US20170271303A1 - Diffusion barrier layer for radio frequency transmission line - Google Patents

Diffusion barrier layer for radio frequency transmission line Download PDF

Info

Publication number
US20170271303A1
US20170271303A1 US15/593,186 US201715593186A US2017271303A1 US 20170271303 A1 US20170271303 A1 US 20170271303A1 US 201715593186 A US201715593186 A US 201715593186A US 2017271303 A1 US2017271303 A1 US 2017271303A1
Authority
US
United States
Prior art keywords
barrier layer
diffusion barrier
transmission line
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/593,186
Inventor
Sandra Louise Petty-Weeks
Guohao Zhang
Hardik Bhupendra Modi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skyworks Solutions Inc
Original Assignee
Skyworks Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skyworks Solutions Inc filed Critical Skyworks Solutions Inc
Priority to US15/593,186 priority Critical patent/US20170271303A1/en
Publication of US20170271303A1 publication Critical patent/US20170271303A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48155Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48157Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48159Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13051Heterojunction bipolar transistor [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/142HF devices
    • H01L2924/1421RF devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0341Intermediate metal, e.g. before reinforcing of conductors by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands

Definitions

  • the disclosed technology relates to transmission lines for high performance radio frequency applications.
  • Transmission lines can be implemented in a variety of contexts, such as on a packaging substrate or printed circuit board (PCB).
  • PCB printed circuit board
  • Multi-layer laminate PCBs or package substrates are extensively used in radio frequency (RF) applications.
  • RF radio frequency
  • RF circuits such as power amplifiers, low noise amplifiers (LNAs), mixers, voltage controlled oscillators (VCOs), filters, switches and whole transceivers have been implemented using semiconductor technologies.
  • LNAs low noise amplifiers
  • VCOs voltage controlled oscillators
  • single chip integration may not be practical due to different blocks being implemented in different semiconductor technologies.
  • a power amplifier may be formed by a GaAs process, while related control and/or bias circuitry may be formed by a CMOS process.
  • MCM multi-chip module
  • SiP system in package
  • Laminate technology can be used for MCM assembly, in which transmission lines are implemented on a laminate substrate. Conductor loss in such transmission lines can have a significant impact on the performance of any of the elements in the MCM. Accordingly, laminate plating technology can impact RF performance significantly.
  • RF SiPs that use gold (Au) wire bonding to connect RF circuit elements to transmission lines can use a variety of different finish platings such as lower loss, more expensive NiAu (for example, due to thicker Au) or higher loss, less expensive NiPdAu. Accordingly, a need exists for cost effective, high performance technology for RF transmission lines.
  • the RF transmission line includes a bonding layer, a barrier layer, and diffusion barrier layer, and a conductive layer.
  • the bonding layer has a bonding surface and is configured to receive an RF signal.
  • the barrier layer is configured to prevent a contaminant from entering the bonding layer.
  • the barrier layer is proximate the bonding layer.
  • the diffusion barrier layer is configured to prevent contaminant from entering the bonding layer.
  • the diffusion barrier layer is proximate the barrier layer.
  • the diffusion barrier layer has a thickness that allows the received RF signal to penetrate the diffusion barrier layer to a conductive layer that is proximate to the diffusion barrier layer.
  • the bonding layer, the barrier layer, and the diffusion barrier layer can be embodied in a finish plating.
  • the bonding layer can include gold according to certain implementations.
  • the bonding surface can be configured for wire bonding.
  • the barrier layer can include palladium.
  • the diffusion barrier layer can include nickel according to certain implementations.
  • the thickness of the diffusion barrier layer can be in the range from about 0.04 um to about 0.7 um.
  • the thickness of the diffusion barrier layer can be no more than about 0.5 um according to a number of implementations.
  • the thickness of the diffusion barrier layer can be no more than about 0.35 um according to various implementations.
  • the thickness of the diffusion barrier layer can be no more than about 0.75 um according to a certain implementations.
  • the thickness of the diffusion barrier layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • the thickness of the diffusion barrier can be less than the skin depth of the diffusion barrier layer at a frequency of about 0.45 GHz.
  • the conductive layer can include one or more of copper, aluminum, or silver.
  • the conductive layer can include copper in certain implementations.
  • substantially all of the received RF signal can propagate in the conductive layer.
  • the bonding layer can be gold, the barrier layer can be palladium, and the diffusion barrier layer can be nickel according to certain implementations.
  • the thickness of the diffusion barrier layer is can be the range from about 0.04 um to about 0.7 um. According to a number of implementations, the thickness of the diffusion barrier layer can be no more than about 0.5 um. According to certain implementations, the thickness of the diffusion barrier layer can be no more than about 0.35 um. According to some implementations, the thickness of the diffusion barrier layer can be no more than about 0.75 um.
  • the diffusion barrier layer configured for use in an RF transmission line.
  • the diffusion barrier layer includes a material and has a thickness. The thickness of the diffusion barrier layer is sufficiently small such that an RF signal is allowed to penetrate the diffusion barrier layer.
  • the material includes nickel.
  • the thickness of the diffusion barrier layer can be in the range from about 0.04 um to about 0.7 um. According to a number of implementations, the thickness of the diffusion barrier layer can be no more than about 0.5 um. According to some implementations, the thickness of the diffusion barrier layer can be no more than about 0.35 um. According to certain implementations, the thickness of the diffusion barrier layer can be no more than about 0.75 um. In various implementations, the thickness of the diffusion barrier layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • the thickness of the diffusion barrier layer can be less than about the skin depth of the material at a frequency of about 0.45 GHz.
  • substantially all of the RF signal that penetrates the diffusion barrier layer can travel in a conductive layer proximate the diffusion barrier layer.
  • the material and/or the thickness of the diffusion barrier layer can prevent contaminants from passing through the diffusion barrier layer.
  • the transmission line includes a bonding layer, a barrier layer, a diffusion barrier layer, and a conductive layer.
  • the bonding layer has a bonding surface.
  • the barrier layer is proximate the bonding layer.
  • the diffusion barrier is layer proximate to the barrier layer.
  • the conductive layer is proximate to the diffusion barrier layer.
  • the barrier layer and the diffusion barrier layer are configured to prevent conductive material from the conductive layer from entering the bonding layer.
  • the diffusion barrier layer has a thickness that is sufficiently small such that an RF signal is allowed to penetrate the diffusion barrier layer and propagate in the conductive layer.
  • the antenna is coupled to the transmission line and configured to transmit an RF output signal.
  • the transmission line is configured to extend an amount of time for the battery to discharge.
  • the mobile device can include a power amplifier having an output coupled to the transmission line.
  • an output of the power amplifier can be coupled to the transmission line via a wire bond.
  • the transmission line can be configured to transmit the RF signal from the power amplifier to an RF switch.
  • the transmission line can be configured to transmit the RF signal from the power amplifier to a filter according to some implementations.
  • the mobile device can include a filter having an output coupled to the transmission line.
  • the transmission line can be configured to transmit the RF signal from the filter to an RF switch.
  • the transmission line can be configured to transmit the RF signal from the filter to the antenna.
  • the mobile device can include an RF switch having an output coupled to the transmission line.
  • the transmission line is configured to transmit the RF signal from the RF switch to the antenna.
  • the transmission line is configured to transmit the RF signal from the RF switch to a filter.
  • the diffusion barrier layer can include nickel.
  • the thickness of the diffusion barrier layer can be in the range from about 0.04 um to about 0.7 um. In a number of implementations, the thickness of the diffusion barrier layer can be no more than about 0.5 um. In some implementations, the thickness of the diffusion barrier layer can be no more than about 0.35 um. In certain implementations, the thickness of the diffusion barrier layer can be no more than about 0.75 um. In various implementations, the thickness of the diffusion barrier layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • the thickness of the diffusion barrier layer can be less than the skin depth of the material at a frequency of about 0.45 GHz.
  • substantially all of the RF signal can travel in the conductive layer of the transmission line.
  • the bonding layer, the barrier layer, and the diffusion barrier layer can be embodied in a finish plating.
  • the substrate includes a transmission line configured for transmitting an RF signal.
  • the transmission line has a bonding layer, a barrier layer, a diffusion barrier layer, and a conductive layer.
  • the bonding layer has a bonding surface configured for bonding with a conductor separate from the conductive layer.
  • the barrier layer is configured to prevent a contaminant from entering the bonding layer.
  • the diffusion barrier layer includes a material and has a thickness such that contaminants are prevented from passing through the diffusion barrier layer and diffusing between the conductive layer and the bonding layer. The thickness of the diffusion barrier layer is sufficiently small such that the RF signal from the conductor is allowed to penetrate to the conductive layer.
  • the diffusion barrier layer can be nickel. In some of these implementations, the diffusion barrier layer can have a thickness that is less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • the bonding layer can include gold
  • the barrier layer can include palladium
  • the diffusion barrier layer can include nickel.
  • the thickness of the diffusion barrier layer can be less than about 0.75 um.
  • the substrate includes a conductor and a transmission line.
  • the transmission line has a bonding layer, a barrier layer, a diffusion barrier layer, and a conductive layer.
  • the bonding layer has a bonding surface configured for bonding with the conductor.
  • the barrier layer and the diffusion barrier layer are configured to prevent a contaminant from entering the bonding layer.
  • the thickness of the diffusion barrier layer is sufficiently small such that an RF signal from the conductor is allowed to penetrate to the conductive layer.
  • the first RF component is coupled to the substrate and configured to generate the RF signal.
  • the second RF component is coupled to the substrate and configured to receive the RF signal from the first component via the transmission line.
  • the substrate is a laminate substrate.
  • the substrate can include a finish plating that includes the bonding layer, the barrier layer, and the diffusion barrier layer.
  • the diffusion barrier layer can include nickel.
  • the thickness of the diffusion barrier layer can be no more than about 0.7 um. In some implementations, the thickness can be no more than about 0.35 um. In certain implementations, the thickness of the diffusion barrier layer can be no more than about 0.75 um. In various implementations, the thickness of the diffusion barrier layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • the conductive layer can include copper.
  • the thickness of the diffusion barrier layer can be less than the skin depth of the material at a frequency of about 0.45 GHz.
  • the bonding layer can be configured for wire bonding and the conductor can be electrically coupled to the bonding layer via a wire bond.
  • substantially all of the RF signal can propagate from the first RF component to the second RF component in the conductive layer.
  • the first RF component can include a power amplifier.
  • the second RF component can include a filter and/or an RF switch.
  • the first RF component can include an RF switch.
  • the second RF component can include a power amplifier and/or a filter.
  • the first RF component can include a filter.
  • the second RF component includes a power amplifier and/or an RF switch.
  • the barrier layer can be positioned between the bonding layer and the diffusion barrier layer.
  • an RF transmission line that includes a conductive layer and finish plating on the conductive layer.
  • the finish plating includes a gold layer, a palladium layer proximate the gold layer, and a nickel layer proximate the palladium layer.
  • the nickel layer has a thickness that allows an RF signal received at the gold layer to penetrate the nickel layer and propagate in the conductive layer.
  • the gold layer can be configured for wire bonding.
  • the thickness of the nickel layer can be in the range from about 0.04 um to about 0.7 um. According to a number of implementations, the thickness of the nickel layer can be no more than about 0.5 um. According to certain implementations, the thickness of the nickel layer can be no more than about 0.35 um. According to some implementations, the thickness of the nickel layer can be no more than about 0.75 um.
  • the thickness of the nickel layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • the conductive layer can include one or more of copper, aluminum, or silver according to some implementations.
  • the conductive layer can include copper.
  • substantially all of the RF signal can propagate in the conductive layer.
  • FIG. 1A illustrates a cross section of a transmission line according to some embodiments.
  • FIG. 1B schematically illustrates example transmission lines of FIG. 1 .
  • FIG. 2A illustrates an example of a wire bond to the transmission line of FIG. 1 .
  • FIG. 2B illustrates an example of a substrate that includes the transmission line of FIG. 1 .
  • FIG. 2C illustrates an example of an array that includes multiple substrates of FIG. 2B .
  • FIG. 3 is a schematic block diagram of an example module that includes the transmission line of FIG. 1 .
  • FIGS. 4A-4D are graphs illustrating relationships among the transmission line of FIG. 1 and other transmission lines implemented in the module of FIG. 3 .
  • FIG. 5 is a schematic block diagram of two radio frequency (RF) components coupled to each other via the transmission line of FIG. 1 .
  • RF radio frequency
  • FIGS. 6A-6F are schematic block diagrams of various example RF components that can be electrically coupled to each other via the transmission line of FIG. 1 .
  • FIG. 7 is a schematic block diagram of an example mobile device that includes the transmission line of FIG. 1 .
  • a radio frequency (RF) transmission line that includes a diffusion barrier layer.
  • the diffusion barrier layer can include a material and have a thickness such that contaminants are prevented from diffusing and passing through the diffusion barrier layer.
  • the thickness of the diffusion barrier layer can be sufficiently small such that an RF signal penetrates the diffusion barrier layer and propagates in a conductive layer.
  • the thickness of the diffusion barrier layer can be less than the skin depth of the material at a frequency in an RF range (for example, at a frequency selected in the range from about 0.45 GHz to 20 GHz).
  • the diffusion barrier layer can be nickel.
  • the nickel diffusion barrier layer can have a thickness selected from a range of about 0.04 um to 0.5 um.
  • the RF transmission line can also include a bonding layer, a barrier layer for preventing a contaminant from entering the bonding layer, and the conductive layer in which the RF signal propagates.
  • a transmission line can be embodied on a packaging substrate or printed circuit board (PCB), which can include a multi-layer laminate.
  • PCB printed circuit board
  • Multi-layer laminate PCBs or package substrates are extensively used in the RF industry.
  • Most RF blocks, such as low noise amplifiers (LNAs), mixers, voltage controlled oscillators (VCOs), filters, switches and whole transceivers may be implemented using semiconductor technologies.
  • RF modules for example, an RF front-end module including power amplifiers, switches, filters, the like, or any combination thereof
  • a power amplifier may be formed by a GaAs process
  • CMOS complementary metal-oxide-semiconductor
  • Electromagnetic interaction can degrade electrical performance of blocks, which can cause a system to fail electrical performance specifications.
  • on-chip passives such as long transmission lines, inductors, baluns, transformers, the like, or any combination thereof, can have low Q-factor and/or may consume large chip area. Therefore, multi-chip module (MCM) and/or system in package (SiP) assembly technology can be used to achieve low cost, small size and/or high performance in RF module applications.
  • MCM multi-chip module
  • SiP system in package
  • laminate technology can be used for MCM assembly.
  • the laminate technology can include copper for use in a transmission line. Using copper for propagating electrical signals can be desirable due to the physical properties of copper.
  • High Q transmission lines, inductors, transformers, the like, or any combination thereof can be implemented on a laminate substrate.
  • power amplifier modules, output matching networks, harmonic filters, couplers, the like, or any combination thereof can be coupled to a laminate substrate.
  • Conductor loss can have a significant impact on the performance of any of these elements. Accordingly, laminate plating technology can impact RF loss significantly.
  • Copper traces on outer layers of a laminate can be covered with a solder mask, oxide or other suitable materials in areas where interconnects to external components are not desired. These interconnects can include solder joints for components and/or wire bond connections to die. In areas where solderability and/or wire bondability are preserved, the copper trace can be covered with an organic solderability preservative (OSP) or finish plating.
  • OSP organic solderability preservative
  • finish plating The metallurgy and/or metal layer thicknesses of the finish plating can depend on the function of the exposed area, such as a soldering surface and/or a wire bonding surface. An inert, oxide free surface can maintain solderability and/or wire bondability.
  • Such metallurgies for finish plating typically include a diffusion barrier to prevent copper diffusion to the plated surface and subsequent oxidation due to exposure to air and/or elevated temperatures during assembly.
  • the diffusion barrier can be, for example, electroplated nickel (Ni) or electroless Ni(P), depending on the chemistry being used.
  • Ni electroplated nickel
  • Ni(P) electroless Ni(P)
  • nickel having a thickness of about 2.5 um to about 8 um has been established as a sufficiently thick diffusion barrier layer for the laminate substrate to maintain solderability during thermal excursions encountered during MCM and/or SiP assembly.
  • gold (Au) wire bonding electrolytic or electroless Au can be used to form a gold bonding layer with a thickness selected in a range from about 0.4 um to 0.9 um.
  • Electroless Ni/electroless palladium (Pd)/immersion Au has become available for soldering and wire bonding, including Au wire bonding. This can be a cost effective finish due to a reduction in Au thickness. Electroless Ni/electroless Pd/immersion Au can increase conductor loss in the exposed (finish plated) areas, especially at higher frequencies.
  • Electrolytic or electroless NiAu or NiPdAu plating technologies are currently used with laminate substrates. Electroless NiPdAu has been successfully implemented despite more lossy electrical characteristics. Some RF modules still use electrolytic or electroless NiAu, which has lower loss, especially at higher frequencies (for example, at frequencies of about 1.9 GHz or greater) for module performance despite the higher costs due to thicker gold.
  • FIG. 1A illustrates a cross section of a transmission line 1 according to some embodiments.
  • the cross section shown in FIG. 1A can represent the cross section of some or all of the transmission line 1 .
  • the transmission line 1 can include a bonding layer 2 , a barrier layer 4 , a diffusion barrier layer 6 , and a conductive layer 8 .
  • the transmission line 1 can be implemented in an RF circuit and configured for transmitting RF signals.
  • the transmission line 1 can be embodied on a laminate substrate.
  • the bonding layer 2 , the barrier layer 4 , and the diffusion barrier layer 6 can be considered finish plating and the conductive layer 8 can be considered a wire.
  • the transmission line 1 can be at least about 5 um, 10 um, 15 um, 20 um, 25 um, 50 um, 75 um, 100 um, 250 um or 500 um long.
  • the transmission line 1 can include a gold bonding layer, a palladium barrier layer, a nickel diffusion barrier layer, and a copper conductive layer.
  • the transmission line 1 can include a gold bonding layer having a thickness of about 0.1 um, a palladium barrier layer having a thickness of about 0.1 um, a nickel diffusion barrier layer having a thickness selected from a range from about 0.04 um to 0.5 um, and a copper conductive layer having a thickness of about 20 um.
  • the finish plating of the transmission line 1 can be formed by electrolessly plating nickel over the copper conductive layer, electrolessly plating palladium over the nickel, and immersion plating of gold over the palladium. Other suitable processes and/or sub processes of forming the finish plating of such a transmission line can alternatively be implemented.
  • a nickel diffusion barrier layer can be electroplated over a copper conductive layer.
  • the transmission line 1 includes a gold bonding layer, a palladium barrier layer, a nickel diffusion barrier layer, and a copper conductive layer in certain implementations, it will be understood that other materials can alternatively be used to implement one or more layers of the transmission line 1 .
  • the bonding layer 2 of the transmission line 1 can have a bonding surface configured for soldering and/or wire bonding.
  • the bonding layer 2 can be configured to receive an RF signal at the bonding surface.
  • a pin of a die can be bonded to the bonding surface of the bonding layer 2 .
  • an output of a power amplifier die can be bonded to the bonding surface of the bonding layer 2 and transmitted to one or more RF components, such as a filter and/or an RF switch, via the transmission line 1 .
  • the bonding layer 2 can include gold.
  • a thickness of a gold bonding layer can be selected from a range from about 0.05 um to 0.15 um. According to certain implementations, the thickness of a gold bonding layer can be about 0.1 um.
  • the barrier layer 4 of the transmission line 1 can prevent a contaminant from entering the bonding layer 2 .
  • the barrier layer 4 can be proximate the bonding layer 2 . In the orientation of FIG. 1A , the bonding layer 2 is disposed over the barrier layer 4 .
  • a major surface of the barrier layer 4 can directly contact a major surface of the bonding layer 2 , for example, as shown in FIG. 1A .
  • the barrier layer 4 can be between the bonding layer 2 and the diffusion barrier layer 6 .
  • the barrier layer 4 can include palladium.
  • a thickness of a palladium barrier layer can be selected from a range from about 0.03 um to 0.15 um. According to certain implementations, the thickness of a palladium barrier layer can be about 0.1 um.
  • the diffusion barrier layer 6 of the transmission line 1 can be configured to prevent a contaminant from entering the bonding layer 2 and/or the barrier layer 4 .
  • the diffusion barrier layer 6 can prevent copper from a copper conductive layer from diffusing to a gold bonding layer.
  • the diffusion barrier layer 6 can provide an adhesion surface for the conductive layer 8 . According to certain implementations, the adhesion surface of the diffusion barrier layer 6 can adhere to a copper conductive layer.
  • the diffusion barrier layer 6 can have a thickness sufficiently small such that an RF signal is allowed to propagate in the conductive layer 8 .
  • the thickness of the diffusion barrier layer 6 can be less than the skin depth of the diffusion barrier layer 6 at a frequency in the RF range (for example, at a frequency selected in the range from about 0.9 GHz to 20 GHz). This can allow an RF signal to penetrate the diffusion barrier layer 6 .
  • substantially all of the RF signal should travel in the conductive layer 8 of the transmission line 1 , assuming that the RF signal also penetrates the bonding layer 2 and the barrier layer 4 .
  • the thickness of the bonding layer 2 can be less than the skin depth of material forming the bonding layer 2 at the desired frequency in the RF range.
  • the thickness of the barrier layer 4 can be less than the skin depth of material forming the barrier layer 4 at the desired frequency in the RF range.
  • the diffusion barrier layer 6 can be between the bonding layer 2 and the conductive layer 8 .
  • the barrier layer 4 is disposed over the diffusion barrier layer 6 and the diffusion barrier layer 6 is disposed over the conductive layer 8 .
  • a major surface of the diffusion barrier layer 6 can directly contact a major surface of the barrier layer 4 and/or the conductive layer 8 , for example, as shown in FIG. 1A .
  • the diffusion barrier layer 6 can include nickel. In some implementations, the diffusion barrier layer 6 can be nickel. The nickel diffusion barrier layer can also prevent copper from the conductive layer from diffusing to a gold bonding layer. A thickness of the nickel barrier layer can be less than the skin depth of nickel at a frequency in the RF range. For instance, the thickness of nickel can be less than the skin depth of nickel at a frequency selected from a range of about 0.45 GHz to 20 GHz. This can allow an RF signal to penetrate through the diffusion barrier layer 6 to the conductive layer 8 .
  • the thickness of a nickel diffusion layer can be less than the skin depth of nickel at about 0.3 GHz, 0.35 GHz, 0.4 GHz, 0.45 GHz, 0.5 GHz, 0.6 GHz, 0.7 GHz, 0.8 GHz, 0.9 GHz, 1 GHz, 2 GHz, 5 GHz, 6 GHz, 10 GHz, 12 GHz, 15 GHz, or 20 GHz.
  • the thickness of such a diffusion barrier layer can be less than the skin depth of the alternative material at about 0.3 GHz, 0.35 GHz, 0.4 GHz, 0.45 GHz, 0.5 GHz, 0.6 GHz, 0.7 GHz, 0.8 GHz, 0.9 GHz, 1 GHz, 2 GHz, 5 GHz, 6 GHz, 10 GHz, 12 GHz, 15 GHz, or 20 GHz.
  • the thickness of a nickel diffusion barrier layer can be less than about 2 um, 1.75 um, 1.5 um, 1.25 um, 1 um, 0.95 um, 0.9 um, 0.85 um, 0.8 um, 0.75 um, 0.7 um, 0.65 um, 0.6 um, 0.55 um, 0.5 um, 0.45 um, 0.4 um, 0.35 um, 0.3 um, 0.25 um, 0.2 um, 0.15 um, 0.1 um, 0.09 um, 0.05 um, or 0.04 um.
  • the thickness of a nickel diffusion barrier layer can be selected from one of the following ranges: about 0.04 um to 0.7 um, about 0.05 um to 0.7 um, about 0.1 um to 0.7 um, about 0.2 um to 0.7 um, about 0.04 um to 0.5 um, about 0.05 um to 0.5 um, about 0.09 um to 0.5 um, about 0.04 um to 0.16 um, about 0.05 um to 0.15 um, about 0.1 um to 0.75 um, about 0.2 um to 0.5 um, about 0.14 um to 0.23um, about 0.09 um to 0.21 um, about 0.04 um to 0.2 um, about 0.05 um to 0.5 um, about 0.15 um to 0.5 um; or about 0.1 um to 0.2 um.
  • the thickness of a nickel diffusion barrier layer can be about 0.1 um. In all of these illustrative implementations, the nickel diffusion barrier layer has a non-zero thickness.
  • An RF signal can propagate in the conductive layer 8 of the transmission line 1 .
  • the RF signal can penetrate the bonding layer 2 , the barrier layer 4 , and the diffusion barrier layer 6 to propagate in the conductive layer 8 .
  • Substantially all of the RF signal can propagate in the conductive layer 8 of the transmission line 1 .
  • the conductive layer 8 can be adhered to the adhesion surface of the diffusion barrier layer 6 .
  • the conductive layer 8 can include any suitable material for propagating an RF signal along the transmission line 1 .
  • the conductive layer can include copper, aluminum, silver, the like, or any combination thereof.
  • the conductive layer 8 can be copper.
  • the thickness of the conductive layer 8 can be selected from a range from about 10 um to 50 um. In some of these implementations, the thickness of the conductive layer can be selected from a range from about 15 um to 30 um.
  • FIG. 1B schematically illustrates example transmission lines of FIG. 1A .
  • a transmission line 1 can include more than one transmission line 1 to transmit an RF signal from one node to another node, according to certain implementations.
  • the transmission lines 1 illustrated in FIG. 1B can together implement the transmission line 1 of FIG. 3 .
  • the transmission lines 1 in FIG. 1B serve as a medium to transmit an RF signal from a first node RF IN to a second node RF OUT .
  • One or more transmission lines 1 can have one end coupled to a power rail, such as power (for example, Vcc) or ground.
  • a transmission line 1 can be coupled to ground via a capacitor C 1 , C 2 , or C 3 .
  • the diffusion barrier layer 6 of the transmission line 1 can include a material and have a thickness that is sufficiently small such that an RF signal is allowed to propagate in a conductive layer. Accordingly, the diffusion barrier layer 6 can have a thickness that is less than a skin depth of the material at a desired frequency. Skin depth can be represented by Equation 1.
  • Equation 1 ⁇ can represent skin depth in meters, ⁇ 0 can represent the permeability of free space (also referred to as vacuum permeability or magnetic constant) having a value of 4 ⁇ 10 ⁇ 7 Henries/meter (about 1.2566370614 ⁇ 10 6 Henries/meter), ⁇ r can represent a relative permeability of the medium, p can represent the resistivity of the medium in ⁇ m (which can equal to the reciprocal conductivity of the medium), and f can represent frequency of a current propagating through the medium in Hz.
  • free space also referred to as vacuum permeability or magnetic constant
  • ⁇ r can represent a relative permeability of the medium
  • p can represent the resistivity of the medium in ⁇ m (which can equal to the reciprocal conductivity of the medium)
  • f can represent frequency of a current propagating through the medium in Hz.
  • Table 1 below includes plating thicknesses of various layers of three transmission lines.
  • the data in Table 1 correspond to a transmission line with NiAu finish plating and two different transmission lines with NiPdAu finish plating having different nickel layer thicknesses.
  • One of the transmission lines with NiPdAu finish plating has a nickel thickness of 5 um and the other transmission line with NiPdAu finish plating has a nickel thickness of 0.1 um.
  • a nickel thickness of 5 um is within a range of acceptable nickel thicknesses (for example, from 2.5 um to 8 um) that have conventionally been used.
  • the conductive layer is copper.
  • the transmission lines with NiPdAu finish plating can have a cross section as shown in FIG. 1A .
  • the transmission line with NiAu finish plating can have a cross section similar to FIG. 1A without the barrier layer 4, in which a gold layer bonding layer is directly over a nickel diffusion barrier layer and the nickel layer is directly over a copper conductive layer.
  • NiPdAu (um) Thin “Ni”-NiPdAu (um) NiAu (um) Cu 21 21 21 Ni 5 0.1 5 Pd 0.09 0.09 — Au 0.1 0.1 0.4
  • Skin depths of these three transmission lines can be computed using Equation 1 and the material properties included in Table 2 below.
  • the relative permeability of nickel can vary depending on a process used to form the nickel layer. For example, phosphorus content in an electroless nickel process can impact the relative permeability of nickel.
  • the range of nickel permeability listed in Table 2 can capture typical ranges of nickel permeabilities.
  • the data shown in Table 3 indicate that a majority of a signal having a frequency of 0.045 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should travel in nickel in the transmission line with NiAu finish plating.
  • the thickness of gold i.e., 0.4 um
  • the skin depth for gold i.e., 3.70 um at 0.45 GHz, 2.62 um at 0.9 GHz, 1.8 um at 1.9 GHz, 1.11 um at 5 GHz, 0.72 um at 12 GHz, and 0.56 um at 20 GHz
