JP3636623B2 - Resin composition for cable and cable - Google Patents

Resin composition for cable and cable Download PDF

Info

Publication number
JP3636623B2
JP3636623B2 JP28291999A JP28291999A JP3636623B2 JP 3636623 B2 JP3636623 B2 JP 3636623B2 JP 28291999 A JP28291999 A JP 28291999A JP 28291999 A JP28291999 A JP 28291999A JP 3636623 B2 JP3636623 B2 JP 3636623B2
Authority
JP
Japan
Prior art keywords
cable
resin composition
resin
carbon black
protective material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28291999A
Other languages
Japanese (ja)
Other versions
JP2001106837A (en
Inventor
義照 山崎
敏勝 光永
裕幸 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP28291999A priority Critical patent/JP3636623B2/en
Priority to EP00106342A priority patent/EP1043731B1/en
Priority to DE60015004T priority patent/DE60015004T2/en
Priority to US09/534,317 priority patent/US6403697B1/en
Publication of JP2001106837A publication Critical patent/JP2001106837A/en
Application granted granted Critical
Publication of JP3636623B2 publication Critical patent/JP3636623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ケーブル用樹脂組成物及びその樹脂成形体で構成された通信ケーブルと電力ケーブルに関する。
【0002】
【従来の技術】
通信ケーブルは、通信信号を流すための導体(例:銅、アルミニウムなど)と、該導体相互の混触を防ぐ絶縁体(例:塩化ビニル系樹脂、架橋ポリエチレン等のエチレン系樹脂、紙など)と、集合されたケーブル心線を保護するための保護材(例:鉛、エチレン系樹脂、塩化ビニル系樹脂、ポリクロロプレンゴムなど)とを基本構造とするものであって、市内ケーブル、市外ケーブル、光ファイバーケーブル、同軸ケーブル、海底ケーブル等として使用されている。
【0003】
電力ケーブルは、電力を流すための導体(例:銅、アルミニウムなど)と、電界緩和のための内部半導電層(例:カーボンブラック含有のエチレン−酢酸ビニル共重合樹脂など)と、絶縁層(架橋ポリエチレン、エチレンプロピレンゴムなど)と、電界緩和のための外部半導電層(例:カーボンブラック含有エチレン−酢酸ビニル共重合樹脂など)と、遮蔽層(例:銅テープなど)と、ケーブル保護のための保護材(例:塩化ビニル系樹脂など)とを基本構造とするものであって、単心CVケーブル、3心CVケーブル、トリプレックス形CVケーブル等のCVケーブル、PNケーブルなどとして使用されている。遮蔽層と保護材との間に布テープを介在させた構造のものもある。
【0004】
これらの通信ケーブル、電力ケーブル(以下、両者をあわせて単に「ケーブル」ともいう。)においては、保守管理が容易であることから広く使用されているが、今日の課題の一つに、更なる柔軟性の改善がある。
【0005】
通信ケーブルの保護材には、ケーブル内部が外部から機械的要因で損傷させないこと、大気中の湿気が絶縁被覆に到達させないこと、故障電流の帰路を持つこと、更には外部からの電磁波による外乱を防ぐこと等の機能が必要である。また、電力ケーブルの保護材には、通信ケーブルの保護材の上記機能の他に、高圧電流により生じる誘導電磁波を外部に対して遮蔽する機能を持たなければならない。これらの電磁波遮蔽効果は、導電性と密接な関係があり、導電性を向上させれば電磁波遮蔽効果も向上する。これらのことから、現在、保護材としては、金属シースと樹脂組成物からなる防食材料とが組み合わせて用いられており、その樹脂組成物としては、クロロプレンゴム、塩化ビニル系樹脂、ポリエチレン等が用いられる。特に、小型ケーブルにおいては、配線上の自由度をより大きくするため、ケーブルにはフレキシビリティが強く望まれているので、カーボンブラックの充填された樹脂組成物の使用が拡大しつつあり、今日の要求は、廉価かつ高導電性の保護材用樹脂組成物の出現である。
