JPS61253713A - Dc power cable - Google Patents

Dc power cable

Info

Publication number
JPS61253713A
JPS61253713A JP8319086A JP8319086A JPS61253713A JP S61253713 A JPS61253713 A JP S61253713A JP 8319086 A JP8319086 A JP 8319086A JP 8319086 A JP8319086 A JP 8319086A JP S61253713 A JPS61253713 A JP S61253713A
Authority
JP
Japan
Prior art keywords
carbon black
insulator
power cable
less
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8319086A
Other languages
Japanese (ja)
Other versions
JPH07111845B2 (en
Inventor
山之内 宏
道雄 高岡
恒明 馬渡
小野 幹幸
昭太郎 吉田
利夫 丹羽
亨 高橋
敬一郎 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/730,224 external-priority patent/US4626618A/en
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of JPS61253713A publication Critical patent/JPS61253713A/en
Publication of JPH07111845B2 publication Critical patent/JPH07111845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、空間電荷による電界の変歪を取り除くこと
により1、絶縁耐力の向上を計った直流電力ケーブルに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a DC power cable whose dielectric strength is improved by removing distortion of electric field caused by space charges.

[従来の技術] 従来より、CVケーブル等、通常の交流高電圧型カケー
プルの絶縁体としては、絶縁耐圧、誘電特性が優れてい
ることから、ポリエチレンや架橋ポリエチレンが汎用さ
れている。
[Prior Art] Conventionally, polyethylene and crosslinked polyethylene have been widely used as insulators for ordinary AC high voltage cables such as CV cables because of their excellent dielectric strength and dielectric properties.

[発明が解決しようとする問題点] ところで、ポリエチレンや架橋ポリエチレンなどからな
る絶縁体を有するケーブルを、高圧直流送電に適用する
場合には、いくつかの問題点が生じることが知られてい
る。最大の問題点は、直流高電圧を印加することによっ
て、絶縁体中に寿命の長い空間電荷が形成され易いこと
である。この空間電荷は一般に電子性、正孔性、イオン
性のものと言われており、ポリエチレンの結晶構造に関
係した領域に電荷がトラップされるためとされている。
[Problems to be Solved by the Invention] By the way, it is known that several problems occur when a cable having an insulator made of polyethylene, crosslinked polyethylene, or the like is applied to high-voltage DC power transmission. The biggest problem is that by applying a high DC voltage, long-lived space charges are likely to be formed in the insulator. This space charge is generally said to be electronic, hole-based, or ionic, and is said to be caused by the charge being trapped in a region related to the crystal structure of polyethylene.

また、ポリエチレンは絶縁性の良好な無極性の物質であ
るため、トラップされた電荷の漏れが起こりにくく、従
って、寿命の長い空間電荷となる。そして、直流印加に
よって絶縁体に空間電荷が蓄積されると、導体近傍の電
界強度が上昇し、ケーブルの破壊電圧が低下する不都合
が生じる。
Furthermore, since polyethylene is a non-polar material with good insulation properties, trapped charges are less likely to leak, resulting in space charges having a long life. When a space charge is accumulated in the insulator due to the application of direct current, the electric field strength near the conductor increases, causing a disadvantage that the breakdown voltage of the cable decreases.

この発明は、このような背景の下になされたもので、絶
縁体に悪影響を与える空間電荷の蓄積を低減することに
より絶縁耐力を高めた直流電力ケーブルを提供すること
を目的とする。
The present invention was made against this background, and an object of the present invention is to provide a DC power cable with increased dielectric strength by reducing the accumulation of space charges that adversely affect the insulator.

[問題点を解決するための手段] 上記問題点を解決するためにこの発明は、絶縁体中に適
当量のカーボンブラックを添加したことをその要旨とす
る。前記カーボンブラックは、BET法で測定した比表
面積(m’/g)に対する鉱物油の吸油量(cc/ 1
00 g)の比が0.7〜3.5、かつカーボンブラッ
クに対する水素含有率が0゜6重M%以下、かつ平均粒
径が10〜100 nm。
[Means for Solving the Problems] In order to solve the above problems, the gist of the present invention is to add an appropriate amount of carbon black to the insulator. The carbon black has an oil absorption amount (cc/1) of mineral oil relative to a specific surface area (m'/g) measured by the BET method.
00 g) is 0.7 to 3.5, the hydrogen content to carbon black is 0.6% by weight or less, and the average particle size is 10 to 100 nm.