  • the thickness of nickel i.e., 5 um
  • the thickness of nickel i.e., 5 um
  • the signal at 0.45 GHz 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, and 20 GHz should travel in both the gold and nickel layers.
  • the thickness of nickel is greater than the skin depth in the frequency range from about 0.45 GHz to 20 GHz, signals in this frequency range should not penetrate the nickel layer. Because the skin depth should be less at higher frequencies, signals at frequencies of greater than 20 GHz should also not penetrate the nickel layer. Since the gold is thicker in the transmission line with NiAu finish plating (i.e., 0.4 um) compared to the transmission line with NiPdAu finish plating having a nickel thickness of 5 um (i.e., 0.1 um) relatively more signal conducts in the gold versus nickel in the NiAu transmission line compared to the NiPdAu transmission line with 5 um nickel, making the NiAu transmission line comparatively less lossy.
  • the data shown in Table 3 also indicate that a majority of a signal having a frequency of 0.45 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should travel in nickel in the transmission line with NiPdAu finish plating with a nickel thickness of 5 um.
  • the thickness of gold (i.e., 0.1 um) and the thickness of palladium (0.09 um) are both less that their respective skin depths (i.e., 3.70 um at 0.45 GHz, 2.62 um at 0.9 GHz, 1.8 um at 1.9 GHz, 1.11 um at 5 GHz, 0.72 um at 12 GHz, and 0.56 um at 20 GHz for gold; 7.73 um at 0.45 GHz, 5.47 um at 0.9 GHz, 3.76 um at 1.9 GHz, 2.32 um at 5 GHz, 1.50 um at 12 GHz, and 1.16 um at 20 GHz for palladium) and the thickness of nickel (i.e., 5 um) is greater than the skin depth of nickel (i.e., 0.29-0.7 um at 0.45 GHz, 0.2-0.5 um at 0.9 GHz, 0.14-0.34 um at 1.9 GHz, 0.09-0.21 um at 5 GHz, 0.06-0.14 um at 12 GHz, and 0.04-0.11 um at 20 GHz), the majority of the signal at 0.
  • the thickness of nickel is greater than the skin depth in at the frequency range from about 0.45 GHz to 20 GHz, signals in this frequency range should not penetrate the nickel layer. Since the skin depth should be less at higher frequencies, signals at frequencies of greater than 20 GHz should also not penetrate the nickel layer. Thus, a majority of an RF signal electrically coupled to the NiPdAu transmission line with a nickel thickness of 5 um via a bonding surface of gold should propagate in nickel.
  • the data shown in Table 3 indicate that a majority of a signal having a frequency of 0.45 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should travel in copper in the transmission line with NiPdAu finish plating having a nickel thickness of 0.1 um. Because the thicknesses of gold, palladium, and nickel are each less than their respective skin depths, the majority of the signal at 0.45 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should penetrate to copper. Since the skin depth is less at higher frequencies, signals at frequencies of greater than 20 GHz should also penetrate to copper. Thus, a majority of an RF signal electrically coupled to the NiPdAu transmission line with a 0.1 um nickel thickness via a bonding surface of gold should propagate in copper.
  • the transmission line with NiPdAu finish plating having a nickel thickness of 0.1 um should have the least resistive loss of the three transmission lines corresponding to the data in Tables 1 and 3 when transmitting signals at a frequency of 0.45 GHz or greater.
  • the data in Table 3 also indicate that a signal with a frequency of 20 GHz can penetrate nickel having a thickness of less than 0.11 um, a signal with a frequency of 12 GHz can penetrate nickel having a thickness of less than 0.14 um, a signal with a frequency of 5 GHz can penetrate nickel having a thickness of less than 0.2 um, a signal with a frequency of 1.9 GHz can penetrate nickel having a thickness of less than 0.34 um, a signal with a frequency of 0.9 GHz can penetrate nickel having a thickness of less than 0.5 um, and a signal with a frequency of 0.45 GHz can penetrate nickel having a thickness of less than 0.7 um.
  • these signals should propagate in copper in the transmission line with NiPdAu finish plating having a nickel thickness of 0.1 um, provided that the gold and palladium thicknesses are less than the skin depths at the respective frequencies of the signals.
  • a signal having a frequency of up to about 22 GHz should be able to penetrate to nickel having a thickness of about 0.1 um.
  • the transmission line 1 can be electrically coupled to a pin of a die via a wire bond in some implementations.
  • a conductor such as a wire, can provide an RF signal to the transmission line 1 .
  • FIG. 2A illustrates an example of a wire bond to the transmission line 1 of FIG. 1A .
  • the transmission line 1 can be included on a substrate 22 .
  • a die 24 can also be coupled to the substrate 22 .
  • a wire 10 can electrically connect a bonding surface of the bonding layer 2 of the transmission line 1 to the die 24 . In this way, the transmission line 1 can receive an RF signal at the bonding surface of the bonding layer 2 .
  • the wire 10 can include a ball bond 11 , a neck 12 , a span 13 , a heel 14 , a stitch bond 15 (or alternatively a wedge bond), or any combination thereof.
  • wire bond specifications specify that the wire 10 should have a minimum pull strength without experiencing particular failure(s). For instance, in some applications, a wire bond specification specifies that the wire should have a pull strength of at least 3g after thermal exposure (for example, reflow or bake @ 175 C for 12 hours) and no stitch lift failure modes.
  • the experimental data for the standard assembly process indicate that all of Au wires should exceed a 3-4 g pull strength specification after thermal exposure, depending on the wire diameter.
  • the experimental data for the standard assembly process also indicate that most of the Cu wires should exceed the 3-4 g pull strength specification, although process parameters were not optimized. All wire pulls tested under for the extreme thermal exposure met or exceeded the 3 g pull strength specification and no stitch lift failure mode criteria. Accordingly, the experimental data confirms feasibility of wire bondability of NiPdAu finish plating with 0.1 um Ni thickness for MCMs.
  • FIG. 2B illustrates an example of a substrate 22 that includes the transmission line 1 of FIG. 1 .
  • the substrate 22 can include one or more transmission lines 1 .
  • the substrate 22 can include any combination of features of the substrates described herein.
  • the substrate 22 can be a laminate substrate including NiPdAu finish plating.
  • FIG. 2C illustrates an example of an array 23 that includes multiple substrates 22 of FIG. 2B .
  • the array 23 can be a laminate panel that includes a substrate 22 having a transmission line 1 configured for transmitting a RF signal.
  • the array 23 shown in FIG. 2C includes twenty-five substrates 22
  • the array 23 can include any suitable number of substrates 22 in other implementations.
  • Transmission lines 1 can be formed on multiple substrates 22 , for example, in processes that include any combination of features of the finish plating technology described herein. Then individual substrates 22 can be separated from each other after forming the transmission lines 1 , for example, by laser dicing, diamond saws, or any other suitable method.
  • NiPdAu plating technology with 0.1 um nickel thickness can reduce costs. This plating technology can also improve RF performance or have minimal RF performance impact. As indicated by the data and calculations discussed earlier, in NiPdAu plating with 0.1 um nickel thickness, an amount of RF signal traveling in gold, palladium, and nickel layers can be reduced and RF energy can be increased and/or maximized in a conductive layer, such as a copper layer, on laminate while maintaining solderability and/or wirebondability. Other experimental data indicate that no finish plating (with all of the signal travelling in the copper layer) provides the lowest insertion loss.
  • NiPdAu plating technology is electroless NiPdAu.
  • the RF signal may not penetrate through the nickel layer if the nickel layer is thicker than skin depth at a frequency of the signal, for example, as indicated by the calculations and data discussed earlier. If nickel thickness is reduced to less than the skin depth of nickel (for example, to about 0.1 um), an RF signal can penetrate through the nickel, palladium, and gold plating layers. Consequently, a major portion of the RF signal energy should be in the copper layer. Copper has significantly lower RF loss as compared with gold, palladium and nickel.
  • the RF in a transmission line with NiPdAu finish plating with 0.1 um thick nickel can be less than RF loss in a comparable transmission with electrolytic NiAu and/or electroless NiAu finish plating. Therefore, the overall electrical performance can be improved by using NiPdAu finish plating with 0.1 um thick nickel.
  • the output match network loss can be reduced from about 0.8 dB to 0.5 dB at 1.9 GHz in some implementations, which can improve the PA power added efficiency by about 3%. This can translate into significant yield improvement and/or enhancement of competitiveness of products that include NiPdAu finish plating with 0.1 um thick nickel.
  • the experimental data indicate that loss improved by about 0.3 dB.
  • the transmission line that includes electroless NiPdAu finish plating with 0.1 um thick Ni had lower loss than comparable transmission lines with the standard electroless NiPdAu with 5 um thick Ni or electroless NiAu transmission lines.
  • FIG. 3 is a schematic block diagram of a module 20 that can include the transmission line 1 of FIG. 1A .
  • the module 20 can be referred to as multi-chip module and/or a power amplifier module in some implementations.
  • the module 20 can include a substrate 22 (for example, a packaging substrate), a die 24 (for example, a power amplifier die), a matching network 25 , the like, or any combination thereof.
  • the module 20 can include one or more other dies and/or one or more circuit elements that coupled to the substrateb 22 in some implementations.
  • the one or more other dies can include, for example, a controller die, which can include a power amplifier bias circuit and/or a direct current-to-direct current (DC-DC) converter.
  • Example circuit element(s) mounted on the packaging substrate can include, for example, inductor(s), capacitor(s), impedance matching network(s), the like, or any combination thereof.
  • the module 20 can include a plurality of dies and/or other components mounted on and/or coupled to the substrate 22 of the module 20 .
  • the substrate 22 can be a multi-layer substrate configured to support the dies and/or components and to provide electrical connectivity to external circuitry when the module 20 is mounted on a circuit board, such as a phone board.
  • the substrate 22 can include a laminate with finish plating, for example, including any combination of features of laminates and/or finish platings described herein.
  • the substrate can 22 can provide electrical connectivity between components via a transmission line 1 including any combination of features of the transmission lines described herein. For example, as illustrated, the transmission line 1 can electrically connect the power amplifier die 24 to the output matching network 25 .
  • the power amplifier die 24 can receive a RF signal at an input pin RF_IN of the module 20 .
  • the power amplifier die 24 can include one or more power amplifiers, including, for example, multi-stage power amplifiers configured to amplify the RF signal.
  • the power amplifier die 24 can include an input matching network 30 , a first stage power amplifier 32 (which can be referred to as a driver amplifier (DA)), an inter-stage matching network 34 , a second stage power amplifier 36 (which can be referred to as an output amplifier (OA)), a first stage bias circuit 38 configured to bias the first stage power amplifier 32 , a second stage bias circuit 40 configured to bias the second stage power amplifier 36 , or any combination thereof.
  • a power amplifier can include the first stage power amplifier 32 and the second stage power amplifier 36 .
  • the RF input signal can be provided to the first stage power amplifier 32 via the input matching network 30 .
  • the first stage power amplifier 32 can amplify the RF input and provide the amplified RF input to the second stage power amplifier 36 via the inter-stage matching circuit 34 .
  • the second stage power amplifier 36 can generate the amplified RF output signal.
  • the amplified RF output signal can be provided to an output pin RF_OUT of the power amplifier die 24 via an output matching network 25 .
  • Any of the transmission lines 1 described herein can be implemented to couple an output of a power amplifier (for example, the amplified RF output signal generated by the second stage power amplifier 36 ) and/or an output of the power amplifier die 24 to another component. Accordingly, any combination of features of the diffusion barrier layer 6 described herein can also be implemented at an output of a power amplifier and/or an output of the power amplifier die 24 .
  • the matching network 25 can be provided on the module 20 to aid in reducing signal reflections and/or other signal distortions.
  • the power amplifier die 24 can be any suitable die.
  • the power amplifier 24 die is a gallium arsenide (GaAs) die.
  • the GaAs die has transistors formed using a heterojunction bipolar transistor (HBT) process.
  • HBT heterojunction bipolar transistor
  • the module 20 can also include one or more power supply pins, which can be electrically connected to, for example, the power amplifier die 24 .
  • the one or more power supply pins can provide supply voltages to the power amplifiers, such as V SUPPLY1 and V SUPPLY2 , which can have different voltage levels in some implementations.
  • the module 20 can include circuit element(s), such as inductor(s), which can be formed, for example, by a trace on the multi-chip module.
  • the inductor(s) can operate as a choke inductor, and can be disposed between the supply voltage and the power amplifier die 24 . In some implementations, the inductor(s) are surface mounted.
  • the circuit element(s) can include capacitor(s) electrically connected in parallel with the inductor(s) and configured to resonate at a frequency near the frequency of a signal received on the pin RF_IN.
  • the capacitor(s) can include a surface mounted capacitor.
  • the module 20 can be modified to include more or fewer components, including, for example, additional power amplifier dies, capacitors and/or inductors.
  • the module 20 can include one or more additional matching networks 25 .
  • the module 20 can include an additional power amplifier die, as well as an additional capacitor and inductor configured to operate as a parallel LC circuit disposed between the additional power amplifier die and the power supply pin of the module 20 .
  • the module 20 can be configured to have additional pins, such as in implementations in which a separate power supply is provided to an input stage disposed on the power amplifier die 20 and/or implementations in which the module 20 operates over a plurality of bands.
  • the module 20 can have a low voltage positive bias supply of about 3.2 V to 4.2 V, good linearity, high efficiency (for example, PAE of approximately 40% at 28.25 dBm), large dynamic range, a small and low profile package (for example, 3 mm ⁇ 3 mm ⁇ 0.9 mm with a 10-pad configuration), power down control, support low collector voltage operation, digital enable, not require a reference voltage, CMOS compatible control signals, an integrated directional coupler, or any combination thereof
  • the module 20 is a power amplifier module that is a fully matched 10-pad surface mount module developed for Wideband Code Division Multiple Access (WCDMA) applications.
  • WCDMA Wideband Code Division Multiple Access
  • This small and efficient module can pack full 1920-1980 MHz bandwidth coverage into a single compact package. Because of high efficiencies attained throughout the entire power range, the module 20 can deliver desirable talk-time advantages for mobile phones.
  • the module 20 can meet the stringent spectral linearity requirements of High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), and Long Term Evolution (LTE) data transmission with high power added efficiency.
  • a directional coupler can be integrated into the module 20 and can thus eliminate the need for an external coupler.
  • the die 24 can be a power amplifier die embodied in a single Gallium Arsenide (GaAs) Microwave Monolithic Integrated Circuit (MMIC) that includes all active circuitry of the module 20 .
  • the MMIC can include on-board bias circuitry, as well as input matching network 30 and inter-stage matching network 34 .
  • An output matching network 25 can have a 50 ohm load that is embodied separate from the die 24 within the package of the module 20 to increase and/or optimize efficiency and power performance.
  • the module 20 can be manufactured with a GaAs Heterojunction Bipolar Transistor (HBT) BiFET process that provides for all positive voltage DC supply operation while maintaining high efficiency and good linearity.
  • Primary bias to the module 20 can be supplied directly or via an intermediate component from any three-cell Ni—Cd battery, a single-cell Li-Ion battery, or other suitable battery with an output in the range selected from about 3.2 to 4.2 V. No reference voltage is needed in some implementations. Power down can be accomplished by setting an enable voltage to zero volts. No external supply side switch is needed as typical “off” leakage is a few microamperes with full primary voltage supplied from the battery, according to some implementations.
  • HBT Heterojunction Bipolar Transistor
  • FIGS. 4A-4D are graphs illustrating relationships among the transmission line of FIG. 1A and other transmission lines implemented in the module of FIG. 3 .
  • a module functionally similar to the module 20 illustrated in and described with reference to FIG. 3 was tested with three transmission lines described with reference to Tables 1-3 above.
  • the NiAu transmission line had a nickel thickness of 5.5 um.
  • the two NiPdAu transmission line finish platings have different nickel thicknesses of 6 um and 0.1 um, respectively.
  • the transmission lines tested include a copper conductive layer with a thickness of about 25 um. Otherwise, the tested transmission lines have the layer thicknesses and other properties described with reference to Tables 1-3 above.
  • the transmission lines with NiPdAu finish plating and a nickel thickness of 0.1 um have the best performance of the three types of transmission lines test, as measured by figure of merit (FOM).
  • FOM figure of merit
  • the data included in Table 4 below indicate that yield is comparable for transmission lines with NiPdAu finish plating with a nickel thickness of 0.1 um and transmission lines with NiPdAu finish plating with a nickel thickness of 6 um.
  • Power amplifiers can be rated based on a number of metrics, such as adjacent channel power ratio (ACPR), power added efficiency (PAE), figure of merit (FOM), the like, or any combination thereof.
  • ACPR is one metric to assess linearity of a power amplifier.
  • PAE is one metric to assess the power efficiency of a power amplifier. For instance, a lower PAE can reduce the battery life of an electronic device, such as a mobile phone, that includes a power amplifier.
  • FOM is one way to characterize overall quality of a power amplifier.
  • FIGS. 4A and 4B are graphs of ACPR and PAE, respectively, for power amplifiers of the module 20 for high power, high frequency operation corresponding to the three types of transmission lines.
  • Table 5 summarizes some of the data from FIGS. 4A and 4B .
  • FIGS. 4C and 4D are graphs of ACPR and PAE, respectively, for power amplifiers of the module 20 for high power, low frequency operation corresponding to the three types of transmission lines. Table 6 summarizes some of the data from FIGS. 4C and 4D .
  • the data in Tables 5 and 6 indicate that the transmission lines with NiPdAu finish plating with 0.1 um thick nickel have the best FOM of the tested transmission lines.
  • the data of Table 5 indicate that the mean FOM for the transmission lines with NiPdAu finish plating with 0.1 um thick nickel is 0.35 better than the mean FOM for comparable transmission lines with NiAu plating and 2.42 better than the mean FOM for comparable transmission lines with NiPdAu plating with 6 um nickel thickness.
  • the data in Table 6 indicate that the mean FOM for the transmission lines with NiPdAu finish plating with 0.1 um thick nickel is 2.27 better than the mean FOM for comparable transmission lines with NiAu plating and 1.34 better than the mean FOM for comparable transmission lines with NiPdAu plating with 6 um nickel thickness.
  • Table 7 summarizes data for high power quiescent collector current I QCC of the module 20 with the three types of transmission lines tested. The data indicate that modules including each type of transmission line have similar DC performance.
  • n Mean IQCC (mA) Std Dev (mA) NiAu (5.5 um Ni) 469 95.60 5.46 NiPdAu (6 um Ni) 492 94.84 5.21 NiPdAu (0.1 um) 451 96.15 5.26
  • Table 8 summarizes data for high power, high frequency gains of the power amplifier in the module 20 corresponding to the three types of transmission lines tested.
  • the data in Table 8 indicate that power amplifiers in modules with transmission lines with NiPdAu finish plating with 0.1 um thick nickel have a lowest insertion loss because these power amplifiers have the highest average gains.
  • n Mean Gain Delta Gain NiAu (5.5 um Ni) 469 28.65 — NiPdAu (6 um Ni) 492 28.47 ⁇ 0.18 NiPdAu (0.1 um) 451 28.77 0.12
  • FIG. 5 is a schematic block diagram of two radio frequency (RF) components coupled to each other via the transmission 1 line of FIG. 1A .
  • FIGS. 6A-6F are schematic block diagrams of various components that can be electrically coupled to each other via the transmission line 1 of FIG. 1A .
  • the illustrated components can be coupled to a substrate 22 that includes any combination of features of the substrates described herein, for example, as described in connection with FIG. 3 .
  • the substrate 22 can have finish plating.
  • the various components can be included in a mobile device, such as the mobile device 101 described with reference to FIG. 7 .
  • the transmission line 1 can electrically couple a first RF component 52 to a second RF components 54 .
  • the first RF component 52 can include any suitable circuit element configured to transmit an RF signal, receive an RF signal, process an RF signal, adjust an RF signal, the like, or any combination thereof.
  • the second RF component 54 can include any suitable circuit element configured to transmit an RF signal, receive an RF signal, process an RF signal, adjust an RF signal, the like, or any combination thereof.
  • Non-limiting examples of RF components include power amplifiers, RF switches, filters, and antennas.
  • a power amplifier 105 can have an output electrically coupled to the transmission line 1 included on the substrate 22 .
  • the output of the power amplifier 105 can be wire bonded to the transmission line 1 .
  • the transmission line 1 is configured to transmit the output of the power amplifier 105 to an RF switch 56 .
  • the RF switch 56 can be any suitable switch configured to pass an RF signal when on and to block the RF signal when off.
  • the transmission line 1 is configured to transmit the output of the power amplifier 105 to a filter 58 .
  • the filter 58 can be any suitable filter configured to filter an RF signal.
  • the filter 58 can be a low-pass filter, a band-pass filter, or a high-pass filter.
  • an RF switch 56 can have an output electrically coupled to the transmission line 1 included on the substrate 22 .
  • the output of the RF switch 56 can be wire bonded to the transmission line 1 .
  • the transmission line 1 is configured to transmit the output of the RF switch 56 to an antenna 104 .
  • the transmission line 1 is configured to transmit the output of the RF switch 56 to a filter 58 .
  • a filter 58 can have an output electrically coupled to the transmission line 1 included on the substrate 22 .
  • the output of the filter 58 can be wire bonded to the transmission line 1 .
  • the transmission line 1 is configured to transmit the output of the filter 58 to an RF switch 56 .
  • the transmission line 1 is configured to transmit the output of the filter 58 to an antenna 104 .
  • FIG. 7 is a schematic block diagram of an example mobile device 101 that includes the transmission line of FIG. 1A .
  • Examples of the mobile device 101 include, but are not limited to, a cellular phone (for example, a smart phone), a laptop, a tablet computer, a personal digital assistant (PDA), an electronic book reader, and a portable digital media player.
  • a cellular phone for example, a smart phone
  • PDA personal digital assistant
  • an electronic book reader for example, a portable digital media player.
  • the mobile device 101 can be a multi-band and/or multi-mode device such as a multi-band/multi-mode mobile phone configured to communicate using, for example, Global System for Mobile (GSM), code division multiple access (CDMA), 3G, 4G, and/or long term evolution (LTE).
  • GSM Global System for Mobile
  • CDMA code division multiple access
  • 3G Third Generation
  • 4G Long term evolution
  • LTE long term evolution
  • the mobile device 101 can include one or more of a switching component 102 , a transceiver component 103 , an antenna 104 , power amplifiers 105 , a control component 106 , a computer readable medium 107 , a processor 108 , a battery 109 , and supply control block 110 .
  • Any of the transmission lines 1 described herein can be implemented in a variety of locations in the mobile device 1 .
  • a transmission line 1 can electrically connect an output of a power amplifier 105 to the switching component 102 and/or electrically connect the switching component 102 to the antenna 104 .
  • the transceiver component 103 can generate RF signals for transmission via the antenna 104 . Furthermore, the transceiver component 103 can receive incoming RF signals from the antenna 104 .
  • various functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in FIG. 7 as the transceiver 103 .
  • a single component can be configured to provide both transmitting and receiving functionalities.
  • transmitting and receiving functionalities can be provided by separate components.
  • various antenna functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in FIG. 7 as the antenna 104 .
  • a single antenna can be configured to provide both transmitting and receiving functionalities.
  • transmitting and receiving functionalities can be provided by separate antennas.
  • different bands associated with the mobile device 101 can be provided with different antennas.
  • one or more output signals from the transceiver 103 are depicted as being provided to the antenna 104 via one or more transmission paths.
  • different transmission paths can represent output paths associated with different bands and/or different power outputs.
  • the two example power amplifiers 105 shown can represent amplifications associated with different power output configurations (e.g., low power output and high power output), and/or amplifications associated with different bands.
  • one or more detected signals from the antenna 104 are depicted as being provided to the transceiver 103 via one or more receiving paths.
  • different receiving paths can represent paths associated with different bands.
  • the four example paths shown can represent quad-band capability that some mobile devices 101 are provided with.
  • the switching component 102 can be configured to electrically connect the antenna 104 to a selected transmit or receive path.
  • the switching component 102 can provide a number of switching functionalities associated with an operation of the mobile device 101 .
  • the switching component 102 can include a number of switches configured to provide functionalities associated with, for example, switching between different bands, switching between different power modes, switching between transmission and receiving modes, or some combination thereof.
  • the switching component 102 can also be configured to provide additional functionality, including filtering of signals.
  • the switching component 102 can include one or more duplexers.
  • the mobile device 101 can include one or more power amplifiers 105 .
  • RF power amplifiers can be used to boost the power of a RF signal having a relatively low power. Thereafter, the boosted RF signal can be used for a variety of purposes, included driving the antenna of a transmitter.
  • Power amplifiers 105 can be included in electronic devices, such as mobile phones, to amplify a RF signal for transmission. For example, in mobile phones having a an architecture for communicating under the 3G and/or 4G communications standards, a power amplifier can be used to amplify a RF signal. It can be desirable to manage the amplification of the RF signal, as a desired transmit power level can depend on how far the user is away from a base station and/or the mobile environment. Power amplifiers can also be employed to aid in regulating the power level of the RF signal over time, so as to prevent signal interference from transmission during an assigned receive time slot.
  • a power amplifier module can include one or more power amplifiers.
  • FIG. 7 shows that in certain embodiments, a control component 106 can be provided, and such a component can include circuitry configured to provide various control functionalities associated with operations of the switching component 102 , the power amplifiers 105 , the supply control 110 , and/or other operating component(s).
  • a processor 108 can be configured to facilitate implementation of various functionalities described herein.
  • Computer program instructions associated with the operation of any of the components described herein may be stored in a computer-readable memory 107 that can direct the processor 108 , such that the instructions stored in the computer-readable memory produce an article of manufacture including instructions which implement the various operating features of the mobile devices, modules, etc. described herein.
  • the illustrated mobile device 101 also includes the supply control block 110 , which can be used to provide a power supply to one or more power amplifiers 105 .
  • the supply control block 110 can include a DC-to-DC converter.
  • the supply control block 110 can include other blocks, such as, for example, an envelope tracker configured to vary the supply voltage provided to the power amplifiers 105 based upon an envelope of the RF signal to be amplified.
  • the supply control block 110 can be electrically connected to the battery 109 , and the supply control block 110 can be configured to vary the voltage provided to the power amplifiers 105 based on an output voltage of a DC-DC converter.
  • the battery 109 can be any suitable battery for use in the mobile device 101 , including, for example, a lithium-ion battery.
  • a transmission line 1 for transmission paths that includes a diffusion barrier layer made of a material, such as nickel, and having a thickness less than the skin depth of the material at a frequency in the RF range, the power consumption of the battery 109 can be reduced and/or signal quality can be improved, thereby improving performance of the mobile device 101 .
  • Systems implementing one or more aspects of the present disclosure can be implemented in various electronic devices.
  • Examples of electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products, electronic test equipment, etc.
  • electronic devices configured implement one or more aspects of the present disclosure can include, but are not limited to, an RF transmitting device, any portable device having a power amplifier, a mobile phone (for example, a smart phone), a telephone, a base station, a femtocell, a radar, a device configured to communication according to the WiFi and/or Bluetooth standards, a television, a computer monitor, a computer, a hand-held computer, a tablet computer, a laptop computer, a personal digital assistant (PDA), a microwave, a refrigerator, an automobile, a stereo system, a DVD player, a CD player, a VCR, an MP3 player, a radio, a camcorder, a camera, a digital camera, a portable memory chip, a washer, a dryer, a washer/dry
  • Part of the consumer electronic products can include a multi-chip module including an RF transmission line, a power amplifier module, an integrated circuit including an RF transmission line, a substrate including an RF transmission line, the like, or any combination thereof.
  • other examples of the electronic devices can also include, but are not limited to, memory chips, memory modules, circuits of optical networks or other communication networks, and disk driver circuits. Further, the electronic devices can include unfinished products.
  • conditional language used herein such as, among others, “can,” “could,” “might,” “e.g.,” “for example,” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

