JPH07111844B2 - DC power cable - Google Patents

DC power cable

Info

Publication number
JPH07111844B2
JPH07111844B2 JP61083189A JP8318986A JPH07111844B2 JP H07111844 B2 JPH07111844 B2 JP H07111844B2 JP 61083189 A JP61083189 A JP 61083189A JP 8318986 A JP8318986 A JP 8318986A JP H07111844 B2 JPH07111844 B2 JP H07111844B2
Authority
JP
Japan
Prior art keywords
carbon black
insulator
amount
power cable
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61083189A
Other languages
Japanese (ja)
Other versions
JPS61253712A (en
Inventor
宏 山之内
道雄 高岡
恒明 馬渡
幹幸 小野
昭太郎 吉田
利夫 丹羽
亨 高橋
敬一郎 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/730,224 external-priority patent/US4626618A/en
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of JPS61253712A publication Critical patent/JPS61253712A/en
Publication of JPH07111844B2 publication Critical patent/JPH07111844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、空間電荷による電界の変歪を取り除くこと
により、、絶縁耐力の向上を計った直流電力ケーブルに
関する。
Description: TECHNICAL FIELD The present invention relates to a DC power cable with improved dielectric strength by removing distortion of an electric field due to space charge.

[従来の技術] 従来より、CVケーブル等、通常の交流高電圧電力ケーブ
ルの絶縁体としては、絶縁耐圧、誘電特性が優れている
ことから、ポリエチレンや架橋ポリエチレンが汎用され
ている。
[Prior Art] Conventionally, polyethylene and cross-linked polyethylene have been widely used as insulators for ordinary AC high-voltage power cables such as CV cables because of their excellent dielectric strength and dielectric properties.

[発明が解決しようとする問題点] ところで、ポリエチレンや架橋ポリエチレンなどからな
る絶縁体を有するケーブルを、高圧直流送電に適用する
場合には、いくつかの問題点が生じることが知られてい
る。最大の問題点は、直流高電圧を印加することによっ
て、絶縁体中に寿命の長い空間電荷が形成され易いこと
である。この空間電荷は一般に電子性、正孔性、イオン
性のものと言われており、ポリエチレンの結晶構造に関
係した領域に電荷がトラップされるためとされている。
また、ポリエチレンは絶縁性の良好な無極性の物質であ
るため、トラップされた電荷の漏れが起こりにくく、従
って、寿命の長い空間電荷となる。そして、直流印加に
よって絶縁体に空間電荷が蓄積されると、導体近傍の電
界強度が上昇し、ケーブルの破壊電圧が低下する不都合
が生じる。
[Problems to be Solved by the Invention] By the way, it is known that some problems occur when a cable having an insulator made of polyethylene, cross-linked polyethylene, or the like is applied to high-voltage DC transmission. The biggest problem is that a long-life space charge is easily formed in the insulator by applying a high DC voltage. This space charge is generally said to be electronic, hole, or ionic, and this is because the charge is trapped in a region related to the crystal structure of polyethylene.
Further, since polyethylene is a non-polar substance having a good insulating property, leakage of trapped charges is unlikely to occur, and therefore space charges have a long life. Then, when the space charge is accumulated in the insulator by applying the direct current, the electric field strength near the conductor is increased, and the breakdown voltage of the cable is lowered.

この発明は、このような背景の下になされたもので、絶
縁体に悪影響を与える空間電荷の蓄積を低減することに
より絶縁耐力を高めた直流電力ケーブルを提供すること
を目的とする。
The present invention has been made under such a background, and an object of the present invention is to provide a DC power cable having an increased dielectric strength by reducing the accumulation of space charge that adversely affects the insulator.

[問題点を解決するための手段] 上記問題点を解決するためにこの発明は、絶縁体中に適
当量のカーボンブラックを添加したことをその要旨とす
る。前記カーボンブラックは、BET法で測定した比表面
積(m2/g)に対する鉱物油の吸油量(cc/100g)の比が
0.7以上で、かつ炭素含有率が97重量%以上、かつ平均
粒径が10〜100nm、すなわち10〜100ミリミクロンのもの
を用い、このカーボンブラックを熱可塑性樹脂に対し0.
2〜5重量%添加して絶縁組成物を構成する。
[Means for Solving Problems] In order to solve the above problems, the gist of the present invention is to add an appropriate amount of carbon black to an insulator. The carbon black has a ratio of the mineral oil absorption (cc / 100g) to the specific surface area (m 2 / g) measured by the BET method.
0.7 or more, and a carbon content of 97% by weight or more, and an average particle size of 10 to 100 nm, that is, 10 to 100 millimicrons, using this carbon black to the thermoplastic resin.
An insulating composition is formed by adding 2 to 5% by weight.