すなわち10〜100ミリミクロンのものを用い、この
カーボンブラックを熱可塑性樹脂に対し0゜2〜5重虫
%添加して絶縁組成物を構成する。
That is, carbon black with a diameter of 10 to 100 millimeters is used, and 0.2 to 5% of this carbon black is added to the thermoplastic resin to form an insulating composition.

ここで、比表面積とは、カーボンブラック1g当たりに
吸着する所定物質(例えば、N t 、 A rなど)
の量で、g当たりの表面積として表す。これは粒子1つ
ずつの表面積を測定することが困難なためである。一方
、吸油量とは文字通り油を吸う量であり、カーボンブラ
ックの粒子構造をみるためのらのである。さらに、カー
ボンブラックの平均粒径とは、各粒子径区間の粒子数を
Ni、粒子径区間の中心値をDiとしたとき、 平均粒径=ΣN1−Di/ΣNi で与えられる。また、上記熱可塑性樹脂としては、ポリ
エチレン(低密度ポリエチレン、高密度ポリエチレン)
、ポリプロピレン、エチレン酢酸ビニル共重合体(EV
A)、エチレンエチルアクリレート共重合体(E E 
A )、エチレンプロピレンゴム(EPR)等、ならび
にこれらの混合物を用いることができる。また、架橋し
て使用することも勿論可能である。一方、カーボンブラ
ックの種類としては、SAFカーボン、アセチレンカー
ボンなどが代表的なものである。
Here, the specific surface area refers to a predetermined substance (for example, Nt, Ar, etc.) adsorbed per gram of carbon black.
, expressed as surface area per gram. This is because it is difficult to measure the surface area of each particle. On the other hand, oil absorption is literally the amount of oil absorbed, and is a measure of the particle structure of carbon black. Further, the average particle size of carbon black is given by: Average particle size=ΣN1-Di/ΣNi, where Ni is the number of particles in each particle size range and Di is the center value of the particle size range. In addition, as the above thermoplastic resin, polyethylene (low density polyethylene, high density polyethylene)
, polypropylene, ethylene vinyl acetate copolymer (EV
A), ethylene ethyl acrylate copolymer (EE
A), ethylene propylene rubber (EPR), etc., and mixtures thereof can be used. Moreover, it is of course possible to use it after crosslinking. On the other hand, typical types of carbon black include SAF carbon and acetylene carbon.

[作用 ] 上記構成によれば、空間電荷の漏れを促すことができる
。以下、この理由について説明する。
[Function] According to the above configuration, leakage of space charges can be promoted. The reason for this will be explained below.

上記絶縁体組成物の抵抗率(比抵抗)をρ(Ω−m)と
し、絶縁抵抗の温度係数をα(1/’C)、電界係数(
絶縁抵抗のストレス係数)をβ(mm/kV)、絶縁体
組成物にかかる電界強度をE(kV/mm)とすれば、 ρ=ρ。exp−(αT+βE)・・・・・・(1)な
る関係が成り立つことが知られている。
The resistivity (specific resistance) of the above insulating composition is ρ (Ω-m), the temperature coefficient of insulation resistance is α (1/'C), and the electric field coefficient (
If the stress coefficient of insulation resistance is β (mm/kV) and the electric field strength applied to the insulator composition is E (kV/mm), then ρ=ρ. It is known that the relationship exp-(αT+βE) (1) holds true.

そして、カーボンブラックを添加すると、電界係数βが
増加する一方で温度係数αが減少し、絶縁体組成物での
空間電荷の漏れを促進する。なぜならば、電界係数βが
増加すると抵抗率ρが低下するため、高ストレス部(強
い電界のかかる部分)の電界が緩和され、また、温度係
数αが減少すると、導体温度が高いときに遮蔽側に現れ
ていた最大電界E maxが減少するからである。こう
して、絶縁体組成物内での電界分布が均一化の方向に動
き、空間電荷の蓄積が低減される。
When carbon black is added, the electric field coefficient β increases while the temperature coefficient α decreases, promoting space charge leakage in the insulator composition. This is because as the electric field coefficient β increases, the resistivity ρ decreases, which eases the electric field in high-stress parts (parts where a strong electric field is applied).In addition, as the temperature coefficient α decreases, when the conductor temperature is high, the shielding side This is because the maximum electric field E max that appeared in is reduced. In this way, the electric field distribution within the insulator composition moves toward uniformity, reducing space charge buildup.

