US20170037253A1 - Method of making carbon black - Google Patents
Method of making carbon black Download PDFInfo
- Publication number
- US20170037253A1 US20170037253A1 US15/229,608 US201615229608A US2017037253A1 US 20170037253 A1 US20170037253 A1 US 20170037253A1 US 201615229608 A US201615229608 A US 201615229608A US 2017037253 A1 US2017037253 A1 US 2017037253A1
- Authority
- US
- United States
- Prior art keywords
- carbon black
- functional groups
- functionalizing agents
- particles
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- LVKDCSPWRGLKJC-UHFFFAOYSA-N BC.BC.CC(=O)O.CO.[H]C Chemical compound BC.BC.CC(=O)O.CO.[H]C LVKDCSPWRGLKJC-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
- C09C1/485—Preparation involving the use of a plasma or of an electric arc
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
- C09C1/56—Treatment of carbon black ; Purification
- C09C1/565—Treatment of carbon black ; Purification comprising an oxidative treatment with oxygen, ozone or oxygenated compounds, e.g. when such treatment occurs in a region of the furnace next to the carbon black generating reaction zone
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
- C09C1/56—Treatment of carbon black ; Purification
Definitions
- the field of art to which this invention generally pertains is methods for making use of electrical energy to effect chemical changes.
- a method of making carbon black in a plasma process including subjecting the carbon black particles during and/or after formation to surface functionalizing agents in a controlled manner so as to impart a degree and/or density of functionalization onto the carbon black particles so as to adapt the particles to a particular pre-intended application.
- Additional embodiments include: the method described above where the functional groups comprise oxygen containing functional groups; the method described above where the functional groups are introduced in the reactor, pelletizer, and/or dryer; the method described above where the functional groups comprise carboxylic acid and/or phenolic groups; the method described above where the density of the functionalization is up to about 30 micromol/m 2 ; the method described above where the carbon black particles are subjected to the functionalizing agents at temperatures up to about 500° C.; the method described above where the functionalizing agents contain one or more oxidizing agents; the method described above where the functionalizing agents contain one or more of H 2 , CO, CO 2 , O 2 , water vapor, nitrogen, N 2 O, NO 2 , ozone, ammonia, amines, methyl amines, hydroxides, H 2 O 2 , acids, HNO 3 , persulfates, hypohalites, halites, halates, perhalates, permanganates, carbonates, bleach, nitric acid, potassium permanganate, sulfur
- Carbon blacks (CB) made with a particular surface chemistry can impart improved performance in rubber, composite, and other applications.
- CB Carbon blacks
- surface functionality can be controlled, carbon blacks with superior performance properties when compared to traditionally produced plasma blacks can be produced, e.g., even out performing some typical oil based furnace blacks.
- the performance can be improved, for example, through the creation of oxygen functional groups at the carbon surface.
- functional groups can inherently exist at the surface, for example, due to the existence of a time-temperature profile that can be characterized as having the CB in contact with tail gas composed of water, hydrogen, carbon monoxide, carbon dioxide and various other gases. These gases can be in intimate contact with the CB while the CB is still at high temperature (e.g., about 600° C.) which can enable the formation of surface functional groups.
- RH relative humidity
- Controlled oxidation can place specific groups at the surface.
- the surface of furnace black might be comprised of 60:40 (mole equivalents) phenolic:carboxylic acid groups whereas with a controlled surface the ration could be comprised of 10:90 phenolic:carboxylic acid groups.
- the carboxylic acid groups will typically be more reactive to rubber or SBR (styrene butadiene rubber) and more likely to form what is known as “bound rubber”. A larger amount of bound rubber could result in lower vibration, hysteresis, treadwear, and/or higher reinforcement, in addition to other possible benefits such as increased vehicle miles per gallon (mpg).
- the typical atmosphere or tail gas of a furnace reactor that burns oil and possesses a water quench can comprise the following components (according to Donnet's Carbon Black , t2 nd Edition, pub. by Marcel Dekker, 1993, the disclosure of which is herein incorporated by reference (at page 46)).
- the option exits to fine tune the surface chemistry of the black to the exact parameters of the desired application.
- the operators of the furnace black process to take advantage of this process, they would have to either surface modify the current non-ideal particles or heat treat (to the point of full oxygen removal) to start with a non-oxygenated surface and then treat with reactive moieties to obtain the more optimized surface.
- Equation 1 For a pressurized system the left hand side of equation 1 will be favored. CO and CO 2 are released from the surface at lower temperatures (about 250° C.-400° C.) and hydrogen is released at higher temperatures (about 800° C. and greater) where graphitization is taking place
- the right hand side of equation 1 is favored and this can result in some amount of mass loss. Under pressure and in the correct atmosphere, the left hand side of equation 1 will be favored.
- the pressurization of the vessel would involve raising the vessel to greater than atmospheric pressure but typically less than 10 bar.
- the mixture of functional groups at the CB surface from the furnace process is simply the product as it is made. In that regard it is truly an uncontrolled, unoptimized product.
- the tailoring of the groups is just simple not easily doable with the furnace process. With the process described herein, it is possible to tailor the surface of the CB to the specific application. It is further possible to tailor the performance of the CB within the application. For example, if carboxylic acid groups increase the bound rubber content in SBR polymer composites, then the ability to control the surface characteristics of the CB could allow for the tuning of the amount of bound rubber and thus fine tune or reduce the amount of road noise, vibration, or even improve the in mpg of the tire based upon this improved quality.
- the functional surface groups at the CB surface could be 50/50 carboxylic acid and phenolic as made similar to what is produced in a conventional furnace process, while the process described herein could allow for tailoring of the surface functional groups at 90:10, 80:20, 70:30. 60:40, 50:50. 40:60. 30:70. 20:80. or 10:90, for example. This does not exclude the possibility of even much more detailed tuning of the surface groups. Some, or even most, of these types of composites would not be accessible through furnace black, gas black, lamp black, thermal black, etc. technology.
- a more detailed surface composition could comprise epoxy, quinone, carboxylic acid, phenol, ether, anhydride, carbonyl, lactone, among other reactive groups at for instance a ratio of 5:5:35: 30:10: 5:5:5, for example.
- the amount of functional groups on a typical furnace black could be one micromol/meter (m) 2 . While this has been used in the tire industry in the past, this is simply the amount that is obtained in a typically furnace black process.
- m micromol/meter
- a range of densities for example, anywhere from 0 to 30 micromol/m 2 can be obtained. This fine tuning capability can allow for the direct control of the interfacial surface energy between the rubber and particle and also allows for optimal bonding between these materials.
- chemistry can similarly tailor surface chemistry for superior performance in other applications, reducing viscosity build in inks, improving dispersability in paints, superior color development in masterbatches, and perhaps improved conductivity in plastics through superior dispersion.
- the chemistry can be tailored not just to an application, but to each compound or vehicle (liquid system) used within an application.
- furnace black can be better tuned for the final application.
- Three exemplary methods which can be used to treat the CB surfaces as described herein, can include, for example, the use of: 1—high temperatures and weak reagents; 2—low temperatures and strong reagents; 3—high temperatures and strong reagents.
- the CB can be preheated and then doused with gas and steam.
- the CB could be at room temperature or up to 400° C. when doused with reagent gases.
- a list of less reactive gases is given below: H 2 , CO, CO 2 , O 2 , water vapor.
- Nitrogen can also be present simply to control the amount of dousing. More reactive gases are listed below: N 2 O, NO 2 , ozone, ammonia, methyl amines, other general amines.
- More reactive ingredients for the functionalization of the surface can include peroxides such as H 2 O 2 , acids such as HNO 3 , persulfates, hypohalites, halites, halates , or perhalates, permanganates, bleach, which is a hypohalite, is a low-cost example of one of these reagents. Combinations of these reagents can yield especially strong reaction conditions, for example, nitric acid in combination with hydrogen peroxide or potassium permanganate with sulfuric acid.
- any diazonium salt-based methods include any diazonium salt-based methods. For instance, it may be advantageous to react the diazonium salt of sulfanilic acid with the CB surface in order to obtain sulfonate functionality.
- This general diazonium based strategy could be used to corporate a wide variety of functional groups at the surface.
- One advantage over the furnace black process is that the surface tuned by the methods described herein could have only the desired functionality and would not possess the inherent byproducts of the furnace process (e.g., random, uncontrolled deposition of oxygen groups at the surface).
- any combination of the above could be used to design the optimum particle surface.
- One of the methods to treat the surface could be to treat in a pressurized vessel to optimize the results based on equation 1.
- Another method could be to add the reagents to the pelletizer and then dry at moderate temperatures (about 150° C.-250° C.). The latter method would be more amenable to stronger reagents listed above.
- small amounts of strong reagents in a pressurized vessel might also be employed.
- the hydrogen from the degas step can be partially removed and the hydrogen in the pores remain.
- air can be added in such a way as to avoid explosive combinations of hydrogen and oxygen.
- Another alternative in the case of slow diffusion of heat is to add a substance (reactive A) that will absorb to the surface of the CB followed by a second step of adding reactive B that will react exothermically with reactant A to provide a temperature activated surface and the final reactant.
- reactive A reactive A
- An example of this could be H 2 and O 2 to form H 2 O at between about 400° C. and 500° C. H 2 O would then proceed to react with the CB surface and provide oxygen functionality, or an intermediate between elemental hydrogen plus oxygen and the resulting water can react, e.g., an OH radical.
- WSP water spreading pressure
- R is the gas constant
- T is the temperature
- A is the N 2 surface area (SA)—(ASTM D6556) of the sample
- H 2 O is the amount of water adsorbed to the carbon surface at the various RH's.
- P is the partial pressure of water in the atmosphere and Po is the saturation pressure and g is gram.
- the equilibrium adsorption is measured at various discrete RH's and then the area under the curve is measured to yield the WSP value.
- Samples are measured at 25° C. using the 3Flex system from Micromeritics.
- the region being integrated is from 0 to saturation pressure.
- the d has it's normal indication of integrating at whatever incremental unit is after the d, i.e., integrating at changing natural log of pressure.
- the process described herein is an in situ (in reactor) method of tuning the surface chemistry of CB to form ideal particles for the intended application.
- the method itself can also be employed outside of the reactor, however, optimal efficiencies, e.g., such as cost savings, can be obtained within the reactor.
- Dimensions such as WSP and density of groups at the surface are controlled. The ratios of the functional groups and the WSP tunability are of particular importance as this will enable performance in key applications such as the tire and rubber industry, among others. The implications are across all market segments which can be a crucial dimension in application performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application No. 62/202,498, filed Aug. 7, 2015, which application is incorporated by reference herein in its entirety.
- The field of art to which this invention generally pertains is methods for making use of electrical energy to effect chemical changes.
- There are many processes that can be used and have been used over the years to produce carbon black. The energy sources used to produce such carbon blacks over the years have, in large part, been closely connected to the raw materials used to convert hydrocarbon containing materials into carbon black. Residual refinery oils and natural gas have long been a resource for the production of carbon black. Energy sources have evolved over time in chemical processes such as carbon black production from simple flame, to oil furnace, to plasma, to name a few. As in all manufacturing, there is a constant search for more efficient and effective ways to produce such products. Varying flow rates and other conditions of energy sources, varying flow rates and other conditions of raw materials, increasing speed of production, increasing yields, reducing manufacturing equipment wear characteristics, etc. have all been, and continue to be, part of this search over the years.
- The systems described herein meet the challenges described above, and additionally attain more efficient and effective manufacturing process.
- A method of making carbon black in a plasma process is described, including subjecting the carbon black particles during and/or after formation to surface functionalizing agents in a controlled manner so as to impart a degree and/or density of functionalization onto the carbon black particles so as to adapt the particles to a particular pre-intended application.
- Additional embodiments include: the method described above where the functional groups comprise oxygen containing functional groups; the method described above where the functional groups are introduced in the reactor, pelletizer, and/or dryer; the method described above where the functional groups comprise carboxylic acid and/or phenolic groups; the method described above where the density of the functionalization is up to about 30 micromol/m2; the method described above where the carbon black particles are subjected to the functionalizing agents at temperatures up to about 500° C.; the method described above where the functionalizing agents contain one or more oxidizing agents; the method described above where the functionalizing agents contain one or more of H2, CO, CO2, O2, water vapor, nitrogen, N2O, NO2, ozone, ammonia, amines, methyl amines, hydroxides, H2O2, acids, HNO3, persulfates, hypohalites, halites, halates, perhalates, permanganates, carbonates, bleach, nitric acid, potassium permanganate, sulfuric acid, diazonium salts, diazonium salt of sulfanilic acid, nitrates, nitrate salts, organic nitrates, peroxides, and alkali metal super peroxides.; and the carbon black produced by the process described above.
- The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
- The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.
- Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
- Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
- Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
- Carbon blacks (CB) made with a particular surface chemistry can impart improved performance in rubber, composite, and other applications. Typically carbon black produced by plasma and other high temperature processes have performed poorly in rubber compounds in the past. However, when surface functionality can be controlled, carbon blacks with superior performance properties when compared to traditionally produced plasma blacks can be produced, e.g., even out performing some typical oil based furnace blacks.
- The performance can be improved, for example, through the creation of oxygen functional groups at the carbon surface. In the typical furnace process, functional groups can inherently exist at the surface, for example, due to the existence of a time-temperature profile that can be characterized as having the CB in contact with tail gas composed of water, hydrogen, carbon monoxide, carbon dioxide and various other gases. These gases can be in intimate contact with the CB while the CB is still at high temperature (e.g., about 600° C.) which can enable the formation of surface functional groups. Due to the lack of oxygen groups in the tail gas in a typical plasma process, surface functional groups will typically not form, and the material can have what is known as “dead surface”. This dead surface can be characterized as not having a substantial amount of water uptake when exposed to a range of relative humidity (RH) conditions (for example, from about 0% to about 80% RH).