ここで、比表面積とは、カーボンブラック1g当たりに吸
着する所定物質(例えば、N2,Arなど)の量で、g当た
りの表面積として表す。これは粒子1つずつの表面積を
測定することが困難なためである。一方、吸油量とは文
字通り油を吸う量であり、カーボンブラックの粒子構造
をみるためのものである。さらに、カーボンブラックの
平均粒径とは、各粒子径区間の粒子数をNi、粒子径区間
の中心値をDiとしたとき、 平均粒径=ΣNi・Di/ΣNi で与えられる。また、上記熱可塑性樹脂としては、ポリ
エチレン(低密度ポリエチレン、高密度ポリエチレ
ン)、ポリプロピレン、エチレン酢酸ビニル共重合体
(EVA)、エチレンエチルアクリレート共重合体(EE
A)、エチレンプロピレンゴム(EPR)等、ならびにこれ
らの混合物を用いることができる。また、架橋して使用
することも勿論可能である。一方、カーボンブラックの
種類としては、SAFカーボン、アセチレンカーボンなど
が代表的なものである。
Here, the specific surface area is the amount of a predetermined substance (eg, N 2 , Ar, etc.) adsorbed per 1 g of carbon black, and is expressed as the surface area per g. This is because it is difficult to measure the surface area of each particle. On the other hand, the oil absorption amount is literally the amount of oil absorbed, and is for observing the particle structure of carbon black. Further, the average particle size of carbon black is given by the average particle size = ΣNi · Di / ΣNi, where Ni is the number of particles in each particle size section and Di is the center value of the particle size section. Further, as the thermoplastic resin, polyethylene (low density polyethylene, high density polyethylene), polypropylene, ethylene vinyl acetate copolymer (EVA), ethylene ethyl acrylate copolymer (EE
A), ethylene propylene rubber (EPR), etc., and mixtures thereof can be used. Further, it is of course possible to crosslink and use. On the other hand, typical types of carbon black include SAF carbon and acetylene carbon.

[作用] 上記構成によれば、空間電荷の漏れを促すことができ
る。以下、この理由について説明する。
[Operation] According to the above configuration, leakage of space charges can be promoted. The reason for this will be described below.

上記絶縁体組成物の抵抗率(比抵抗)をρ(Ω−m)と
し、絶縁抵抗の温度係数をα(1/℃)、電界係数(絶縁
抵抗のストレス係数)をβ(mm/kV)、絶縁体組成物に
かかる電界強度をE(kV/mm)とすれば、 ρ=ρ0exp−(αT+βE) ……(1) なる関係が成り立つことが知られている。
The resistivity (specific resistance) of the above-mentioned insulator composition is ρ (Ω-m), the temperature coefficient of insulation resistance is α (1 / ° C), and the electric field coefficient (stress coefficient of insulation resistance) is β (mm / kV). , E (kV / mm) is the electric field strength applied to the insulator composition, it is known that the relation of ρ = ρ 0 exp− (αT + βE) (1) holds.

そして、カーボンブラックを添加すると、電界係数βが
増加する一方で温度係数αが減少し、絶縁体組成物での
空間電荷の漏れを促進する。なぜならば、電界係数βが
増加すると抵抗率ρが低下するため、高ストレス部(強
い電界のかかる部分)の電界が緩和され、また、温度係
数αが減少すると、導体温度が高いときに遮蔽側に現れ
ていた最大電界Emaxが減少するからである。こうして、
絶縁体組成物内での電界分布が均一化の方向に動き、空
間電荷の蓄積が低減される。
When carbon black is added, the electric field coefficient β increases while the temperature coefficient α decreases, promoting the leakage of space charges in the insulating composition. This is because as the electric field coefficient β increases, the resistivity ρ decreases, so that the electric field in the high stress portion (the portion to which a strong electric field is applied) is relaxed, and when the temperature coefficient α decreases, the shielding side is increased when the conductor temperature is high. This is because the maximum electric field Emax that has appeared in is reduced. Thus
The electric field distribution in the insulator composition moves in the direction of homogenization, and the accumulation of space charges is reduced.