次に、各種数値限定の理由につき説明する。Next, the reasons for various numerical limitations will be explained.

(]、)カーボンブラックの添加量が0.2〜5重儀%
の理由。
(],) Addition amount of carbon black is 0.2 to 5%
The reason for.

前記添加量が0.2%以下では上述した効果が十分に得
られない。また、5%以上では抵抗率ρの低下と電界係
数βの増加が著しく、熱破壊のおそれが生じる。
If the amount added is less than 0.2%, the above-mentioned effects cannot be sufficiently obtained. Moreover, if it exceeds 5%, the resistivity ρ decreases and the electric field coefficient β increases significantly, leading to a risk of thermal breakdown.

(2)吸油量/比表面積が0.7以上で3゜5以下の理
由。
(2) Reason for oil absorption/specific surface area of 0.7 or more and 3°5 or less.

カーボンブラックの添加量を増加すると、粒子間の距離
が縮まり、高電界下においては粒子間にトンネル効果に
よる電流が流れる。このため、電界係数βが必要以上に
大きくなり、熱破壊を促す原因となる。従って、少ない
添加量で(1)式の抵抗率ρを低下させることが必須で
ある。
When the amount of carbon black added increases, the distance between the particles decreases, and under a high electric field, current flows between the particles due to the tunnel effect. For this reason, the electric field coefficient β becomes larger than necessary, causing thermal breakdown. Therefore, it is essential to reduce the resistivity ρ in equation (1) with a small addition amount.

ところで、比表面積に対する吸油量の比が大きいカーボ
ンブラックの方が、少量で抵抗率ρを下げることかでき
、この比だ0.7以上ならば良好な結果が得られる。
Incidentally, carbon black, which has a large ratio of oil absorption to specific surface area, can lower the resistivity ρ with a small amount, and good results can be obtained if this ratio is 0.7 or more.

一方、この比が3.5より大きくなると、粒子の凝集度
が増して見掛けの粒子径が大きくなり、ポリエチレン等
の熱可塑性樹脂との混じり合が悪くなる。特にアセチレ
ンカーボンでは粒子が鎖状に連結しているので、この影
響が大きい。
On the other hand, if this ratio is greater than 3.5, the degree of agglomeration of the particles will increase, the apparent particle size will increase, and miscibility with thermoplastic resins such as polyethylene will deteriorate. This effect is particularly large in acetylene carbon because the particles are connected in a chain.

また、SAF、I SAF、I−I SAF、CF、S
CF 、 HA F’カーボンのいずれかのカーボンブ
ラックを用いたときには、上記の比が0.7〜1.5の
範囲で、特に良好なことが実験的に確かめられた。
Also, SAF, I SAF, I-I SAF, CF, S
It has been experimentally confirmed that when carbon black of either CF or HA F' carbon is used, the above ratio is particularly good in the range of 0.7 to 1.5.

(3)カーボンブラックに対する水素含有率が0.6重
量%以下であることの理由。
(3) Reason why the hydrogen content relative to carbon black is 0.6% by weight or less.

水素含有率が多いと、π電子が多くなって電子の移動が
妨げられる。従って、所望の抵抗率ρを得るためには、
多量のカーボンブラックを添加しなければならず、上記
(2)と同様の理由により好ましくない。このため、水
素含有率が低いほどよく、0.6重量%以下ならば良い
結果が得られる。
When the hydrogen content is high, the number of π electrons increases and the movement of electrons is hindered. Therefore, in order to obtain the desired resistivity ρ,
A large amount of carbon black must be added, which is not preferred for the same reason as (2) above. Therefore, the lower the hydrogen content, the better, and good results can be obtained if it is 0.6% by weight or less.

(4)カーボンブラックの平均粒径か10〜100ミリ
ミクロンである理由。
(4) The reason why the average particle size of carbon black is 10 to 100 millimicrons.

この大きさの粒径が、ポリエチレン等の絶縁体の結晶構
造を乱さない最適の値である。結晶構造が乱されると絶
縁体の電気的性能が低下する。粒径がこれより大きいと
カーボンブラックの分散や混じり具合が悪くなる。また
これより小さい場合は製造が難しく現実的でない。
This particle size is the optimum value that does not disturb the crystal structure of the insulator such as polyethylene. Disturbance of the crystal structure reduces the electrical performance of the insulator. If the particle size is larger than this, the dispersion and mixing of carbon black will deteriorate. Moreover, if it is smaller than this, manufacturing is difficult and impractical.