This disclosure relates to a diffusion barrier layer for a radio frequency (RF) transmission line. The diffusion barrier layer includes a material and has a thickness. The thickness of the diffusion barrier layer is sufficiently small such that an RF signal is allowed to penetrate the diffusion barrier layer. Related RF modules and mobile devices that include an RF transmission line with such a diffusion barrier layer are disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 13/464,775, filed May 4, 2012, titled “TRANSMISSION LINE FOR HIGH PERFORMANCE RADIO FREQUENCY APPLICATIONS,” which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/530,915, filed Sep. 2, 2011, titled “DIFFUSION BARRIER LAYER FOR USE IN A RADIO FREQUENCY TRANSMISSION LINE,” U.S. Provisional Patent Application No. 61/531,553, filed Sep. 6, 2011, titled “DIFFUSION BARRIER LAYER FOR USE IN A RADIO FREQUENCY TRANSMISSION LINE,” and U.S. Provisional Patent Application No. 61/561,742, filed Nov. 18, 2011, titled “FINISH PLATING FOR HIGH PERFORMANCE RADIO FREQUENCY APPLICATIONS.” The disclosures of each of these applications are hereby incorporated by reference herein in their entireties.
  • BACKGROUND Technical Field
  • The disclosed technology relates to transmission lines for high performance radio frequency applications.
  • Description of the Related Technology
  • Transmission lines can be implemented in a variety of contexts, such as on a packaging substrate or printed circuit board (PCB). Multi-layer laminate PCBs or package substrates are extensively used in radio frequency (RF) applications.
  • RF circuits, such as power amplifiers, low noise amplifiers (LNAs), mixers, voltage controlled oscillators (VCOs), filters, switches and whole transceivers have been implemented using semiconductor technologies. However, in RF modules (for example, an RF front-end module including power amplifiers, switches, and/or filters), single chip integration may not be practical due to different blocks being implemented in different semiconductor technologies. For instance, a power amplifier may be formed by a GaAs process, while related control and/or bias circuitry may be formed by a CMOS process.
  • Long transmission lines and/or other on-chip passives can consume large chip area. Consequently, multi-chip module (MCM) and/or system in package (SiP) assembly technology can be used to achieve low cost, small size and/or high performance in RF modules. Laminate technology can be used for MCM assembly, in which transmission lines are implemented on a laminate substrate. Conductor loss in such transmission lines can have a significant impact on the performance of any of the elements in the MCM. Accordingly, laminate plating technology can impact RF performance significantly.
  • The cost of laminate technology can be driven by the choice materials for performance and/or assembly needs. RF SiPs that use gold (Au) wire bonding to connect RF circuit elements to transmission lines can use a variety of different finish platings such as lower loss, more expensive NiAu (for example, due to thicker Au) or higher loss, less expensive NiPdAu. Accordingly, a need exists for cost effective, high performance technology for RF transmission lines.
  • SUMMARY OF CERTAIN INVENTIVE ASPECTS
  • The innovations described in the claims each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, some prominent features will now be briefly discussed.
  • One aspect of the disclosure is a radio frequency (RF) transmission line configured for use in a radio frequency (RF) circuit. The RF transmission line includes a bonding layer, a barrier layer, and diffusion barrier layer, and a conductive layer. The bonding layer has a bonding surface and is configured to receive an RF signal. The barrier layer is configured to prevent a contaminant from entering the bonding layer. The barrier layer is proximate the bonding layer. The diffusion barrier layer is configured to prevent contaminant from entering the bonding layer. The diffusion barrier layer is proximate the barrier layer. The diffusion barrier layer has a thickness that allows the received RF signal to penetrate the diffusion barrier layer to a conductive layer that is proximate to the diffusion barrier layer.
  • In some implementations, the bonding layer, the barrier layer, and the diffusion barrier layer can be embodied in a finish plating.
  • The bonding layer can include gold according to certain implementations.
  • In various implementations, the bonding surface can be configured for wire bonding.
  • According to a number of implementations, the barrier layer can include palladium.
  • The diffusion barrier layer can include nickel according to certain implementations. In some implementations, the thickness of the diffusion barrier layer can be in the range from about 0.04 um to about 0.7 um. The thickness of the diffusion barrier layer can be no more than about 0.5 um according to a number of implementations. The thickness of the diffusion barrier layer can be no more than about 0.35 um according to various implementations. The thickness of the diffusion barrier layer can be no more than about 0.75 um according to a certain implementations. In some implementations, the thickness of the diffusion barrier layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • In accordance with some implementations, the thickness of the diffusion barrier can be less than the skin depth of the diffusion barrier layer at a frequency of about 0.45 GHz.
  • According to a number of implementations, the conductive layer can include one or more of copper, aluminum, or silver. For instance, the conductive layer can include copper in certain implementations.
  • In various implementations, substantially all of the received RF signal can propagate in the conductive layer.
  • The bonding layer can be gold, the barrier layer can be palladium, and the diffusion barrier layer can be nickel according to certain implementations. In some of these implementations, the thickness of the diffusion barrier layer is can be the range from about 0.04 um to about 0.7 um. According to a number of implementations, the thickness of the diffusion barrier layer can be no more than about 0.5 um. According to certain implementations, the thickness of the diffusion barrier layer can be no more than about 0.35 um. According to some implementations, the thickness of the diffusion barrier layer can be no more than about 0.75 um.
  • Another aspect of this disclosure is a diffusion barrier layer configured for use in an RF transmission line. The diffusion barrier layer includes a material and has a thickness. The thickness of the diffusion barrier layer is sufficiently small such that an RF signal is allowed to penetrate the diffusion barrier layer.
  • In certain implementations, the material includes nickel. According to some of these implementations, the thickness of the diffusion barrier layer can be in the range from about 0.04 um to about 0.7 um. According to a number of implementations, the thickness of the diffusion barrier layer can be no more than about 0.5 um. According to some implementations, the thickness of the diffusion barrier layer can be no more than about 0.35 um. According to certain implementations, the thickness of the diffusion barrier layer can be no more than about 0.75 um. In various implementations, the thickness of the diffusion barrier layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • In accordance with a number of implementations, the thickness of the diffusion barrier layer can be less than about the skin depth of the material at a frequency of about 0.45 GHz.
  • According to some implementations, substantially all of the RF signal that penetrates the diffusion barrier layer can travel in a conductive layer proximate the diffusion barrier layer.
  • In various implementations, the material and/or the thickness of the diffusion barrier layer can prevent contaminants from passing through the diffusion barrier layer.
  • Another aspect of this disclosure is a mobile device that includes a transmission line, an antenna, and a battery. The transmission line includes a bonding layer, a barrier layer, a diffusion barrier layer, and a conductive layer. The bonding layer has a bonding surface. The barrier layer is proximate the bonding layer. The diffusion barrier is layer proximate to the barrier layer. The conductive layer is proximate to the diffusion barrier layer. The barrier layer and the diffusion barrier layer are configured to prevent conductive material from the conductive layer from entering the bonding layer. The diffusion barrier layer has a thickness that is sufficiently small such that an RF signal is allowed to penetrate the diffusion barrier layer and propagate in the conductive layer. The antenna is coupled to the transmission line and configured to transmit an RF output signal. The transmission line is configured to extend an amount of time for the battery to discharge.
  • According to certain implementations, the mobile device can include a power amplifier having an output coupled to the transmission line. In some of these implementations, an output of the power amplifier can be coupled to the transmission line via a wire bond. In accordance with various implementations, the transmission line can be configured to transmit the RF signal from the power amplifier to an RF switch. The transmission line can be configured to transmit the RF signal from the power amplifier to a filter according to some implementations.
  • According to a number of implementations, the mobile device can include a filter having an output coupled to the transmission line. In some implementations, the transmission line can be configured to transmit the RF signal from the filter to an RF switch. In accordance with various implementations, the transmission line can be configured to transmit the RF signal from the filter to the antenna.
  • According to some implementations, the mobile device can include an RF switch having an output coupled to the transmission line. In certain implementations, the transmission line is configured to transmit the RF signal from the RF switch to the antenna. In accordance with various implementations, the transmission line is configured to transmit the RF signal from the RF switch to a filter.
  • According to certain implementations, the diffusion barrier layer can include nickel. In some of these implementations, the thickness of the diffusion barrier layer can be in the range from about 0.04 um to about 0.7 um. In a number of implementations, the thickness of the diffusion barrier layer can be no more than about 0.5 um. In some implementations, the thickness of the diffusion barrier layer can be no more than about 0.35 um. In certain implementations, the thickness of the diffusion barrier layer can be no more than about 0.75 um. In various implementations, the thickness of the diffusion barrier layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • In a number of implementations, the thickness of the diffusion barrier layer can be less than the skin depth of the material at a frequency of about 0.45 GHz.
  • In accordance with certain implementations, substantially all of the RF signal can travel in the conductive layer of the transmission line.
  • According to some implementations, the bonding layer, the barrier layer, and the diffusion barrier layer can be embodied in a finish plating.
  • Another aspect of this disclosure is a laminate panel including a substrate. The substrate includes a transmission line configured for transmitting an RF signal. The transmission line has a bonding layer, a barrier layer, a diffusion barrier layer, and a conductive layer. The bonding layer has a bonding surface configured for bonding with a conductor separate from the conductive layer. The barrier layer is configured to prevent a contaminant from entering the bonding layer. The diffusion barrier layer includes a material and has a thickness such that contaminants are prevented from passing through the diffusion barrier layer and diffusing between the conductive layer and the bonding layer. The thickness of the diffusion barrier layer is sufficiently small such that the RF signal from the conductor is allowed to penetrate to the conductive layer.
  • According to certain implementations, the diffusion barrier layer can be nickel. In some of these implementations, the diffusion barrier layer can have a thickness that is less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • In a number of implementations, the bonding layer can include gold, the barrier layer can include palladium, and the diffusion barrier layer can include nickel. In some of these implementations, the thickness of the diffusion barrier layer can be less than about 0.75 um.
  • Another aspect of this disclosure is a module that includes a substrate, a first RF component, and a second RF component. The substrate includes a conductor and a transmission line. The transmission line has a bonding layer, a barrier layer, a diffusion barrier layer, and a conductive layer. The bonding layer has a bonding surface configured for bonding with the conductor. The barrier layer and the diffusion barrier layer are configured to prevent a contaminant from entering the bonding layer. The thickness of the diffusion barrier layer is sufficiently small such that an RF signal from the conductor is allowed to penetrate to the conductive layer. The first RF component is coupled to the substrate and configured to generate the RF signal. The second RF component is coupled to the substrate and configured to receive the RF signal from the first component via the transmission line.
  • In certain implementations, the substrate is a laminate substrate. According to some of these implementations, the substrate can include a finish plating that includes the bonding layer, the barrier layer, and the diffusion barrier layer.
  • According to a number of implementations, the diffusion barrier layer can include nickel. In a number of implementations, the thickness of the diffusion barrier layer can be no more than about 0.7 um. In some implementations, the thickness can be no more than about 0.35 um. In certain implementations, the thickness of the diffusion barrier layer can be no more than about 0.75 um. In various implementations, the thickness of the diffusion barrier layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz. In accordance with certain implementations, the conductive layer can include copper.
  • In some implementations, the thickness of the diffusion barrier layer can be less than the skin depth of the material at a frequency of about 0.45 GHz.
  • In accordance with various implementations, the bonding layer can be configured for wire bonding and the conductor can be electrically coupled to the bonding layer via a wire bond.
  • According to certain implementations, substantially all of the RF signal can propagate from the first RF component to the second RF component in the conductive layer.
  • In various implementations, the first RF component can include a power amplifier. According to some of these implementations, the second RF component can include a filter and/or an RF switch.
  • In some implementations, the first RF component can include an RF switch. According to some of these implementations, the second RF component can include a power amplifier and/or a filter.
  • In certain implementations, the first RF component can include a filter. According to some of these implementations, the second RF component includes a power amplifier and/or an RF switch.
  • In accordance with a number of implementations, the barrier layer can be positioned between the bonding layer and the diffusion barrier layer.
  • Yet another aspect of this disclosure is an RF transmission line that includes a conductive layer and finish plating on the conductive layer. The finish plating includes a gold layer, a palladium layer proximate the gold layer, and a nickel layer proximate the palladium layer. The nickel layer has a thickness that allows an RF signal received at the gold layer to penetrate the nickel layer and propagate in the conductive layer.
  • In certain implementations, the gold layer can be configured for wire bonding.
  • In some implementations, the thickness of the nickel layer can be in the range from about 0.04 um to about 0.7 um. According to a number of implementations, the thickness of the nickel layer can be no more than about 0.5 um. According to certain implementations, the thickness of the nickel layer can be no more than about 0.35 um. According to some implementations, the thickness of the nickel layer can be no more than about 0.75 um.
  • In accordance with certain implementations, the thickness of the nickel layer can be less than the skin depth of nickel at a frequency of about 0.45 GHz.
  • The conductive layer can include one or more of copper, aluminum, or silver according to some implementations. For instance, the conductive layer can include copper.
  • According to a number of implementations, substantially all of the RF signal can propagate in the conductive layer.
  • For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A illustrates a cross section of a transmission line according to some embodiments.
  • FIG. 1B schematically illustrates example transmission lines of FIG. 1.
  • FIG. 2A illustrates an example of a wire bond to the transmission line of FIG. 1.
  • FIG. 2B illustrates an example of a substrate that includes the transmission line of FIG. 1.
  • FIG. 2C illustrates an example of an array that includes multiple substrates of FIG. 2B.
  • FIG. 3 is a schematic block diagram of an example module that includes the transmission line of FIG. 1.
  • FIGS. 4A-4D are graphs illustrating relationships among the transmission line of FIG. 1 and other transmission lines implemented in the module of FIG. 3.
  • FIG. 5 is a schematic block diagram of two radio frequency (RF) components coupled to each other via the transmission line of FIG. 1.
  • FIGS. 6A-6F are schematic block diagrams of various example RF components that can be electrically coupled to each other via the transmission line of FIG. 1.
  • FIG. 7 is a schematic block diagram of an example mobile device that includes the transmission line of FIG. 1.
  • DETAILED DESCRIPTION
  • The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed invention.
  • Generally described, aspects of the present disclosure relate to a radio frequency (RF) transmission line that includes a diffusion barrier layer. The diffusion barrier layer can include a material and have a thickness such that contaminants are prevented from diffusing and passing through the diffusion barrier layer. The thickness of the diffusion barrier layer can be sufficiently small such that an RF signal penetrates the diffusion barrier layer and propagates in a conductive layer. For example, the thickness of the diffusion barrier layer can be less than the skin depth of the material at a frequency in an RF range (for example, at a frequency selected in the range from about 0.45 GHz to 20 GHz). In some implementations, the diffusion barrier layer can be nickel. According to some of these implementations, the nickel diffusion barrier layer can have a thickness selected from a range of about 0.04 um to 0.5 um. The RF transmission line can also include a bonding layer, a barrier layer for preventing a contaminant from entering the bonding layer, and the conductive layer in which the RF signal propagates.
  • Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages, among others. Using one or more features of the systems, apparatus, and methods described herein, electronic systems, such as systems that include a power amplifier and/or systems configured to transmit and/or receive radio frequency (RF) signals, can operate more efficiently and/or consume less power. Alternatively or additionally, the signal quality of RF signals in such systems can be improved. In some implementations, an amount of gold used to implement a transmission line can be decreased without significantly degrading electrical performance. In fact, according to certain implementations, simulation data and experimental data indicate that the amount of gold used on the transmission line can be decreased and electrical performance can be improved.
  • A transmission line can be embodied on a packaging substrate or printed circuit board (PCB), which can include a multi-layer laminate. Multi-layer laminate PCBs or package substrates are extensively used in the RF industry. Most RF blocks, such as low noise amplifiers (LNAs), mixers, voltage controlled oscillators (VCOs), filters, switches and whole transceivers may be implemented using semiconductor technologies.
  • However, in RF modules (for example, an RF front-end module including power amplifiers, switches, filters, the like, or any combination thereof), single chip integration may not be practical due to different blocks being implemented in different semiconductor technologies. For instance, a power amplifier may be formed by a GaAs process, while related control and/or bias circuitry may be formed by a CMOS process. Electromagnetic interaction can degrade electrical performance of blocks, which can cause a system to fail electrical performance specifications. One reason for implementing an RF module in more than one chip is that on-chip passives, such as long transmission lines, inductors, baluns, transformers, the like, or any combination thereof, can have low Q-factor and/or may consume large chip area. Therefore, multi-chip module (MCM) and/or system in package (SiP) assembly technology can be used to achieve low cost, small size and/or high performance in RF module applications.
  • For cost effectiveness and/or conductor performance considerations, laminate technology can be used for MCM assembly. The laminate technology can include copper for use in a transmission line. Using copper for propagating electrical signals can be desirable due to the physical properties of copper. High Q transmission lines, inductors, transformers, the like, or any combination thereof can be implemented on a laminate substrate. For example, power amplifier modules, output matching networks, harmonic filters, couplers, the like, or any combination thereof can be coupled to a laminate substrate. Conductor loss can have a significant impact on the performance of any of these elements. Accordingly, laminate plating technology can impact RF loss significantly.
  • Copper traces on outer layers of a laminate can be covered with a solder mask, oxide or other suitable materials in areas where interconnects to external components are not desired. These interconnects can include solder joints for components and/or wire bond connections to die. In areas where solderability and/or wire bondability are preserved, the copper trace can be covered with an organic solderability preservative (OSP) or finish plating. The metallurgy and/or metal layer thicknesses of the finish plating can depend on the function of the exposed area, such as a soldering surface and/or a wire bonding surface. An inert, oxide free surface can maintain solderability and/or wire bondability.
  • Such metallurgies for finish plating typically include a diffusion barrier to prevent copper diffusion to the plated surface and subsequent oxidation due to exposure to air and/or elevated temperatures during assembly. The diffusion barrier can be, for example, electroplated nickel (Ni) or electroless Ni(P), depending on the chemistry being used. Conventionally, nickel having a thickness of about 2.5 um to about 8 um has been established as a sufficiently thick diffusion barrier layer for the laminate substrate to maintain solderability during thermal excursions encountered during MCM and/or SiP assembly. For gold (Au) wire bonding, electrolytic or electroless Au can be used to form a gold bonding layer with a thickness selected in a range from about 0.4 um to 0.9 um. However, thinner immersion Au layers over Ni have not generally provided reliable Au wire bonding surfaces in high volume assembly operations. Electroless Ni/electroless palladium (Pd)/immersion Au has become available for soldering and wire bonding, including Au wire bonding. This can be a cost effective finish due to a reduction in Au thickness. Electroless Ni/electroless Pd/immersion Au can increase conductor loss in the exposed (finish plated) areas, especially at higher frequencies.
  • Electrolytic or electroless NiAu or NiPdAu plating technologies are currently used with laminate substrates. Electroless NiPdAu has been successfully implemented despite more lossy electrical characteristics. Some RF modules still use electrolytic or electroless NiAu, which has lower loss, especially at higher frequencies (for example, at frequencies of about 1.9 GHz or greater) for module performance despite the higher costs due to thicker gold.
  • Transmission Line
  • FIG. 1A illustrates a cross section of a transmission line 1 according to some embodiments. The cross section shown in FIG. 1A can represent the cross section of some or all of the transmission line 1. The transmission line 1 can include a bonding layer 2, a barrier layer 4, a diffusion barrier layer 6, and a conductive layer 8. The transmission line 1 can be implemented in an RF circuit and configured for transmitting RF signals. The transmission line 1 can be embodied on a laminate substrate. According to some implementations, the bonding layer 2, the barrier layer 4, and the diffusion barrier layer 6 can be considered finish plating and the conductive layer 8 can be considered a wire. In some implementations, the transmission line 1 can be at least about 5 um, 10 um, 15 um, 20 um, 25 um, 50 um, 75 um, 100 um, 250 um or 500 um long.
  • In certain implementations, the transmission line 1 can include a gold bonding layer, a palladium barrier layer, a nickel diffusion barrier layer, and a copper conductive layer. For example, in some of these implementations, the transmission line 1 can include a gold bonding layer having a thickness of about 0.1 um, a palladium barrier layer having a thickness of about 0.1 um, a nickel diffusion barrier layer having a thickness selected from a range from about 0.04 um to 0.5 um, and a copper conductive layer having a thickness of about 20 um. The finish plating of the transmission line 1 can be formed by electrolessly plating nickel over the copper conductive layer, electrolessly plating palladium over the nickel, and immersion plating of gold over the palladium. Other suitable processes and/or sub processes of forming the finish plating of such a transmission line can alternatively be implemented. For instance, a nickel diffusion barrier layer can be electroplated over a copper conductive layer.
  • Although the transmission line 1 includes a gold bonding layer, a palladium barrier layer, a nickel diffusion barrier layer, and a copper conductive layer in certain implementations, it will be understood that other materials can alternatively be used to implement one or more layers of the transmission line 1.
  • The bonding layer 2 of the transmission line 1 can have a bonding surface configured for soldering and/or wire bonding. The bonding layer 2 can be configured to receive an RF signal at the bonding surface. According to some implementations, a pin of a die can be bonded to the bonding surface of the bonding layer 2. For instance, an output of a power amplifier die can be bonded to the bonding surface of the bonding layer 2 and transmitted to one or more RF components, such as a filter and/or an RF switch, via the transmission line 1. The bonding layer 2 can include gold. In some implementations a thickness of a gold bonding layer can be selected from a range from about 0.05 um to 0.15 um. According to certain implementations, the thickness of a gold bonding layer can be about 0.1 um.
  • The barrier layer 4 of the transmission line 1 can prevent a contaminant from entering the bonding layer 2. The barrier layer 4 can be proximate the bonding layer 2. In the orientation of FIG. 1A, the bonding layer 2 is disposed over the barrier layer 4. In some implementations, a major surface of the barrier layer 4 can directly contact a major surface of the bonding layer 2, for example, as shown in FIG. 1A. As illustrated in FIG. 1A, the barrier layer 4 can be between the bonding layer 2 and the diffusion barrier layer 6. The barrier layer 4 can include palladium. In some implementations a thickness of a palladium barrier layer can be selected from a range from about 0.03 um to 0.15 um. According to certain implementations, the thickness of a palladium barrier layer can be about 0.1 um.
  • The diffusion barrier layer 6 of the transmission line 1 can be configured to prevent a contaminant from entering the bonding layer 2 and/or the barrier layer 4. For instance, in some implementations, the diffusion barrier layer 6 can prevent copper from a copper conductive layer from diffusing to a gold bonding layer. The diffusion barrier layer 6 can provide an adhesion surface for the conductive layer 8. According to certain implementations, the adhesion surface of the diffusion barrier layer 6 can adhere to a copper conductive layer.
  • The diffusion barrier layer 6 can have a thickness sufficiently small such that an RF signal is allowed to propagate in the conductive layer 8. For instance, the thickness of the diffusion barrier layer 6 can be less than the skin depth of the diffusion barrier layer 6 at a frequency in the RF range (for example, at a frequency selected in the range from about 0.9 GHz to 20 GHz). This can allow an RF signal to penetrate the diffusion barrier layer 6. With a diffusion barrier layer 6 of a material and having a thickness that is less than the skin depth of the material at a desired frequency in the RF range, substantially all of the RF signal should travel in the conductive layer 8 of the transmission line 1, assuming that the RF signal also penetrates the bonding layer 2 and the barrier layer 4. For the RF signal to penetrate the bonding layer 2, the thickness of the bonding layer 2 can be less than the skin depth of material forming the bonding layer 2 at the desired frequency in the RF range. Similarly, for the RF signal to penetrate the barrier layer 4, the thickness of the barrier layer 4 can be less than the skin depth of material forming the barrier layer 4 at the desired frequency in the RF range.
  • The diffusion barrier layer 6 can be between the bonding layer 2 and the conductive layer 8. In the orientation of FIG. 1A, the barrier layer 4 is disposed over the diffusion barrier layer 6 and the diffusion barrier layer 6 is disposed over the conductive layer 8. In some implementations, a major surface of the diffusion barrier layer 6 can directly contact a major surface of the barrier layer 4 and/or the conductive layer 8, for example, as shown in FIG. 1A.
  • The diffusion barrier layer 6 can include nickel. In some implementations, the diffusion barrier layer 6 can be nickel. The nickel diffusion barrier layer can also prevent copper from the conductive layer from diffusing to a gold bonding layer. A thickness of the nickel barrier layer can be less than the skin depth of nickel at a frequency in the RF range. For instance, the thickness of nickel can be less than the skin depth of nickel at a frequency selected from a range of about 0.45 GHz to 20 GHz. This can allow an RF signal to penetrate through the diffusion barrier layer 6 to the conductive layer 8. According to some implementations, the thickness of a nickel diffusion layer can be less than the skin depth of nickel at about 0.3 GHz, 0.35 GHz, 0.4 GHz, 0.45 GHz, 0.5 GHz, 0.6 GHz, 0.7 GHz, 0.8 GHz, 0.9 GHz, 1 GHz, 2 GHz, 5 GHz, 6 GHz, 10 GHz, 12 GHz, 15 GHz, or 20 GHz. When an alternative material is used in place of nickel for the diffusion barrier layer, the thickness of such a diffusion barrier layer can be less than the skin depth of the alternative material at about 0.3 GHz, 0.35 GHz, 0.4 GHz, 0.45 GHz, 0.5 GHz, 0.6 GHz, 0.7 GHz, 0.8 GHz, 0.9 GHz, 1 GHz, 2 GHz, 5 GHz, 6 GHz, 10 GHz, 12 GHz, 15 GHz, or 20 GHz.
  • In some implementations, the thickness of a nickel diffusion barrier layer can be less than about 2 um, 1.75 um, 1.5 um, 1.25 um, 1 um, 0.95 um, 0.9 um, 0.85 um, 0.8 um, 0.75 um, 0.7 um, 0.65 um, 0.6 um, 0.55 um, 0.5 um, 0.45 um, 0.4 um, 0.35 um, 0.3 um, 0.25 um, 0.2 um, 0.15 um, 0.1 um, 0.09 um, 0.05 um, or 0.04 um. In certain implementations, the thickness of a nickel diffusion barrier layer can be selected from one of the following ranges: about 0.04 um to 0.7 um, about 0.05 um to 0.7 um, about 0.1 um to 0.7 um, about 0.2 um to 0.7 um, about 0.04 um to 0.5 um, about 0.05 um to 0.5 um, about 0.09 um to 0.5 um, about 0.04 um to 0.16 um, about 0.05 um to 0.15 um, about 0.1 um to 0.75 um, about 0.2 um to 0.5 um, about 0.14 um to 0.23um, about 0.09 um to 0.21 um, about 0.04 um to 0.2 um, about 0.05 um to 0.5 um, about 0.15 um to 0.5 um; or about 0.1 um to 0.2 um. As one example, the thickness of a nickel diffusion barrier layer can be about 0.1 um. In all of these illustrative implementations, the nickel diffusion barrier layer has a non-zero thickness.
  • An RF signal can propagate in the conductive layer 8 of the transmission line 1. For instance, the RF signal can penetrate the bonding layer 2, the barrier layer 4, and the diffusion barrier layer 6 to propagate in the conductive layer 8. Substantially all of the RF signal can propagate in the conductive layer 8 of the transmission line 1. The conductive layer 8 can be adhered to the adhesion surface of the diffusion barrier layer 6. The conductive layer 8 can include any suitable material for propagating an RF signal along the transmission line 1. For example, the conductive layer can include copper, aluminum, silver, the like, or any combination thereof. In certain implementations, the conductive layer 8 can be copper. According to certain implementations, the thickness of the conductive layer 8 can be selected from a range from about 10 um to 50 um. In some of these implementations, the thickness of the conductive layer can be selected from a range from about 15 um to 30 um.
  • FIG. 1B schematically illustrates example transmission lines of FIG. 1A. A transmission line 1 can include more than one transmission line 1 to transmit an RF signal from one node to another node, according to certain implementations. For example, the transmission lines 1 illustrated in FIG. 1B can together implement the transmission line 1 of FIG. 3. The transmission lines 1 in FIG. 1B serve as a medium to transmit an RF signal from a first node RFIN to a second node RFOUT. One or more transmission lines 1 can have one end coupled to a power rail, such as power (for example, Vcc) or ground. As illustrated, a transmission line 1 can be coupled to ground via a capacitor C1, C2, or C3.
  • Skin Depth Calculations
  • As mentioned earlier, the diffusion barrier layer 6 of the transmission line 1 can include a material and have a thickness that is sufficiently small such that an RF signal is allowed to propagate in a conductive layer. Accordingly, the diffusion barrier layer 6 can have a thickness that is less than a skin depth of the material at a desired frequency. Skin depth can be represented by Equation 1.
  • δ = 2 ρ ( 2 π f ) ( μ 0 μ r ) ( Equation 1 )
  • In Equation 1, δ can represent skin depth in meters, μ0 can represent the permeability of free space (also referred to as vacuum permeability or magnetic constant) having a value of 4π×10−7 Henries/meter (about 1.2566370614×10 6 Henries/meter), μr can represent a relative permeability of the medium, p can represent the resistivity of the medium in Ω·m (which can equal to the reciprocal conductivity of the medium), and f can represent frequency of a current propagating through the medium in Hz.
  • Table 1 below includes plating thicknesses of various layers of three transmission lines. The data in Table 1 correspond to a transmission line with NiAu finish plating and two different transmission lines with NiPdAu finish plating having different nickel layer thicknesses. One of the transmission lines with NiPdAu finish plating has a nickel thickness of 5 um and the other transmission line with NiPdAu finish plating has a nickel thickness of 0.1 um. A nickel thickness of 5 um is within a range of acceptable nickel thicknesses (for example, from 2.5 um to 8 um) that have conventionally been used. In all three of the transmission lines corresponding to the data in Table 1, the conductive layer is copper. The transmission lines with NiPdAu finish plating can have a cross section as shown in FIG. 1A. The transmission line with NiAu finish plating can have a cross section similar to FIG. 1A without the barrier layer 4, in which a gold layer bonding layer is directly over a nickel diffusion barrier layer and the nickel layer is directly over a copper conductive layer.
  • TABLE 1
    Plating Thickness
    NiPdAu (um) Thin “Ni”-NiPdAu (um) NiAu (um)
    Cu 21 21 21
    Ni 5 0.1 5
    Pd 0.09 0.09
    Au 0.1 0.1 0.4
  • Skin depths of these three transmission lines can be computed using Equation 1 and the material properties included in Table 2 below. The relative permeability of nickel can vary depending on a process used to form the nickel layer. For example, phosphorus content in an electroless nickel process can impact the relative permeability of nickel. The range of nickel permeability listed in Table 2 can capture typical ranges of nickel permeabilities.
  • TABLE 2
    Material Properties
    Resistivity, ρ (μΩ-cm) μr
    Cu 1.673 1
    Ni 8.707 100-600
    Pd 10.62 1
    Au 2.44 1
  • The computed skin depths for copper, nickel, palladium, and gold at six different frequencies in the RF range are shown in Table 3 below.
  • TABLE 3
    Computed Skin Depths
    Skin Skin Skin Skin Skin Skin
    Depth Depth Depth Depth Depth Depth
    (um) at (um) at (um) at (um) at (um) at (um) at
    0.45 GHz 0.9 GHz 1.9 GHz 5 GHz 12 GHz 20 GHz
    Cu 3.07 2.17 1.49 0.92 0.59 0.46
    Ni 0.29-0.7 0.2-0.5 0.14-0.34 0.09-0.2 0.06-0.14 0.04-0.11
    Pd 7.73 5.47 3.76 2.32 1.50 1.16