- Controlled oxidation can place specific groups at the surface. For instance, the surface of furnace black might be comprised of 60:40 (mole equivalents) phenolic:carboxylic acid groups whereas with a controlled surface the ration could be comprised of 10:90 phenolic:carboxylic acid groups. The carboxylic acid groups will typically be more reactive to rubber or SBR (styrene butadiene rubber) and more likely to form what is known as “bound rubber”. A larger amount of bound rubber could result in lower vibration, hysteresis, treadwear, and/or higher reinforcement, in addition to other possible benefits such as increased vehicle miles per gallon (mpg).
- What is disclosed herein, is the control of the surface chemistry of the CB by improving such things as the reactor mixing, pelletizer additives and oxidation of the surface in the dryer through the introduction of air or other oxidizers to contact the product at temperature. Adding oxidizers to the reactor gasses could produce similar improvements and represent a part of what is described herein. Modification of the surface chemistry by changing the mixing so that the same surface area product forms at a different temperature; modifying the surface chemistry of the product by the use of additives to the pelletizer; modifying the surface chemistry of the product by the use of changing the gas phase chemistry in the dryer, and modifying the surface chemistry by changing the gas phase chemistry in the reactor and/or heat exchanger and/or degas vessel, are all included herein.
- Due to the combination of time-temperature profile and the atmosphere at such a time-temperature reaction, oxygen groups typically form at the surface of carbon black when made utilizing the traditional furnace process. The typical atmosphere or tail gas of a furnace reactor that burns oil and possesses a water quench can comprise the following components (according to Donnet's Carbon Black, t2nd Edition, pub. by Marcel Dekker, 1993, the disclosure of which is herein incorporated by reference (at page 46)).
-
TABLE 1 Tail Gas Compoent Volume Percent N2 61-67 CO2 3-5 CO2 11-15 H2 12-24 CH4 0.02-0.5 C2H4 0.02-0.5 - In addition to these components, water vapor is typically present at about 35% -45%. Elevated temperatures in air can cause the surface oxidation of carbon black where the temperatures can be as low as about 250° C.-400° C. (Carbon Black, Donnet, p.47). For the plasma black process with hydrogen quench, ideally there is zero oxygen present. This means that there will typically be no surface oxygen functional groups in the final product. There are many applications that benefit from having these oxygen function groups at the surface. In this way, the furnace black process can appear to have some advantage over a plasma black process. However, because the functional groups at the surface of a furnace black are there by happenstance, this material may not be fully optimized for any particular application. However, as described herein, with the plasma black process the option exits to fine tune the surface chemistry of the black to the exact parameters of the desired application. For the operators of the furnace black process to take advantage of this process, they would have to either surface modify the current non-ideal particles or heat treat (to the point of full oxygen removal) to start with a non-oxygenated surface and then treat with reactive moieties to obtain the more optimized surface.
- The following equilibrium is established (in the furnace black process), wherein the rate constant increases with increasing temperature. The pressure of the environment is also important. In a vacuum or atmosphere where continuous gas flow over the surface is present, the right-hand side of equation I will be heavily favored.
- For a pressurized system the left hand side of equation 1 will be favored. CO and CO2 are released from the surface at lower temperatures (about 250° C.-400° C.) and hydrogen is released at higher temperatures (about 800° C. and greater) where graphitization is taking place
- Again, if there is a flowing stream of inert gas or vacuum present, then the right hand side of equation 1 is favored and this can result in some amount of mass loss. Under pressure and in the correct atmosphere, the left hand side of equation 1 will be favored. Preferably the pressurization of the vessel would involve raising the vessel to greater than atmospheric pressure but typically less than 10 bar.
- The mixture of functional groups at the CB surface from the furnace process is simply the product as it is made. In that regard it is truly an uncontrolled, unoptimized product. The tailoring of the groups is just simple not easily doable with the furnace process. With the process described herein, it is possible to tailor the surface of the CB to the specific application. It is further possible to tailor the performance of the CB within the application. For example, if carboxylic acid groups increase the bound rubber content in SBR polymer composites, then the ability to control the surface characteristics of the CB could allow for the tuning of the amount of bound rubber and thus fine tune or reduce the amount of road noise, vibration, or even improve the in mpg of the tire based upon this improved quality.
- In the above example, the functional surface groups at the CB surface could be 50/50 carboxylic acid and phenolic as made similar to what is produced in a conventional furnace process, while the process described herein could allow for tailoring of the surface functional groups at 90:10, 80:20, 70:30. 60:40, 50:50. 40:60. 30:70. 20:80. or 10:90, for example. This does not exclude the possibility of even much more detailed tuning of the surface groups. Some, or even most, of these types of composites would not be accessible through furnace black, gas black, lamp black, thermal black, etc. technology. A more detailed surface composition could comprise epoxy, quinone, carboxylic acid, phenol, ether, anhydride, carbonyl, lactone, among other reactive groups at for instance a ratio of 5:5:35: 30:10: 5:5:5, for example.
- In addition to controlling the ratio of the surface composition, there is the additional dimension of the amount or density of surface functional groups on the CB. For instance the amount of functional groups on a typical furnace black could be one micromol/meter (m)2. While this has been used in the tire industry in the past, this is simply the amount that is obtained in a typically furnace black process. Through tuning the chemistry, pressure and temperature of the process described herein, a range of densities, for example, anywhere from 0 to 30 micromol/m2can be obtained. This fine tuning capability can allow for the direct control of the interfacial surface energy between the rubber and particle and also allows for optimal bonding between these materials. It can similarly tailor surface chemistry for superior performance in other applications, reducing viscosity build in inks, improving dispersability in paints, superior color development in masterbatches, and perhaps improved conductivity in plastics through superior dispersion. In each application, the chemistry can be tailored not just to an application, but to each compound or vehicle (liquid system) used within an application.
- Because the traditional furnace process doesn't allow for the control of these parameters, it could be advantageous to take a furnace black and treat the surface in the same fashion as the plasma blacks made by a typical plasma process, or any of the above techniques. Increasing the density of functional groups and changing the ratio of the groups present (through increasing the density) can improve the performance of traditional furnace and other process blacks. In this regard the furnace black can be better tuned for the final application.
- Three exemplary methods which can be used to treat the CB surfaces as described herein, can include, for example, the use of: 1—high temperatures and weak reagents; 2—low temperatures and strong reagents; 3—high temperatures and strong reagents. For the first situation, the CB can be preheated and then doused with gas and steam. The CB could be at room temperature or up to 400° C. when doused with reagent gases. A list of less reactive gases is given below: H2, CO, CO2, O2, water vapor. Nitrogen can also be present simply to control the amount of dousing. More reactive gases are listed below: N2O, NO2, ozone, ammonia, methyl amines, other general amines.
- More reactive ingredients for the functionalization of the surface can include peroxides such as H2O2, acids such as HNO3, persulfates, hypohalites, halites, halates , or perhalates, permanganates, bleach, which is a hypohalite, is a low-cost example of one of these reagents. Combinations of these reagents can yield especially strong reaction conditions, for example, nitric acid in combination with hydrogen peroxide or potassium permanganate with sulfuric acid.
- Included in the stronger reagents family are any diazonium salt-based methods. For instance, it may be advantageous to react the diazonium salt of sulfanilic acid with the CB surface in order to obtain sulfonate functionality. One skilled in this art could see how this general diazonium based strategy could be used to corporate a wide variety of functional groups at the surface. One advantage over the furnace black process is that the surface tuned by the methods described herein could have only the desired functionality and would not possess the inherent byproducts of the furnace process (e.g., random, uncontrolled deposition of oxygen groups at the surface).
- Any combination of the above could be used to design the optimum particle surface. One of the methods to treat the surface could be to treat in a pressurized vessel to optimize the results based on equation 1. Another method could be to add the reagents to the pelletizer and then dry at moderate temperatures (about 150° C.-250° C.). The latter method would be more amenable to stronger reagents listed above. However, small amounts of strong reagents in a pressurized vessel might also be employed. Optionally, the hydrogen from the degas step can be partially removed and the hydrogen in the pores remain. To this partially degassed CB, air can be added in such a way as to avoid explosive combinations of hydrogen and oxygen. Upon diffusion of oxygen into the pores of the CB and while the temperature is being elevated, the reaction of H2 and O2 can be facilitated in such a way as to provide localized heat to the CB surface. This could further enable reaction to take place to form oxygenated surface functional groups.
- For even greater control of the reaction at the surface, it might be desirable to douse the reactor, allow for diffusion of gaseous molecules/reagents and then raise the temperature or add a catalyst. The diffusion could be aided through the pressurization of the system. An example could be the following:1—degas H2 out of the system utilizing N2; 2—replace N2 with 50/50 CO/H2O; 3—system is inherently at about 250° C.; 4—allow for diffusion to occur at pressure (up to 10 min.); 5—ramp temperature to about 500° C. If heat transfer from pressurized reactor walls is slow, then alternative designs can be considered that would minimize the amount of space between reactor walls and the center of the CB mass. Another alternative in the case of slow diffusion of heat is to add a substance (reactive A) that will absorb to the surface of the CB followed by a second step of adding reactive B that will react exothermically with reactant A to provide a temperature activated surface and the final reactant. An example of this could be H2 and O2 to form H2O at between about 400° C. and 500° C. H2O would then proceed to react with the CB surface and provide oxygen functionality, or an intermediate between elemental hydrogen plus oxygen and the resulting water can react, e.g., an OH radical.
- The water spreading pressure (WSP) referred to below is taken from U.S. Pat. No. 8,501,148, the disclosure of which is herein incorporated by reference. Briefly, the mass increase is measured in a controlled atmosphere where the relative humidity is increased slowly over time. The increase is from 0 to 80% relative humidity and the WSP (πe) is determined as the following equation:
-
πe=RT/A∫0 PoH2O (moles/g) d ln P - Where R is the gas constant, T is the temperature, A is the N2 surface area (SA)—(ASTM D6556) of the sample and H2O is the amount of water adsorbed to the carbon surface at the various RH's. P is the partial pressure of water in the atmosphere and Po is the saturation pressure and g is gram. The equilibrium adsorption is measured at various discrete RH's and then the area under the curve is measured to yield the WSP value. Samples are measured at 25° C. using the 3Flex system from Micromeritics. The region being integrated is from 0 to saturation pressure. The d has it's normal indication of integrating at whatever incremental unit is after the d, i.e., integrating at changing natural log of pressure.
- Another method to obtain information as to the functionality at the surface is to perform titrations as documented by Boehm (Boehm, H P “Some Aspects of Surface Chemistry of Carbon Blacks and Other Carbons.” Carbon 1994, page 759), the disclosure of which is incorporated herein by reference. WSP is a good parameter to measure general hydrophilicity of CB, however WSP does not provide for the ratio of functional groups at the surface as can be measured through typical TPD, XPS, or other typical titration methods (Boehm).
- The process described herein is an in situ (in reactor) method of tuning the surface chemistry of CB to form ideal particles for the intended application. The method itself can also be employed outside of the reactor, however, optimal efficiencies, e.g., such as cost savings, can be obtained within the reactor. Dimensions such as WSP and density of groups at the surface are controlled. The ratios of the functional groups and the WSP tunability are of particular importance as this will enable performance in key applications such as the tire and rubber industry, among others. The implications are across all market segments which can be a crucial dimension in application performance.
- Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (9)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/229,608 US20170037253A1 (en) | 2015-08-07 | 2016-08-05 | Method of making carbon black |
| US18/778,707 US12497517B1 (en) | 2015-08-07 | 2024-07-19 | Method of making carbon black |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562202498P | 2015-08-07 | 2015-08-07 | |
| US15/229,608 US20170037253A1 (en) | 2015-08-07 | 2016-08-05 | Method of making carbon black |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/778,707 Continuation US12497517B1 (en) | 2015-08-07 | 2024-07-19 | Method of making carbon black |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170037253A1 true US20170037253A1 (en) | 2017-02-09 |
Family
ID=57983651
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/229,608 Pending US20170037253A1 (en) | 2015-08-07 | 2016-08-05 | Method of making carbon black |
| US18/778,707 Active US12497517B1 (en) | 2015-08-07 | 2024-07-19 | Method of making carbon black |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/778,707 Active US12497517B1 (en) | 2015-08-07 | 2024-07-19 | Method of making carbon black |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20170037253A1 (en) |
| EP (1) | EP3331821A4 (en) |
| KR (1) | KR20180094838A (en) |
| CN (2) | CN108350280A (en) |
| CA (1) | CA2995081C (en) |
| MX (1) | MX2018001612A (en) |
| WO (1) | WO2017027385A1 (en) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018165483A1 (en) | 2017-03-08 | 2018-09-13 | Monolith Materials, Inc. | Systems and methods of making carbon particles with thermal transfer gas |
| US10100200B2 (en) | 2014-01-30 | 2018-10-16 | Monolith Materials, Inc. | Use of feedstock in carbon black plasma process |
| US10138378B2 (en) | 2014-01-30 | 2018-11-27 | Monolith Materials, Inc. | Plasma gas throat assembly and method |
| US10370539B2 (en) | 2014-01-30 | 2019-08-06 | Monolith Materials, Inc. | System for high temperature chemical processing |
| US10618026B2 (en) | 2015-02-03 | 2020-04-14 | Monolith Materials, Inc. | Regenerative cooling method and apparatus |
| US20200305424A1 (en) * | 2019-04-01 | 2020-10-01 | Vulpes Agricultural Corp. | Bifunctional plant promoter and preparation thereof |
| US10808097B2 (en) | 2015-09-14 | 2020-10-20 | Monolith Materials, Inc. | Carbon black from natural gas |
| CN113292870A (en) * | 2021-05-31 | 2021-08-24 | 安徽德瑞新材料科技有限公司 | Processing technology of nanoscale insulating carbon black |
| US11149148B2 (en) | 2016-04-29 | 2021-10-19 | Monolith Materials, Inc. | Secondary heat addition to particle production process and apparatus |
| CN113652103A (en) * | 2021-07-09 | 2021-11-16 | 中国化学工业桂林工程有限公司 | Regeneration method of pyrolysis carbon black |
| US11304288B2 (en) | 2014-01-31 | 2022-04-12 | Monolith Materials, Inc. | Plasma torch design |
| US11453784B2 (en) | 2017-10-24 | 2022-09-27 | Monolith Materials, Inc. | Carbon particles having specific contents of polycylic aromatic hydrocarbon and benzo[a]pyrene |
| US11492496B2 (en) | 2016-04-29 | 2022-11-08 | Monolith Materials, Inc. | Torch stinger method and apparatus |
| CN115537044A (en) * | 2022-09-19 | 2022-12-30 | 青岛黑猫新材料研究院有限公司 | Modified pyrolysis carbon black and preparation method and application thereof |
| US11665808B2 (en) | 2015-07-29 | 2023-05-30 | Monolith Materials, Inc. | DC plasma torch electrical power design method and apparatus |
| US11760884B2 (en) | 2017-04-20 | 2023-09-19 | Monolith Materials, Inc. | Carbon particles having high purities and methods for making same |
| US11939477B2 (en) | 2014-01-30 | 2024-03-26 | Monolith Materials, Inc. | High temperature heat integration method of making carbon black |
| US11987712B2 (en) | 2015-02-03 | 2024-05-21 | Monolith Materials, Inc. | Carbon black generating system |
| US12030776B2 (en) | 2017-08-28 | 2024-07-09 | Monolith Materials, Inc. | Systems and methods for particle generation |
| US12119133B2 (en) | 2015-09-09 | 2024-10-15 | Monolith Materials, Inc. | Circular few layer graphene |
| US12378124B2 (en) | 2017-08-28 | 2025-08-05 | Monolith Materials, Inc. | Particle systems and methods |
| US12497517B1 (en) | 2015-08-07 | 2025-12-16 | Monolith Materials, Inc. | Method of making carbon black |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108774415A (en) * | 2018-07-20 | 2018-11-09 | 宁波德泰化学有限公司 | A kind of manufacturing method of energy conservation and environmental protection carbon black |
| CN109233350A (en) * | 2018-10-09 | 2019-01-18 | 乌海黑猫炭黑有限责任公司 | A kind of production method of the colour carbon black applied to chemical fibre |
| CN109796791A (en) * | 2019-04-18 | 2019-05-24 | 山东耐斯特炭黑有限公司 | A kind of production method of cable screen material conductive black |
| CN111410855A (en) * | 2019-12-31 | 2020-07-14 | 宁波德泰化学有限公司 | Preparation method of high-surface-activity/high-hydrophilicity dispersion type carbon black |
| CN112724711A (en) * | 2021-01-11 | 2021-04-30 | 北京化工大学 | Preparation method of high-pigment carbon black |
| CN112940542B (en) * | 2021-01-21 | 2022-02-25 | 山东联科科技股份有限公司 | Production method of carbon black with electromagnetic shielding performance |
| CN113150579A (en) * | 2021-03-24 | 2021-07-23 | 茂名环星新材料股份有限公司 | Method for removing impurities in carbon black and application thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140000488A1 (en) * | 2011-03-10 | 2014-01-02 | Tokai Carbon Co., Ltd. | Method for producing aqueous dispersion of surface-treated carbon black particles and aqueous dispersion of surface-treated carbon black particles |
| WO2015051893A1 (en) * | 2013-10-09 | 2015-04-16 | Ralf Spitzl | Method and device for the plasma-catalytic conversion of materials |
| US20150252168A1 (en) * | 2014-03-05 | 2015-09-10 | Penn Color, Inc. | Thermally-conductive salt-containing particles of carbon black and metal |
Family Cites Families (451)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA830378A (en) | 1969-12-23 | E. Jordan Merrill | Plasma process for upgrading carbon | |
| US709868A (en) | 1900-03-09 | 1902-09-30 | Atmospheric Products Company | Apparatus for subjecting gases to high-tension discharges. |
| US1339225A (en) | 1918-04-25 | 1920-05-04 | James R Rose | Process of manufacturing gaseous fuel |
| US1597277A (en) | 1922-11-10 | 1926-08-24 | Jay J Jakowsky | Process and apparatus for manufacture of carbon-black unsaturated gases and hydrogen |
| US1536612A (en) | 1923-02-15 | 1925-05-05 | Goodyear Tire & Rubber | Method of producing carbon black |
| US2002003A (en) | 1930-09-20 | 1935-05-21 | Ig Farbenindustrie Ag | Production of acetylene and carbon black |
| US1931800A (en) | 1931-06-13 | 1933-10-24 | Electroblacks Inc | Apparatus for effecting dissociation or other reaction of organic liquids |
| GB395893A (en) | 1931-09-19 | 1933-07-27 | Carlo Padovani | Improved process for the simultaneous production, from methane, of hydrogen, lamp black and light, liquid hydrocarbons |
| US2062358A (en) | 1932-09-21 | 1936-12-01 | Standard Oil Dev Co | Carbon black manufacture |
| US2039312A (en) | 1935-03-15 | 1936-05-05 | Joshua H Goldman | Reenforced carded web |
| US2393106A (en) | 1942-12-08 | 1946-01-15 | Columbian Carbon | Furnace |
| US2557143A (en) | 1945-03-19 | 1951-06-19 | Percy H Royster | Process for producing carbon black |
| US2603699A (en) | 1946-02-01 | 1952-07-15 | John M Roper | Approach light |
| US2572851A (en) | 1947-01-06 | 1951-10-30 | James E Hughes | Production of carbon by electrical discharge |
| US2603669A (en) | 1948-10-26 | 1952-07-15 | Union Carbide & Carbon Corp | Large electrode with thermal stress relief |
| US2616842A (en) | 1951-01-13 | 1952-11-04 | Sheer Charles | Arc process for the production of fume |
| US2897071A (en) | 1953-06-30 | 1959-07-28 | Ethyl Corp | Gasoline fuels |
| US2785964A (en) | 1953-08-17 | 1957-03-19 | Phillips Petroleum Co | Process, apparatus, and system for producing, agglomerating, and collecting carbon black |
| US2850403A (en) | 1954-04-05 | 1958-09-02 | Cabot Godfrey L Inc | Carbon black pellets and a process for their manufacture |
| US2851403A (en) | 1955-01-03 | 1958-09-09 | Phillips Petroleum Co | Multiple-level tcc catalyst stripping |
| US2897869A (en) | 1957-02-15 | 1959-08-04 | Dow Corning | Siloxane rubber tire |
| US2951143A (en) | 1958-09-25 | 1960-08-30 | Union Carbide Corp | Arc torch |
| FR1249094A (en) | 1959-02-24 | 1960-12-23 | Hawker Siddeley Nuclear Power | Improvements relating to electric arc devices |
| US3009783A (en) | 1959-12-04 | 1961-11-21 | Sheer Korman Associates | Production of carbon black |
| US3073769A (en) | 1960-07-07 | 1963-01-15 | Du Pont | Process for making acetylene |
| US3127536A (en) | 1960-12-23 | 1964-03-31 | Union Carbide Corp | Magnetically-stabilized low pressure arc apparatus and method of operation |
| GB987498A (en) | 1961-02-14 | 1965-03-31 | Ashland Oil Inc | Preparation of carbon black |
| US3309780A (en) | 1962-04-09 | 1967-03-21 | Phillips Petroleum Co | Process and apparatus for drying wet particulate solids |
| US3253890A (en) | 1962-07-05 | 1966-05-31 | Columbian Carbon | Manufacture of carbon black |
| US3288696A (en) | 1963-03-12 | 1966-11-29 | Ashland Oil Inc | Production of carbon black |
| US3342554A (en) * | 1963-06-20 | 1967-09-19 | Cabot Corp | Carbon black product and method of preparation thereof |
| US3331664A (en) | 1964-03-02 | 1967-07-18 | Cabot Corp | Method for producing carbon black |
| US3409403A (en) | 1964-10-05 | 1968-11-05 | Phillips Petroleum Co | Plasma preparation of carbon black |
| US3344051A (en) | 1964-12-07 | 1967-09-26 | Continental Carbon Co | Method for the production of carbon black in a high intensity arc |
| US3307923A (en) | 1964-12-09 | 1967-03-07 | Continental Carbon Co | Process and apparatus for making carbon black |
| US3453488A (en) | 1965-05-20 | 1969-07-01 | Xerox Corp | Plasma arc electrodes |
| US3793438A (en) | 1966-01-03 | 1974-02-19 | Phillips Petroleum Co | Method for production of carbon black |
| US3308164A (en) | 1966-02-23 | 1967-03-07 | Hooker Chemical Corp | 1, 3, 5-tricyclohexylbenzene monohydroperoxide |
| US3408164A (en) | 1966-07-08 | 1968-10-29 | Phillips Petroleum Co | Plasma treatment of carbon blacks |
| US3431074A (en) | 1966-11-15 | 1969-03-04 | Cabot Corp | Process for the production of highly amorphous carbon black |
| US3420632A (en) | 1966-11-18 | 1969-01-07 | Phillips Petroleum Co | Production of carbon black using plasma-heated nitrogen |
| US3464793A (en) | 1966-12-27 | 1969-09-02 | Cabot Corp | Process for making carbon black from co |
| US3619140A (en) | 1967-01-03 | 1971-11-09 | Cabot Corp | Process for making carbon black |
| JPS5021983B1 (en) | 1967-03-24 | 1975-07-26 | ||
| CA928936A (en) | 1968-12-30 | 1973-06-26 | Phillips Petroleum Company | Large size carbon black producing process and product |
| US3619138A (en) | 1969-01-23 | 1971-11-09 | Phillips Petroleum Co | Carbon-black process |
| DE1928757C3 (en) | 1969-06-06 | 1978-11-23 | Messer Griesheim Gmbh, 6000 Frankfurt | Circuit arrangement for stabilizing and igniting welding arcs |
| US3981659A (en) | 1970-06-17 | 1976-09-21 | Cities Service Company | Apparatus for drying carbon black pellets |
| DE2122800A1 (en) | 1970-08-03 | 1971-12-02 | Cabot Corp., Boston, Mass. (V.St.A.) | Process for the production of carbon black |
| US3725103A (en) | 1971-03-10 | 1973-04-03 | Cabot Corp | Carbon black pigments |
| IL38825A (en) | 1971-03-10 | 1975-02-10 | Cabot Corp | Carbon black pigments and rubber compositions |
| US3673375A (en) | 1971-07-26 | 1972-06-27 | Technology Applic Services Cor | Long arc column plasma generator and method |
| NL179488C (en) | 1971-09-23 | Degussa | METHOD FOR PREPARING WET GRAINED SOOT. | |
| US3933434A (en) | 1972-07-13 | 1976-01-20 | Edwin Matovich | High temperature chemical reactor |
| GB1400266A (en) | 1972-10-19 | 1975-07-16 | G N I Energet I Im G M Krzhizh | Method of producing carbon black by pyrolysis of hydrocarbon stock materials in plasma |
| US4019896A (en) | 1972-10-25 | 1977-04-26 | Appleby Vernon L | Trash disposal system |
| US3981654A (en) | 1973-03-06 | 1976-09-21 | Owens-Corning Fiberglas Corporation | Apparatus for producing fiber reinforced organic foam |
| JPS5441685B2 (en) | 1973-07-02 | 1979-12-10 | ||