[実験例] 第1表に示す種々の絶縁体組成物を絶縁体とした電力ケ
ーブルを製造した。この場合、前記電力ケーブルは導体
断面積が200 mm’、絶縁体厚さが3m+nであり
、内部および外部半導電層と絶縁体とを同時押出しによ
って形成したものである。
[Experimental Example] Power cables using various insulator compositions shown in Table 1 as insulators were manufactured. In this case, the power cable has a conductor cross-sectional area of 200 mm', an insulator thickness of 3 m+n, and the inner and outer semiconducting layers and the insulator are formed by coextrusion.

上記電力ケーブルに対して直流破壊試験を行い第1表に
示す結果を得た。
A DC breakdown test was conducted on the above power cable, and the results shown in Table 1 were obtained.

第1表から明らかなように、本発明の電力ケーブルでは
、直流破壊電圧が大幅に改善されている。
As is clear from Table 1, the power cable of the present invention has significantly improved DC breakdown voltage.

[発明の効果] 以上説明したように、この発明は、絶縁体をなす熱可塑
性樹脂中に、特定のカーボンブラックを特定量添加した
ので、空間電荷の蓄積を低減させることができる。この
結果、ケーブルの直流破壊電圧を高めることができ、絶
縁耐力の高い直流型カケープルを提供することが可能と
なる。
[Effects of the Invention] As explained above, in the present invention, since a specific amount of specific carbon black is added to the thermoplastic resin forming the insulator, the accumulation of space charges can be reduced. As a result, the DC breakdown voltage of the cable can be increased, making it possible to provide a DC cable with high dielectric strength.

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂に対し、次のカーボンブラックを0
.2〜5重量%添加した絶縁組成物を絶縁体として使用
することを特徴とする直流電力ケーブル。 (a)BET法で測定した比表面積(m^2/g)に対
する鉱物油の吸油量(cc/100g)の比が0.7以
上、3.5以下で、かつ、 (b)前記カーボンブラックに対する水素含有率が0.
6重量%以下のカーボンブラック。
(1) 0% of the following carbon black is added to the thermoplastic resin.
.. A DC power cable characterized in that an insulating composition containing 2 to 5% by weight is used as an insulator. (a) The ratio of the oil absorption amount (cc/100g) of mineral oil to the specific surface area (m^2/g) measured by the BET method is 0.7 or more and 3.5 or less, and (b) the carbon black The hydrogen content is 0.
Carbon black less than 6% by weight.
(2)前記カーボンブラックが以下の条件を満足するこ
とを特徴とする特許請求の範囲第1項記載の直流電力ケ
ーブル。 (a)前記BET法で測定した比表面積(m^2/g)
に対する鉱物油の吸油量(cc/100g)の比が0.
7以上、1.5以下で、かつ、 (b)平均粒径が10〜100nmのカーボンブラック
(2) The DC power cable according to claim 1, wherein the carbon black satisfies the following conditions. (a) Specific surface area (m^2/g) measured by the above BET method
The ratio of oil absorption amount (cc/100g) of mineral oil to 0.
7 or more and 1.5 or less, and (b) carbon black having an average particle size of 10 to 100 nm.
JP61083190A 1985-05-03 1986-04-10 DC power cable Expired - Lifetime JPH07111845B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US730224 1985-05-03
US06/730,224 US4626618A (en) 1984-05-08 1985-05-03 DC electric power cable

Publications (2)

Publication Number Publication Date
JPS61253713A true JPS61253713A (en) 1986-11-11
JPH07111845B2 JPH07111845B2 (en) 1995-11-29

Family

ID=24934467

Family Applications (7)

Application Number Title Priority Date Filing Date
JP60230879A Expired - Fee Related JPH0677413B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP60230878A Expired - Fee Related JPH0677412B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP60230877A Expired - Fee Related JPH0677411B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP61083188A Expired - Lifetime JPH07111843B2 (en) 1985-05-03 1986-04-10 DC power cable
JP61083189A Expired - Lifetime JPH07111844B2 (en) 1985-05-03 1986-04-10 DC power cable
JP8319186A Expired - Lifetime JPH07111846B2 (en) 1985-05-03 1986-04-10 DC power cable
JP61083190A Expired - Lifetime JPH07111845B2 (en) 1985-05-03 1986-04-10 DC power cable