    Au 3.70 2.62 1.8  1.11 0.72 0.56
  • The data shown in Table 3 indicate that a majority of a signal having a frequency of 0.045 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should travel in nickel in the transmission line with NiAu finish plating. Because the thickness of gold (i.e., 0.4 um) is less than the skin depth for gold (i.e., 3.70 um at 0.45 GHz, 2.62 um at 0.9 GHz, 1.8 um at 1.9 GHz, 1.11 um at 5 GHz, 0.72 um at 12 GHz, and 0.56 um at 20 GHz) and the thickness of nickel (i.e., 5 um) is greater than the skin depth of nickel (i.e., 0.29-0.7 um at 0.45 GHz, 0.2-0.5 um at 0.9 GHz, 0.14-0.34 um at 1.9 GHz, 0.09-0.21 um at 5 GHz, 0.06-0.14 um at 12 GHz, and 0.04-0.11 um at 20 GHz), the signal at 0.45 GHz 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, and 20 GHz should travel in both the gold and nickel layers. Since the thickness of nickel is greater than the skin depth in the frequency range from about 0.45 GHz to 20 GHz, signals in this frequency range should not penetrate the nickel layer. Because the skin depth should be less at higher frequencies, signals at frequencies of greater than 20 GHz should also not penetrate the nickel layer. Since the gold is thicker in the transmission line with NiAu finish plating (i.e., 0.4 um) compared to the transmission line with NiPdAu finish plating having a nickel thickness of 5 um (i.e., 0.1 um) relatively more signal conducts in the gold versus nickel in the NiAu transmission line compared to the NiPdAu transmission line with 5 um nickel, making the NiAu transmission line comparatively less lossy.
  • The data shown in Table 3 also indicate that a majority of a signal having a frequency of 0.45 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should travel in nickel in the transmission line with NiPdAu finish plating with a nickel thickness of 5 um. Because the thickness of gold (i.e., 0.1 um) and the thickness of palladium (0.09 um) are both less that their respective skin depths (i.e., 3.70 um at 0.45 GHz, 2.62 um at 0.9 GHz, 1.8 um at 1.9 GHz, 1.11 um at 5 GHz, 0.72 um at 12 GHz, and 0.56 um at 20 GHz for gold; 7.73 um at 0.45 GHz, 5.47 um at 0.9 GHz, 3.76 um at 1.9 GHz, 2.32 um at 5 GHz, 1.50 um at 12 GHz, and 1.16 um at 20 GHz for palladium) and the thickness of nickel (i.e., 5 um) is greater than the skin depth of nickel (i.e., 0.29-0.7 um at 0.45 GHz, 0.2-0.5 um at 0.9 GHz, 0.14-0.34 um at 1.9 GHz, 0.09-0.21 um at 5 GHz, 0.06-0.14 um at 12 GHz, and 0.04-0.11 um at 20 GHz), the majority of the signal at 0.45 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should travel in nickel. Since the thickness of nickel is greater than the skin depth in at the frequency range from about 0.45 GHz to 20 GHz, signals in this frequency range should not penetrate the nickel layer. Since the skin depth should be less at higher frequencies, signals at frequencies of greater than 20 GHz should also not penetrate the nickel layer. Thus, a majority of an RF signal electrically coupled to the NiPdAu transmission line with a nickel thickness of 5 um via a bonding surface of gold should propagate in nickel.
  • In contrast, the data shown in Table 3 indicate that a majority of a signal having a frequency of 0.45 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should travel in copper in the transmission line with NiPdAu finish plating having a nickel thickness of 0.1 um. Because the thicknesses of gold, palladium, and nickel are each less than their respective skin depths, the majority of the signal at 0.45 GHz, 0.9 GHz, 1.9 GHz, 5 GHz, 12 GHz, or 20 GHz should penetrate to copper. Since the skin depth is less at higher frequencies, signals at frequencies of greater than 20 GHz should also penetrate to copper. Thus, a majority of an RF signal electrically coupled to the NiPdAu transmission line with a 0.1 um nickel thickness via a bonding surface of gold should propagate in copper.
  • As shown in Table 2, copper has a resistivity that is about one fifth of the resistivity of nickel. Accordingly, the transmission line with NiPdAu finish plating having a nickel thickness of 0.1 um should have the least resistive loss of the three transmission lines corresponding to the data in Tables 1 and 3 when transmitting signals at a frequency of 0.45 GHz or greater. The data in Table 3 also indicate that a signal with a frequency of 20 GHz can penetrate nickel having a thickness of less than 0.11 um, a signal with a frequency of 12 GHz can penetrate nickel having a thickness of less than 0.14 um, a signal with a frequency of 5 GHz can penetrate nickel having a thickness of less than 0.2 um, a signal with a frequency of 1.9 GHz can penetrate nickel having a thickness of less than 0.34 um, a signal with a frequency of 0.9 GHz can penetrate nickel having a thickness of less than 0.5 um, and a signal with a frequency of 0.45 GHz can penetrate nickel having a thickness of less than 0.7 um. Thus, these signals should propagate in copper in the transmission line with NiPdAu finish plating having a nickel thickness of 0.1 um, provided that the gold and palladium thicknesses are less than the skin depths at the respective frequencies of the signals. Based on Equation 1 and the data in Tables 1 and 2, a signal having a frequency of up to about 22 GHz should be able to penetrate to nickel having a thickness of about 0.1 um.
  • Wire Bonding
  • The transmission line 1 can be electrically coupled to a pin of a die via a wire bond in some implementations. A conductor, such as a wire, can provide an RF signal to the transmission line 1. FIG. 2A illustrates an example of a wire bond to the transmission line 1 of FIG. 1A. As illustrated in FIG. 2A, the transmission line 1 can be included on a substrate 22. A die 24 can also be coupled to the substrate 22. A wire 10 can electrically connect a bonding surface of the bonding layer 2 of the transmission line 1 to the die 24. In this way, the transmission line 1 can receive an RF signal at the bonding surface of the bonding layer 2. The wire 10 can include a ball bond 11, a neck 12, a span 13, a heel 14, a stitch bond 15 (or alternatively a wedge bond), or any combination thereof.
  • Some wire bond specifications specify that the wire 10 should have a minimum pull strength without experiencing particular failure(s). For instance, in some applications, a wire bond specification specifies that the wire should have a pull strength of at least 3g after thermal exposure (for example, reflow or bake @ 175 C for 12 hours) and no stitch lift failure modes.
  • Experimental data were collected for 20 um thick Au and 20 um thick Cu wires. The Au wires were tested in three different transmission lines: a transmission line with NiAu finish plating and two different transmission lines with NiPdAu finish plating having different nickel layer thicknesses (5 um and 0.1 um). The Cu wires were also tested in three different transmission lines: a transmission line with NiAu finish plating and two different transmission lines with NiPdAu finish plating having different nickel layer thicknesses (5 um and 0.1 um). The finish platings correspond to the values shown in Table 1 for NiAu and NiPdAu. Sample conditions of the experiments included standard assembly process before wire bond (surface mount attach and plasma) and extreme thermal exposure to test for Cu diffusion through the Ni diffusion barrier layer affecting wire bondability (surface mount attach and bake and plasma). The experimental data for the standard assembly process indicate that all of Au wires should exceed a 3-4 g pull strength specification after thermal exposure, depending on the wire diameter. The experimental data for the standard assembly process also indicate that most of the Cu wires should exceed the 3-4 g pull strength specification, although process parameters were not optimized. All wire pulls tested under for the extreme thermal exposure met or exceeded the 3 g pull strength specification and no stitch lift failure mode criteria. Accordingly, the experimental data confirms feasibility of wire bondability of NiPdAu finish plating with 0.1 um Ni thickness for MCMs.
  • Substrates and Arrays
  • FIG. 2B illustrates an example of a substrate 22 that includes the transmission line 1 of FIG. 1. The substrate 22 can include one or more transmission lines 1. The substrate 22 can include any combination of features of the substrates described herein. For example, the substrate 22 can be a laminate substrate including NiPdAu finish plating.
  • Multiple substrates 22 can be manufactured with at the same time with the same processing equipment. FIG. 2C illustrates an example of an array 23 that includes multiple substrates 22 of FIG. 2B. In some implementations, the array 23 can be a laminate panel that includes a substrate 22 having a transmission line 1 configured for transmitting a RF signal. Although the array 23 shown in FIG. 2C includes twenty-five substrates 22, the array 23 can include any suitable number of substrates 22 in other implementations. Transmission lines 1 can be formed on multiple substrates 22, for example, in processes that include any combination of features of the finish plating technology described herein. Then individual substrates 22 can be separated from each other after forming the transmission lines 1, for example, by laser dicing, diamond saws, or any other suitable method.
  • Plating Technology
  • NiPdAu plating technology with 0.1 um nickel thickness can reduce costs. This plating technology can also improve RF performance or have minimal RF performance impact. As indicated by the data and calculations discussed earlier, in NiPdAu plating with 0.1 um nickel thickness, an amount of RF signal traveling in gold, palladium, and nickel layers can be reduced and RF energy can be increased and/or maximized in a conductive layer, such as a copper layer, on laminate while maintaining solderability and/or wirebondability. Other experimental data indicate that no finish plating (with all of the signal travelling in the copper layer) provides the lowest insertion loss.
  • One example of NiPdAu plating technology is electroless NiPdAu. For electroless NiPdAu, the RF signal may not penetrate through the nickel layer if the nickel layer is thicker than skin depth at a frequency of the signal, for example, as indicated by the calculations and data discussed earlier. If nickel thickness is reduced to less than the skin depth of nickel (for example, to about 0.1 um), an RF signal can penetrate through the nickel, palladium, and gold plating layers. Consequently, a major portion of the RF signal energy should be in the copper layer. Copper has significantly lower RF loss as compared with gold, palladium and nickel. The RF in a transmission line with NiPdAu finish plating with 0.1 um thick nickel can be less than RF loss in a comparable transmission with electrolytic NiAu and/or electroless NiAu finish plating. Therefore, the overall electrical performance can be improved by using NiPdAu finish plating with 0.1 um thick nickel. The output match network loss can be reduced from about 0.8 dB to 0.5 dB at 1.9 GHz in some implementations, which can improve the PA power added efficiency by about 3%. This can translate into significant yield improvement and/or enhancement of competitiveness of products that include NiPdAu finish plating with 0.1 um thick nickel.
  • Experimental data were gathered with two different impedances (6 ohms and 4 ohms) in an output matching network for RF loss characterization. For the 6 ohm output matching network, the experimental data indicate that loss improved by about 0.2 dB.
  • For the 4 ohm output matching network, the experimental data indicate that loss improved by about 0.3 dB. The transmission line that includes electroless NiPdAu finish plating with 0.1 um thick Ni had lower loss than comparable transmission lines with the standard electroless NiPdAu with 5 um thick Ni or electroless NiAu transmission lines.
  • Modules
  • FIG. 3 is a schematic block diagram of a module 20 that can include the transmission line 1 of FIG. 1A. The module 20 can be referred to as multi-chip module and/or a power amplifier module in some implementations. The module 20 can include a substrate 22 (for example, a packaging substrate), a die 24 (for example, a power amplifier die), a matching network 25, the like, or any combination thereof. Although not illustrated, the module 20 can include one or more other dies and/or one or more circuit elements that coupled to the substrateb 22 in some implementations. The one or more other dies can include, for example, a controller die, which can include a power amplifier bias circuit and/or a direct current-to-direct current (DC-DC) converter. Example circuit element(s) mounted on the packaging substrate can include, for example, inductor(s), capacitor(s), impedance matching network(s), the like, or any combination thereof.
  • The module 20 can include a plurality of dies and/or other components mounted on and/or coupled to the substrate 22 of the module 20. In some implementations, the substrate 22 can be a multi-layer substrate configured to support the dies and/or components and to provide electrical connectivity to external circuitry when the module 20 is mounted on a circuit board, such as a phone board. The substrate 22 can include a laminate with finish plating, for example, including any combination of features of laminates and/or finish platings described herein. The substrate can 22 can provide electrical connectivity between components via a transmission line 1 including any combination of features of the transmission lines described herein. For example, as illustrated, the transmission line 1 can electrically connect the power amplifier die 24 to the output matching network 25.
  • The power amplifier die 24 can receive a RF signal at an input pin RF_IN of the module 20. The power amplifier die 24 can include one or more power amplifiers, including, for example, multi-stage power amplifiers configured to amplify the RF signal.
  • The power amplifier die 24 can include an input matching network 30, a first stage power amplifier 32 (which can be referred to as a driver amplifier (DA)), an inter-stage matching network 34, a second stage power amplifier 36 (which can be referred to as an output amplifier (OA)), a first stage bias circuit 38 configured to bias the first stage power amplifier 32, a second stage bias circuit 40 configured to bias the second stage power amplifier 36, or any combination thereof. A power amplifier can include the first stage power amplifier 32 and the second stage power amplifier 36. The RF input signal can be provided to the first stage power amplifier 32 via the input matching network 30. The first stage power amplifier 32 can amplify the RF input and provide the amplified RF input to the second stage power amplifier 36 via the inter-stage matching circuit 34. The second stage power amplifier 36 can generate the amplified RF output signal.
  • The amplified RF output signal can be provided to an output pin RF_OUT of the power amplifier die 24 via an output matching network 25. Any of the transmission lines 1 described herein can be implemented to couple an output of a power amplifier (for example, the amplified RF output signal generated by the second stage power amplifier 36) and/or an output of the power amplifier die 24 to another component. Accordingly, any combination of features of the diffusion barrier layer 6 described herein can also be implemented at an output of a power amplifier and/or an output of the power amplifier die 24. The matching network 25 can be provided on the module 20 to aid in reducing signal reflections and/or other signal distortions. The power amplifier die 24 can be any suitable die. In some implementations, the power amplifier 24 die is a gallium arsenide (GaAs) die. In some of these implementations, the GaAs die has transistors formed using a heterojunction bipolar transistor (HBT) process.
  • The module 20 can also include one or more power supply pins, which can be electrically connected to, for example, the power amplifier die 24. The one or more power supply pins can provide supply voltages to the power amplifiers, such as VSUPPLY1 and VSUPPLY2, which can have different voltage levels in some implementations. The module 20 can include circuit element(s), such as inductor(s), which can be formed, for example, by a trace on the multi-chip module. The inductor(s) can operate as a choke inductor, and can be disposed between the supply voltage and the power amplifier die 24. In some implementations, the inductor(s) are surface mounted. Additionally, the circuit element(s) can include capacitor(s) electrically connected in parallel with the inductor(s) and configured to resonate at a frequency near the frequency of a signal received on the pin RF_IN. In some implementations, the capacitor(s) can include a surface mounted capacitor.
  • The module 20 can be modified to include more or fewer components, including, for example, additional power amplifier dies, capacitors and/or inductors. For instance, the module 20 can include one or more additional matching networks 25. As another example, the module 20 can include an additional power amplifier die, as well as an additional capacitor and inductor configured to operate as a parallel LC circuit disposed between the additional power amplifier die and the power supply pin of the module 20. The module 20 can be configured to have additional pins, such as in implementations in which a separate power supply is provided to an input stage disposed on the power amplifier die 20 and/or implementations in which the module 20 operates over a plurality of bands.
  • The module 20 can have a low voltage positive bias supply of about 3.2 V to 4.2 V, good linearity, high efficiency (for example, PAE of approximately 40% at 28.25 dBm), large dynamic range, a small and low profile package (for example, 3 mm×3 mm×0.9 mm with a 10-pad configuration), power down control, support low collector voltage operation, digital enable, not require a reference voltage, CMOS compatible control signals, an integrated directional coupler, or any combination thereof
  • In some implementations, the module 20 is a power amplifier module that is a fully matched 10-pad surface mount module developed for Wideband Code Division Multiple Access (WCDMA) applications. This small and efficient module can pack full 1920-1980 MHz bandwidth coverage into a single compact package. Because of high efficiencies attained throughout the entire power range, the module 20 can deliver desirable talk-time advantages for mobile phones. The module 20 can meet the stringent spectral linearity requirements of High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), and Long Term Evolution (LTE) data transmission with high power added efficiency. A directional coupler can be integrated into the module 20 and can thus eliminate the need for an external coupler.
  • The die 24 can be a power amplifier die embodied in a single Gallium Arsenide (GaAs) Microwave Monolithic Integrated Circuit (MMIC) that includes all active circuitry of the module 20. The MMIC can include on-board bias circuitry, as well as input matching network 30 and inter-stage matching network 34. An output matching network 25 can have a 50 ohm load that is embodied separate from the die 24 within the package of the module 20 to increase and/or optimize efficiency and power performance.
  • The module 20 can be manufactured with a GaAs Heterojunction Bipolar Transistor (HBT) BiFET process that provides for all positive voltage DC supply operation while maintaining high efficiency and good linearity. Primary bias to the module 20 can be supplied directly or via an intermediate component from any three-cell Ni—Cd battery, a single-cell Li-Ion battery, or other suitable battery with an output in the range selected from about 3.2 to 4.2 V. No reference voltage is needed in some implementations. Power down can be accomplished by setting an enable voltage to zero volts. No external supply side switch is needed as typical “off” leakage is a few microamperes with full primary voltage supplied from the battery, according to some implementations.
  • Module Data
  • FIGS. 4A-4D are graphs illustrating relationships among the transmission line of FIG. 1A and other transmission lines implemented in the module of FIG. 3. A module functionally similar to the module 20 illustrated in and described with reference to FIG. 3 was tested with three transmission lines described with reference to Tables 1-3 above. The NiAu transmission line had a nickel thickness of 5.5 um. The two NiPdAu transmission line finish platings have different nickel thicknesses of 6 um and 0.1 um, respectively. The transmission lines tested include a copper conductive layer with a thickness of about 25 um. Otherwise, the tested transmission lines have the layer thicknesses and other properties described with reference to Tables 1-3 above.
  • As shown in graphs of FIGS. 4A-4D, the transmission lines with NiPdAu finish plating and a nickel thickness of 0.1 um have the best performance of the three types of transmission lines test, as measured by figure of merit (FOM). In addition, the data included in Table 4 below indicate that yield is comparable for transmission lines with NiPdAu finish plating with a nickel thickness of 0.1 um and transmission lines with NiPdAu finish plating with a nickel thickness of 6 um.
  • TABLE 4
    Yield with Different Finish Plating
    Finish Plating Yield
    NiAu (5.5 um Ni) 99.36%
    NiPdAu (6 um Ni) 96.86%
    Ni NiPdAu (0.1 um Ni) 98.90%
  • Power amplifiers can be rated based on a number of metrics, such as adjacent channel power ratio (ACPR), power added efficiency (PAE), figure of merit (FOM), the like, or any combination thereof. ACPR is one metric to assess linearity of a power amplifier. PAE is one metric to assess the power efficiency of a power amplifier. For instance, a lower PAE can reduce the battery life of an electronic device, such as a mobile phone, that includes a power amplifier. FOM is one way to characterize overall quality of a power amplifier.
  • FIGS. 4A and 4B are graphs of ACPR and PAE, respectively, for power amplifiers of the module 20 for high power, high frequency operation corresponding to the three types of transmission lines. Table 5 summarizes some of the data from FIGS. 4A and 4B.
  • FIGS. 4C and 4D are graphs of ACPR and PAE, respectively, for power amplifiers of the module 20 for high power, low frequency operation corresponding to the three types of transmission lines. Table 6 summarizes some of the data from FIGS. 4C and 4D.
  • The data in Tables 5 and 6 indicate that the transmission lines with NiPdAu finish plating with 0.1 um thick nickel have the best FOM of the tested transmission lines. The data of Table 5 indicate that the mean FOM for the transmission lines with NiPdAu finish plating with 0.1 um thick nickel is 0.35 better than the mean FOM for comparable transmission lines with NiAu plating and 2.42 better than the mean FOM for comparable transmission lines with NiPdAu plating with 6 um nickel thickness. The data in Table 6 indicate that the mean FOM for the transmission lines with NiPdAu finish plating with 0.1 um thick nickel is 2.27 better than the mean FOM for comparable transmission lines with NiAu plating and 1.34 better than the mean FOM for comparable transmission lines with NiPdAu plating with 6 um nickel thickness.
  • Table 7 summarizes data for high power quiescent collector current IQCC of the module 20 with the three types of transmission lines tested. The data indicate that modules including each type of transmission line have similar DC performance.
  • TABLE 7
    DC Performance
    Finish Plating n= Mean IQCC (mA) Std Dev (mA)
    NiAu (5.5 um Ni) 469 95.60 5.46
    NiPdAu (6 um Ni) 492 94.84 5.21
    NiPdAu (0.1 um) 451 96.15 5.26
  • Table 8 summarizes data for high power, high frequency gains of the power amplifier in the module 20 corresponding to the three types of transmission lines tested. The data in Table 8 indicate that power amplifiers in modules with transmission lines with NiPdAu finish plating with 0.1 um thick nickel have a lowest insertion loss because these power amplifiers have the highest average gains.
  • TABLE 8
    Gain/Insertion Loss
    Finish Plating n= Mean Gain Delta Gain
    NiAu (5.5 um Ni) 469 28.65
    NiPdAu (6 um Ni) 492 28.47 −0.18
    NiPdAu (0.1 um) 451 28.77 0.12
  • Example Components Coupled by RF Transmission Lines
  • FIG. 5 is a schematic block diagram of two radio frequency (RF) components coupled to each other via the transmission 1 line of FIG. 1A. FIGS. 6A-6F are schematic block diagrams of various components that can be electrically coupled to each other via the transmission line 1 of FIG. 1A. The illustrated components can be coupled to a substrate 22 that includes any combination of features of the substrates described herein, for example, as described in connection with FIG. 3. As one example, the substrate 22 can have finish plating. Alternatively or additionally, the various components can be included in a mobile device, such as the mobile device 101 described with reference to FIG. 7.
  • As shown in FIG. 5, the transmission line 1 can electrically couple a first RF component 52 to a second RF components 54. The first RF component 52 can include any suitable circuit element configured to transmit an RF signal, receive an RF signal, process an RF signal, adjust an RF signal, the like, or any combination thereof. Similarly, the second RF component 54 can include any suitable circuit element configured to transmit an RF signal, receive an RF signal, process an RF signal, adjust an RF signal, the like, or any combination thereof. Non-limiting examples of RF components include power amplifiers, RF switches, filters, and antennas.
  • As illustrated in FIGS. 6A and 6B, a power amplifier 105 can have an output electrically coupled to the transmission line 1 included on the substrate 22. For example, the output of the power amplifier 105 can be wire bonded to the transmission line 1. In the implementation shown in FIG. 6A, the transmission line 1 is configured to transmit the output of the power amplifier 105 to an RF switch 56. The RF switch 56 can be any suitable switch configured to pass an RF signal when on and to block the RF signal when off. In the implementation shown in FIG. 6B, the transmission line 1 is configured to transmit the output of the power amplifier 105 to a filter 58. The filter 58 can be any suitable filter configured to filter an RF signal. For instance, the filter 58 can be a low-pass filter, a band-pass filter, or a high-pass filter.
  • As illustrated in FIGS. 6C and 6D, an RF switch 56 can have an output electrically coupled to the transmission line 1 included on the substrate 22. For example, the output of the RF switch 56 can be wire bonded to the transmission line 1. In the implementation shown in FIG. 6C, the transmission line 1 is configured to transmit the output of the RF switch 56 to an antenna 104. In the implementation shown in FIG. 6D, the transmission line 1 is configured to transmit the output of the RF switch 56 to a filter 58.
  • As illustrated in FIGS. 6E and 6F, a filter 58 can have an output electrically coupled to the transmission line 1 included on the substrate 22. For example, the output of the filter 58 can be wire bonded to the transmission line 1. In the implementation shown in FIG. 6E, the transmission line 1 is configured to transmit the output of the filter 58 to an RF switch 56. In the implementation shown in FIG. 6F, the transmission line 1 is configured to transmit the output of the filter 58 to an antenna 104.
  • Mobile Devices
  • Any of the systems, methods, and apparatus described herein can be implemented in a variety of electronic devices, such as a mobile device, which can also be referred to as a wireless device. FIG. 7 is a schematic block diagram of an example mobile device 101 that includes the transmission line of FIG. 1A. Examples of the mobile device 101 include, but are not limited to, a cellular phone (for example, a smart phone), a laptop, a tablet computer, a personal digital assistant (PDA), an electronic book reader, and a portable digital media player. For instance, the mobile device 101 can be a multi-band and/or multi-mode device such as a multi-band/multi-mode mobile phone configured to communicate using, for example, Global System for Mobile (GSM), code division multiple access (CDMA), 3G, 4G, and/or long term evolution (LTE).
  • In certain embodiments, the mobile device 101 can include one or more of a switching component 102, a transceiver component 103, an antenna 104, power amplifiers 105, a control component 106, a computer readable medium 107, a processor 108, a battery 109, and supply control block 110. Any of the transmission lines 1 described herein can be implemented in a variety of locations in the mobile device 1. For instance, as illustrated in FIG. 7, a transmission line 1 can electrically connect an output of a power amplifier 105 to the switching component 102 and/or electrically connect the switching component 102 to the antenna 104.
  • The transceiver component 103 can generate RF signals for transmission via the antenna 104. Furthermore, the transceiver component 103 can receive incoming RF signals from the antenna 104.
  • It will be understood that various functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in FIG. 7 as the transceiver 103. For example, a single component can be configured to provide both transmitting and receiving functionalities. In another example, transmitting and receiving functionalities can be provided by separate components.
  • Similarly, it will be understood that various antenna functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in FIG. 7 as the antenna 104. For example, a single antenna can be configured to provide both transmitting and receiving functionalities. In another example, transmitting and receiving functionalities can be provided by separate antennas. In yet another example, different bands associated with the mobile device 101 can be provided with different antennas.
  • In FIG. 7, one or more output signals from the transceiver 103 are depicted as being provided to the antenna 104 via one or more transmission paths. In the example shown, different transmission paths can represent output paths associated with different bands and/or different power outputs. For instance, the two example power amplifiers 105 shown can represent amplifications associated with different power output configurations (e.g., low power output and high power output), and/or amplifications associated with different bands.
  • In FIG. 7, one or more detected signals from the antenna 104 are depicted as being provided to the transceiver 103 via one or more receiving paths. In the example shown, different receiving paths can represent paths associated with different bands. For example, the four example paths shown can represent quad-band capability that some mobile devices 101 are provided with.
  • To facilitate switching between receive and transmit paths, the switching component 102 can be configured to electrically connect the antenna 104 to a selected transmit or receive path. Thus, the switching component 102 can provide a number of switching functionalities associated with an operation of the mobile device 101. In certain embodiments, the switching component 102 can include a number of switches configured to provide functionalities associated with, for example, switching between different bands, switching between different power modes, switching between transmission and receiving modes, or some combination thereof. The switching component 102 can also be configured to provide additional functionality, including filtering of signals. For example, the switching component 102 can include one or more duplexers.
  • The mobile device 101 can include one or more power amplifiers 105. RF power amplifiers can be used to boost the power of a RF signal having a relatively low power. Thereafter, the boosted RF signal can be used for a variety of purposes, included driving the antenna of a transmitter. Power amplifiers 105 can be included in electronic devices, such as mobile phones, to amplify a RF signal for transmission. For example, in mobile phones having a an architecture for communicating under the 3G and/or 4G communications standards, a power amplifier can be used to amplify a RF signal. It can be desirable to manage the amplification of the RF signal, as a desired transmit power level can depend on how far the user is away from a base station and/or the mobile environment. Power amplifiers can also be employed to aid in regulating the power level of the RF signal over time, so as to prevent signal interference from transmission during an assigned receive time slot. A power amplifier module can include one or more power amplifiers.
  • FIG. 7 shows that in certain embodiments, a control component 106 can be provided, and such a component can include circuitry configured to provide various control functionalities associated with operations of the switching component 102, the power amplifiers 105, the supply control 110, and/or other operating component(s).
  • In certain embodiments, a processor 108 can be configured to facilitate implementation of various functionalities described herein. Computer program instructions associated with the operation of any of the components described herein may be stored in a computer-readable memory 107 that can direct the processor 108, such that the instructions stored in the computer-readable memory produce an article of manufacture including instructions which implement the various operating features of the mobile devices, modules, etc. described herein.
  • The illustrated mobile device 101 also includes the supply control block 110, which can be used to provide a power supply to one or more power amplifiers 105. For example, the supply control block 110 can include a DC-to-DC converter. However, in certain embodiments the supply control block 110 can include other blocks, such as, for example, an envelope tracker configured to vary the supply voltage provided to the power amplifiers 105 based upon an envelope of the RF signal to be amplified.
  • The supply control block 110 can be electrically connected to the battery 109, and the supply control block 110 can be configured to vary the voltage provided to the power amplifiers 105 based on an output voltage of a DC-DC converter. The battery 109 can be any suitable battery for use in the mobile device 101, including, for example, a lithium-ion battery. With a transmission line 1 for transmission paths that includes a diffusion barrier layer made of a material, such as nickel, and having a thickness less than the skin depth of the material at a frequency in the RF range, the power consumption of the battery 109 can be reduced and/or signal quality can be improved, thereby improving performance of the mobile device 101.
  • Applications
  • Some of the embodiments described above have provided examples in connection with modules and/or electronic devices that include power amplifiers, such as mobile phones. However, the principles and advantages of the embodiments can be used for any other systems or apparatus that have needs for a high performance RF transmission line.
  • Systems implementing one or more aspects of the present disclosure can be implemented in various electronic devices. Examples of electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products, electronic test equipment, etc. More specifically, electronic devices configured implement one or more aspects of the present disclosure can include, but are not limited to, an RF transmitting device, any portable device having a power amplifier, a mobile phone (for example, a smart phone), a telephone, a base station, a femtocell, a radar, a device configured to communication according to the WiFi and/or Bluetooth standards, a television, a computer monitor, a computer, a hand-held computer, a tablet computer, a laptop computer, a personal digital assistant (PDA), a microwave, a refrigerator, an automobile, a stereo system, a DVD player, a CD player, a VCR, an MP3 player, a radio, a camcorder, a camera, a digital camera, a portable memory chip, a washer, a dryer, a washer/dryer, a copier, a facsimile machine, a scanner, a multi functional peripheral device, a wrist watch, a clock, etc. Part of the consumer electronic products can include a multi-chip module including an RF transmission line, a power amplifier module, an integrated circuit including an RF transmission line, a substrate including an RF transmission line, the like, or any combination thereof. Moreover, other examples of the electronic devices can also include, but are not limited to, memory chips, memory modules, circuits of optical networks or other communication networks, and disk driver circuits. Further, the electronic devices can include unfinished products.
  • Conclusion
  • Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The words “coupled,” “connected,” and the like, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list. All numerical values provided herein are intended to include similar values within a measurement error.
  • Moreover, conditional language used herein, such as, among others, “can,” “could,” “might,” “e.g.,” “for example,” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
  • The above detailed description of embodiments is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having acts, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.
  • While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. For example, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. Moreover, the elements and acts of the various embodiments described above can be combined to provide further embodiments. Indeed, the methods, systems, apparatus, and articles of manufacture described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods, systems, apparatus, and articles of manufacture described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.