| US3922335A (en) | 1974-02-25 | 1975-11-25 | Cabot Corp | Process for producing carbon black |
| US3959008A (en) | 1974-06-24 | 1976-05-25 | Cities Service Company | Carbon black |
| US3998934A (en) | 1974-07-03 | 1976-12-21 | Phillips Petroleum Company | Production of carbon black |
| US4035336A (en) | 1974-08-08 | 1977-07-12 | Cabot Corporation | Carbon black pigments and rubber compositions containing the same |
| DE2451157C3 (en) | 1974-10-28 | 1983-05-19 | Aluminium Norf Gmbh, 4040 Neuss | Process for cleaning exhaust air produced in large quantities during the operation of rolling stands |
| IN143377B (en) | 1975-06-30 | 1977-11-12 | Vnii Tekhn | |
| US4199545A (en) | 1975-08-20 | 1980-04-22 | Thagard Technology Company | Fluid-wall reactor for high temperature chemical reaction processes |
| US4088741A (en) | 1976-03-03 | 1978-05-09 | J. M. Huber Corporation | Carbon black process |
| US4075160A (en) | 1976-04-30 | 1978-02-21 | Phillips Petroleum Company | Non-carcinogenic carbon black |
| US4138471A (en) | 1976-06-01 | 1979-02-06 | J. M. Huber Corporation | Process for reducing the polycyclic aromatic hydrocarbon content of carbon black |
| US4217132A (en) | 1977-09-27 | 1980-08-12 | Trw Inc. | Method for in-flight combustion of carbonaceous fuels |
| NO141183C (en) | 1977-12-06 | 1980-01-23 | Sintef | PLASMA TORCH. |
| DE2827872C2 (en) | 1978-06-24 | 1986-02-13 | Degussa Ag, 6000 Frankfurt | Process for the production of furnace black |
| US4404178A (en) | 1978-08-03 | 1983-09-13 | Phillips Petroleum Company | Apparatus and method for producing carbon black |
| DE2846352A1 (en) | 1978-10-25 | 1980-05-08 | Hoechst Ag | METHOD AND DEVICE FOR INCREASING THE GRADE GRADE OF RUSSIANS AND THE USE OF THESE RUSSIANS |
| US4317001A (en) | 1979-02-23 | 1982-02-23 | Pirelli Cable Corp. | Irradiation cross-linked polymeric insulated electric cable |
| US4258770A (en) | 1979-08-22 | 1981-03-31 | The Firestone Tire & Rubber Company | Cured rubber skim stock compositions having improved metal adhesion and metal adhesion retention |
| US4472172A (en) | 1979-12-03 | 1984-09-18 | Charles Sheer | Arc gasification of coal |
| US4282199A (en) | 1980-02-25 | 1981-08-04 | J. M. Huber Corporation | Carbon black process |
| US4372937A (en) | 1980-04-18 | 1983-02-08 | Phillips Petroleum Company | Waste heat recovery |
| US4431624A (en) | 1981-04-24 | 1984-02-14 | Phillips Petroleum Company | Feedstock nozzle and use in carbon black process |
| US4460558A (en) | 1981-10-02 | 1984-07-17 | Phillips Petroleum Company | Recovery of carbon black |
| US4452771A (en) | 1982-09-29 | 1984-06-05 | The United States Of America As Represented By The United States Department Of Energy | Carbon particles |
| US4597776A (en) | 1982-10-01 | 1986-07-01 | Rockwell International Corporation | Hydropyrolysis process |
| JPS5987800A (en) | 1982-11-12 | 1984-05-21 | 工業技術院長 | Method and device for generating jit plasma |
| US4678888A (en) | 1983-01-21 | 1987-07-07 | Plasma Energy Corporation | Power circuit apparatus for starting and operating plasma arc |
| NO162440C (en) | 1983-03-15 | 1989-12-27 | Skf Steel Eng Ab | DEVICE FOR ELECTRIC HEATING OF GASES. |
| US4577461A (en) | 1983-06-22 | 1986-03-25 | Cann Gordon L | Spacecraft optimized arc rocket |
| US4755371A (en) | 1983-08-08 | 1988-07-05 | Columbian Chemicals Company | Method for producing carbon black |
| US4765964A (en) | 1983-09-20 | 1988-08-23 | Phillips Petroleum Company | Carbon black reactor having a reactor throat |
| CN85109166A (en) | 1984-02-07 | 1987-04-29 | 联合碳化公司 | Improve the recovery of hydrogen by exhaust jet stream |
| US4553981A (en) | 1984-02-07 | 1985-11-19 | Union Carbide Corporation | Enhanced hydrogen recovery from effluent gas streams |
| US4689199A (en) | 1984-09-27 | 1987-08-25 | Aluminum Company Of America | Process for adding material to molten media |
| CN85201622U (en) | 1985-05-07 | 1986-07-16 | 中国科学院声学研究所 | Separating electrode annulus vibrator of piezo-electric energy transducer |
| US4594381A (en) | 1985-06-05 | 1986-06-10 | The Firestone Tire & Rubber Company | Method for improved metal adhesion and metal adhesion retention |
| EP0209800A3 (en) | 1985-07-16 | 1989-08-30 | Bera Anstalt | Process for preparing electrically conducting carbon black with a poor ash content |
| NO157876C (en) | 1985-09-23 | 1988-06-01 | Sintef | METHOD AND APPARATUS FOR IMPLEMENTING HEAT TREATMENT. |
| US4693808A (en) | 1986-06-16 | 1987-09-15 | Shell Oil Company | Downflow fluidized catalytic cranking reactor process and apparatus with quick catalyst separation means in the bottom thereof |
| US4766287A (en) | 1987-03-06 | 1988-08-23 | The Perkin-Elmer Corporation | Inductively coupled plasma torch with adjustable sample injector |
| US5427762A (en) | 1987-05-27 | 1995-06-27 | Hydrocarb Corporation | Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol |
| JPS6411074A (en) | 1987-07-06 | 1989-01-13 | Komatsu Mfg Co Ltd | Plasma nozzle torch device |
| US4988493A (en) | 1987-11-04 | 1991-01-29 | Witco Corporation | Process for producing improved carbon blacks |
| US4864096A (en) | 1987-12-18 | 1989-09-05 | Westinghouse Electric Corp. | Transfer arc torch and reactor vessel |
| US4845334A (en) | 1988-01-26 | 1989-07-04 | Oregon Metallurgical Corporation | Plasma furnace inert gas recycling system and process |
| US5138959A (en) | 1988-09-15 | 1992-08-18 | Prabhakar Kulkarni | Method for treatment of hazardous waste in absence of oxygen |
| US5105123A (en) | 1988-10-27 | 1992-04-14 | Battelle Memorial Institute | Hollow electrode plasma excitation source |
| CA2001237A1 (en) | 1988-10-27 | 1990-04-27 | Nathan E. Ballou | Hollow electrode plasma excitation source |
| US4977305A (en) | 1989-04-03 | 1990-12-11 | L-Tec Company | System for low voltage plasma arc cutting |
| US5602298A (en) | 1989-04-04 | 1997-02-11 | Advanced Waste Treatment Technology, Inc. | Method and apparatus for converting organic material into hydrogen and carbon by photodecomposition |
| ZA908290B (en) | 1989-10-20 | 1991-09-25 | Hydrocarb Corp | Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol |
| US5039312A (en) | 1990-02-09 | 1991-08-13 | The United States Of America As Represented By The Secretary Of The Interior | Gas separation with rotating plasma arc reactor |
| US5046145A (en) | 1990-04-20 | 1991-09-03 | Hydro-Quebec | Improved arc reactor with advanceable electrode |
| SE469754B (en) | 1990-05-14 | 1993-09-06 | Kanthal Ab | OVEN BEFORE CRACKING THE PULP |
| CA2082812A1 (en) | 1990-05-15 | 1991-11-16 | Peter Vierboom | A dc switched arc torch power supply |
| US5045667A (en) | 1990-06-06 | 1991-09-03 | Rockwell International Corporation | Manual keyhole plasma arc welding system |
| DE4023537A1 (en) | 1990-07-25 | 1992-01-30 | Degussa | CHEMICALLY MODIFIED ROUGS WITH ORGANOSILICIUM COMPOUNDS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE |
| WO1992004415A1 (en) | 1990-08-29 | 1992-03-19 | Cabot Corporation | Improved performance carbon blacks |
| US5126501A (en) | 1991-01-23 | 1992-06-30 | General Tire, Inc. | Elastomeric compositions and tire belt structure |
| US5147998A (en) | 1991-05-29 | 1992-09-15 | Noranda Inc. | High enthalpy plasma torch |
| US5725616A (en) | 1991-12-12 | 1998-03-10 | Kvaerner Engineering A.S. | Method for combustion of hydrocarbons |
| NO176300C (en) | 1991-12-12 | 1995-03-08 | Kvaerner Eng | Plasma burner device for chemical processes |
| NO174180C (en) | 1991-12-12 | 1994-03-23 | Kvaerner Eng | Burner insertion tubes for chemical processes |
| NO174471C (en) | 1991-12-12 | 1994-05-11 | Kvaerner Eng | Method of preventing and removing fouling by pyrolytic cleavage of hydrocarbons |
| NO174450C (en) | 1991-12-12 | 1994-05-04 | Kvaerner Eng | Plasma burner device for chemical processes |
| NO175718C (en) | 1991-12-12 | 1994-11-23 | Kvaerner Eng | Process for cleavage of hydrocarbons and apparatus for use in the process |
| JPH05226096A (en) | 1992-02-17 | 1993-09-03 | Fujitsu Ltd | Plasma torch and plasma jet generation method |
| JP3535157B2 (en) | 1992-03-05 | 2004-06-07 | キャボット コーポレイション | Manufacturing method of carbon black and new carbon black |
| NO176522C (en) | 1992-04-07 | 1995-04-19 | Kvaerner Eng | Process for the production of carbon with defined physical properties and apparatus for carrying out the process |
| NO176968C (en) | 1992-04-07 | 1995-06-28 | Kvaerner Eng | Carbon production plant |
| NO176885C (en) | 1992-04-07 | 1995-06-14 | Kvaerner Eng | Use of pure carbon in the form of carbon particles as anode material for aluminum production |
| NO175904C (en) | 1992-04-07 | 1994-12-28 | Kvaerner Eng | Method of Reducing Electrode Consumption in Plasma Burners |
| US5222448A (en) | 1992-04-13 | 1993-06-29 | Columbia Ventures Corporation | Plasma torch furnace processing of spent potliner from aluminum smelters |
| WO1993023331A1 (en) | 1992-05-15 | 1993-11-25 | Lane David R Iii | Plasma method for the production of fullerenes |
| WO1994008747A1 (en) | 1992-10-13 | 1994-04-28 | Advanced Welding Technologies, Inc. | Drill pipe hardband removal and build up |
| US5352289A (en) | 1992-12-18 | 1994-10-04 | Cabot Corporation | Low ash carbon blacks |
| NO176969C (en) | 1992-12-23 | 1995-06-28 | Kvaerner Eng | Process for controlling the production of carbon and hydrogen by pyrolysis of hydrocarbons, and apparatus for use in the process |
| FR2701267B1 (en) | 1993-02-05 | 1995-04-07 | Schwob Yvan | Process for the production of carbonaceous soot with defined microstructures. |
| JP2858198B2 (en) | 1993-04-19 | 1999-02-17 | 三菱電線工業株式会社 | Semiconductor manufacturing equipment seal |
| JP2526782B2 (en) | 1993-05-14 | 1996-08-21 | 日本電気株式会社 | Carbon fiber and its manufacturing method |
| US5476826A (en) * | 1993-08-02 | 1995-12-19 | Gas Research Institute | Process for producing carbon black having affixed nitrogen |
| GB9319470D0 (en) | 1993-09-21 | 1993-11-03 | Nat Grid Comp Plc | Electrical changeover switching |
| JPH07307165A (en) | 1994-05-11 | 1995-11-21 | Sumitomo Chem Co Ltd | Lithium secondary battery |
| US5673285A (en) | 1994-06-27 | 1997-09-30 | Electro-Pyrolysis, Inc. | Concentric electrode DC arc systems and their use in processing waste materials |
| US5611947A (en) | 1994-09-07 | 1997-03-18 | Alliant Techsystems, Inc. | Induction steam plasma torch for generating a steam plasma for treating a feed slurry |
| US5951960A (en) | 1994-11-07 | 1999-09-14 | Kvaerner Engineering, As | Electrode consumption in plasma torches |
| IL116377A (en) | 1994-12-15 | 2003-05-29 | Cabot Corp | Reaction of carbon black with diazonium salts, resultant carbon black products and their uses |
| US5578647A (en) | 1994-12-20 | 1996-11-26 | Board Of Regents, The University Of Texas System | Method of producing off-gas having a selected ratio of carbon monoxide to hydrogen |
| JP3419123B2 (en) | 1994-12-27 | 2003-06-23 | 三菱化学株式会社 | Carbon black for printing ink |
| US5749937A (en) | 1995-03-14 | 1998-05-12 | Lockheed Idaho Technologies Company | Fast quench reactor and method |
| US7576296B2 (en) | 1995-03-14 | 2009-08-18 | Battelle Energy Alliance, Llc | Thermal synthesis apparatus |
| US5725650A (en) | 1995-03-20 | 1998-03-10 | Cabot Corporation | Polyethylene glycol treated carbon black and compounds thereof |
| JPH08319552A (en) | 1995-05-22 | 1996-12-03 | Nagata Tekko Kk | Plasma torch and plasma thermal spraying device |
| NO302242B1 (en) | 1995-07-07 | 1998-02-09 | Kvaerner Eng | Process for achieving an increased arrangement of the nanostructure in a carbon material |
| US6495115B1 (en) | 1995-09-12 | 2002-12-17 | Omg Americas, Inc. | Method to produce a transition metal carbide from a partially reduced transition metal compound |
| TW312890B (en) | 1995-10-20 | 1997-08-11 | Eni Inc | |
| US6585949B1 (en) | 1996-04-03 | 2003-07-01 | Cabot Corporation | Heat exchanger |
| JPH09316645A (en) | 1996-05-27 | 1997-12-09 | Komatsu Ltd | Surface treatment apparatus and surface treatment method using the same |
| CA2209687A1 (en) | 1996-09-13 | 1998-03-13 | Friedrich Visel | Rubber composition and tire having tread thereof |
| AU4737997A (en) * | 1996-09-25 | 1998-04-17 | Cabot Corporation | Silica coated carbon blacks |
| US6357385B1 (en) | 1997-01-29 | 2002-03-19 | Tadahiro Ohmi | Plasma device |