【0006】
一方、電力ケーブルの内部半導電層と外部半導電層についてみると、これらはそれに隣接する導体と絶縁層間の電界緩和、絶縁層と保護材の金属シース間との電界緩和を改善するため、酢酸ビニル、アクリル酸エチル、アクリル酸ブチルなどの共重合成分の含有量を20%以上に高められた、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸ブチルなどのエチレン系共重合樹脂に、カーボンブラックが混合されたものが用いられている。しかし、これらの共重合成分は高価であり、樹脂が高騰する欠点があるので、これらの共重合成分の含有量の少ないエチレン系共重合樹脂からなり、高流動性かつ高導電性の半導電層の出現が待たれている。
【0007】
本発明者は、カーボンブラックの充填量を高めて上記要望を試みたが、所期の導電性を達成できる程度にその充填量を増すと、樹脂の柔軟性が著しく低下し、目的を達成することができなかった。なお、ここで使用したカーボンブラックは通常品であり、使用電圧が33KV以上の高電圧、超高電圧のCVケーブル半導電層では、密着性と高純度の点から、沃素吸着量85〜100mg/gのアセチレンブラックであり、使用電圧が33KV未満のCVケーブル半導電層では、施工時の樹脂の剥離を容易とすることから、ファーネスブラックである。また、これらの保護材は、低密度ポリエチレン(LDPE:Low−Density Polyethylene)とファーネスブラックである。
【0008】
そこで、少量の充填量で高導電性の付与が可能であるケッチェンブラックを用いてみたが、高比表面積化により導電性は少量で向上するが、傾向は通常品と同じであり、高導電性が得られても柔軟性は十分でなかった。むしろ、ケッチェンブラックの高充填化は、高比表面積であるが故に吸着水分が多くなり、樹脂組成物の劣化につながることの問題の方が大きくなった。
【0009】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、その目的は、柔軟性の改善されたケーブルと、そのケーブルに用いられる樹脂組成物を提供することである。
【0010】
【課題を解決するための手段】
すなわち、本発明は、エチレン系樹脂と、JIS K 1469による電気抵抗率が0.1Ωcm以下であるホウ素固溶のカーボンブラックとを含有してなることを特徴とするケーブル用樹脂組成物である。
【0011】
また、本発明は、導体と、絶縁体と、保護材とを有してなる通信ケーブルにおいて、保護材が、上記樹脂組成物の成形体からなるものであることを特徴とする通信ケーブルである。
【0012】
更に、本発明は、導体と、内部半導電層と、絶縁層と、外部半導電層と、遮蔽層と、保護材とを有してなる電力ケーブルにおいて、内部半導電層、外部半導電層及び/又は保護材が、上記樹脂組成物の成形体からなるものであることを特徴とする電力ケーブルである。
【0013】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0014】
本発明で使用されるカーボンブラックは、JIS K 1469による電気抵抗率が0.1Ωcm以下であり、ホウ素を固溶しているものである。好ましいホウ素の固溶量は0.6〜3.0重量%である。このようなカーボンブラックは新規であり、それは、特願平11−86661号願書に添付した明細書に記載されているように、炭化水素の熱分解反応時及び/又は燃焼反応時にホウ素源を存在させることによって製造することができる。このようなカーボンブラックは、従来のカーボンブラックに比べて著大な高導電性を示す。
【0015】
ホウ素固溶量は、以下に従って測定された全ホウ素量から可溶ホウ素量を差し引くことによって求めることができる。
【0016】
全ホウ素量は、カーボンブラック0.5gを白金皿に取り、1.5重量%Ca(OH)2溶液20ml、アセトン5mlを加え、超音波洗浄機で1時間分散させる。それをサンドバスで乾固させた後、電気炉を用い、酸素気流中、800℃で3時間かけて灰化させる。次いで、HCl(1+1)溶液10mlを加えサンドバス中で加熱して溶出させる。溶出液を100mlに定容し、ICP−AESでホウ素量を定量し、カーボンブラック中の全ホウ素量とする。
【0017】
可溶ホウ素量は、カーボンブラック1gを石英ガラス製三角フラスコに取り、水100mlとアセトン1mlを加える。それをウォーターバス上で24時間還留させ、0.8μmメンブランフィルターで濾過する。濾液のホウ素量をICP−AESで定量し、カーボンブラック中の可溶ホウ素量とする。
【0018】