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP60230879A Expired - Fee Related JPH0677413B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP60230878A Expired - Fee Related JPH0677412B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP60230877A Expired - Fee Related JPH0677411B2 (en) 1985-05-03 1985-10-16 Power cable for high voltage DC transmission
JP61083188A Expired - Lifetime JPH07111843B2 (en) 1985-05-03 1986-04-10 DC power cable
JP61083189A Expired - Lifetime JPH07111844B2 (en) 1985-05-03 1986-04-10 DC power cable
JP8319186A Expired - Lifetime JPH07111846B2 (en) 1985-05-03 1986-04-10 DC power cable

Country Status (1)

Country Link
JP (7) JPH0677413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040275A1 (en) * 2005-10-06 2007-04-12 J-Power Systems Corporation Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214400C (en) 2000-07-26 2005-08-10 古河电气工业株式会社 Insulated power cable
KR101454092B1 (en) * 2010-01-28 2014-10-22 가부시키가이샤 비스카스 Crosslinked polyolefin composition, direct-current power cable, and process for construction of direct-current power line
JP6286886B2 (en) * 2013-06-13 2018-03-07 住友電気工業株式会社 DC cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183188A (en) * 1978-12-18 1986-04-26 ブリストル―マイアーズ スクイブ コムパニー Manufacture of penicillin
JPS6183189A (en) * 1975-12-22 1986-04-26 イ−ライ・リリ−・アンド・カンパニ− Crystal of sodium cefamandole and manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235304A (en) * 1984-05-08 1985-11-22 株式会社フジクラ Dc power cable
JPS6183190A (en) * 1984-09-29 1986-04-26 Nitto Kasei Kk 2-(4'-substituted phenyl)-5-alkyl-1,3,2-dioxaborinane, its preparation, and liquid crystal composition containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183189A (en) * 1975-12-22 1986-04-26 イ−ライ・リリ−・アンド・カンパニ− Crystal of sodium cefamandole and manufacture
JPS6183188A (en) * 1978-12-18 1986-04-26 ブリストル―マイアーズ スクイブ コムパニー Manufacture of penicillin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040275A1 (en) * 2005-10-06 2007-04-12 J-Power Systems Corporation Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable
JP2007103247A (en) * 2005-10-06 2007-04-19 J-Power Systems Corp Insulation composite and electric wire/cable

Also Published As

Publication number Publication date
JPH0677412B2 (en) 1994-09-28
JPH07111846B2 (en) 1995-11-29
JPS61253706A (en) 1986-11-11
JPS61253711A (en) 1986-11-11
JPH0677413B2 (en) 1994-09-28
JPH07111844B2 (en) 1995-11-29
JPS61253714A (en) 1986-11-11
JPH07111843B2 (en) 1995-11-29
JPH0677411B2 (en) 1994-09-28
JPH07111845B2 (en) 1995-11-29
JPS61253705A (en) 1986-11-11
JPS61253707A (en) 1986-11-11
JPS61253712A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
US4626618A (en) DC electric power cable
KR101161360B1 (en) DC Power Cable Having Reduced Space Charge Effect
JP5261145B2 (en) Cross-linked polyethylene composition and DC power cable
JP3602297B2 (en) DC power cable
JPS61253713A (en) Dc power cable
Zhang et al. Carbon nanotubes and hexagonal boron nitride nanosheets co‐filled ethylene propylene diene monomer composites: Improved electrical property for cable accessory applications
KR101388136B1 (en) DC Power Cable Using Semiconductive Composition And Insulation Composition
JP2800079B2 (en) DC power cable
KR20110138958A (en) Insulation material composition for dc power cable and the dc power cable using the same
JPS63178407A (en) Dc power cable
JPH04368718A (en) Dc power cable
CN112538210B (en) Deformation-resistant low-eccentricity thermoplastic semiconductive shielding material and preparation method and application thereof
JPS63178404A (en) Dc power cable
JPS63178406A (en) Dc power cable
JPS62177805A (en) Dc power cable
JPH0249314A (en) Direct current power cable
JPS63178405A (en) Dc power cable
JPH10269852A (en) Dc-bridged polyethylene-insulated power cable
JPH0475601B2 (en)
JPH10321043A (en) Dc cable
JPH01274307A (en) Conductive composite for power cable
JPH0422010A (en) Rubber-plastics insulated power cable
JPS6059603A (en) Semiconductive layer forming composition for power cable