| US7462343B2 (en) | 1997-03-25 | 2008-12-09 | Kvafrner Technology And Research Ltd. | Micro-domain graphitic materials and method for producing the same |
| NO313839B1 (en) | 1997-03-25 | 2002-12-09 | Kvaerner Technology & Res Ltd | Carbon material comprising a mixture of graphitic microdomains, as well as microconical graphitic material |
| FR2764280B1 (en) | 1997-06-06 | 1999-07-16 | Yvan Alfred Schwob | PROCESS FOR THE MANUFACTURE OF CARBON 60 |
| CN1260305C (en) | 1997-08-28 | 2006-06-21 | 三菱化学株式会社 | carbon black |
| JPH11123562A (en) | 1997-10-15 | 1999-05-11 | Komatsu Ltd | Outer cap for arc spot welding and welding torch using this cap |
| DE19807224A1 (en) | 1998-02-20 | 1999-08-26 | Linde Ag | Removal of impurities from carburation gas from hydrocarbon reformer, used for carbon monoxide conversion |
| US6188187B1 (en) | 1998-08-07 | 2001-02-13 | Nidec America Corporation | Apparatus and method of regulating the speed of a DC brushless motor |
| US6058133A (en) | 1998-08-19 | 2000-05-02 | Ucar Carbon Company Inc. | Graphite electrodes incorporating stress-relieving slots |
| US6471937B1 (en) | 1998-09-04 | 2002-10-29 | Praxair Technology, Inc. | Hot gas reactor and process for using same |
| NO311622B1 (en) | 1998-09-25 | 2001-12-17 | Kvaerner Technology & Res Ltd | Use of carbon medium for hydrogen storage |
| US6277350B1 (en) | 1998-11-04 | 2001-08-21 | Sid Richardson Carbon, Ltd. | Carbon black and rubber products and methods of forming such products |
| US6602920B2 (en) | 1998-11-25 | 2003-08-05 | The Texas A&M University System | Method for converting natural gas to liquid hydrocarbons |
| ATE317876T1 (en) | 1998-12-04 | 2006-03-15 | Cabot Corp | METHOD FOR PRODUCING FURNACE SOOT |
| US6193811B1 (en) | 1999-03-03 | 2001-02-27 | Applied Materials, Inc. | Method for improved chamber bake-out and cool-down |
| JP3636623B2 (en) | 1999-10-04 | 2005-04-06 | 電気化学工業株式会社 | Resin composition for cable and cable |
| EP1043731B1 (en) | 1999-03-29 | 2004-10-20 | Denki Kagaku Kogyo Kabushiki Kaisha | Carbon black, method for its preparation and its applications |
| JP2001085014A (en) | 1999-09-13 | 2001-03-30 | Sanyo Electric Co Ltd | Lithium secondary battery |
| EP1088854A3 (en) * | 1999-10-01 | 2002-01-02 | Bridgestone Corporation | Modified carbon black, process for producing the modified carbon black, rubber composition and pneumatic tire |
| JP2001164053A (en) | 1999-10-01 | 2001-06-19 | Bridgestone Corp | Modified carbon black, method for producing the carbon black, rubber composition and tire |
| DE60025931T2 (en) | 1999-11-04 | 2006-08-31 | Hoeganaes Corp. | PREPARATION METHOD FOR IMPROVED METALLURGICAL POWDER COMPOSITION AND USE OF THE SAME |
| AU2906401A (en) | 1999-12-21 | 2001-07-03 | Bechtel Bwxt Idaho, Llc | Hydrogen and elemental carbon production from natural gas and other hydrocarbons |
| EP1257376B1 (en) | 2000-02-10 | 2004-01-21 | Tetronics Limited | Plasma arc reactor for the production of fine powders |
| JP2001253974A (en) | 2000-03-09 | 2001-09-18 | Bridgestone Corp | Pneumatic tire for high-speed running and heavy-duty use |
| US6644011B2 (en) | 2000-03-24 | 2003-11-11 | Cheng Power Systems, Inc. | Advanced Cheng Combined Cycle |
| FR2807610B1 (en) | 2000-04-11 | 2002-10-11 | Giat Ind Sa | PLASMA TORCH INCORPORATING A REACTIVE PRIMING FUSE AND IGNITION TUBE INCLUDING SUCH A TORCH |
| US6441084B1 (en) | 2000-04-11 | 2002-08-27 | Equistar Chemicals, Lp | Semi-conductive compositions for wire and cable |
| US6380507B1 (en) | 2000-04-25 | 2002-04-30 | Wayne F. Childs | Apparatus for feeding waste matter into a plasma arc furnace to produce reusable materials |
| JP4772254B2 (en) | 2000-05-31 | 2011-09-14 | 昭和電工株式会社 | Conductive fine carbon composite powder, catalyst for polymer electrolyte fuel cell and fuel cell |
| US6780388B2 (en) | 2000-05-31 | 2004-08-24 | Showa Denko K.K. | Electrically conducting fine carbon composite powder, catalyst for polymer electrolyte fuel battery and fuel battery |
| TW518913B (en) | 2000-07-03 | 2003-01-21 | Asml Netherlands Bv | Radiation source, lithographic apparatus, and semiconductor device manufacturing method |
| AU2001286391A1 (en) | 2000-07-05 | 2002-01-14 | Crt Holdings, Inc. | An electromagnetic radiation-initiated plasma reactor |
| ES2254089T3 (en) | 2000-09-19 | 2006-06-16 | Timcal S.A. | DEVICE AND METHOD FOR CONVERTING FOOD MATERIALS THAT CONTAIN CARBON IN MATERIALS CONTAINING CARBON THAT HAVE A DEFINED STRUCTURE. |
| JP4129970B2 (en) | 2000-10-17 | 2008-08-06 | 東海カーボン株式会社 | Manufacturing method of high structure carbon black |
| FR2815888B1 (en) | 2000-10-27 | 2003-05-30 | Air Liquide | PLASMA GAS TREATMENT DEVICE |
| MXPA03005333A (en) | 2000-12-15 | 2004-12-03 | Fed Recycling Technologies Inc | Apparatus and method for recovering carbon black from pyrolysis byproducts. |
| JP2002203551A (en) | 2000-12-28 | 2002-07-19 | Gs-Melcotec Co Ltd | Non-aqueous electrolyte battery |
| ITRM20010001A1 (en) | 2001-01-03 | 2002-07-03 | Micron Technology Inc | LOW VOLTAGE FLASH MEMORY DETECTION CIRCUIT. |
| US20020141476A1 (en) | 2001-03-28 | 2002-10-03 | William Varela | Electrode joint |
| US6442950B1 (en) | 2001-05-23 | 2002-09-03 | Macronix International Co., Ltd. | Cooling system of chamber with removable liner |
| US7622693B2 (en) | 2001-07-16 | 2009-11-24 | Foret Plasma Labs, Llc | Plasma whirl reactor apparatus and methods of use |
| CA2353752A1 (en) | 2001-07-25 | 2003-01-25 | Precisionh2 Inc. | Production of hydrogen and carbon from natural gas or methane using barrier discharge non-thermal plasma |
| WO2003014018A1 (en) | 2001-08-06 | 2003-02-20 | Osaka Gas Company Limited | Carbon material, gas occluding material comprising said carbon material and method for storing gas using said gas occluding material |
| FR2834854B1 (en) | 2002-01-11 | 2004-05-28 | Thales Sa | TATTOO DECODING METHOD AND SYSTEM |
| US7033551B2 (en) | 2002-01-23 | 2006-04-25 | Battelle Energy Alliance, Llc | Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids |
| US7241334B2 (en) | 2002-05-23 | 2007-07-10 | Columbian Chemicals Company | Sulfonated carbonaceous materials |
| US6955707B2 (en) | 2002-06-10 | 2005-10-18 | The Boc Group, Inc. | Method of recycling fluorine using an adsorption purification process |
| MY139220A (en) | 2002-07-19 | 2009-08-28 | Columbian Chem | Carbon black sampling for particle surf ace area measurement using laser-induced incandescence and reactor process control based thereon |
| ATE330327T1 (en) | 2002-07-23 | 2006-07-15 | Iplas Gmbh | PLASMA REACTOR FOR CARRYING OUT GAS REACTIONS AND METHOD FOR THE PLASMA-ASSISTED CONVERSION OF GASES |
| CN1398780A (en) | 2002-08-06 | 2003-02-26 | 中国科学院山西煤炭化学研究所 | Hydrocarbon cracking process and apparatus for producing carbon black and hydrogen |
| US20040071626A1 (en) | 2002-10-09 | 2004-04-15 | Smith Thomas Dale | Reactor and method to produce a wide range of carbon blacks |
| CN100450603C (en) | 2002-10-25 | 2009-01-14 | 柏克德Bwxt爱达荷有限责任公司 | Apparatus and method for thermal synthesis |
| US20040081862A1 (en) | 2002-10-28 | 2004-04-29 | Herman Gregory S. | Fuel cells using plasma |
| US7201944B2 (en) | 2002-12-18 | 2007-04-10 | Bridgestone Firestone North American Tire, Llc | Rubber compositions and articles thereof having improved metal adhesion and metal adhesion retention with bright steel |
| CN100473601C (en) | 2003-01-23 | 2009-04-01 | 佳能株式会社 | Method for producing nano-carbon materials |
| WO2005003668A2 (en) | 2003-01-28 | 2005-01-13 | Advanced Ceramics Research, Inc. | Microchannel heat exchangers and methods of manufacturing the same |
| JP3997930B2 (en) | 2003-02-27 | 2007-10-24 | 富士ゼロックス株式会社 | Carbon nanotube manufacturing apparatus and manufacturing method |
| FR2852541B1 (en) | 2003-03-18 | 2005-12-16 | Air Liquide | PROCESS FOR PLASMA CUTTING WITH DOUBLE GAS FLOW |
| DE10312494A1 (en) | 2003-03-20 | 2004-10-07 | Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) | Carbon nanostructures and methods of making nanotubes, nanofibers, and carbon-based nanostructures |
| JP2004300334A (en) | 2003-03-31 | 2004-10-28 | Osaka Gas Co Ltd | Method for producing carbon black |
| DE10318527A1 (en) | 2003-04-24 | 2004-11-18 | Degussa Ag | Process for the production of furnace carbon black |
| KR100545897B1 (en) | 2003-04-29 | 2006-01-24 | 한국기계연구원 | Ultrafine TiC- Transition Metal Composite Powder Manufacturing Method |
| US7056487B2 (en) | 2003-06-06 | 2006-06-06 | Siemens Power Generation, Inc. | Gas cleaning system and method |
| US7279655B2 (en) | 2003-06-11 | 2007-10-09 | Plasmet Corporation | Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production |
| JP4746986B2 (en) | 2003-06-20 | 2011-08-10 | 日本碍子株式会社 | Plasma generating electrode, plasma generating apparatus, and exhaust gas purification apparatus |
| CN100433263C (en) | 2003-06-25 | 2008-11-12 | 积水化学工业株式会社 | Apparatus and method for surface treatment, such as plasma treatment |
| EP1666543B1 (en) | 2003-08-05 | 2012-01-11 | Mitsubishi Chemical Corporation | Carbon black |
| US7294314B2 (en) | 2003-09-08 | 2007-11-13 | Graham Robert G | Heat exchangers with novel ball joints and assemblies and processes using such heat exchangers |
| KR20060123120A (en) | 2003-09-18 | 2006-12-01 | 콜롬비안케미컬스컴파니 | Heat-Modified Carbon Black for Various Types of Applications and Processes and Methods of Manufacturing the Same |
| US20050063892A1 (en) | 2003-09-18 | 2005-03-24 | Deepak Tandon | Thermally modified carbon blacks for various type applications and a process for producing same |
| US7534276B2 (en) | 2003-11-18 | 2009-05-19 | National Institute For Strategic Technology Acquisition And Commercialization | In-situ gasification of soot contained in exothermically generated syngas stream |
| US20050123468A1 (en) | 2003-12-04 | 2005-06-09 | Mishra Ghanashyam S. | Reactor for producing low surface area high/low structure carbon black and simultaneously minimizing the formation of Grit |
| JP2005235709A (en) | 2004-02-23 | 2005-09-02 | Nippon Steel Corp | Plasma torch structure |
| JP4518241B2 (en) | 2004-02-26 | 2010-08-04 | 東海カーボン株式会社 | Negative electrode material for lithium secondary battery and method for producing the same |
| US20050230240A1 (en) | 2004-03-09 | 2005-10-20 | Roman Dubrovsky | Method and apparatus for carbon allotropes synthesis |
| KR100545992B1 (en) | 2004-03-10 | 2006-01-25 | (주)퓨얼셀 파워 | Separator and manufacturing method for fuel cell, and fuel cell stack comprising such separator |
| WO2005090486A2 (en) | 2004-03-15 | 2005-09-29 | Cabot Corporation | Surface modified carbon products and their applications |
| US20070104636A1 (en) | 2004-05-04 | 2007-05-10 | Kutsovsky Yakov E | Carbon black and multi-stage process for making same |
| US7847009B2 (en) | 2004-05-13 | 2010-12-07 | Columbian Chemicals Company | Carbonaceous material with dissociated aggregate size and particle size distribution and improved dispersibility |
| CA2575629A1 (en) | 2004-06-11 | 2006-08-10 | Nuvera Fuel Cells, Inc. | Fuel fired hydrogen generator |
| US8581147B2 (en) | 2005-03-24 | 2013-11-12 | Lincoln Global, Inc. | Three stage power source for electric ARC welding |
| US20070293405A1 (en) | 2004-07-31 | 2007-12-20 | Zhiqiang Zhang | Use of nanomaterials as effective viscosity modifiers in lubricating fluids |
| US20060034748A1 (en) | 2004-08-11 | 2006-02-16 | Lewis David R | Device for providing improved combustion in a carbon black reactor |
| EP1632467A1 (en) | 2004-09-06 | 2006-03-08 | Research Institute of Petroleum Industry | Improved catalyst for direct conversion of methane to ethane and ethylene |
| US20060068987A1 (en) | 2004-09-24 | 2006-03-30 | Srinivas Bollepalli | Carbon supported catalyst having reduced water retention |
| KR100730119B1 (en) | 2004-11-02 | 2007-06-19 | 삼성에스디아이 주식회사 | Carbon nano spherical particles having one or more openings, a manufacturing method thereof, a carbon nano spherical particle supporting catalyst using the carbon nano spherical particles, and a fuel cell employing the same |
| GB2419883A (en) | 2004-11-03 | 2006-05-10 | Carbon Cones As | Matrix containing carbon cones or disks |
| CN1262624C (en) | 2004-12-16 | 2006-07-05 | 太原理工大学 | Combined process for dry distillation of coal and production of carbon black by plasma cracking |
| DE102004062687A1 (en) | 2004-12-21 | 2006-06-29 | Uhde Gmbh | Process for generating hydrogen and energy from synthesis gas |