また、本発明で使用される樹脂は、ポリエチレン、変成ポリエチレン、エチレンを成分とする共重合体などのエチレン系樹脂である。これらの中でも、通信ケーブルの保護材、又は電力ケーブルの保護材としては、低密度ポリエチレン(LDPE:Low−Density Polyethylene、LLDPE:Liner Low−Density Polyethylene)が好ましく、また電力ケーブルの内部半導電層又は外部半導電層としては、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸ブチル共重合体などのエチレンを成分とする共重合体が好ましい。従来、保護材としては、塩化ビニル系樹脂、ポリクロロプレンゴムなども使用されているが、環境問題の観点から、減少傾向にある。
【0019】
本発明において、樹脂とカーボンブラックとを混合するには、カーボンブラック粉を樹脂と混合しても良いが、樹脂への均一分散性の点から、カーボンブラック粉を0.1〜2mm程度に造粒してから配合することが好ましい。造粒に際しては、イオン交換水を湿潤剤として用いることが望ましく、その詳細は特公平1−58227号公報に記載されている。
【0020】
樹脂とカーボンブラックの割合は、樹脂組成物の用途が通信ケーブルの保護材又は電力ケーブルの保護材であるときは、良好な電磁波遮蔽効果つまり高導電性と柔軟性保持の点から、樹脂100重量部に対し、カーボンブラック10〜50重量部であることが好ましい。カーボンブラックが5重量部未満では、樹脂混練物は良好な柔軟性(流動性)を発揮するが、電磁波遮蔽効果に有効な導電性を発現し難い。また、50重量部をこえると柔軟性が低下する。
【0021】
一方、樹脂組成物の用途が、電力ケーブルの半導電層であるときも、樹脂100重量部に対し、カーボンブラック10〜80重量部であることが好ましい。カーボンブラックが10重量部未満では導電性が不十分となり、80重量部をこえると柔軟性が低下する。
【0022】
本発明の樹脂組成物を用いて本発明の通信ケーブル又は電力ケーブルを製造するには、常法によって行うことができる。これらの構造は、上記従来構造と同様で良い。CVケーブルの例を次に概説するが、本発明においては、以下の例のように、内部半導電層、外部半導電層及び被覆層の全てを本発明の樹脂組成物を用いて形成させる必要はない。例えば、内部半導電層の形成に本発明の樹脂組成物を用い、外部半導電層には従来材であるファーネスブラック配合のエチレン−酢酸ビニル共重合体、被覆層には塩化ビニル系樹脂を用いて製造してもよい。
【0023】
素線を撚り合わせて導体とし、その上に、内部半導電層となる本発明の樹脂組成物と、絶縁層となる未架橋のポリエチレンと、外部半導電層となる本発明の樹脂組成物とを、押出被覆により被覆した後、未架橋ポリエチレンを架橋させる。次いで、遮蔽層と、本発明の樹脂組成物による保護材とを形成させることによって、架橋ポリエチレン絶縁電力ケーブルとする。
【0024】
【実施例】
以下、実施例、比較例、参考例をあげて更に具体的に本発明を説明する。なお、表に示されたカーボンブラックは、「B変性AB」がホウ素固溶のカーボンブラック、「バルカンXC72」がオイルファーネス法カーボンブラック、「ケッチェンEC」がテキサコ法に類似したカーボンブラック、「AB粒状」がホウ素を固溶していない通常のアセチレンブラックを意味する。
【0025】
実施例1〜4 比較例1〜2 参考例1〜2
LDPE樹脂(三井化学社製商品名「403P」)又はLLDPE樹脂(三井化学社製商品名「4030P」)100重量部と、ホウ素固溶量及び電気抵抗率が種々異なるカーボンブラックを表1に示す割合(重量部)と、架橋剤(三井化学社製ジクミルパーオキサイド)1重量部とを配合し、内容積60mlの混練試験機(東洋精機製作所社製「ラボプラストグラフR−60」)で、ブレード回転数30rpm、温度160℃で10分間混練した。
【0026】
得られた樹脂組成物について、MFI(メルトフローインデックス)、体積固有抵抗及び吸湿水分を以下に従い測定した。それらの結果を表1に示す。
【0027】
(1)MFI(メルトフローインデックス):混練物の一部をカッターで微砕化し、流動性測定機(東洋精機製作所製「メルトインデクサーA−111」)で200℃の加熱下、5kgの加重下にて内径2mmのノズルから流れる10分間当たりのコンパウンド重量を測定した。
(2)体積固有抵抗:混練物を加熱プレス機にて温度180℃、圧力100kg/cm2で10分間プレスし、2×20×100mmの半導電層用シートを成形し、デジタルマルチメータ(横河電機製「デジタルマルチメータ7562」)を用いSRIS2301に準じて測定した。
(3)吸湿水分:上記樹脂組成物を加熱プレス機で温度180℃、圧力100Kg/cm2で10分間プレスし、3mm角のペレットにした後、温度30℃、湿度90%で2週間吸湿させた。吸湿水分は105℃で2時間乾燥後の重量減少より算出した。
【0028】
なお、カーボンブラックの沃素吸着量はJIS K 1474、DBP吸収量はJIS K 6217、電気抵抗率はJIS K 1469に準じてそれぞれ測定した。また、カーボンブラックのホウ素固溶量は、上記に従い測定した。
【0029】
【表1】