Claims (20)

1. A diffusion barrier layer configured for use in a radio frequency transmission line, the diffusion barrier layer comprising a material and having a thickness, the thickness of the diffusion barrier layer being sufficiently small such that a radio frequency signal is allowed to penetrate the diffusion barrier layer.
2. The diffusion barrier layer of claim 1 wherein the material includes nickel.
3. The diffusion barrier layer of claim 2 wherein the thickness of the diffusion barrier layer is not more than about 0.3 um.
4. The diffusion barrier layer of claim 1 wherein the thickness of the diffusion barrier layer is less than the skin depth of the material at a frequency of about 0.45 GHz.
5. The diffusion barrier layer of claim 1 wherein the diffusion barrier layer is configured to receive the radio frequency signal by way of a bonding surface of the radio frequency transmission line, the bonding surface being bonded to a wire bond.
6. A radio frequency module comprising:
a radio frequency transmission line including a diffusion barrier layer that includes a material and has a thickness, the thickness of the diffusion barrier layer being sufficiently small such that a radio frequency signal is allowed to penetrate the diffusion barrier layer; and
a die including a radio frequency component configured to provide the radio frequency signal to a wire bond electrically connected to the radio frequency transmission line.
7. The radio frequency module of claim 6 wherein the diffusion barrier layer is a nickel layer and the thickness of the diffusion barrier layer is less than 0.3 um.
8. The radio frequency module of claim 7 wherein the radio frequency transmission line includes a gold layer bonded with the wire bond and a palladium layer between the gold layer and the diffusion barrier layer.
9. The radio frequency module of claim 8 wherein the gold layer has a thickness in a range from 0.05 um to 0.15 um.
10. The radio frequency module of claim 8 wherein the thickness of the diffusion barrier layer is in a range from 0.04 um to 0.2 um
11. The radio frequency module of claim 8 wherein the radio frequency signal has a frequency of at least 1.9 GHz.
12. The radio frequency module of claim 8 wherein the radio frequency signal has a frequency of at least 5 GHz.
13. The radio frequency module of claim 8 wherein the wire bond extends from a pin of the die to a bonding surface of the gold layer.
14. The radio frequency module of claim 6 wherein the diffusion barrier layer is a nickel layer and the thickness of the diffusion barrier layer is less than the skin depth of the nickel layer at 1.9 GHz.
15. The radio frequency module of claim 14 wherein the radio frequency transmission line includes a gold layer bonded with the wire bond and a palladium layer between the gold layer and the diffusion barrier layer.
16. A mobile device comprising:
a radio frequency transmission line including a diffusion barrier layer that includes a material and has a thickness, the thickness of the diffusion barrier layer being sufficiently small such that a radio frequency signal is allowed to penetrate the diffusion barrier layer;
a die including a radio frequency component configured to provide the radio frequency signal to a wire bond electrically connected to the radio frequency transmission line; and
an antenna configured coupled to the radio frequency transmission line, the antenna configured to transmit the radio frequency signal.
17. The mobile device of claim 16 wherein the diffusion barrier layer is a nickel layer and the thickness of the diffusion barrier layer is less than 0.3 um.
18. The mobile device of claim 17 wherein the radio frequency transmission line includes a gold layer bonded with the wire bond and a palladium layer between the gold layer and the diffusion barrier layer.
19. The mobile device of claim 18 wherein a thickness of the gold layer is in a range from 0.05 um to 0.15 um.
20. The mobile device of claim 18 wherein the radio frequency signal has a frequency of at least 1.9 GHz.
US15/593,186 2011-09-02 2017-05-11 Diffusion barrier layer for radio frequency transmission line Abandoned US20170271303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/593,186 US20170271303A1 (en) 2011-09-02 2017-05-11 Diffusion barrier layer for radio frequency transmission line