| JP2006236867A (en) | 2005-02-25 | 2006-09-07 | Ngk Insulators Ltd | Plasma treatment member |
| EP1874681A2 (en) | 2005-04-06 | 2008-01-09 | Cabot Corporation | Method to produce hydrogen or synthesis gas |
| JP4620515B2 (en) | 2005-04-11 | 2011-01-26 | ルネサスエレクトロニクス株式会社 | Interposer, semiconductor device using the same, and method for manufacturing semiconductor device |
| DE102005019301A1 (en) | 2005-04-26 | 2006-11-02 | Timcal Sa | Processing of carbon-containing hydrogenated residue obtained during production of fullerene and carbon nanostructures, comprises functionalizing the residue by introducing chemical substituents during or following the production |
| NO326571B1 (en) | 2005-06-16 | 2009-01-12 | Sinvent As | Process and reactor for producing carbon nanotubes |
| GB2423079B (en) | 2005-06-29 | 2008-11-12 | Tetronics Ltd | Waste treatment process and apparatus |
| WO2007013947A1 (en) | 2005-07-22 | 2007-02-01 | Tdy Industries, Inc. | Composite materials |
| US7516019B2 (en) | 2005-07-29 | 2009-04-07 | The Regents Of The University Of California | Method for online measurement of ultrafine aggregate surface area and volume distributions |
| CA2516499A1 (en) | 2005-08-19 | 2007-02-19 | Atlantic Hydrogen Inc. | Decomposition of natural gas or methane using cold arc discharge |
| FR2891434A1 (en) | 2005-09-23 | 2007-03-30 | Renault Sas | Slipping plasma arc generator comprises a reactor internally delimits a closed enclosure having reactive gas and two removable electrodes that are connected to a source of voltage to start and maintain the reactive gas discharge |
| JP5057261B2 (en) | 2005-10-25 | 2012-10-24 | 東海カーボン株式会社 | Carbon black aqueous dispersion and method for producing the same |
| AT502901B1 (en) | 2005-10-31 | 2009-08-15 | Electrovac Ag | DEVICE FOR HYDROGEN MANUFACTURE |
| US7563525B2 (en) | 2006-02-15 | 2009-07-21 | Egt Enterprises, Inc. | Electric reaction technology for fuels processing |
| CN100459020C (en) | 2006-04-05 | 2009-02-04 | 东南大学 | Gas discharging lamp cathode with multi-discharging units |
| BRPI0710578B1 (en) | 2006-04-05 | 2016-11-29 | Woodland Biofuels Inc | Ethanol production method from synthesis gas |
| KR20090040406A (en) | 2006-05-05 | 2009-04-24 | 플라스코에너지 아이피 홀딩스, 에스.엘., 빌바오, 샤프하우젠 브랜치 | Gas Reconstruction System Using Plasma Torch Heating |
| US7588746B1 (en) | 2006-05-10 | 2009-09-15 | University Of Central Florida Research Foundation, Inc. | Process and apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons |
| KR100914354B1 (en) | 2006-06-05 | 2009-08-28 | 어플라이드 머티어리얼스, 인코포레이티드 | Elimination of first wafer effect for pecvd films |
| US20080233402A1 (en) * | 2006-06-08 | 2008-09-25 | Sid Richardson Carbon & Gasoline Co. | Carbon black with attached carbon nanotubes and method of manufacture |
| CN101484519B (en) | 2006-07-11 | 2012-06-06 | 住友橡胶工业株式会社 | Rubber composition for bead apex and tire having bead apex produced by using the same |
| US7623340B1 (en) | 2006-08-07 | 2009-11-24 | Nanotek Instruments, Inc. | Nano-scaled graphene plate nanocomposites for supercapacitor electrodes |
| KR100675752B1 (en) | 2006-09-14 | 2007-01-30 | (주) 씨엠테크 | Plasma reactor |
| CN101529606B (en) | 2006-11-02 | 2011-07-20 | 丰田自动车株式会社 | Thermoelectric element and thermoelectric module |
| MX2009004828A (en) | 2006-11-07 | 2009-08-24 | Cabot Corp | Carbon blacks having low pah amounts and methods of making same. |
| US7671294B2 (en) | 2006-11-28 | 2010-03-02 | Vladimir Belashchenko | Plasma apparatus and system |
| US20090014423A1 (en) | 2007-07-10 | 2009-01-15 | Xuegeng Li | Concentric flow-through plasma reactor and methods therefor |
| EP2097195A2 (en) | 2006-12-21 | 2009-09-09 | Innovalight, Inc. | Group iv nanoparticles and films thereof |
| US20080182298A1 (en) | 2007-01-26 | 2008-07-31 | Andrew Eric Day | Method And System For The Transformation Of Molecules,To Transform Waste Into Useful Substances And Energy |
| US20080169183A1 (en) | 2007-01-16 | 2008-07-17 | Varian Semiconductor Equipment Associates, Inc. | Plasma Source with Liner for Reducing Metal Contamination |
| CN102057222B (en) | 2007-02-27 | 2013-08-21 | 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 | Gasification system with processed feedstock/coke conversion and gas reformulation |
| CN101143296B (en) | 2007-03-30 | 2010-06-30 | 黄樟焱 | Multifunctional cyclone plasma air processing machine |
| KR101456734B1 (en) | 2007-04-24 | 2014-10-31 | 캐보트 코포레이션 | Coating compositions incorporating low-structure carbon black and devices formed therefrom |
| US8323793B2 (en) | 2007-05-17 | 2012-12-04 | Tellus Technology, Inc. | Pelletization of pyrolyzed rubber products |
| US8911596B2 (en) | 2007-05-18 | 2014-12-16 | Hope Cell Technologies Pty Ltd | Method and apparatus for plasma decomposition of methane and other hydrocarbons |
| US7918906B2 (en) | 2007-05-20 | 2011-04-05 | Pioneer Energy Inc. | Compact natural gas steam reformer with linear countercurrent heat exchanger |
| KR20080105344A (en) | 2007-05-30 | 2008-12-04 | 주식회사 에이피시스 | Hydrogen and carbon black manufacturing device using plasma |
| CN101335343A (en) | 2007-06-25 | 2008-12-31 | 晟茂(青岛)先进材料有限公司 | Negative pole material of bendable cell and manufacturing method therefor |
| US8471170B2 (en) | 2007-07-10 | 2013-06-25 | Innovalight, Inc. | Methods and apparatus for the production of group IV nanoparticles in a flow-through plasma reactor |
| WO2009017859A2 (en) | 2007-08-02 | 2009-02-05 | The Texas A & M University System | Dispersion, alignment and deposition of nanotubes |
| CN201087175Y (en) | 2007-08-27 | 2008-07-16 | 江苏九鼎新材料股份有限公司 | Molybdenum-saving combined electrode |
| US8323363B2 (en) | 2007-08-30 | 2012-12-04 | Innovative Energy Solution | Reformation of hydrogen-containing fluids in a cyclic flow reactor |
| US20090090282A1 (en) | 2007-10-09 | 2009-04-09 | Harris Gold | Waste energy conversion system |
| US9445488B2 (en) | 2007-10-16 | 2016-09-13 | Foret Plasma Labs, Llc | Plasma whirl reactor apparatus and methods of use |
| DE102007060307A1 (en) | 2007-12-12 | 2009-06-18 | Evonik Degussa Gmbh | Process for the aftertreatment of carbon black |
| CN201143494Y (en) | 2008-01-11 | 2008-11-05 | 中国石油天然气集团公司 | Large power acoustic emission transducer |
| US8047004B2 (en) | 2008-02-12 | 2011-11-01 | The Boeing Company | Stave and ring CMC nozzle |
| US7777151B2 (en) | 2008-02-14 | 2010-08-17 | Adventix Technologies Inc. | Portable plasma sterilizer |
| CA2621749A1 (en) | 2008-02-19 | 2009-08-19 | Atlantic Hydrogen Inc. | Decomposition of natural gas or methane using cold arc discharge |
| KR20100116623A (en) | 2008-02-19 | 2010-11-01 | 캐보트 코포레이션 | Mesoporous carbon black and processes for making same |
| JP5649979B2 (en) | 2008-02-28 | 2015-01-07 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Graphite nanoplatelets and compositions |
| US9878395B2 (en) | 2008-03-14 | 2018-01-30 | Illinois Tool Works Inc. | Method for detecting current transfer in a plasma arc |
| WO2009143576A1 (en) | 2008-05-27 | 2009-12-03 | Adelaide Research & Innovation Pty Ltd | Polymorphisms associated with pregnancy complications |
| WO2009149024A1 (en) | 2008-06-02 | 2009-12-10 | World Minerals, Inc. | Methods for prevention and reduction of scale formation |
| US20110250100A1 (en) | 2008-07-01 | 2011-10-13 | James Charles Juranitch | Recyling and reburning carbon dioxide in an energy efficient way |
| DE102008038524A1 (en) | 2008-08-20 | 2010-02-25 | Bayer Materialscience Ag | Antistatic or electrically conductive polyurethanes and a process for their preparation |
| US20100055017A1 (en) | 2008-09-03 | 2010-03-04 | Ppg Industries Ohio, Inc. | Methods for the production of ultrafine metal carbide particles and hydrogen |
| CN101368010B (en) | 2008-09-25 | 2011-01-26 | 曲靖众一精细化工股份有限公司 | Method for producing semi-reinforcing hydrocarbon black, methanol, liquid ammonia with coke oven gas |
| KR20110066920A (en) | 2008-09-29 | 2011-06-17 | 라이온 가부시키가이샤 | Manufacturing method of high purity carbon black |
| EP2344275A1 (en) | 2008-10-03 | 2011-07-20 | Atlantic Hydrogen Inc. | Apparatus and method for effecting plasma-based reactions |
| FR2937029A1 (en) | 2008-10-09 | 2010-04-16 | Renault Sas | Device for generating hydrogen by fuel reforming using electric discharge generating plasma, comprises first cylindrical element within which reactive mixture flows, second element forming electrode tip, and continuous current generator |
| JP5650650B2 (en) | 2008-10-10 | 2015-01-07 | イメリス グラファイト アンド カーボン スイッツァランド リミティド | Carbon particles coated with polymer film, method for producing the same and use thereof |
| EP2350208B2 (en) | 2008-10-16 | 2023-07-19 | Orion Engineered Carbons GmbH | Carbon black, method for the production thereof, and use thereof |
| DE102008043606A1 (en) | 2008-11-10 | 2010-05-12 | Evonik Degussa Gmbh | Energy-efficient plant for the production of carbon black, preferably as an energetic composite with plants for the production of silicon dioxide and / or silicon |
| WO2010059225A1 (en) | 2008-11-19 | 2010-05-27 | Global Energies Llc | Large scale green manufacturing of ammonia using plasma |
| CN101784154B (en) | 2009-01-19 | 2012-10-03 | 烟台龙源电力技术股份有限公司 | Arc plasma generator and anode thereof |
| US20100215960A1 (en) | 2009-02-24 | 2010-08-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | Hollow carbon spheres |
| US7959890B2 (en) | 2009-03-24 | 2011-06-14 | Ripp Resource Recovery Corporation | Method of reclaiming carbonaceous materials from scrap tires and products derived therefrom |
| EP2411138B1 (en) | 2009-03-24 | 2016-11-30 | Tekna Plasma Systems Inc. | Plasma reactor for the synthesis of nanopowders and materials processing |
| CN102612549A (en) | 2009-07-01 | 2012-07-25 | 詹姆斯·查尔斯·朱拉尼奇 | Fuels for high energy power plants and methods for CO or CO2 storage |
| TWI412057B (en) | 2009-07-14 | 2013-10-11 | Ushio Electric Inc | Short arc discharge lamp |
| RU2425795C2 (en) | 2009-08-31 | 2011-08-10 | Общество с ограниченной ответственностью "Наноматериалы" | Apparatus for producing hydrogen and carbon nanomaterials and structures produced from hydrocarbon gas, including associated pertroleum gas |
| US20110071962A1 (en) | 2009-09-18 | 2011-03-24 | Nicholas Lim | Method and system of using network graph properties to predict vertex behavior |
| US8195339B2 (en) | 2009-09-24 | 2012-06-05 | General Electric Company | System and method for scheduling startup of a combined cycle power generation system |
| DE102009045060A1 (en) | 2009-09-28 | 2011-03-31 | Evonik Degussa Gmbh | Carbon black, a process for its preparation and its use |
| IT1396193B1 (en) | 2009-10-07 | 2012-11-16 | Polimeri Europa Spa | EXPANDABLE THERMOPLASTIC NANOCOMPOSITE POLYMER COMPOSITIONS WITH IMPROVED THERMAL INSULATION CAPACITY. |
| WO2011053668A1 (en) | 2009-11-02 | 2011-05-05 | Cabot Corporation | High surface area and low structure carbon blacks for energy storage applications |
| US8850826B2 (en) | 2009-11-20 | 2014-10-07 | Egt Enterprises, Inc. | Carbon capture with power generation |
| CN101734620B (en) | 2009-12-15 | 2011-10-05 | 太原理工大学 | A method for producing hydrogen from methane-enriched gas plasma |
| US20110138766A1 (en) | 2009-12-15 | 2011-06-16 | General Electric Company | System and method of improving emission performance of a gas turbine |
| US8790618B2 (en) | 2009-12-17 | 2014-07-29 | Dcns Sa | Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same |
| US8309878B2 (en) | 2009-12-30 | 2012-11-13 | Itt Manufacturing Enterprises, Inc. | Universal input power supply utilizing parallel power modules |
| US9010994B2 (en) | 2010-01-21 | 2015-04-21 | Fluid Components International Llc | Flow mixer and conditioner |
| AU2010344282A1 (en) | 2010-01-29 | 2012-08-23 | EVOenergy, LLC | Plasma reactor for gas to liquid fuel conversion |
| BR112012019501B1 (en) | 2010-02-03 | 2019-09-24 | Aditya Birla Nuvo Limited | PROCEDURE FOR PREPARING SMOKE BLACK SKIN |
| KR101789844B1 (en) | 2010-02-19 | 2017-10-25 | 캐보트 코포레이션 | Methods for carbon black production using preheated feedstock and apparatus for same |
| US20130062195A1 (en) | 2010-04-25 | 2013-03-14 | Sri Lanka Institute of Nanotechnology (Pvt) Ltd. | Process for preparation of carbon nanotubes from vein graphite |
| KR101020925B1 (en) | 2010-05-17 | 2011-03-09 | 주식회사 이온팜스 | Ionized water production equipment |
| FR2962608B1 (en) | 2010-07-07 | 2012-08-10 | Toulouse Inst Nat Polytech | NEW REDUNDANCY STRUCTURES FOR STATIC CONVERTERS |
| JP5799094B2 (en) | 2010-07-09 | 2015-10-21 | エコ テクノル プロプライエタリー リミテッド | Generation of syngas by using membrane technology |
| TWI502617B (en) | 2010-07-21 | 2015-10-01 | 應用材料股份有限公司 | Method,plasma processing apparatus ,and liner assembly for tuning electrical skews |
| EP2598602A1 (en) | 2010-07-26 | 2013-06-05 | Agroplas AS | Soil conditioner, system and method for the manufacturing of a soil conditioner |
| US20120073720A1 (en) | 2010-09-28 | 2012-03-29 | The Goodyear Tire & Rubber Company | Wire coat compositions for rubber articles |
| CN103261336B (en) * | 2010-10-15 | 2015-04-01 | 卡博特公司 | Surface modified organic black pigments, surface modified carbon blacks, pigment mixtures using them, and low dielectric black dispersions, coatings, films, black matrices, and devices containing same |
| WO2012067546A2 (en) | 2010-11-19 | 2012-05-24 | Zakrytoe Aktsionernoe Obshchestvo "Npo "Nanotekh-Severo-Zapad" | Device for producing of fullerene-containing soot |
| CN102108216A (en) | 2010-12-03 | 2011-06-29 | 苏州纳康纳米材料有限公司 | Method for preparing conductive carbon black and hydrogen by plasma technology |
| GB201105962D0 (en) | 2011-04-07 | 2011-05-18 | Advanced Plasma Power Ltd | Gas stream production |
| US20120177531A1 (en) | 2011-01-12 | 2012-07-12 | Taiwan Powder Technologies Co., Ltd. | Steel powder composition and sintered body thereof |
| WO2012094743A1 (en) | 2011-01-14 | 2012-07-19 | Atlantic Hydrogen Inc. | Plasma reactor and method of operation thereof |
| FI20115147L (en) | 2011-02-16 | 2012-08-17 | Upm Kymmene Corp | METHOD AND APPARATUS FOR MANUFACTURE OF BLACK COLOR PIGMENT |
| RU2488984C2 (en) | 2011-02-22 | 2013-07-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Бурятский государственный университет" | Method for obtaining carbon nanomaterials by means of energy of low-temperature plasma, and plant for its implementation |
| JP5226096B2 (en) | 2011-03-10 | 2013-07-03 | 東芝テック株式会社 | Cart and cart system |
| GB201106314D0 (en) | 2011-04-14 | 2011-06-01 | Edwards Ltd | Plasma torch |
| WO2012149170A1 (en) | 2011-04-26 | 2012-11-01 | Atlantic Hydrogen Inc. | Method for producing carbon black and generating energy |
| ES2539686T3 (en) * | 2011-05-23 | 2015-07-03 | Nanocyl S.A. | Installation and method for the functionalization of material in the form of particles and powdered products |
| US9761903B2 (en) | 2011-09-30 | 2017-09-12 | Ppg Industries Ohio, Inc. | Lithium ion battery electrodes including graphenic carbon particles |
| US8486363B2 (en) | 2011-09-30 | 2013-07-16 | Ppg Industries Ohio, Inc. | Production of graphenic carbon particles utilizing hydrocarbon precursor materials |
| CA2853211C (en) | 2011-10-24 | 2020-03-24 | Aditya Birla Nuvo Limited | An improved process for the production of carbon black |
| FR2981937B1 (en) | 2011-10-28 | 2013-11-08 | Michelin Soc Tech | ELASTOMERIC COMPOSITION HAVING VERY GOOD DISPERSION OF THE LOAD IN THE ELASTOMERIC MATRIX |
| CN102350506A (en) | 2011-10-31 | 2012-02-15 | 西南石油大学 | Preparation method of nano-structure WC-Co composite powder |
| CN103492316B (en) | 2011-12-09 | 2015-03-18 | 昭和电工株式会社 | Composite graphite particles and use of same |
| DK2791947T3 (en) | 2011-12-12 | 2023-06-12 | Circtec Knowledge Ltd | USE OF CARBON BLACK FOR MANUFACTURE OF COMPOUNDS WITH DEFINED VOLUME RESISTIVITY |
| RU2495066C2 (en) | 2011-12-13 | 2013-10-10 | Закрытое Акционерное Общество "Научно-Производственное Объединение Инноватех" | Method of producing soot from rubber wastes |
| SE537215C2 (en) | 2012-02-13 | 2015-03-03 | Aktiebolaget Ka Ekstroems & Son | Heat exchanger adapted for the production of carbon black |
| JP5864787B2 (en) * | 2012-03-02 | 2016-02-17 | キャボット コーポレイションCabot Corporation | Modified filler and functional elastomer composite containing the same |
| MX350697B (en) | 2012-03-09 | 2017-09-14 | Evoenergy Llc | Plasma chemical device for conversion of hydrocarbon gases to liquid fuel. |
| ES2770449T3 (en) | 2012-03-28 | 2020-07-01 | Cabot Corp | Polyetheramine-treated oxidized carbon blacks and coating compositions comprising the same |
| RU2635808C2 (en) | 2012-03-30 | 2017-11-16 | Адитиа Бирла Сайенс Энд Текнолоджи Компани Лтд. | Production method of carbon black powder with reduced sulfur content |
| KR101249457B1 (en) | 2012-05-07 | 2013-04-03 | 지에스플라텍 주식회사 | Plasma torch of non-transferred and hollow type |
| CN202610344U (en) | 2012-05-28 | 2012-12-19 | 毕和清 | Low-voltage electrode for electrometallurgy and electrochemistry |
| CN102702801B (en) | 2012-05-31 | 2013-11-20 | 中橡集团炭黑工业研究设计院 | High-purity carbon black and production method thereof |
| SG195420A1 (en) | 2012-06-07 | 2013-12-30 | Ael Enviro Asia Pte Ltd | High energy gas flow tyre pyrolysis using rf inductive plasma in combination with lf induction heating. |
| WO2013185219A1 (en) | 2012-06-14 | 2013-12-19 | Atlantic Hydrogen Inc. | Processes for producing carbon black |
| WO2013191764A1 (en) | 2012-06-21 | 2013-12-27 | Sid Richardson Carbon, Ltd. | Polysulfide treatment of carbon black filler and elastomeric compositions with polysulfide treated carbon black |
| WO2014000108A1 (en) | 2012-06-28 | 2014-01-03 | The Royal Institution For The Advancement Of Learning/Mcgill University | Fabrication and functionalization of a pure non-noble metal catalyst structure showing time stability for large scale applications |
| CN104619788B (en) | 2012-07-13 | 2018-04-03 | 卡博特公司 | Super-normal structure black |
| EP2874739B1 (en) | 2012-07-18 | 2018-12-26 | Atlantic Hydrogen Inc. | Electromagnetic energy-initiated plasma reactor systems and methods |
| KR101535973B1 (en) | 2012-08-13 | 2015-07-13 | 세종대학교산학협력단 | Manufacturing method of carbon black by liquid plasma process and carbon black made by the same |
| US9160240B2 (en) | 2012-09-05 | 2015-10-13 | Kyosan Electric Mfg. Co., Ltd. | DC power supply device, and control method for DC power supply device |
| CN103804726B (en) | 2012-11-08 | 2017-08-25 | 住友橡胶工业株式会社 | Rubber composition and pneumatic tire |
| US9522438B2 (en) | 2012-11-09 | 2016-12-20 | Hypertherm, Inc. | Battery-controlled plasma arc torch system |
| US20150303460A1 (en) | 2012-11-20 | 2015-10-22 | Showa Denko K.K. | Method for producing negative electrode material for lithium ion batteries |
| US9434612B2 (en) | 2012-11-30 | 2016-09-06 | Elwha, Llc | Systems and methods for producing hydrogen gas |
| CN102993788A (en) | 2012-12-10 | 2013-03-27 | 张邦稳 | Device and method for producing high-purity carbon black by adopting plasmas |
| KR101444831B1 (en) | 2012-12-11 | 2014-10-14 | 국방과학연구소 | Disk-type Mesoporous Carbon as Host for Nano High Energetic Materials, and Manufacturing method thereof |
| US20140166496A1 (en) | 2012-12-14 | 2014-06-19 | Chung-Shan Institute Of Science And Technology | Method for producing shaped graphene sheets |
| US9206360B2 (en) | 2013-02-12 | 2015-12-08 | Solena Fuels Corporation | Producing liquid fuel from organic material such as biomass and waste residues |
| US9315735B2 (en) | 2013-03-15 | 2016-04-19 | Renewable Opportunities Inc. | System and method for producing a consistent quality syngas from diverse waste materials with heat recovery based power generation, and renewable hydrogen co-production |
| US20160030856A1 (en) | 2013-03-15 | 2016-02-04 | Transtar Group, Ltd | Distillation reactor module |
| ES2552392B2 (en) | 2013-03-15 | 2017-05-24 | Cabot Corporation | A method to produce carbon black through a diluent fluid |
| CN103160149A (en) | 2013-03-28 | 2013-06-19 | 无锡双诚炭黑有限公司 | Carbon black reaction furnace and carbon black production method |
| CN203269847U (en) | 2013-03-28 | 2013-11-06 | 无锡双诚炭黑有限公司 | Carbon black reaction furnace |
| JP5785205B2 (en) | 2013-04-01 | 2015-09-24 | 住友ゴム工業株式会社 | Rubber composition for tire and pneumatic tire |
| KR102156795B1 (en) | 2013-05-15 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Deposition apparatus |
| US20140357092A1 (en) | 2013-06-04 | 2014-12-04 | Lam Research Corporation | Chamber wall of a plasma processing apparatus including a flowing protective liquid layer |
| KR101956971B1 (en) | 2013-06-21 | 2019-03-11 | 캐보트 코포레이션 | Conductive carbons for lithium ion batteries |
| CN203415580U (en) | 2013-08-06 | 2014-01-29 | 安徽省祁门县黄山电器有限责任公司 | Electrode structure of power semiconductor chip |
| WO2015026945A1 (en) | 2013-08-20 | 2015-02-26 | H Quest Partners, LP | Method for processing hydrocarbon fuels using microwave energy |
| US10107443B2 (en) | 2013-10-04 | 2018-10-23 | Orion Engineered Carbons Gmbh | Micro-domain carbon material for thermal insulation |
| DE102013016583A1 (en) | 2013-10-08 | 2015-04-09 | Infiana Germany Gmbh & Co. Kg | Film with adjustable water vapor permeability |
| US9556027B2 (en) | 2013-12-02 | 2017-01-31 | Praxair Technology, Inc. | Method and system for producing hydrogen using an oxygen transport membrane based reforming system with secondary reforming |
| DE102013020375A1 (en) | 2013-12-06 | 2015-06-11 | CCP Technology GmbH | PLASMA REACTOR FOR COLLIDING A HYDROCARBON FLUID |
| NL2011973C2 (en) | 2013-12-17 | 2015-06-18 | Black Bear Carbon B V | Paint comprising carbon black. |
| US11939477B2 (en) | 2014-01-30 | 2024-03-26 | Monolith Materials, Inc. | High temperature heat integration method of making carbon black |
| US10100200B2 (en) | 2014-01-30 | 2018-10-16 | Monolith Materials, Inc. | Use of feedstock in carbon black plasma process |
| US20150211378A1 (en) | 2014-01-30 | 2015-07-30 | Boxer Industries, Inc. | Integration of plasma and hydrogen process with combined cycle power plant, simple cycle power plant and steam reformers |
| US10370539B2 (en) | 2014-01-30 | 2019-08-06 | Monolith Materials, Inc. | System for high temperature chemical processing |
| US10138378B2 (en) | 2014-01-30 | 2018-11-27 | Monolith Materials, Inc. | Plasma gas throat assembly and method |
| ES2954251T3 (en) | 2014-01-31 | 2023-11-21 | Monolith Mat Inc | Plasma torch with graphite electrodes |
| US9574086B2 (en) | 2014-01-31 | 2017-02-21 | Monolith Materials, Inc. | Plasma reactor |
| CA2878816C (en) | 2014-01-31 | 2020-11-03 | Veyance Technologies, Inc. | Conveyor belt |
| EP3113253B1 (en) | 2014-02-27 | 2019-04-10 | Toda Kogyo Corp. | Positive electrode mixture and nonaqueous electrolyte secondary cell |
| US20150307351A1 (en) | 2014-04-22 | 2015-10-29 | Rachid Mabrouk | Tail gas processing for liquid hydrocarbons synthesis |
| WO2016012367A1 (en) | 2014-07-22 | 2016-01-28 | Basf Se | Modification of carbon particles |
| EP3172283B1 (en) | 2014-07-22 | 2020-06-10 | PPG Industries Ohio, Inc. | Graphenic carbon particle co-dispersions and methods of making same |
| CN204301483U (en) | 2014-12-01 | 2015-04-29 | 咸阳华光窑炉设备有限公司 | Continous way superhigh temperature graphite thermal process vacuum atmosphere kiln |
| US9229396B1 (en) | 2014-12-02 | 2016-01-05 | Xerox Corporation | Fuser member |
| DE102015100748B4 (en) | 2015-01-20 | 2017-01-12 | Deutsche Telekom Ag | Method and system for in particular lane-precise directional location of vehicles on lanes and output of warnings during wrong-way driving |
| WO2016126598A1 (en) | 2015-02-03 | 2016-08-11 | Monolith Materials, Inc. | Carbon black combustable gas separation |
| MX2017009982A (en) | 2015-02-03 | 2018-01-25 | Monolith Mat Inc | REGENERATIVE COOLING METHOD AND DEVICE. |
| KR102705340B1 (en) | 2015-02-03 | 2024-09-09 | 모놀리스 머티어리얼스 인코포레이티드 | Carbon Black Production System |
| JP2018522996A (en) | 2015-04-30 | 2018-08-16 | キャボット コーポレイションCabot Corporation | Carbon coating particles |
| MX2018001259A (en) | 2015-07-29 | 2018-04-20 | Monolith Mat Inc | Dc plasma torch electrical power design method and apparatus. |
| MX2018001612A (en) | 2015-08-07 | 2018-05-28 | Monolith Mat Inc | METHOD FOR THE MANUFACTURE OF BLACK SMOKE. |
| MX2018002309A (en) | 2015-08-24 | 2018-05-28 | Monolith Mat Inc | High temperature heat integration method of making carbon black. |
| MX2018002943A (en) | 2015-09-09 | 2018-09-28 | Monolith Mat Inc | Circular few layer graphene. |
| KR101923466B1 (en) | 2015-09-10 | 2018-11-30 | 주식회사 엘지화학 | Conductive material for secondary battery and secondary battery comprising the same |