Figure 0003636623
【0030】
表1から、本発明の樹脂組成物(実施例1〜4)は、従来のカーボンブラックを充填したもの(参考例1〜2)や、本発明の範囲にないもの(比較例1〜2)に比べ、導電性と流動性と吸湿性のいずれにおいても優れていた。従って、本発明の樹脂組成物は、通信・電力ケーブル用保護材として最適であることが示された。
【0031】
本発明の樹脂組成物を用いて保護材を形成した通信ケーブルは、保護材中のカーボンブラックの含有量が少ないことから、ケーブルの柔軟性が高いものである。
【0032】
実施例5〜8 比較例3〜4 参考例3〜4
エチレン含有量の異なるEVA樹脂(エチレン含有量72%日本ユニカ社製商品名「3269」、エチレン含有量85%日本ユニカ社製商品名「3145」)100重量部に、ホウ素固溶量及び電気抵抗率が種々異なるカーボンブラックを表1に示す割合(重量部)と、架橋剤(三井化学社製ジクミルパーオキサイド)1重量部とを配合し、内容積60mlの混練試験機(東洋精機製作所社製「ラボプラストグラフR−60」)で、ブレード回転数30rpm、温度120℃で10分間混練した。
【0033】
得られた樹脂組成物について、MFI(メルトフローインデックス)、体積固有抵抗、及び吸湿水分を測定した。なお、MFI(メルトフローインデックス)の測定は上記と同様にして行い、また体積固有抵抗と吸着水分の測定は、加熱プレス温度を170℃に変更したこと以外は上記と同様にして行った。それらの結果を表2に示す。
【0034】
【表2】
Figure 0003636623
【0035】
表2から、本発明の樹脂組成物(実施例5〜8)は、従来のカーボンブラックを充填したもの(参考例3〜4)や、本発明の範囲にないもの(比較例3〜4)に比べ、導電性と流動性と吸湿性のいずれにおいても優れていた。従って、本発明の樹脂組成物は、電力ケーブルの半導電層として最適であることが示された。
【0036】
本発明の樹脂組成物を用いて保護材及び/又は半導電層を形成した電力ケーブルは、製造が容易であり、しかも柔軟性の高いものとなる。
【0037】
【発明の効果】
本発明によれば、通信ケーブル、電力ケーブルの樹脂層の形成に好適な柔軟性があり、しかも導電性や吸湿性等の特性に優れたケーブル用樹脂組成物が提供される。
【0038】
本発明の通信ケーブルによれば、柔軟性があり、しかも導電性や吸湿性等の特性に優れたものとなる。
【0039】
本発明の電力ケーブルによれば、柔軟性があり、しかも導電性や吸湿性等の特性に優れかつ、安価なものとなる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a resin composition for cables and a communication cable and a power cable composed of the resin molding.
[0002]
[Prior art]
A communication cable consists of a conductor (for example, copper, aluminum, etc.) for carrying communication signals, and an insulator (for example: vinyl chloride resin, ethylene resin such as cross-linked polyethylene, paper, etc.) that prevents the conductors from intermingling. , It has a basic structure with protective materials (eg lead, ethylene resin, vinyl chloride resin, polychloroprene rubber, etc.) to protect the assembled cable cores, city cables, outside the city Used as cables, optical fiber cables, coaxial cables, submarine cables, etc.
[0003]
A power cable consists of a conductor for supplying power (eg, copper, aluminum, etc.), an inner semiconductive layer (eg, ethylene-vinyl acetate copolymer resin containing carbon black) for electric field relaxation, and an insulating layer ( Cross-linked polyethylene, ethylene propylene rubber, etc.), external semiconductive layer for electric field relaxation (eg, carbon black-containing ethylene-vinyl acetate copolymer resin, etc.), shielding layer (eg, copper tape, etc.), and cable protection Protective material (for example, vinyl chloride resin) is used as a basic structure, and is used as CV cable such as single-core CV cable, 3-core CV cable, triplex CV cable, PN cable, etc. ing. Some have a structure in which a cloth tape is interposed between the shielding layer and the protective material.
[0004]
These communication cables and power cables (hereinafter simply referred to as “cables”) are widely used because they are easy to maintain, but one of today's challenges is further There is an improvement in flexibility.
[0005]
The protective material of the communication cable must not be damaged by mechanical factors from the outside, prevent moisture in the atmosphere from reaching the insulation coating, have a return path for fault currents, and be disturbed by external electromagnetic waves. Functions such as prevention are necessary. In addition to the above-described function of the communication cable protection material, the power cable protection material must have a function of shielding induced electromagnetic waves generated by high-voltage current from the outside. These electromagnetic wave shielding effects are closely related to electrical conductivity, and if the electrical conductivity is improved, the electromagnetic wave shielding effect is also improved. Therefore, at present, a metal sheath and an anticorrosive material made of a resin composition are used in combination as a protective material, and chloroprene rubber, vinyl chloride resin, polyethylene, etc. are used as the resin composition. It is done. In particular, in a small cable, the flexibility of the cable is strongly desired in order to increase the degree of freedom in wiring, and therefore, the use of a resin composition filled with carbon black is expanding. The demand is the emergence of inexpensive and highly conductive resin compositions for protective materials.
[0006]
On the other hand, when looking at the inner and outer semiconductive layers of the power cable, they improve the electric field relaxation between the adjacent conductor and the insulating layer and between the insulating layer and the metal sheath of the protective material. Such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate, and the like, wherein the content of copolymer components such as vinyl, ethyl acrylate, butyl acrylate and the like is increased to 20% or more. A mixture of ethylene copolymer resin and carbon black is used. However, since these copolymer components are expensive and have the disadvantage that the resin is soared, they are made of an ethylene copolymer resin having a low content of these copolymer components, and have a highly fluid and highly conductive semiconductive layer. The appearance of is awaited.
[0007]
The present inventor attempted the above request by increasing the filling amount of carbon black. However, when the filling amount is increased to such an extent that the desired conductivity can be achieved, the flexibility of the resin is remarkably lowered and the object is achieved. I couldn't. The carbon black used here is a normal product, and in the case of a high voltage and ultrahigh voltage CV cable semiconductive layer having a working voltage of 33 KV or more, an iodine adsorption amount of 85 to 100 mg / mg from the viewpoint of adhesion and high purity. A CV cable semiconductive layer of g acetylene black having a working voltage of less than 33 KV is furnace black because the resin can be easily peeled off during construction. Moreover, these protective materials are low density polyethylene (LDPE: Low-Density Polyethylene) and furnace black.
[0008]