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161530915P 2011-09-02 2011-09-02
US201161531553P 2011-09-06 2011-09-06
US201161561742P 2011-11-18 2011-11-18
US13/464,775 US9679869B2 (en) 2011-09-02 2012-05-04 Transmission line for high performance radio frequency applications
US15/593,186 US20170271303A1 (en) 2011-09-02 2017-05-11 Diffusion barrier layer for radio frequency transmission line

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/464,775 Division US9679869B2 (en) 2011-09-02 2012-05-04 Transmission line for high performance radio frequency applications

Publications (1)

Publication Number Publication Date
US20170271303A1 true US20170271303A1 (en) 2017-09-21

Family

ID=47752736

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/464,775 Active 2033-12-26 US9679869B2 (en) 2011-09-02 2012-05-04 Transmission line for high performance radio frequency applications
US15/593,160 Active 2032-08-03 US10937759B2 (en) 2011-09-02 2017-05-11 Radio frequency transmission line
US15/593,176 Abandoned US20170301647A1 (en) 2011-09-02 2017-05-11 Radio frequency transmission line with finish plating on conductive layer
US15/593,178 Active 2032-11-29 US10529686B2 (en) 2011-09-02 2017-05-11 Mobile device with radio frequency transmission line
US15/593,186 Abandoned US20170271303A1 (en) 2011-09-02 2017-05-11 Diffusion barrier layer for radio frequency transmission line
US17/166,917 Active 2033-12-08 US11984423B2 (en) 2011-09-02 2021-02-03 Radio frequency transmission line with finish plating on conductive layer

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US13/464,775 Active 2033-12-26 US9679869B2 (en) 2011-09-02 2012-05-04 Transmission line for high performance radio frequency applications
US15/593,160 Active 2032-08-03 US10937759B2 (en) 2011-09-02 2017-05-11 Radio frequency transmission line
US15/593,176 Abandoned US20170301647A1 (en) 2011-09-02 2017-05-11 Radio frequency transmission line with finish plating on conductive layer
US15/593,178 Active 2032-11-29 US10529686B2 (en) 2011-09-02 2017-05-11 Mobile device with radio frequency transmission line

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/166,917 Active 2033-12-08 US11984423B2 (en) 2011-09-02 2021-02-03 Radio frequency transmission line with finish plating on conductive layer

Country Status (5)

Country Link
US (6) US9679869B2 (en)
KR (1) KR101740102B1 (en)
CN (1) CN103907194B (en)
TW (2) TWI592078B (en)
WO (1) WO2013032545A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10529686B2 (en) 2011-09-02 2020-01-07 Skyworks Solutions, Inc. Mobile device with radio frequency transmission line
US11082021B2 (en) 2019-03-06 2021-08-03 Skyworks Solutions, Inc. Advanced gain shaping for envelope tracking power amplifiers
US11239800B2 (en) 2019-09-27 2022-02-01 Skyworks Solutions, Inc. Power amplifier bias modulation for low bandwidth envelope tracking
US11482975B2 (en) 2020-06-05 2022-10-25 Skyworks Solutions, Inc. Power amplifiers with adaptive bias for envelope tracking applications
US11855595B2 (en) 2020-06-05 2023-12-26 Skyworks Solutions, Inc. Composite cascode power amplifiers for envelope tracking applications

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567629A3 (en) 2012-06-14 2020-01-22 Skyworks Solutions, Inc. Power amplifier modules including related systems, devices, and methods
US9526185B2 (en) * 2014-04-08 2016-12-20 Finisar Corporation Hybrid PCB with multi-unreinforced laminate
US10153736B2 (en) * 2014-08-17 2018-12-11 Skyworks Solutions, Inc. Circuits and methods for 2G amplification using 3G/4G linear path combination
US20160064351A1 (en) * 2014-08-30 2016-03-03 Skyworks Solutions, Inc. Wire bonding using elevated bumps for securing bonds
US9456490B2 (en) * 2014-08-30 2016-09-27 Skyworks Solutions, Inc. Signal path in radio-frequency module having laminate substrate
US9893684B2 (en) * 2015-02-15 2018-02-13 Skyworks Solutions, Inc. Radio-frequency power amplifiers driven by boost converter
JP2016149743A (en) 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Power amplifier reduced in size through elimination of matching network
WO2020123248A1 (en) * 2018-12-10 2020-06-18 The University Of Vermont And State Agriculture College On-chip antenna test circuit for high freqency commmunication and sensing systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050010420A1 (en) * 2003-05-07 2005-01-13 Lars Russlies Speech output system
JP2007031826A (en) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd Connection terminal and substrate for mounting semiconductor having the same
US20090019533A1 (en) * 2007-07-11 2009-01-15 Kristin Marie Hazlewood Method and system for enforcing password policy for an external bind operation in a distributed directory
US20090085229A1 (en) * 2007-10-01 2009-04-02 Kuo-Hung Wu Audio power amplifier package
US20100023078A1 (en) * 2006-01-25 2010-01-28 Yanting Dong Cardiac resynchronization therapy parameter optimization