| EP3350855A4 (en) | 2015-09-14 | 2019-08-07 | Monolith Materials, Inc. | CARBON BLACK FROM NATURAL GAS |
| US20170117538A1 (en) | 2015-10-23 | 2017-04-27 | Ensor, Inc. | Nanocomposite anode structure and methods of manufacture thereof |
| DE102016201801A1 (en) | 2015-11-21 | 2017-05-24 | Suncoal Industries Gmbh | Particulate carbon material producible from renewable raw materials and process for its preparation |
| CN205472672U (en) | 2015-12-30 | 2016-08-17 | 株洲弗拉德科技有限公司 | Continuous high temperature heat treatment production line of powdered graphite |
| BR122022021055B1 (en) | 2016-02-01 | 2023-12-12 | Cabot Corporation | COMPOSITION OF COMPOSITE ELASTOMER AND TIRE BLADDER |
| US11149148B2 (en) | 2016-04-29 | 2021-10-19 | Monolith Materials, Inc. | Secondary heat addition to particle production process and apparatus |
| CA3211318A1 (en) | 2016-04-29 | 2017-11-02 | Monolith Materials, Inc. | Torch stinger method and apparatus |
| US9812295B1 (en) | 2016-11-15 | 2017-11-07 | Lyten, Inc. | Microwave chemical processing |
| US11440958B2 (en) | 2016-11-22 | 2022-09-13 | National University Of Singapore | Blockade of CD7 expression and chimeric antigen receptors for immunotherapy of T-cell malignancies |
| CN110603297A (en) | 2017-03-08 | 2019-12-20 | 巨石材料公司 | System and method for producing carbon particles with heat transfer gas |
| WO2018195460A1 (en) | 2017-04-20 | 2018-10-25 | Monolith Materials, Inc. | Particle systems and methods |
| HUE054550T2 (en) | 2017-06-15 | 2021-09-28 | Cabot Corp | Electrodes containing carbon black particles and related methods |
| EP3676335A4 (en) | 2017-08-28 | 2021-03-31 | Monolith Materials, Inc. | PARTICULAR SYSTEMS AND PROCESSES |
| CA3074223C (en) | 2017-08-28 | 2025-05-13 | Monolith Materials, Inc. | Conductive additives and uses thereof |
| MX2020002215A (en) | 2017-08-28 | 2020-08-20 | Monolith Mat Inc | Systems and methods for particle generation. |
| EP3700980A4 (en) | 2017-10-24 | 2021-04-21 | Monolith Materials, Inc. | PARTICULAR SYSTEMS AND PROCEDURES |
| WO2019195461A1 (en) | 2018-04-03 | 2019-10-10 | Monolith Materials, Inc. | Systems and methods for processing |
| RU2720899C2 (en) | 2018-09-14 | 2020-05-14 | Общество С Ограниченной Ответственностью "Яндекс" | Method and system for determining user-specific content proportions for recommendation |
| JP7224150B2 (en) | 2018-11-12 | 2023-02-17 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
| CA3142527A1 (en) | 2019-06-05 | 2020-12-10 | Beyond Lotus Llc | Methods of preparing a composite having elastomer and filler |
| FR3112767B1 (en) | 2020-07-27 | 2023-05-12 | Plenesys | Optimized production of hydrogen from a hydrocarbon. |
| CA3194711A1 (en) | 2020-10-05 | 2022-04-14 | Robert J. Hanson | Systems and methods for processing |
| CA3233950A1 (en) | 2021-10-08 | 2023-04-13 | Mathew Leis | Systems and methods for electric processing |
| CA3248168A1 (en) | 2022-01-12 | 2023-07-20 | Monolith Materials, Inc. | Methods and systems for using silicon-containing additives to produce carbon particles |
| CA3257974A1 (en) | 2022-06-01 | 2023-12-07 | Monolith Materials, Inc. | Recycled feedstocks for carbon and hydrogen production |
| WO2024086831A2 (en) | 2022-10-21 | 2024-04-25 | Monolith Materials, Inc. | Methods and additives to improve performance of carbon particles in elastomer composites |
| EP4605120A2 (en) | 2022-10-21 | 2025-08-27 | Monolith Materials, Inc. | Systems and methods for modulating reacting flows |
| WO2024254343A2 (en) | 2023-06-06 | 2024-12-12 | Monolith Materials, Inc. | Carbon particle compositions and methods of generating the same |
| US20240409720A1 (en) | 2023-06-06 | 2024-12-12 | Monolith Materials, Inc. | Carbon particle compositions and methods of generating the same |
-
2016
- 2016-08-05 MX MX2018001612A patent/MX2018001612A/en unknown
- 2016-08-05 CN CN201680057454.XA patent/CN108350280A/en active Pending
- 2016-08-05 WO PCT/US2016/045793 patent/WO2017027385A1/en not_active Ceased
- 2016-08-05 CN CN202410654755.7A patent/CN118620417A/en active Pending
- 2016-08-05 US US15/229,608 patent/US20170037253A1/en active Pending
- 2016-08-05 KR KR1020187006459A patent/KR20180094838A/en not_active Ceased
- 2016-08-05 CA CA2995081A patent/CA2995081C/en active Active
- 2016-08-05 EP EP16835697.0A patent/EP3331821A4/en active Pending
-
2024
- 2024-07-19 US US18/778,707 patent/US12497517B1/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140000488A1 (en) * | 2011-03-10 | 2014-01-02 | Tokai Carbon Co., Ltd. | Method for producing aqueous dispersion of surface-treated carbon black particles and aqueous dispersion of surface-treated carbon black particles |
| WO2015051893A1 (en) * | 2013-10-09 | 2015-04-16 | Ralf Spitzl | Method and device for the plasma-catalytic conversion of materials |
| US20160243518A1 (en) * | 2013-10-09 | 2016-08-25 | Ralf Spitzl | Method and device for the plasma-catalytic conversion of materials |
| US20150252168A1 (en) * | 2014-03-05 | 2015-09-10 | Penn Color, Inc. | Thermally-conductive salt-containing particles of carbon black and metal |
Cited By (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11591477B2 (en) | 2014-01-30 | 2023-02-28 | Monolith Materials, Inc. | System for high temperature chemical processing |
| US10100200B2 (en) | 2014-01-30 | 2018-10-16 | Monolith Materials, Inc. | Use of feedstock in carbon black plasma process |
| US10138378B2 (en) | 2014-01-30 | 2018-11-27 | Monolith Materials, Inc. | Plasma gas throat assembly and method |
| US10370539B2 (en) | 2014-01-30 | 2019-08-06 | Monolith Materials, Inc. | System for high temperature chemical processing |
| US11939477B2 (en) | 2014-01-30 | 2024-03-26 | Monolith Materials, Inc. | High temperature heat integration method of making carbon black |
| US11866589B2 (en) | 2014-01-30 | 2024-01-09 | Monolith Materials, Inc. | System for high temperature chemical processing |
| US11203692B2 (en) | 2014-01-30 | 2021-12-21 | Monolith Materials, Inc. | Plasma gas throat assembly and method |
| US12144099B2 (en) | 2014-01-31 | 2024-11-12 | Monolith Materials, Inc. | Plasma torch design |
| US11304288B2 (en) | 2014-01-31 | 2022-04-12 | Monolith Materials, Inc. | Plasma torch design |
| US10618026B2 (en) | 2015-02-03 | 2020-04-14 | Monolith Materials, Inc. | Regenerative cooling method and apparatus |
| US11998886B2 (en) | 2015-02-03 | 2024-06-04 | Monolith Materials, Inc. | Regenerative cooling method and apparatus |
| US12286540B2 (en) | 2015-02-03 | 2025-04-29 | Monolith Materials, Inc. | Carbon black generating system |
| US11987712B2 (en) | 2015-02-03 | 2024-05-21 | Monolith Materials, Inc. | Carbon black generating system |
| US12250764B2 (en) | 2015-07-29 | 2025-03-11 | Monolith Materials, Inc. | DC plasma torch electrical power design method and apparatus |
| US11665808B2 (en) | 2015-07-29 | 2023-05-30 | Monolith Materials, Inc. | DC plasma torch electrical power design method and apparatus |
| US12497517B1 (en) | 2015-08-07 | 2025-12-16 | Monolith Materials, Inc. | Method of making carbon black |
| US12119133B2 (en) | 2015-09-09 | 2024-10-15 | Monolith Materials, Inc. | Circular few layer graphene |
| US10808097B2 (en) | 2015-09-14 | 2020-10-20 | Monolith Materials, Inc. | Carbon black from natural gas |
| US12012515B2 (en) | 2016-04-29 | 2024-06-18 | Monolith Materials, Inc. | Torch stinger method and apparatus |
| US11149148B2 (en) | 2016-04-29 | 2021-10-19 | Monolith Materials, Inc. | Secondary heat addition to particle production process and apparatus |
| US11492496B2 (en) | 2016-04-29 | 2022-11-08 | Monolith Materials, Inc. | Torch stinger method and apparatus |
| WO2018165483A1 (en) | 2017-03-08 | 2018-09-13 | Monolith Materials, Inc. | Systems and methods of making carbon particles with thermal transfer gas |
| US11926743B2 (en) | 2017-03-08 | 2024-03-12 | Monolith Materials, Inc. | Systems and methods of making carbon particles with thermal transfer gas |
| US11760884B2 (en) | 2017-04-20 | 2023-09-19 | Monolith Materials, Inc. | Carbon particles having high purities and methods for making same |
| US12030776B2 (en) | 2017-08-28 | 2024-07-09 | Monolith Materials, Inc. | Systems and methods for particle generation |
| US12378124B2 (en) | 2017-08-28 | 2025-08-05 | Monolith Materials, Inc. | Particle systems and methods |
| US11453784B2 (en) | 2017-10-24 | 2022-09-27 | Monolith Materials, Inc. | Carbon particles having specific contents of polycylic aromatic hydrocarbon and benzo[a]pyrene |
| US11653646B2 (en) * | 2019-04-01 | 2023-05-23 | Vulpes Agricultural Corp. | Bifunctional plant promoter and preparation thereof |
| US20200305424A1 (en) * | 2019-04-01 | 2020-10-01 | Vulpes Agricultural Corp. | Bifunctional plant promoter and preparation thereof |
| CN113292870A (en) * | 2021-05-31 | 2021-08-24 | 安徽德瑞新材料科技有限公司 | Processing technology of nanoscale insulating carbon black |
| CN113652103A (en) * | 2021-07-09 | 2021-11-16 | 中国化学工业桂林工程有限公司 | Regeneration method of pyrolysis carbon black |
| CN115537044A (en) * | 2022-09-19 | 2022-12-30 | 青岛黑猫新材料研究院有限公司 | Modified pyrolysis carbon black and preparation method and application thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2995081A1 (en) | 2017-02-16 |
| CA2995081C (en) | 2023-10-03 |
| CN108350280A (en) | 2018-07-31 |
| EP3331821A1 (en) | 2018-06-13 |
| MX2018001612A (en) | 2018-05-28 |
| WO2017027385A1 (en) | 2017-02-16 |
| CN118620417A (en) | 2024-09-10 |
| KR20180094838A (en) | 2018-08-24 |
| US12497517B1 (en) | 2025-12-16 |
| EP3331821A4 (en) | 2018-12-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12497517B1 (en) | Method of making carbon black | |
| Boguta et al. | Chemically engineered biochar–Effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste | |
| KR100389664B1 (en) | Non-aqueous inks and coatings containing carbon products | |
| US5527518A (en) | Production of carbon black | |
| Zhang et al. | Preparation of activated carbon from sawdust by zinc chloride activation | |
| CN1251605A (en) | Oxidation of carbon black with hydrogen peroxide | |
| KR20140097211A (en) | An improved process for the production of carbon black | |
| CN110396226B (en) | Modified white carbon black and tread rubber thereof | |
| KR20140016327A (en) | Catalytic composition for synthesizing carbon nanotubes | |
| KR101766054B1 (en) | Method for modifying surface of carbon black | |
| JP2023010727A (en) | CARBON BLACK HAVING STSA OF 80-150 m2/g, OAN OF AT LEAST 180 mL/100 g, AND COAN OF AT LEAST 110 mL/100 g, AND RUBBER COMPOUNDS INCORPORATING THE SAME | |
| JP5291902B2 (en) | Method for producing modified carbon black for rubber compound treated with aqueous solution of sulfur oxoacid and modified carbon black for rubber compound obtained thereby | |
| CN101134749A (en) | New method for synthesizing rubber vulcanization accelerator CZ | |
| CN1935642A (en) | Method for preparing carbon molecular sieve by preoxidation of petrol coke | |
| JP2005008877A (en) | Carbon black and rubber composition | |
| KR101652961B1 (en) | Manufacturing method of carbonized material from phenolic foam | |
| Zhichang et al. | Promoter action of sulphur on the stabilization of pitch spheres | |
| JPH1036703A (en) | Carbon black and rubber composition | |
| KR20250045612A (en) | Manufacturing method of porous activated carbon with reduced process time and improved process efficiency | |
| RU2417835C1 (en) | Method of producing adsorbent | |
| SU1171491A1 (en) | Method of producing semiactive carbon black | |
| KR102762271B1 (en) | Preparing method of carbon black using pyrolytic oil and carbon black prepared thereby | |
| Baklanova et al. | Effect of the modification conditions of the carbon material Sibunit on its texture changes | |
| FI130586B (en) | Solid object and method for producing it | |
| Monika et al. | Role of oxygen functional groups and pore structure in CO 2 adsorption from oxygen-blowing and nitrogen calcination processes using a precursor of coal-based activated carbon |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MONOLITH MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARDMAN, NED J.;TAYLOR, ROSCOE W.;SIGNING DATES FROM 20161028 TO 20161101;REEL/FRAME:040955/0107 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