Therefore, I tried using ketjen black, which can give high conductivity with a small amount of filling, but the conductivity is improved in a small amount by increasing the specific surface area, but the trend is the same as the normal product, and high conductivity is achieved. Even if the property was obtained, the flexibility was not sufficient. Rather, the high packing of ketjen black has a higher specific surface area, so that the amount of adsorbed moisture increases and the problem of leading to deterioration of the resin composition has become more serious.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object thereof is to provide a cable with improved flexibility and a resin composition used for the cable.
[0010]
[Means for Solving the Problems]
That is, the present invention is a resin composition for cables comprising an ethylene-based resin and boron solid solution carbon black having an electrical resistivity of 0.1 Ωcm or less according to JIS K 1469.
[0011]
Moreover, the present invention is a communication cable comprising a conductor, an insulator, and a protective material, wherein the protective material is a molded body of the resin composition. .
[0012]
Furthermore, the present invention relates to a power cable comprising a conductor, an internal semiconductive layer, an insulating layer, an external semiconductive layer, a shielding layer, and a protective material. And / or a protective material comprising a molded product of the resin composition.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0014]
The carbon black used in the present invention has an electrical resistivity of 0.1 Ωcm or less according to JIS K 1469 and is a solid solution of boron. A preferable boron solid solution amount is 0.6 to 3.0% by weight. Such carbon black is novel, and as described in the specification attached to Japanese Patent Application No. 11-86661, a boron source is present during the pyrolysis reaction and / or combustion reaction of hydrocarbons. Can be manufactured. Such carbon black exhibits remarkably high conductivity as compared with conventional carbon black.
[0015]
The boron solid solution amount can be determined by subtracting the soluble boron amount from the total boron amount measured according to the following.
[0016]
For the total boron content, 0.5 g of carbon black is placed in a platinum dish, 20 ml of a 1.5 wt% Ca (OH) 2 solution and 5 ml of acetone are added and dispersed for 1 hour with an ultrasonic cleaner. After drying it in a sand bath, it is incinerated for 3 hours at 800 ° C. in an oxygen stream using an electric furnace. Subsequently, 10 ml of HCl (1 + 1) solution is added and heated in a sand bath to elute. The eluate is made up to a volume of 100 ml, and the amount of boron is quantified by ICP-AES to obtain the total amount of boron in carbon black.
[0017]
For the amount of soluble boron, 1 g of carbon black is placed in a quartz glass Erlenmeyer flask, and 100 ml of water and 1 ml of acetone are added. It is allowed to return for 24 hours on a water bath and filtered through a 0.8 μm membrane filter. The amount of boron in the filtrate is quantified by ICP-AES to obtain the amount of soluble boron in carbon black.
[0018]
The resin used in the present invention is an ethylene resin such as polyethylene, modified polyethylene, and a copolymer containing ethylene as a component. Among these, as a protective material for a communication cable or a protective material for a power cable, low density polyethylene (LDPE: Low-Density Polyethylene, LLDPE: Linear Low-Density Polyethylene) is preferable. The outer semiconductive layer is preferably a copolymer containing ethylene as a component, such as an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, or an ethylene-butyl acrylate copolymer. Conventionally, vinyl chloride resins, polychloroprene rubber, and the like have been used as protective materials, but they are decreasing from the viewpoint of environmental problems.
[0019]
In the present invention, the carbon black powder may be mixed with the resin in order to mix the resin and the carbon black. However, the carbon black powder is formed to a thickness of about 0.1 to 2 mm from the viewpoint of uniform dispersibility in the resin. It is preferable to blend after granulation. In granulation, it is desirable to use ion-exchanged water as a wetting agent, the details of which are described in Japanese Patent Publication No. 1-58227.
[0020]
When the resin composition is used for a communication cable protective material or a power cable protective material, the ratio of resin to carbon black is 100 weight of resin from the viewpoint of good electromagnetic shielding effect, that is, high conductivity and flexibility maintenance. It is preferable that it is 10-50 weight part of carbon black with respect to a part. If the carbon black is less than 5 parts by weight, the resin kneaded material exhibits good flexibility (fluidity), but it is difficult to exhibit conductivity effective for the electromagnetic wave shielding effect. Moreover, when it exceeds 50 weight part, a softness | flexibility will fall.
[0021]
On the other hand, when the application of the resin composition is a semiconductive layer of a power cable, it is preferably 10 to 80 parts by weight of carbon black with respect to 100 parts by weight of the resin. If the carbon black is less than 10 parts by weight, the conductivity is insufficient, and if it exceeds 80 parts by weight, the flexibility is lowered.
[0022]
Production of the communication cable or power cable of the present invention using the resin composition of the present invention can be carried out by a conventional method. These structures may be the same as the conventional structure. An example of a CV cable is outlined below. In the present invention, as in the following example, it is necessary to form all of the inner semiconductive layer, the outer semiconductive layer and the coating layer using the resin composition of the present invention. There is no. For example, the resin composition of the present invention is used to form the inner semiconductive layer, the outer semiconductive layer is a conventional furnace black blended ethylene-vinyl acetate copolymer, and the coating layer is a vinyl chloride resin. May be manufactured.
[0023]