次に、各種数値限定の理由につき説明する。Next, the reasons for limiting various numerical values will be described.

(1)カーボンブラックの添加量が0.2〜5重量%の理
由。
(1) The reason why the amount of carbon black added is 0.2 to 5% by weight.

前記添加量が0.2%以下では上述した効果が十分に得ら
れない。また、5%以上では抵抗率ρの低下と電界係数
βの増加が著しく、熱破壊のおそれが生じる。
If the addition amount is 0.2% or less, the above effects cannot be sufficiently obtained. On the other hand, if it is 5% or more, the resistivity ρ is lowered and the electric field coefficient β is remarkably increased, which may cause thermal destruction.

(2)吸油量/比表面積が0.7以上の理由。(2) The reason why the oil absorption / specific surface area is 0.7 or more.

カーボンブラックの添加量を増加すると、粒子間の距離
が縮まり、高電界下においては粒子間にトンネル効果に
よる電流が流れる。このため、電界係数βが必要以上に
大きくなり、熱破壊を促す原因となる。従って、少ない
添加量で(1)式の抵抗率ρを低下させることが必須で
ある。
When the amount of carbon black added is increased, the distance between particles is shortened, and a current flows due to the tunnel effect between particles under a high electric field. Therefore, the electric field coefficient β becomes unnecessarily large, which causes thermal destruction. Therefore, it is essential to reduce the resistivity ρ of the formula (1) with a small addition amount.

ところで、比表面積に対する吸油量の比が大きいカーボ
ンブラックの方が、少量で抵抗率ρを下げることがで
き、この比が0.7以上ならば良好な結果が得られる。
By the way, in the case of carbon black having a large ratio of the oil absorption amount to the specific surface area, the resistivity ρ can be lowered with a small amount, and if this ratio is 0.7 or more, good results can be obtained.

一方、この比が3.5より大きくなると、粒子の凝集度が
増して見掛けの粒子径が大きくなり、ポリエチレン等の
熱可塑性樹脂との混じり合が悪くなる。特にアセチレン
カーボンでは粒子が鎖状に連結しているので、この影響
が大きい。
On the other hand, when this ratio is larger than 3.5, the degree of aggregation of particles increases and the apparent particle size increases, resulting in poor mixing with a thermoplastic resin such as polyethylene. Particularly, in acetylene carbon, the particles are connected in a chain shape, so this effect is great.

また、SAF,ISAF,I−ISAF,CF,SCF,HAFカーボンのいずれ
かのカーボンブラックを用いたときには、上記の比が0.
7〜1.5の範囲で、特に良好なことが実験的に確かめられ
た。
Further, when any one of SAF, ISAF, I-ISAF, CF, SCF, HAF carbon is used, the above ratio is 0.
It was experimentally confirmed that the range of 7 to 1.5 was particularly good.

(3)カーボンブラックに対する水素含有率が0.6重量
%以下であることの理由。
(3) The reason why the hydrogen content in carbon black is 0.6% by weight or less.

水素含有率が多いと、π電子が多くなって電子の移動が
妨げられる。従って、所望の抵抗率ρを得るためには、
多量のカーボンブラックを添加しなければならず、上記
(2)と同様の理由により好ましくない。このため、水
素含有率が低いほどよく、0.6重量%以下ならば良い結
果が得られる。
When the hydrogen content is high, the number of π electrons is increased and the movement of electrons is hindered. Therefore, to obtain the desired resistivity ρ,
A large amount of carbon black must be added, which is not preferable for the same reason as in (2) above. Therefore, the lower the hydrogen content, the better, and good results can be obtained if the hydrogen content is 0.6% by weight or less.

(4)カーボンブラックの炭素含有率が97重量%以上で
ある理由。
(4) The reason why the carbon content of carbon black is 97% by weight or more.

カーボンブラックには、灰分、O2、H2などの不純物が含
まれており、これらの不純物が多いと、電気的特性が低
下する。従って、カーボンの純度は高いほど良好であ
る。
Carbon black contains impurities such as ash, O 2 and H 2 , and if the amount of these impurities is large, the electrical characteristics deteriorate. Therefore, the higher the purity of carbon, the better.

(5)カーボンブラックの平均粒径が10〜100ミリミク
ロンである理由。
(5) The reason why the average particle size of carbon black is 10 to 100 millimicrons.