Family Cites Families (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721746A (en) 1971-10-01 1973-03-20 Motorola Inc Shielding techniques for r.f. circuitry
US4151637A (en) 1978-02-07 1979-05-01 Universal Instruments Corporation Dip component lead cut and clinch apparatus
US4241497A (en) 1979-01-11 1980-12-30 The Singer Company P.C. Board lead trimming method
US4245385A (en) 1979-07-09 1981-01-20 Universal Instruments Corporation Radial lead component insertion machine
US4447945A (en) 1980-05-01 1984-05-15 Contact Systems, Inc. Cut and clinch mechanism for use in electrical component assembly apparatus
GB8510621D0 (en) 1985-04-26 1985-06-05 Pickering Electronics Ltd Potted electronic components
FR2598258B1 (en) 1986-04-30 1988-10-07 Aix Les Bains Composants METHOD OF ENCAPSULATING INTEGRATED CIRCUITS.
JPS63185177A (en) 1987-01-27 1988-07-30 Sony Corp Frequency modulation circuit
JPS63224358A (en) 1987-03-13 1988-09-19 Toshiba Corp High frequency power amplifier
JPH01125856A (en) 1987-11-11 1989-05-18 Hitachi Ltd Semiconductor device
JP2667863B2 (en) 1988-03-23 1997-10-27 株式会社日立製作所 Manufacturing method of bipolar transistor
JPH01264261A (en) 1988-04-15 1989-10-20 Toshiba Corp Heterojunction bipolar transistor
JPH03165058A (en) 1989-11-24 1991-07-17 Mitsubishi Electric Corp Semiconductor device
US5049979A (en) 1990-06-18 1991-09-17 Microelectronics And Computer Technology Corporation Combined flat capacitor and tab integrated circuit chip and method
JPH0458596A (en) 1990-06-28 1992-02-25 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic shield
US5095285A (en) 1990-08-31 1992-03-10 Texas Instruments Incorporated Monolithically realizable harmonic trapping circuit
US5166772A (en) 1991-02-22 1992-11-24 Motorola, Inc. Transfer molded semiconductor device package with integral shield
US5266819A (en) 1991-05-13 1993-11-30 Rockwell International Corporation Self-aligned gallium arsenide/aluminum gallium arsenide collector-up heterojunction bipolar transistors capable of microwave applications and method
US5166864A (en) 1991-05-17 1992-11-24 Hughes Aircraft Company Protected circuit card assembly and process
GB9126616D0 (en) 1991-12-16 1992-02-12 Texas Instruments Ltd Improvements in or relating to amplifiers
KR940704062A (en) 1992-02-25 1994-12-12 존 무소리스 BIPOLAR JUNCTION TRANSISTOR EXHIBITING SUPPRESSED KIRK EFFECT
US5303412A (en) 1992-03-13 1994-04-12 Massachusetts Institute Of Technology Composite direct digital synthesizer
FR2693770B1 (en) 1992-07-15 1994-10-14 Europ Propulsion Closed electron drift plasma engine.
US5268315A (en) 1992-09-04 1993-12-07 Tektronix, Inc. Implant-free heterojunction bioplar transistor integrated circuit process
US5378922A (en) 1992-09-30 1995-01-03 Rockwell International Corporation HBT with semiconductor ballasting
US5300895A (en) 1992-10-01 1994-04-05 Texas Instruments Incorporated Method for terminating harmonics of transistors
US5249728A (en) 1993-03-10 1993-10-05 Atmel Corporation Bumpless bonding process having multilayer metallization
US5355016A (en) 1993-05-03 1994-10-11 Motorola, Inc. Shielded EPROM package
JPH0746007A (en) 1993-07-28 1995-02-14 Matsushita Electric Ind Co Ltd Substrate for electric power and electric power amplifier for high frequency
US5428508A (en) 1994-04-29 1995-06-27 Motorola, Inc. Method for providing electromagnetic shielding of an electrical circuit
US5445976A (en) 1994-08-09 1995-08-29 Texas Instruments Incorporated Method for producing bipolar transistor having reduced base-collector capacitance
US5521406A (en) 1994-08-31 1996-05-28 Texas Instruments Incorporated Integrated circuit with improved thermal impedance
US5581115A (en) 1994-10-07 1996-12-03 National Semiconductor Corporation Bipolar transistors using isolated selective doping to improve performance characteristics
JPH08222885A (en) 1995-02-16 1996-08-30 Sumise Device:Kk Electromagnetic shielding film for package and its formation
JP3368451B2 (en) 1995-03-17 2003-01-20 富士通株式会社 Circuit board manufacturing method and circuit inspection device
US6242842B1 (en) 1996-12-16 2001-06-05 Siemens Matsushita Components Gmbh & Co. Kg Electrical component, in particular saw component operating with surface acoustic waves, and a method for its production
JPH09213730A (en) 1996-02-01 1997-08-15 Matsushita Electron Corp High-frequency module substrate and high-frequency power amplification module having it
US5748042A (en) 1996-07-26 1998-05-05 Motorola, Inc. Method for altering a difference frequency signal and amplifier circuit thereof
US6108726A (en) 1996-09-13 2000-08-22 Advanced Micro Devices. Inc. Reducing the pin count within a switching element through the use of a multiplexer
SE511426C2 (en) 1996-10-28 1999-09-27 Ericsson Telefon Ab L M Apparatus and method of shielding electronics
US6150193A (en) 1996-10-31 2000-11-21 Amkor Technology, Inc. RF shielded device
US5834975A (en) 1997-03-12 1998-11-10 Rockwell Science Center, Llc Integrated variable gain power amplifier and method
US6448648B1 (en) 1997-03-27 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Metalization of electronic semiconductor devices
JP3462760B2 (en) 1997-09-04 2003-11-05 三洋電機株式会社 Distributed constant circuit, high frequency circuit, bias application circuit, and impedance adjustment method
US6028011A (en) * 1997-10-13 2000-02-22 Matsushita Electric Industrial Co., Ltd. Method of forming electric pad of semiconductor device and method of forming solder bump
US6566596B1 (en) 1997-12-29 2003-05-20 Intel Corporation Magnetic and electric shielding of on-board devices
US6350951B1 (en) 1997-12-29 2002-02-26 Intel Corporation Electric shielding of on-board devices
TW401724B (en) 1998-01-27 2000-08-11 Hitachi Cable Wiring board, semiconductor, electronic device, and circuit board for electronic parts
US6075995A (en) 1998-01-30 2000-06-13 Conexant Systems, Inc. Amplifier module with two power amplifiers for dual band cellular phones
US6759597B1 (en) 1998-02-02 2004-07-06 International Business Machines Corporation Wire bonding to dual metal covered pad surfaces
JP3594482B2 (en) 1998-04-02 2004-12-02 三菱電機株式会社 Heterojunction bipolar transistor
WO2000003478A1 (en) 1998-07-08 2000-01-20 Hitachi, Ltd. High-frequency power amplifier module
US6236071B1 (en) 1998-07-30 2001-05-22 Conexant Systems, Inc. Transistor having a novel layout and an emitter having more than one feed point
US6586782B1 (en) 1998-07-30 2003-07-01 Skyworks Solutions, Inc. Transistor layout having a heat dissipative emitter
US6137693A (en) 1998-07-31 2000-10-24 Agilent Technologies Inc. High-frequency electronic package with arbitrarily-shaped interconnects and integral shielding
US6233440B1 (en) 1998-08-05 2001-05-15 Triquint Semiconductor, Inc. RF power amplifier with variable bias current
US6092281A (en) 1998-08-28 2000-07-25 Amkor Technology, Inc. Electromagnetic interference shield driver and method
AU2341900A (en) 1998-09-03 2000-04-10 Lockheed Martin Corporation Automated fuel tank assembly system and method
US6202294B1 (en) 1998-09-25 2001-03-20 Lucent Technologies Inc. EMI/RFI shield assembly cover removal tool
JP3888785B2 (en) 1998-09-28 2007-03-07 三菱電機株式会社 High frequency power amplifier
JP3275851B2 (en) 1998-10-13 2002-04-22 松下電器産業株式会社 High frequency integrated circuit
US6885275B1 (en) 1998-11-12 2005-04-26 Broadcom Corporation Multi-track integrated spiral inductor
US6275687B1 (en) 1998-11-30 2001-08-14 Conexant Systems, Inc. Apparatus and method for implementing a low-noise amplifier and mixer
US6455354B1 (en) 1998-12-30 2002-09-24 Micron Technology, Inc. Method of fabricating tape attachment chip-on-board assemblies
US6201454B1 (en) * 1999-03-30 2001-03-13 The Whitaker Corporation Compensation structure for a bond wire at high frequency operation
US6563145B1 (en) 1999-04-19 2003-05-13 Chang Charles E Methods and apparatus for a composite collector double heterojunction bipolar transistor
JP2000307289A (en) 1999-04-19 2000-11-02 Nec Corp Electronic part assembly
US6362089B1 (en) * 1999-04-19 2002-03-26 Motorola, Inc. Method for processing a semiconductor substrate having a copper surface disposed thereon and structure formed
US6194968B1 (en) 1999-05-10 2001-02-27 Tyco Electronics Logistics Ag Temperature and process compensating circuit and controller for an RF power amplifier
US7265618B1 (en) 2000-05-04 2007-09-04 Matsushita Electric Industrial Co., Ltd. RF power amplifier having high power-added efficiency
US6462436B1 (en) 1999-08-13 2002-10-08 Avaya Technology Corp. Economical packaging for EMI shields on PCB
JP2001127071A (en) 1999-08-19 2001-05-11 Hitachi Ltd Semiconductor device and its manufacturing method
US6593658B2 (en) 1999-09-09 2003-07-15 Siliconware Precision Industries, Co., Ltd. Chip package capable of reducing moisture penetration
JP3859403B2 (en) * 1999-09-22 2006-12-20 株式会社東芝 Semiconductor device and manufacturing method thereof
US6534192B1 (en) 1999-09-24 2003-03-18 Lucent Technologies Inc. Multi-purpose finish for printed wiring boards and method of manufacture of such boards
FR2799337B1 (en) * 1999-10-05 2002-01-11 St Microelectronics Sa METHOD FOR MAKING ELECTRICAL CONNECTIONS ON THE SURFACE OF A SEMICONDUCTOR PACKAGE WITH ELECTRICAL CONNECTION DROPS
US20070176287A1 (en) 1999-11-05 2007-08-02 Crowley Sean T Thin integrated circuit device packages for improved radio frequency performance
JP2001177060A (en) 1999-12-14 2001-06-29 Nec Corp Monolithic integrated circuit device and its manufacturing method
US6236274B1 (en) 2000-01-04 2001-05-22 Industrial Technology Research Institute Second harmonic terminations for high efficiency radio frequency dual-band power amplifier
US6601124B1 (en) 2000-02-14 2003-07-29 International Business Machines Corporation Universal interface for selectively coupling to a computer port type and method therefor
US6559517B2 (en) 2000-04-27 2003-05-06 En Jun Zhu Structure for a semiconductor device
US6956283B1 (en) 2000-05-16 2005-10-18 Peterson Kenneth A Encapsulants for protecting MEMS devices during post-packaging release etch
US6573599B1 (en) 2000-05-26 2003-06-03 Skyworks Solutions, Inc. Electrical contact for compound semiconductor device and method for forming same
TW455964B (en) 2000-07-18 2001-09-21 Siliconware Precision Industries Co Ltd Multi-chip module package structure with stacked chips
US6967288B2 (en) 2000-08-18 2005-11-22 Mitsubishi Denki Kabushiki Kaisha Shield cable method of manufacturing shield cable, and discharge lamp lighting device using shield cable
US6757181B1 (en) 2000-08-22 2004-06-29 Skyworks Solutions, Inc. Molded shield structures and method for their fabrication
CN1168204C (en) 2000-09-09 2004-09-22 王仲季 Dynamicaly synchronous voltage-biased power amplifier
US6858522B1 (en) 2000-09-28 2005-02-22 Skyworks Solutions, Inc. Electrical contact for compound semiconductor device and method for forming same
US6426881B1 (en) 2000-10-04 2002-07-30 Arthur A. Kurz Shielding arrangement for inter-component shielding in electronic devices
DE10152408A1 (en) 2000-10-25 2002-05-16 Matsushita Electric Ind Co Ltd System for automatic mounting of electronic components onto a circuit board uses camera scanning of board
US7345327B2 (en) 2000-11-27 2008-03-18 Kopin Corporation Bipolar transistor
US6847060B2 (en) 2000-11-27 2005-01-25 Kopin Corporation Bipolar transistor with graded base layer
WO2002043155A2 (en) 2000-11-27 2002-05-30 Kopin Corporation Bipolar transistor with lattice matched base layer
US6577199B2 (en) 2000-12-07 2003-06-10 Ericsson, Inc. Harmonic matching network for a saturated amplifier
US6445069B1 (en) * 2001-01-22 2002-09-03 Flip Chip Technologies, L.L.C. Electroless Ni/Pd/Au metallization structure for copper interconnect substrate and method therefor
US7379475B2 (en) 2002-01-25 2008-05-27 Nvidia Corporation Communications processor
WO2002061591A1 (en) 2001-01-31 2002-08-08 Hitachi,Ltd Data processing system and data processor
US6900383B2 (en) 2001-03-19 2005-05-31 Hewlett-Packard Development Company, L.P. Board-level EMI shield that adheres to and conforms with printed circuit board component and board surfaces
US7333778B2 (en) 2001-03-21 2008-02-19 Ericsson Inc. System and method for current-mode amplitude modulation
US6548364B2 (en) 2001-03-29 2003-04-15 Sharp Laboratories Of America, Inc. Self-aligned SiGe HBT BiCMOS on SOI substrate and method of fabricating the same
JP2002319589A (en) 2001-04-20 2002-10-31 Hitachi Ltd Semiconductor device and power amplifier comprising it
US6459104B1 (en) 2001-05-10 2002-10-01 Newport Fab Method for fabricating lateral PNP heterojunction bipolar transistor and related structure
US6815739B2 (en) 2001-05-18 2004-11-09 Corporation For National Research Initiatives Radio frequency microelectromechanical systems (MEMS) devices on low-temperature co-fired ceramic (LTCC) substrates
US6678513B2 (en) 2001-05-31 2004-01-13 Skyworks Solutions, Inc. Non-linear transistor circuits with thermal stability
US20030002271A1 (en) 2001-06-27 2003-01-02 Nokia Corporation Integrated EMC shield for integrated circuits and multiple chip modules
JP2003023239A (en) 2001-07-05 2003-01-24 Sumitomo Electric Ind Ltd Circuit board and its manufacturing method and high output module
US6855992B2 (en) 2001-07-24 2005-02-15 Motorola Inc. Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
JP2003051567A (en) 2001-08-03 2003-02-21 Sony Corp High-frequency module substrate unit therefor and manufacturing method therefor
US6856007B2 (en) 2001-08-28 2005-02-15 Tessera, Inc. High-frequency chip packages
US6573558B2 (en) 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
JP3507828B2 (en) 2001-09-11 2004-03-15 シャープ株式会社 Heterojunction bipolar transistor and method of manufacturing the same
US6750546B1 (en) 2001-11-05 2004-06-15 Skyworks Solutions, Inc. Flip-chip leadframe package
US6486549B1 (en) 2001-11-10 2002-11-26 Bridge Semiconductor Corporation Semiconductor module with encapsulant base
JP3674780B2 (en) 2001-11-29 2005-07-20 ユーディナデバイス株式会社 High frequency semiconductor device
US6656809B2 (en) 2002-01-15 2003-12-02 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics
US6605825B1 (en) 2002-02-14 2003-08-12 Innovative Technology Licensing, Llc Bipolar transistor characterization apparatus with lateral test probe pads
US6797995B2 (en) 2002-02-14 2004-09-28 Rockwell Scientific Licensing, Llc Heterojunction bipolar transistor with InGaAs contact and etch stop layer for InP sub-collector
TWI239578B (en) 2002-02-21 2005-09-11 Advanced Semiconductor Eng Manufacturing process of bump
US6621140B1 (en) 2002-02-25 2003-09-16 Rf Micro Devices, Inc. Leadframe inductors
JP2003249607A (en) 2002-02-26 2003-09-05 Seiko Epson Corp Semiconductor device and manufacturing method therefor, circuit board and electronic device
JP4421301B2 (en) 2002-03-21 2010-02-24 エヌエックスピー ビー ヴィ Power amplifier device
TW538481B (en) 2002-06-04 2003-06-21 Univ Nat Cheng Kung InGaP/AlGaAs/GaAs hetero-junction bipolar transistor with zero conduction band discontinuity
US6806767B2 (en) 2002-07-09 2004-10-19 Anadigics, Inc. Power amplifier with load switching circuit
JP3663397B2 (en) 2002-08-30 2005-06-22 株式会社東芝 High frequency power amplifier
KR100922423B1 (en) 2002-09-06 2009-10-16 페어차일드코리아반도체 주식회사 Bipolar transistor and method for manufacturing the same
US6731174B2 (en) 2002-09-12 2004-05-04 Motorola, Inc. Radio frequency power amplifier device
US6949776B2 (en) 2002-09-26 2005-09-27 Rockwell Scientific Licensing, Llc Heterojunction bipolar transistor with dielectric assisted planarized contacts and method for fabricating
US20040188712A1 (en) 2002-10-08 2004-09-30 Eic Corporation Heterojunction bipolar transistor having non-uniformly doped collector for improved safe-operating area
US6994901B1 (en) 2002-11-12 2006-02-07 Dana Corporation Heat shield having a fold-over edge crimp with variable width and method of making same
US7092265B2 (en) 2002-11-14 2006-08-15 Fyre Storm, Inc. Switching power converter controller
US7333788B2 (en) 2002-12-20 2008-02-19 Texas Instruments Incorporated Method for calibrating automatic gain control in wireless devices
TW200411871A (en) 2002-12-30 2004-07-01 Advanced Semiconductor Eng Thermal-enhance package and manufacturing method thereof
TW565009U (en) 2003-01-20 2003-12-01 Benq Corp Electronic module having ball grid array
TWI235469B (en) 2003-02-07 2005-07-01 Siliconware Precision Industries Co Ltd Thermally enhanced semiconductor package with EMI shielding
US6873043B2 (en) 2003-03-10 2005-03-29 Delphi Technologies, Inc. Electronic assembly having electrically-isolated heat-conductive structure
JP2004289640A (en) 2003-03-24 2004-10-14 Ube Ind Ltd Semiconductor circuit
KR100531373B1 (en) 2003-03-28 2005-11-28 엘지전자 주식회사 Power amplifier
CN100454533C (en) 2003-04-15 2009-01-21 波零公司 EMI shielding for electronic component packaging
US6797996B1 (en) 2003-05-27 2004-09-28 Matsushita Electric Industrial Co., Ltd. Compound semiconductor device and method for fabricating the same
US7038250B2 (en) 2003-05-28 2006-05-02 Kabushiki Kaisha Toshiba Semiconductor device suited for a high frequency amplifier
US7129422B2 (en) 2003-06-19 2006-10-31 Wavezero, Inc. EMI absorbing shielding for a printed circuit board
US6974776B2 (en) * 2003-07-01 2005-12-13 Freescale Semiconductor, Inc. Activation plate for electroless and immersion plating of integrated circuits
US20050001316A1 (en) 2003-07-01 2005-01-06 Motorola, Inc. Corrosion-resistant bond pad and integrated device
US20070220499A1 (en) 2003-07-23 2007-09-20 Silicon Laboratories Inc. USB tool stick with multiple processors
US6858887B1 (en) 2003-07-30 2005-02-22 Innovative Technology Licensing Llc BJT device configuration and fabrication method with reduced emitter width
US7170394B2 (en) 2003-07-31 2007-01-30 Agilent Technologies, Inc. Remote current sensing and communication over single pair of power feed wires
TW200518345A (en) 2003-08-08 2005-06-01 Renesas Tech Corp Semiconductor device
US7088009B2 (en) 2003-08-20 2006-08-08 Freescale Semiconductor, Inc. Wirebonded assemblage method and apparatus
US7030469B2 (en) 2003-09-25 2006-04-18 Freescale Semiconductor, Inc. Method of forming a semiconductor package and structure thereof
US7409200B2 (en) 2003-10-08 2008-08-05 Sige Semiconductor Inc. Module integration integrated circuits
JP2005143079A (en) 2003-10-14 2005-06-02 Matsushita Electric Ind Co Ltd High-frequency power amplifier
US6906359B2 (en) 2003-10-22 2005-06-14 Skyworks Solutions, Inc. BiFET including a FET having increased linearity and manufacturability
CN1914791A (en) 2003-12-05 2007-02-14 艾利森电话股份有限公司 Single chip power amplifier and envelope modulator
US7145385B2 (en) 2003-12-05 2006-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Single chip power amplifier and envelope modulator
US7502601B2 (en) 2003-12-22 2009-03-10 Black Sand Technologies, Inc. Power amplifier with digital power control and associated methods
KR100586737B1 (en) 2003-12-26 2006-06-08 한국전자통신연구원 NMOS DEVICE, PMOS DEVICE AND SiGe BiCMOS DEVICE ON SOI SUBSTRATE AND METHOD OF FABRICATING THE SAME
US7284170B2 (en) 2004-01-05 2007-10-16 Texas Instruments Incorporated JTAG circuit transferring data between devices on TMS terminals
US8159048B2 (en) 2004-01-30 2012-04-17 Triquint Semiconductor, Inc. Bipolar junction transistor geometry
JP2005217887A (en) 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd Variable gain circuit
US20080112151A1 (en) 2004-03-04 2008-05-15 Skyworks Solutions, Inc. Overmolded electronic module with an integrated electromagnetic shield using SMT shield wall components
US8399972B2 (en) 2004-03-04 2013-03-19 Skyworks Solutions, Inc. Overmolded semiconductor package with a wirebond cage for EMI shielding
US7198987B1 (en) 2004-03-04 2007-04-03 Skyworks Solutions, Inc. Overmolded semiconductor package with an integrated EMI and RFI shield
US20100253435A1 (en) 2004-03-18 2010-10-07 Ikuroh Ichitsubo Rf power amplifier circuit utilizing bondwires in impedance matching
JP2004248323A (en) 2004-04-23 2004-09-02 Matsushita Electric Works Ltd Amplifier circuit of television switch module
US6974724B2 (en) 2004-04-28 2005-12-13 Nokia Corporation Shielded laminated structure with embedded chips
US7902627B2 (en) * 2004-06-03 2011-03-08 Silicon Laboratories Inc. Capacitive isolation circuitry with improved common mode detector
US7900065B2 (en) 2004-06-04 2011-03-01 Broadcom Corporation Method and system for monitoring module power status in a communication device
JP2006013566A (en) 2004-06-22 2006-01-12 Renesas Technology Corp Electronic part for high-frequency power amplification
US7687886B2 (en) 2004-08-19 2010-03-30 Microlink Devices, Inc. High on-state breakdown heterojunction bipolar transistor
JP4843611B2 (en) 2004-10-01 2011-12-21 デ,ロシェモント,エル.,ピエール Ceramic antenna module and manufacturing method thereof
WO2006040847A1 (en) 2004-10-14 2006-04-20 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
TW200616093A (en) 2004-10-20 2006-05-16 Kopin Corp Bipolar transistor with graded base layer
US7142058B2 (en) 2004-11-09 2006-11-28 Freescale Semiconductor, Inc. On-chip temperature compensation circuit for an electronic device
US7288940B2 (en) 2004-12-06 2007-10-30 Analog Devices, Inc. Galvanically isolated signal conditioning system
US7238565B2 (en) 2004-12-08 2007-07-03 International Business Machines Corporation Methodology for recovery of hot carrier induced degradation in bipolar devices
JP2006180151A (en) 2004-12-22 2006-07-06 Renesas Technology Corp Power amplifier module and its manufacturing method
US20060138650A1 (en) * 2004-12-28 2006-06-29 Freescale Semiconductor, Inc. Integrated circuit packaging device and method for matching impedance
US7633170B2 (en) 2005-01-05 2009-12-15 Advanced Semiconductor Engineering, Inc. Semiconductor device package and manufacturing method thereof
US20100089529A1 (en) 2005-01-12 2010-04-15 Inverness Medical Switzerland Gmbh Microfluidic devices and production methods therefor
US8081928B2 (en) 2005-02-03 2011-12-20 Peregrine Semiconductor Corporation Canceling harmonics in semiconductor RF switches
US7640379B2 (en) 2005-02-12 2009-12-29 Broadcom Corporation System method for I/O pads in mobile multimedia processor (MMP) that has bypass mode wherein data is passed through without being processed by MMP
US7288991B2 (en) 2005-02-17 2007-10-30 Skyworks Solutions, Inc. Power control circuit for accurate control of power amplifier output power
JP4843229B2 (en) 2005-02-23 2011-12-21 株式会社東芝 Manufacturing method of semiconductor device
US7563713B2 (en) 2005-02-23 2009-07-21 Teledyne Scientific & Imaging, Llc Semiconductor devices having plated contacts, and methods of manufacturing the same
WO2006090204A1 (en) 2005-02-24 2006-08-31 Freescale Semiconductor, Inc. Lead-frame circuit package
JP4558539B2 (en) * 2005-03-09 2010-10-06 日立協和エンジニアリング株式会社 Electronic circuit board, electronic circuit, method for manufacturing electronic circuit board, and method for manufacturing electronic circuit
US7546402B2 (en) 2005-03-24 2009-06-09 Sunplus Technology Co., Ltd. Optical storage system comprising interface for transferring data
JP2006279316A (en) 2005-03-28 2006-10-12 Sanyo Electric Co Ltd Switch circuit device
KR100677816B1 (en) 2005-03-28 2007-02-02 산요덴키가부시키가이샤 Active device and switch circuit apparatus
TW200637139A (en) 2005-04-06 2006-10-16 Richwave Technology Corp Adaptive linear biasing circuit
US20060255102A1 (en) 2005-05-11 2006-11-16 Snyder Rick B Technique for defining a wettable solder joint area for an electronic assembly substrate
JP5106758B2 (en) 2005-06-28 2012-12-26 ローム株式会社 Semiconductor device
FR2888664B1 (en) 2005-07-18 2008-05-02 Centre Nat Rech Scient METHOD FOR MAKING A BIPOLAR HETEROJUNCTION TRANSISTOR
US7372334B2 (en) 2005-07-26 2008-05-13 Infineon Technologies Ag Output match transistor
US7439098B2 (en) 2005-09-09 2008-10-21 Advanced Semiconductor Engineering, Inc. Semiconductor package for encapsulating multiple dies and method of manufacturing the same
US20070057731A1 (en) 2005-09-15 2007-03-15 Le Phuong T On-chip harmonic termination for RF power amplifier applications
US7473999B2 (en) 2005-09-23 2009-01-06 Megica Corporation Semiconductor chip and process for forming the same
US20070093229A1 (en) 2005-10-20 2007-04-26 Takehiko Yamakawa Complex RF device and method for manufacturing the same
KR101205324B1 (en) 2005-11-25 2012-11-28 삼성전자주식회사 Methods for controlling power of system with serial interface manner
KR100746824B1 (en) 2005-12-16 2007-08-06 동부일렉트로닉스 주식회사 Pad structure of semiconductor device and manufacturing method therefor
JP2007173624A (en) 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd Hetero-junction bipolar transistor and method of manufacturing same
US7411458B2 (en) 2006-02-01 2008-08-12 Motorola, Inc. Method and apparatus for controlling an output voltage in a power amplifier
JP2007221080A (en) 2006-02-14 2007-08-30 Zycube:Kk Semiconductor device, and method for manufacturing same
KR101260066B1 (en) 2006-02-17 2013-04-30 삼성전자주식회사 Computer system having serial and parallel interfaces
JP2007221490A (en) 2006-02-17 2007-08-30 Renesas Technology Corp Rf power module using heterojunction bipolar transistor
JP4892253B2 (en) 2006-02-28 2012-03-07 ルネサスエレクトロニクス株式会社 Electronic equipment
US7692295B2 (en) 2006-03-31 2010-04-06 Intel Corporation Single package wireless communication device
EP2013630A4 (en) 2006-04-24 2009-08-12 Parkervision Inc Systems and methods of rf power transmission, modulation, and amplification
US8310060B1 (en) 2006-04-28 2012-11-13 Utac Thai Limited Lead frame land grid array
TW200849556A (en) 2006-06-14 2008-12-16 Nxp Bv Semiconductor device and method of manufacturing such a device
US7598827B2 (en) 2006-06-19 2009-10-06 Maxim Integrated Products Harmonic termination of power amplifiers using BAW filter output matching circuits
US20070296583A1 (en) 2006-06-21 2007-12-27 Broadcom Corporation, A California Corporation Integrated circuit assembly including RFID and components thereof
JP2008010552A (en) 2006-06-28 2008-01-17 Nec Electronics Corp Power amplifier module
JP2008013586A (en) 2006-06-30 2008-01-24 Pentel Corp Oily ink composition for ballpoint pen
US20080014678A1 (en) 2006-07-14 2008-01-17 Texas Instruments Incorporated System and method of attenuating electromagnetic interference with a grounded top film
US8160518B2 (en) 2006-08-10 2012-04-17 Freescale Semiconductor, Inc. Multi-mode transceiver having tunable harmonic termination circuit and method therefor
TWI370515B (en) 2006-09-29 2012-08-11 Megica Corp Circuit component
CN101162928A (en) 2006-10-13 2008-04-16 松下电器产业株式会社 High frequency power amplifier
KR100781905B1 (en) 2006-10-25 2007-12-04 한국전자통신연구원 Image sensor with hetero junction bipolar transistor and fabricatin method of it
JP5160071B2 (en) 2006-11-16 2013-03-13 ルネサスエレクトロニクス株式会社 Heterojunction bipolar transistor
US7729674B2 (en) 2007-01-09 2010-06-01 Skyworks Solutions, Inc. Multiband or multimode receiver with shared bias circuit
US8274162B2 (en) 2007-01-20 2012-09-25 Triquint Semiconductor, Inc. Apparatus and method for reduced delamination of an integrated circuit module
KR101451455B1 (en) 2007-01-25 2014-10-15 스카이워크스 솔루션즈, 인코포레이티드 Multimode amplifier for operation in linear and saturated modes
JP4896996B2 (en) 2007-01-30 2012-03-14 ルネサスエレクトロニクス株式会社 RF amplifier
US7643800B2 (en) 2007-01-30 2010-01-05 Broadcom Corporation Transmit power management for a communication device and method for use therewith
WO2008093626A1 (en) 2007-02-01 2008-08-07 Murata Manufacturing Co., Ltd. Chip element and process for producing the same
US7867806B2 (en) 2007-02-26 2011-01-11 Flextronics Ap, Llc Electronic component structure and method of making
US7554407B2 (en) 2007-03-07 2009-06-30 Fairchild Semiconductor Corporation Multi-mode power amplifier with low gain variation over temperature
JP2008262104A (en) 2007-04-13 2008-10-30 Mgc Filsheet Co Ltd Multilayer polarizing plate, anti-glare product comprising the polarizing plate, and polarizing plate for liquid crystal display
US7898066B1 (en) 2007-05-25 2011-03-01 Amkor Technology, Inc. Semiconductor device having EMI shielding and method therefor
US8010149B2 (en) 2007-05-29 2011-08-30 Broadcom Corporation Multi-mode IC with multiple processing cores
JP4524298B2 (en) 2007-06-04 2010-08-11 パナソニック株式会社 Manufacturing method of semiconductor device
US20080307240A1 (en) 2007-06-08 2008-12-11 Texas Instruments Incorporated Power management electronic circuits, systems, and methods and processes of manufacture
KR101452548B1 (en) 2007-06-20 2014-10-21 스카이워크스 솔루션즈, 인코포레이티드 Semiconductor die with backside passive device integration
TWI346449B (en) 2007-08-16 2011-08-01 Ind Tech Res Inst Power amplifier circuit for multi-frequencies and multi-modes and method for operating the same
US7928574B2 (en) 2007-08-22 2011-04-19 Texas Instruments Incorporated Semiconductor package having buss-less substrate
US8049531B2 (en) 2007-09-14 2011-11-01 Agate Logic, Inc. General purpose input/output system and method
GB2453115A (en) 2007-09-25 2009-04-01 Filtronic Compound Semiconduct HBT and FET BiFET hetrostructure and substrate with etch stop layers
US7911803B2 (en) 2007-10-16 2011-03-22 International Business Machines Corporation Current distribution structure and method
US8359071B2 (en) 2007-10-31 2013-01-22 Hewlett-Packard Development Company, L.P. Power management techniques for a universal serial bus
US20090138638A1 (en) 2007-11-27 2009-05-28 Microsoft Corporation Serial Peripheral Interface for a Transceiver Integrated Circuit
US7911271B1 (en) 2007-12-14 2011-03-22 Pengcheng Jia Hybrid broadband power amplifier with capacitor matching network
CN101911178A (en) 2007-12-27 2010-12-08 皇家飞利浦电子股份有限公司 Ultrasound transducer assembly with thermal behavior of improvement
US7978031B2 (en) * 2008-01-31 2011-07-12 Tdk Corporation High frequency module provided with power amplifier
US7733118B2 (en) 2008-03-06 2010-06-08 Micron Technology, Inc. Devices and methods for driving a signal off an integrated circuit
JP5042894B2 (en) 2008-03-19 2012-10-03 松田産業株式会社 Electronic component and manufacturing method thereof
US20090257208A1 (en) * 2008-04-10 2009-10-15 Zlatko Filipovic Compact packaging for power amplifier module
JP5131540B2 (en) 2008-05-20 2013-01-30 株式会社村田製作所 RF power amplifier and RF power amplifier
US8237229B2 (en) 2008-05-22 2012-08-07 Stmicroelectronics Inc. Method and apparatus for buried-channel semiconductor device
US7618846B1 (en) 2008-06-16 2009-11-17 Stats Chippac, Ltd. Semiconductor device and method of forming shielding along a profile disposed in peripheral region around the device
US9030418B2 (en) * 2008-06-24 2015-05-12 Lg Electronics Inc. Mobile terminal capable of sensing proximity touch
US7852281B2 (en) 2008-06-30 2010-12-14 Intel Corporation Integrated high performance package systems for mm-wave array applications
US8324721B2 (en) 2008-07-01 2012-12-04 Texas Instruments Incorporated Integrated shunt resistor with external contact in a semiconductor package
US7872523B2 (en) 2008-07-01 2011-01-18 Mks Instruments, Inc. Radio frequency (RF) envelope pulsing using phase switching of switch-mode power amplifiers
US8373264B2 (en) 2008-07-31 2013-02-12 Skyworks Solutions, Inc. Semiconductor package with integrated interference shielding and method of manufacture thereof
WO2010014103A1 (en) 2008-07-31 2010-02-04 Skyworks Solutions, Inc. Semiconductor package with integrated interference shielding and method of manufacture therof
WO2010024746A1 (en) 2008-09-01 2010-03-04 Telefonaktiebolaget L M Ericsson (Publ) Hybrid class amplifier
US7974306B2 (en) 2008-09-06 2011-07-05 Universal Scientific Industrial (Shanghai) Co., Ltd. Signal transferring device
US7782134B2 (en) 2008-09-09 2010-08-24 Quantance, Inc. RF power amplifier system with impedance modulation
JP5405785B2 (en) 2008-09-19 2014-02-05 ルネサスエレクトロニクス株式会社 Semiconductor device
US7755107B2 (en) 2008-09-24 2010-07-13 Skyworks Solutions, Inc. Bipolar/dual FET structure including enhancement and depletion mode FETs with isolated channels
US7948064B2 (en) 2008-09-30 2011-05-24 Infineon Technologies Ag System on a chip with on-chip RF shield
CN101478292A (en) 2008-11-25 2009-07-08 锐迪科微电子(上海)有限公司 Radio frequency power amplifier circuit chip
US8129824B1 (en) 2008-12-03 2012-03-06 Amkor Technology, Inc. Shielding for a semiconductor package
JP2010171037A (en) 2009-01-20 2010-08-05 Renesas Technology Corp Semiconductor device
TW201034540A (en) 2009-03-02 2010-09-16 Chung-Cheng Wang A printing circuit board and manufacturing method(s) for making the same of
KR20100103015A (en) 2009-03-12 2010-09-27 엘지이노텍 주식회사 Lead frame and method for manufacturing the same
US8026745B2 (en) 2009-03-16 2011-09-27 Apple Inc. Input/output driver with controlled transistor voltages
JP2010219210A (en) 2009-03-16 2010-09-30 Renesas Electronics Corp Semiconductor device, and method of manufacturing the same
CN101505178B (en) 2009-03-17 2013-01-23 京信通信系统(中国)有限公司 Envelop detection apparatus and method thereof
US8456856B2 (en) 2009-03-30 2013-06-04 Megica Corporation Integrated circuit chip using top post-passivation technology and bottom structure technology
US9203361B2 (en) 2009-05-18 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Harmonic control apparatus and related radio frequency devices and base stations
JP2010278521A (en) 2009-05-26 2010-12-09 Mitsubishi Electric Corp Power amplifier
TWI406497B (en) 2009-06-02 2013-08-21 Richwave Technology Corp Power amplifier integrated circuit with compensation mechanism for temperature and output power
US8378485B2 (en) 2009-07-13 2013-02-19 Lsi Corporation Solder interconnect by addition of copper
US8350639B2 (en) * 2009-08-26 2013-01-08 Qualcomm Incorporated Transformer signal coupling for flip-chip integration
US8667317B1 (en) 2009-09-17 2014-03-04 Rf Micro Devices, Inc. Circuitry including an RF front end circuit
US8301106B2 (en) 2010-02-10 2012-10-30 Javelin Semiconductor, Inc. Stacked CMOS power amplifier and RF coupler devices and related methods
US7994862B1 (en) 2010-02-11 2011-08-09 Sige Semiconductor Inc. Circuit and method of temperature dependent power amplifier biasing
US8571492B2 (en) 2010-04-20 2013-10-29 Rf Micro Devices, Inc. DC-DC converter current sensing
US8542061B2 (en) 2010-04-20 2013-09-24 Rf Micro Devices, Inc. Charge pump based power amplifier envelope power supply and bias power supply
US8565694B2 (en) 2010-04-20 2013-10-22 Rf Micro Devices, Inc. Split current current digital-to-analog converter (IDAC) for dynamic device switching (DDS) of an RF PA stage
US8559898B2 (en) 2010-04-20 2013-10-15 Rf Micro Devices, Inc. Embedded RF PA temperature compensating bias transistor
US8154345B2 (en) 2010-06-03 2012-04-10 Skyworks Solutions, Inc. Apparatus and method for current sensing using a wire bond
US20110298280A1 (en) 2010-06-07 2011-12-08 Skyworks Solutions, Inc Apparatus and method for variable voltage distribution
US8164387B1 (en) 2010-06-30 2012-04-24 Triquint Semiconductor, Inc. Simultaneous harmonic termination in a push-pull power amplifier
JP5952998B2 (en) 2010-07-26 2016-07-13 住友電工デバイス・イノベーション株式会社 Manufacturing method of semiconductor device
TWM394582U (en) 2010-07-26 2010-12-11 Acsip Technology Corp Antenna module
TW201212228A (en) 2010-09-13 2012-03-16 Visual Photonics Epitaxy Co Ltd Heterojunction Bipolar Transistor structure with GaPSbAs base
US8188575B2 (en) 2010-10-05 2012-05-29 Skyworks Solutions, Inc. Apparatus and method for uniform metal plating
US8357263B2 (en) 2010-10-05 2013-01-22 Skyworks Solutions, Inc. Apparatus and methods for electrical measurements in a plasma etcher
US8611834B2 (en) 2010-11-01 2013-12-17 Cree, Inc. Matching network for transmission circuitry
US9105488B2 (en) 2010-11-04 2015-08-11 Skyworks Solutions, Inc. Devices and methodologies related to structures having HBT and FET
US20120112243A1 (en) 2010-11-04 2012-05-10 Zampardi Peter J Bipolar and FET Device Structure
KR20120053332A (en) 2010-11-17 2012-05-25 삼성전자주식회사 Semiconductor package and method of forming the same
US8797103B2 (en) 2010-12-07 2014-08-05 Skyworks Solutions, Inc. Apparatus and methods for capacitive load reduction
US8598950B2 (en) 2010-12-14 2013-12-03 Skyworks Solutions, Inc. Apparatus and methods for capacitive load reduction
US8415805B2 (en) 2010-12-17 2013-04-09 Skyworks Solutions, Inc. Etched wafers and methods of forming the same
WO2012088300A2 (en) 2010-12-22 2012-06-28 Skyworks Solutions, Inc. Power amplifier control circuit
US8686537B2 (en) * 2011-03-03 2014-04-01 Skyworks Solutions, Inc. Apparatus and methods for reducing impact of high RF loss plating
KR101776364B1 (en) 2011-03-03 2017-09-07 스카이워크스 솔루션즈, 인코포레이티드 Apparatus and methods related to wire bond pads and reducing impact of high rf loss plating
US8889995B2 (en) 2011-03-03 2014-11-18 Skyworks Solutions, Inc. Wire bond pad system and method
US9092393B2 (en) 2011-03-11 2015-07-28 Skyworks Solutions, Inc. Dual mode serial/parallel interface and use thereof in improved wireless devices and switching components
US8938566B2 (en) 2011-03-17 2015-01-20 American Megatrends, Inc. Data storage system for managing serial interface configuration based on detected activity
US20120293520A1 (en) * 2011-05-19 2012-11-22 Qualcomm Mems Technologies, Inc. Piezoelectric resonators with configurations having no ground connections to enhance electromechanical coupling
TW201301481A (en) 2011-06-23 2013-01-01 Kopin Corp Bipolar high electron mobility transistor and methods of forming same
WO2013009640A2 (en) 2011-07-08 2013-01-17 Skyworks Solutions, Inc. Signal path termination
WO2013024484A1 (en) 2011-08-16 2013-02-21 Better Place GmbH Estimation and management of loads in electric vehicle networks
US9679869B2 (en) 2011-09-02 2017-06-13 Skyworks Solutions, Inc. Transmission line for high performance radio frequency applications
US8417200B1 (en) 2011-09-30 2013-04-09 Broadcom Corporation Wideband power efficient high transmission power radio frequency (RF) transmitter
US8719459B2 (en) 2011-10-24 2014-05-06 Skyworks Solutions, Inc. Dual mode power amplifier control interface with a three-mode general purpose input/output interface
US9876478B2 (en) 2011-11-04 2018-01-23 Skyworks Solutions, Inc. Apparatus and methods for wide local area network power amplifiers
WO2013067031A2 (en) 2011-11-04 2013-05-10 Skyworks Solutions, Inc. Apparatus and methods for power amplifiers
US9467940B2 (en) 2011-11-11 2016-10-11 Skyworks Solutions, Inc. Flip-chip linear power amplifier with high power added efficiency
US9054065B2 (en) 2012-04-30 2015-06-09 Skyworks Solutions, Inc. Bipolar transistor having collector with grading
US8948712B2 (en) 2012-05-31 2015-02-03 Skyworks Solutions, Inc. Via density and placement in radio frequency shielding applications
KR101944337B1 (en) 2012-06-14 2019-02-01 스카이워크스 솔루션즈, 인코포레이티드 Process-compensated hbt power amplifier bias circuits and mehtods
EP3567629A3 (en) 2012-06-14 2020-01-22 Skyworks Solutions, Inc. Power amplifier modules including related systems, devices, and methods
US8884700B2 (en) 2013-01-17 2014-11-11 Raytheon Company Integrated circuit chip temperature sensor
JP2014217014A (en) * 2013-04-30 2014-11-17 株式会社東芝 Wireless device
US20160145755A1 (en) 2013-07-09 2016-05-26 United Technologies Corporation Lightweight metal parts produced by plating polymers
WO2021006023A1 (en) * 2019-07-11 2021-01-14 株式会社村田製作所 High-frequency module, communication device, and elastic wave device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050010420A1 (en) * 2003-05-07 2005-01-13 Lars Russlies Speech output system
JP2007031826A (en) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd Connection terminal and substrate for mounting semiconductor having the same
US20100023078A1 (en) * 2006-01-25 2010-01-28 Yanting Dong Cardiac resynchronization therapy parameter optimization
US20090019533A1 (en) * 2007-07-11 2009-01-15 Kristin Marie Hazlewood Method and system for enforcing password policy for an external bind operation in a distributed directory
US20090085229A1 (en) * 2007-10-01 2009-04-02 Kuo-Hung Wu Audio power amplifier package