Twisting strands to form a conductor, on which the resin composition of the present invention to be an internal semiconductive layer, uncrosslinked polyethylene to be an insulating layer, and the resin composition of the present invention to be an external semiconductive layer; After being coated by extrusion coating, the uncrosslinked polyethylene is crosslinked. Next, a cross-linked polyethylene insulated power cable is formed by forming a shielding layer and a protective material made of the resin composition of the present invention.
[0024]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, Comparative Examples, and Reference Examples. The carbon blacks shown in the table are “B-modified AB” which is a boron-soluble carbon black, “Vulcan XC72” is an oil furnace method carbon black, “Ketjen EC” is a carbon black similar to the Texaco method, “AB “Granular” means ordinary acetylene black in which boron is not dissolved.
[0025]
Examples 1-4 Comparative Examples 1-2 Reference Examples 1-2
Table 1 shows 100 parts by weight of LDPE resin (trade name “403P” manufactured by Mitsui Chemicals, Inc.) or LLDPE resin (trade name “4030P” manufactured by Mitsui Chemicals, Inc.), and carbon blacks having different amounts of boron solid solution and electrical resistivity. A blending ratio (parts by weight) and 1 part by weight of a cross-linking agent (dicumyl peroxide manufactured by Mitsui Chemicals) were blended, and a kneading tester having an internal volume of 60 ml (“Lab Plastograph R-60” manufactured by Toyo Seiki Seisakusho). And kneading for 10 minutes at a blade rotation speed of 30 rpm and a temperature of 160 ° C.
[0026]
About the obtained resin composition, MFI (melt flow index), volume specific resistance, and moisture absorption were measured according to the following. The results are shown in Table 1.
[0027]
(1) MFI (Melt Flow Index): A part of the kneaded material is pulverized with a cutter, and a load of 5 kg is applied while heating at 200 ° C. with a fluidity measuring device (“Melt Indexer A-111” manufactured by Toyo Seiki Seisakusho). The compound weight per 10 minutes flowing from a nozzle having an inner diameter of 2 mm was measured.
(2) Volume resistivity: The kneaded product was pressed with a heating press at a temperature of 180 ° C. and a pressure of 100 kg / cm 2 for 10 minutes to form a 2 × 20 × 100 mm sheet for a semiconductive layer. Measurement was performed according to SRIS2301 using a “Digital Multimeter 7562” manufactured by Kawa Electric.
(3) Moisture absorption moisture: The above resin composition was pressed with a heating press at a temperature of 180 ° C. and a pressure of 100 kg / cm 2 for 10 minutes to form a 3 mm square pellet, and then absorbed at a temperature of 30 ° C. and a humidity of 90% for 2 weeks. It was. The moisture absorption was calculated from the weight loss after drying at 105 ° C. for 2 hours.
[0028]
The iodine adsorption amount of carbon black was measured according to JIS K 1474, the DBP absorption amount was measured according to JIS K 6217, and the electrical resistivity was measured according to JIS K 1469. Moreover, the boron solid solution amount of carbon black was measured according to the above.
[0029]
[Table 1]
Figure 0003636623
[0030]
From Table 1, the resin compositions (Examples 1 to 4) of the present invention are those filled with conventional carbon black (Reference Examples 1 to 2) and those not within the scope of the present invention (Comparative Examples 1 to 2). As compared with the above, it was excellent in all of conductivity, fluidity and hygroscopicity. Therefore, it was shown that the resin composition of the present invention is optimal as a protective material for communication / power cables.
[0031]
The communication cable in which the protective material is formed using the resin composition of the present invention has high flexibility of the cable because the content of carbon black in the protective material is small.
[0032]
Examples 5-8 Comparative Examples 3-4 Reference Examples 3-4
100 parts by weight of EVA resin having different ethylene contents (trade name “3269” manufactured by Nihon Unika Co., Ltd., 72% ethylene content, trade name “3145” manufactured by Nihon Unika Co., Ltd.) Carbon blacks with different rates shown in Table 1 (parts by weight) and 1 part by weight of a cross-linking agent (dicumyl peroxide manufactured by Mitsui Chemicals Co., Ltd.), and a kneading tester (Toyo Seiki Seisakusho Co., Ltd.) with an internal volume of 60 ml Manufactured by “Lab Plastograph R-60”), and kneaded for 10 minutes at a blade rotation speed of 30 rpm and a temperature of 120 ° C.
[0033]
About the obtained resin composition, MFI (melt flow index), volume specific resistance, and moisture absorption moisture were measured. The MFI (melt flow index) was measured in the same manner as described above, and the volume resistivity and adsorbed moisture were measured in the same manner as above except that the heating press temperature was changed to 170 ° C. The results are shown in Table 2.
[0034]
[Table 2]
Figure 0003636623
[0035]
From Table 2, the resin compositions (Examples 5 to 8) of the present invention are those filled with conventional carbon black (Reference Examples 3 to 4) and those not within the scope of the present invention (Comparative Examples 3 to 4). As compared with the above, it was excellent in all of conductivity, fluidity and hygroscopicity. Therefore, it was shown that the resin composition of the present invention is optimal as a semiconductive layer of a power cable.
[0036]
The power cable in which the protective material and / or the semiconductive layer is formed using the resin composition of the present invention is easy to manufacture and has high flexibility.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the resin composition for cables which has the softness | flexibility suitable for formation of the resin layer of a communication cable and an electric power cable, and was excellent in characteristics, such as electroconductivity and moisture absorption, is provided.
[0038]
According to the communication cable of the present invention, there is flexibility and excellent properties such as conductivity and hygroscopicity.
[0039]
According to the power cable of the present invention, it is flexible, has excellent properties such as conductivity and hygroscopicity, and is inexpensive.

Claims (3)

エチレン系樹脂と、JIS K 1469による電気抵抗率が0.1Ωcm以下であるホウ素固溶のカーボンブラックとを含有してなることを特徴とするケーブル用樹脂組成物。  A resin composition for a cable, comprising: an ethylene-based resin; and boron solid solution carbon black having an electrical resistivity of 0.1 Ωcm or less according to JIS K 1469. 導体と、絶縁体と、保護材とを有してなる通信ケーブルにおいて、保護材が、請求項1記載の樹脂組成物の成形体からなるものであることを特徴とする通信ケーブル。  A communication cable comprising a conductor, an insulator, and a protective material, wherein the protective material is a molded product of the resin composition according to claim 1. 導体と、内部半導電層と、絶縁層と、外部半導電層と、遮蔽層と、保護材とを有してなる電力ケーブルにおいて、内部半導電層、外部半導電層及び/又は保護材が、請求項1記載の樹脂組成物の成形体からなるものであることを特徴とする電力ケーブル。  In a power cable having a conductor, an internal semiconductive layer, an insulating layer, an external semiconductive layer, a shielding layer, and a protective material, the internal semiconductive layer, the external semiconductive layer, and / or the protective material are A power cable comprising a molded product of the resin composition according to claim 1.
JP28291999A 1999-03-29 1999-10-04 Resin composition for cable and cable Expired - Lifetime JP3636623B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28291999A JP3636623B2 (en) 1999-10-04 1999-10-04 Resin composition for cable and cable
EP00106342A EP1043731B1 (en) 1999-03-29 2000-03-23 Carbon black, method for its preparation and its applications
DE60015004T DE60015004T2 (en) 1999-03-29 2000-03-23 Russ, its manufacture and uses
US09/534,317 US6403697B1 (en) 1999-03-29 2000-03-24 Carbon black, method for its preparation and its applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28291999A JP3636623B2 (en) 1999-10-04 1999-10-04 Resin composition for cable and cable

Publications (2)

Publication Number Publication Date
JP2001106837A JP2001106837A (en) 2001-04-17
JP3636623B2 true JP3636623B2 (en) 2005-04-06

Family

ID=17658820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28291999A Expired - Lifetime JP3636623B2 (en) 1999-03-29 1999-10-04 Resin composition for cable and cable

Country Status (1)

Country Link
JP (1) JP3636623B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210075032A (en) * 2017-08-28 2021-06-22 모놀리스 머티어리얼스 인코포레이티드 Particle Systems and Methods
US11866589B2 (en) 2014-01-30 2024-01-09 Monolith Materials, Inc. System for high temperature chemical processing
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US11998886B2 (en) 2015-02-03 2024-06-04 Monolith Materials, Inc. Regenerative cooling method and apparatus
US12012515B2 (en) 2016-04-29 2024-06-18 Monolith Materials, Inc. Torch stinger method and apparatus
US12030776B2 (en) 2017-08-28 2024-07-09 Monolith Materials, Inc. Systems and methods for particle generation
US12119133B2 (en) 2015-09-09 2024-10-15 Monolith Materials, Inc. Circular few layer graphene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104525A (en) * 2002-09-10 2004-04-02 Inoac Corp Low-pass filter and method for controlling transmission characteristics
JP2006060884A (en) * 2004-08-18 2006-03-02 Takiron Co Ltd Protector for overhead wire
JP5221731B2 (en) * 2011-10-11 2013-06-26 電気化学工業株式会社 IC package

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866589B2 (en) 2014-01-30 2024-01-09 Monolith Materials, Inc. System for high temperature chemical processing
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US11998886B2 (en) 2015-02-03 2024-06-04 Monolith Materials, Inc. Regenerative cooling method and apparatus
US12119133B2 (en) 2015-09-09 2024-10-15 Monolith Materials, Inc. Circular few layer graphene
US12012515B2 (en) 2016-04-29 2024-06-18 Monolith Materials, Inc. Torch stinger method and apparatus
KR20210075032A (en) * 2017-08-28 2021-06-22 모놀리스 머티어리얼스 인코포레이티드 Particle Systems and Methods
US12030776B2 (en) 2017-08-28 2024-07-09 Monolith Materials, Inc. Systems and methods for particle generation
KR102705864B1 (en) * 2017-08-28 2024-09-10 모놀리스 머티어리얼스 인코포레이티드 Particle systems and methods

Also Published As

Publication number Publication date
JP2001106837A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
EP1043731B1 (en) Carbon black, method for its preparation and its applications
US7390970B2 (en) Cable semiconducting shield
US3666876A (en) Novel compositions with controlled electrical properties
JP3636623B2 (en) Resin composition for cable and cable
KR101336522B1 (en) Semiconductive Composition And The Power Cable Using The Same
EP2444455A1 (en) A semiconductive polymer composition which contains epoxy-groups
EP3144941B1 (en) Flame retardant twin axial cable
JP2018523268A (en) Electric power cables and processes for the production of power cables
KR20140007908A (en) Semiconductive shield composition with improved strippability
EP1342247A1 (en) Power cable
CN110993173A (en) High-temperature cable with insulating silicone rubber sheath and preparation method thereof
JP2000133048A (en) Tracking-resistant insulated electric wire and tracking- resistant insulated cable
GB1583956A (en) Electric cables
JP2021082822A (en) cable
JP4175588B2 (en) Resin composition for semiconductive layer of power cable
JP3088055B2 (en) Composition for semiconductive layer of power cable
JPH07111844B2 (en) DC power cable
JP6298441B2 (en) Semiconductive resin composition and power cable using the same
EP1548752A1 (en) Semi-conducting shield for an electric power cable
JPH11329077A (en) Composition for semi-conductive layer and power cable
JP2001229732A (en) Semi-conductive resin composite
JPS6356644B2 (en)
JPH0215507A (en) Electric cable
MXPA00004578A (en) Cable semiconducting shield
JPH07216147A (en) Semiconductive resin composition, and electric wire and cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050105

R150 Certificate of patent or registration of utility model

Ref document number: 3636623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

EXPY Cancellation because of completion of term