この大きさの粒径が、ポリエチレン等の絶縁体の結晶構
造を乱さない最適の値である。結晶構造が乱されると絶
縁体の電気的性能が低下する。粒径がこれより大きいと
カーボンブラックの分散や混じり具合が悪くなる。また
これより小さい場合は製造が難しく現実的でない。
A particle size of this size is an optimum value that does not disturb the crystal structure of an insulator such as polyethylene. Disturbed crystal structure reduces the electrical performance of the insulator. If the particle size is larger than this, the dispersibility and mixing of carbon black will deteriorate. If it is smaller than this, it is difficult to manufacture and it is not realistic.

[実験例] 第1表に示す種々の絶縁体組成物を絶縁体とした電力ケ
ーブルを製造した。この場合、前記電力ケーブルは導体
断面積が200mm2、絶縁体厚さが3mmであり、内部および
外部半導電層と絶縁体とを同時押出しによって形成した
ものである。
[Experimental Example] Power cables having various insulator compositions shown in Table 1 as insulators were manufactured. In this case, the power cable has a conductor cross-sectional area of 200 mm 2 and an insulator thickness of 3 mm, and the inner and outer semiconductive layers and the insulator are formed by coextrusion.

上記電力ケーブルに対して直流破壊試験を行い第1表に
示す結果を得た。
A DC breakdown test was conducted on the above power cable, and the results shown in Table 1 were obtained.

第1表から明らかなように、本発明の電力ケーブルで
は、直流破壊電圧が大幅に改善されている。
As is clear from Table 1, the power cable of the present invention has a significantly improved DC breakdown voltage.

[発明の効果] 以上説明したように、この発明は、絶縁体をなす熱可塑
性樹脂中に、特定のカーボンブラックを特定量添加した
ので、空間電荷の蓄積を低減させることができる。この
結果、ケーブルの直流破壊電圧を高めることができ、絶
縁耐力の高い直流電力ケーブルを提供することが可能と
なる。
[Effects of the Invention] As described above, according to the present invention, since the specific amount of the specific carbon black is added to the thermoplastic resin forming the insulator, the accumulation of space charge can be reduced. As a result, the DC breakdown voltage of the cable can be increased, and a DC power cable with high dielectric strength can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 幹幸 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 (72)発明者 吉田 昭太郎 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 (72)発明者 丹羽 利夫 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 (72)発明者 高橋 亨 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 (72)発明者 片岡 敬一郎 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 (56)参考文献 特許1781888(JP,C2) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mikiyuki Ono 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Electric Line Co., Ltd. (72) Inventor Shotaro Yoshida 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Densen Co., Ltd. (72) Inventor Toshio Niwa 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Densen Co., Ltd. (72) Inventor Toru Takahashi 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Den Line Co., Ltd. (72) Inventor Keiichiro Kataoka 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Line Co., Ltd. (56) References Patent 1781888 (JP, C2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂に対し、次のカーボンブラッ
クを0.2〜5重量%添加した絶縁組成物を絶縁体として
使用することを特徴とする直流電力ケーブル。 (a)BET法で測定した比表面積(m2/g)に対する鉱物
油の吸油量(cc/100g)の比が0.7以上で、かつ、 (b)炭素含有量が97重量%以上で、かつ、 (c)平均粒径が10〜100nmのカーボンブラック。
1. A DC power cable comprising an insulating composition comprising a thermoplastic resin and the following carbon black added in an amount of 0.2 to 5% by weight. (A) the ratio of the oil absorption amount (cc / 100g) of the mineral oil to the specific surface area (m 2 / g) measured by the BET method is 0.7 or more, and (b) the carbon content is 97% by weight or more, and (C) Carbon black having an average particle size of 10 to 100 nm.
JP61083189A 1985-05-03 1986-04-10 DC power cable Expired - Lifetime JPH07111844B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/730,224 US4626618A (en) 1984-05-08 1985-05-03 DC electric power cable
US730224 1985-05-03

Publications (2)

Publication Number Publication Date
JPS61253712A JPS61253712A (en) 1986-11-11
JPH07111844B2 true JPH07111844B2 (en) 1995-11-29

Family

ID=24934467

Family Applications (7)