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10529686B2 (en) 2011-09-02 2020-01-07 Skyworks Solutions, Inc. Mobile device with radio frequency transmission line
US10937759B2 (en) 2011-09-02 2021-03-02 Skyworks Solutions, Inc. Radio frequency transmission line
US11984423B2 (en) 2011-09-02 2024-05-14 Skyworks Solutions, Inc. Radio frequency transmission line with finish plating on conductive layer
US11082021B2 (en) 2019-03-06 2021-08-03 Skyworks Solutions, Inc. Advanced gain shaping for envelope tracking power amplifiers
US11705877B2 (en) 2019-03-06 2023-07-18 Skyworks Solutions, Inc. Advanced gain shaping for envelope tracking power amplifiers
US11239800B2 (en) 2019-09-27 2022-02-01 Skyworks Solutions, Inc. Power amplifier bias modulation for low bandwidth envelope tracking
US11444576B2 (en) 2019-09-27 2022-09-13 Skyworks Solutions, Inc. Power amplifier bias modulation for multi-level supply envelope tracking
US11683013B2 (en) 2019-09-27 2023-06-20 Skyworks Solutions, Inc. Power amplifier bias modulation for low bandwidth envelope tracking
US11482975B2 (en) 2020-06-05 2022-10-25 Skyworks Solutions, Inc. Power amplifiers with adaptive bias for envelope tracking applications
US11677368B2 (en) 2020-06-05 2023-06-13 Skyworks Solutions, Inc. Power amplifiers with adaptive bias for envelope tracking applications
US11855595B2 (en) 2020-06-05 2023-12-26 Skyworks Solutions, Inc. Composite cascode power amplifiers for envelope tracking applications

Also Published As

Publication number Publication date
US11984423B2 (en) 2024-05-14
KR101740102B1 (en) 2017-05-25
CN103907194A (en) 2014-07-02
US20210159209A1 (en) 2021-05-27
US10529686B2 (en) 2020-01-07
TW201318492A (en) 2013-05-01
KR20140074913A (en) 2014-06-18
US9679869B2 (en) 2017-06-13
US20170271301A1 (en) 2017-09-21
TWI592078B (en) 2017-07-11
US20170271302A1 (en) 2017-09-21
TWI641298B (en) 2018-11-11
US20130057451A1 (en) 2013-03-07
WO2013032545A1 (en) 2013-03-07
US20170301647A1 (en) 2017-10-19
CN103907194B (en) 2017-08-04
TW201735750A (en) 2017-10-01
US10937759B2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
US11984423B2 (en) Radio frequency transmission line with finish plating on conductive layer
US10141901B2 (en) Flip-chip amplifier with termination circuit
KR101921686B1 (en) Power amplifier modules including wire bond pad and related systems, devices, and methods
US20180358338A1 (en) Network with integrated passive device and conductive trace in packaging substrate and related modules and devices
JP2011176061A (en) Semiconductor device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION