufacturing method and inspection method of interior member of plasma processing apparatus

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109611B (zh) * 2015-02-10 2019-07-26 日本钇股份有限公司 成膜用粉末以及成膜用材料
CA3002979C (en) 2015-10-23 2022-08-16 Ccl Label, Inc. Label sheet assembly with improved printer feeding
USD813942S1 (en) 2016-02-04 2018-03-27 Ccl Label, Inc. Label sheets
USD813945S1 (en) 2016-03-22 2018-03-27 Ccl Label, Inc. Label sheet
US10538845B2 (en) * 2016-06-22 2020-01-21 Ngk Spark Plug Co., Ltd. Yttrium oxyfluoride sprayed coating and method for producing the same, and sprayed member
USD841087S1 (en) 2016-11-17 2019-02-19 Ccl Label, Inc. Label sheet with a feed edge assembly
USD853480S1 (en) 2017-05-10 2019-07-09 Ccl Label, Inc. Label sheet assembly
WO2019132550A1 (ko) * 2017-12-29 2019-07-04 아이원스 주식회사 코팅막의 형성 방법 및 이에 따른 코팅막
JP7122854B2 (ja) 2018-04-20 2022-08-22 株式会社日立ハイテク プラズマ処理装置およびプラズマ処理装置用部材、またはプラズマ処理装置の製造方法およびプラズマ処理装置用部材の製造方法
JP7147675B2 (ja) * 2018-05-18 2022-10-05 信越化学工業株式会社 溶射材料、及び溶射部材の製造方法
US20200024735A1 (en) * 2018-07-18 2020-01-23 Applied Materials, Inc. Erosion resistant metal fluoride coatings deposited by atomic layer deposition
JP6939853B2 (ja) * 2018-08-15 2021-09-22 信越化学工業株式会社 溶射皮膜、溶射皮膜の製造方法、及び溶射部材
CN113924387A (zh) * 2019-05-22 2022-01-11 应用材料公司 用于高温腐蚀环境的基板支承件盖
CN112447548A (zh) * 2019-09-03 2021-03-05 中微半导体设备(上海)股份有限公司 一种半导体处理设备及腔室间传送口结构
WO2021124996A1 (ja) * 2019-12-18 2021-06-24 信越化学工業株式会社 フッ化イットリウム系溶射皮膜、溶射部材、及びフッ化イットリウム系溶射皮膜の製造方法
CN113522688B (zh) * 2020-03-30 2022-12-30 中微半导体设备(上海)股份有限公司 耐等离子体腐蚀部件及其制备方法,等离子体处理设备
KR102284838B1 (ko) * 2020-05-06 2021-08-03 (주)코미코 서스펜션 플라즈마 용사용 슬러리 조성물, 그 제조방법 및 서스펜션 플라즈마 용사 코팅막
CN112210741A (zh) * 2020-08-27 2021-01-12 沈阳富创精密设备股份有限公司 一种应用于集成电路行业的陶瓷层的制备方法
CN113611589B (zh) * 2021-10-08 2021-12-24 中微半导体设备(上海)股份有限公司 零部件、等离子体装置、形成耐腐蚀涂层的方法及其装置
KR20240032700A (ko) 2022-08-30 2024-03-12 주식회사 히타치하이테크 플라스마 처리 장치, 플라스마 처리 장치의 내부 부재, 및 플라스마 처리 장치의 내부 부재의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122283A1 (en) * 2011-11-10 2013-05-16 Shin-Etsu Chemical Co., Ltd. Rare earth fluoride spray powder and rare earth fluoride-sprayed article
US20160326623A1 (en) * 2015-05-08 2016-11-10 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
US20180362359A1 (en) * 2015-12-28 2018-12-20 Nippon Yttrium Co., Ltd. Film-forming material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60127035T2 (de) * 2000-06-29 2007-11-08 Shin-Etsu Chemical Co., Ltd. Thermisches Sprühbeschichtungsverfahren und Pulver aus Oxyden der seltenen Erden dafür
JP3523222B2 (ja) * 2000-07-31 2004-04-26 信越化学工業株式会社 溶射材料およびその製造方法
JP3894313B2 (ja) * 2002-12-19 2007-03-22 信越化学工業株式会社 フッ化物含有膜、被覆部材及びフッ化物含有膜の形成方法
JP4985928B2 (ja) * 2005-10-21 2012-07-25 信越化学工業株式会社 多層コート耐食性部材
US7968205B2 (en) * 2005-10-21 2011-06-28 Shin-Etsu Chemical Co., Ltd. Corrosion resistant multilayer member
KR101344990B1 (ko) * 2006-04-20 2013-12-24 신에쓰 가가꾸 고교 가부시끼가이샤 도전성 내플라즈마 부재
JP4905697B2 (ja) * 2006-04-20 2012-03-28 信越化学工業株式会社 導電性耐プラズマ部材
US20090214825A1 (en) * 2008-02-26 2009-08-27 Applied Materials, Inc. Ceramic coating comprising yttrium which is resistant to a reducing plasma
US9017765B2 (en) * 2008-11-12 2015-04-28 Applied Materials, Inc. Protective coatings resistant to reactive plasma processing
JP2011231356A (ja) * 2010-04-26 2011-11-17 Nhk Spring Co Ltd 金属基材の絶縁被膜方法、絶縁被膜金属基材、および、これを用いた半導体製造装置
JP5396672B2 (ja) * 2012-06-27 2014-01-22 日本イットリウム株式会社 溶射材料及びその製造方法
JP5939084B2 (ja) * 2012-08-22 2016-06-22 信越化学工業株式会社 希土類元素オキシフッ化物粉末溶射材料の製造方法
US9869013B2 (en) * 2014-04-25 2018-01-16 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
JP6388153B2 (ja) * 2014-08-08 2018-09-12 日本イットリウム株式会社 溶射材料
JP6722004B2 (ja) * 2015-05-08 2020-07-15 東京エレクトロン株式会社 溶射用材料、溶射皮膜および溶射皮膜付部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122283A1 (en) * 2011-11-10 2013-05-16 Shin-Etsu Chemical Co., Ltd. Rare earth fluoride spray powder and rare earth fluoride-sprayed article
US20160326623A1 (en) * 2015-05-08 2016-11-10 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
US20180362359A1 (en) * 2015-12-28 2018-12-20 Nippon Yttrium Co., Ltd. Film-forming material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200002799A1 (en) * 2017-03-01 2020-01-02 Shin-Etsu Chemical Co., Ltd. Spray coating, sraying powder, spraying powder manufacturing method and spray coating manufacturing method
US11016233B2 (en) * 2017-11-21 2021-05-25 Ngk Insulators, Ltd. Optical waveguide structure, phosphor element, and method for manufacturing optical waveguide structure
US11851768B2 (en) * 2018-07-17 2023-12-26 Shin-Etsu Chemical Co., Ltd. Film-forming powder, film forming method, and film-forming powder preparing method
US11987880B2 (en) 2019-12-23 2024-05-21 Hitachi High-Tech Corporation Manufacturing method and inspection method of interior member of plasma processing apparatus
USD947280S1 (en) 2020-03-31 2022-03-29 Ccl Label, Inc. Label sheet assembly with matrix cuts
USD1019770S1 (en) 2020-03-31 2024-03-26 Ccl Label, Inc. Label sheet assembly with matrix cuts
USD968509S1 (en) 2020-07-02 2022-11-01 Ccl Label, Inc. Label sheet assembly with raised tactile features
CN112831744A (zh) * 2020-12-31 2021-05-25 沈阳富创精密设备股份有限公司 一种应用于半导体设备的陶瓷涂层的制备方法
CN114256039A (zh) * 2021-12-21 2022-03-29 苏州众芯联电子材料有限公司 一种干刻下部电极的制作工艺