Application Number Title Priority Date Filing Date
JP60230879A Expired - Fee Related JPH0677413B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP60230877A Expired - Fee Related JPH0677411B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP60230878A Expired - Fee Related JPH0677412B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP8319186A Expired - Lifetime JPH07111846B2 (en) 1985-05-03 1986-04-10 DC power cable
JP61083190A Expired - Lifetime JPH07111845B2 (en) 1985-05-03 1986-04-10 DC power cable
JP61083188A Expired - Lifetime JPH07111843B2 (en) 1985-05-03 1986-04-10 DC power cable
JP61083189A Expired - Lifetime JPH07111844B2 (en) 1985-05-03 1986-04-10 DC power cable

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP60230879A Expired - Fee Related JPH0677413B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP60230877A Expired - Fee Related JPH0677411B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP60230878A Expired - Fee Related JPH0677412B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP8319186A Expired - Lifetime JPH07111846B2 (en) 1985-05-03 1986-04-10 DC power cable
JP61083190A Expired - Lifetime JPH07111845B2 (en) 1985-05-03 1986-04-10 DC power cable
JP61083188A Expired - Lifetime JPH07111843B2 (en) 1985-05-03 1986-04-10 DC power cable

Country Status (1)

Country Link
JP (7) JPH0677413B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2382967A1 (en) 2000-07-26 2002-01-31 Takahiro Sakurai Insulated electric power cable
JP2007103247A (en) * 2005-10-06 2007-04-19 J-Power Systems Corp Insulation composite and electric wire/cable
KR101454092B1 (en) * 2010-01-28 2014-10-22 가부시키가이샤 비스카스 Crosslinked polyolefin composition, direct-current power cable, and process for construction of direct-current power line
JP6286886B2 (en) * 2013-06-13 2018-03-07 住友電気工業株式会社 DC cable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054738A (en) * 1975-12-22 1977-10-18 Eli Lilly And Company Sodium cefamandole crystalline forms
JPS5583789A (en) * 1978-12-18 1980-06-24 Bristol Myers Co Preparation of penicillin
JPS60235304A (en) * 1984-05-08 1985-11-22 株式会社フジクラ Dc power cable
JPS6183190A (en) * 1984-09-29 1986-04-26 Nitto Kasei Kk 2-(4'-substituted phenyl)-5-alkyl-1,3,2-dioxaborinane, its preparation, and liquid crystal composition containing the same

Also Published As

Publication number Publication date
JPS61253714A (en) 1986-11-11
JPS61253705A (en) 1986-11-11
JPS61253711A (en) 1986-11-11
JPH0677412B2 (en) 1994-09-28
JPH07111843B2 (en) 1995-11-29
JPS61253706A (en) 1986-11-11
JPS61253713A (en) 1986-11-11
JPS61253712A (en) 1986-11-11
JPH07111845B2 (en) 1995-11-29
JPH0677411B2 (en) 1994-09-28
JPS61253707A (en) 1986-11-11
JPH0677413B2 (en) 1994-09-28
JPH07111846B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US4626618A (en) DC electric power cable
US7872198B2 (en) Cable semiconducting shield
KR101161360B1 (en) DC Power Cable Having Reduced Space Charge Effect
JP6318749B2 (en) Insulating material manufacturing method, masterbatch, insulating material and power cable
JP3602297B2 (en) DC power cable
JP2010121056A (en) Cross-linked polyethylene composition, and dc power cable
JPH07111844B2 (en) DC power cable
KR20110138958A (en) Insulation material composition for dc power cable and the dc power cable using the same
KR101388136B1 (en) DC Power Cable Using Semiconductive Composition And Insulation Composition
JP4175588B2 (en) Resin composition for semiconductive layer of power cable
JP2563504B2 (en) DC power cable
AU2020239160B2 (en) Elastomeric material
JP3874862B2 (en) DC cross-linked polyethylene insulated power cable
Zhang et al. Carbon nanotubes and hexagonal boron nitride nanosheets co‐filled ethylene propylene diene monomer composites: Improved electrical property for cable accessory applications
CN117903518A (en) High-voltage semi-conductive shielding material and preparation method thereof
JPS62177805A (en) Dc power cable
JPH063687B2 (en) DC power cable
JPH0475601B2 (en)
JPS63178404A (en) Dc power cable
JPS63178406A (en) Dc power cable
JPH0743969B2 (en) Method for producing crosslinked polyolefin insulation power cable
JPH10321043A (en) Dc cable
JPS63178407A (en) Dc power cable
JPH0422010A (en) Rubber-plastics insulated power cable
JPS63178405A (en) Dc power cable