Also Published As

Publication number Publication date
TW201807217A (zh) 2018-03-01
KR20220024286A (ko) 2022-03-03
JP2017190475A (ja) 2017-10-19
KR20220110695A (ko) 2022-08-09
US20210079509A1 (en) 2021-03-18
CN107287545B (zh) 2022-07-05
CN107287545A (zh) 2017-10-24
TWI745247B (zh) 2021-11-01
TW202126835A (zh) 2021-07-16
CN112779488A (zh) 2021-05-11
KR20170116962A (ko) 2017-10-20
CN112779488B (zh) 2023-06-27
KR102501039B1 (ko) 2023-02-21
KR20230026372A (ko) 2023-02-24
TWI724150B (zh) 2021-04-11
JP6443380B2 (ja) 2018-12-26

Similar Documents

Publication Publication Date Title
US20210079509A1 (en) Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating
EP3443136B1 (en) Coated semiconductor processing members having chlorine and fluorine plasma erosion resistance and complex oxide coatings therefor
KR101304082B1 (ko) 내식성 다층 부재
US11373882B2 (en) Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10138167B2 (en) Thermal spray material, thermal spray coating and thermal spray coated article
KR100917292B1 (ko) 할로겐-함유 플라즈마에 노출된 표면의 부식 속도를감소시키는 장치 및 방법
TWI759234B (zh) 噴塗塗層、製造噴塗塗層的方法、噴塗構件和噴塗材料
US10106466B2 (en) Thermal spray material, thermal spray coating and thermal spray coated article
US10106879B2 (en) Thermal spray material, thermal spray coating and thermal spray coated article
TWI724797B (zh) 半導體製造裝置用構件及具備半導體製造裝置用構件之半導體製造裝置以及顯示器製造裝置
JP2016211070A (ja) 溶射用材料、溶射皮膜および溶射皮膜付部材
US20240026515A1 (en) Yttrium-fluoride-based sprayed coating, sprayed member, and method for producing yttrium-fluoride-based sprayed coating
JP6699701B2 (ja) イットリウム系フッ化物溶射皮膜、該溶射皮膜を形成するための溶射材料、該溶射皮膜の形成方法、及び該溶射皮膜を含む耐食性皮膜
JP6722005B2 (ja) 溶射用材料、溶射皮膜および溶射皮膜付部材
JP2001019549A (ja) 耐食性部材及びこれを用いた半導体・液晶製造装置用構成部材

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHIN-ETSU CHEMICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMAYA, NORIAKI;TAKAI, YASUSHI;REEL/FRAME:042092/0879

Effective date: 20170411

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION