WO2007040275A1 - Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable - Google Patents

Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable Download PDF

Info

Publication number
WO2007040275A1
WO2007040275A1 PCT/JP2006/320090 JP2006320090W WO2007040275A1 WO 2007040275 A1 WO2007040275 A1 WO 2007040275A1 JP 2006320090 W JP2006320090 W JP 2006320090W WO 2007040275 A1 WO2007040275 A1 WO 2007040275A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resistant
insulating composition
inorganic filler
cable
Prior art date
Application number
PCT/JP2006/320090
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinao Murata
Original Assignee
J-Power Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J-Power Systems Corporation filed Critical J-Power Systems Corporation
Publication of WO2007040275A1 publication Critical patent/WO2007040275A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene

Definitions

  • the present invention relates to an insulating composition in which an inorganic filler is dispersed in a polyolefin resin, and an electric wire cable using the insulating composition as a coating material, and in particular, a water-resistant tree that does not deteriorate electrical characteristics.
  • the present invention relates to a water-resistant insulating composition and a water-resistant electrical wire / cable with improved performance.
  • One of the methods is to suppress the generation of water trees by adding an additive to the insulator, and a method of adding EVA (ethylene acetate butyl copolymer) to a polyolefin resin such as polyethylene is known.
  • EVA ethylene acetate butyl copolymer
  • Patent Document 1 JP-A-5-89725
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-289043
  • Patent Document 3 Japanese Patent Laid-Open No. 10-312717
  • Patent Document 4 Japanese Patent Laid-Open No. 5-250919
  • Patent Document 3 is a force for combining carbon black as an additive in PE. As the amount of carbon black added increases, aggregates of carbon particles in the insulator. Due to the problem that this agglomerated component affects the insulation performance, the amount of carbon black added was limited, and sufficient water-resistant tree resistance was not obtained.
  • Patent Document 4 has made various studies on the amount of MgO added for the purpose of improving the volume resistivity of the insulator.
  • MgO increases the volume resistivity of the insulator and increases the insulation resistance.
  • the electrical properties such as resistance have been improved, no investigation has been made on the water-resistant tree properties. This is thought to be due to the fact that the average particle diameter of the added MgO is large, and that it is impossible to find an effect that can improve the water-resistant tree resistance.
  • an object of the present invention is to provide a water-resistant tree insulating composition and a water-resistant electric wire cable that can improve water-resistant tree properties without deteriorating electrical characteristics.
  • the first invention is an insulating composition in which an inorganic filler is dispersed in a polyolefin resin, wherein the average particle diameter of the inorganic filler is 500 nm or less in diameter.
  • a water-resistant insulating composition is provided.
  • a second invention provides a water-resistant electric wire 'cable characterized in that the water-resistant tree-resistant insulating composition is formed as an insulator for insulating a conductor.
  • the inorganic filler is dispersed in the polyolefin resin by dispersing the nano-sized inorganic filler having an average particle diameter of 500 nm or less in the polyolefin resin.
  • the water absorption effect suppresses the movement of moisture in the insulating composition. Lee can be prevented.
  • the water-resistant tree-resistant insulating composition that suppresses the movement of moisture in the insulating composition and suppresses the generation of the water tree is formed as an insulator.
  • the number of water trees generated can be suppressed even when cables are used in a humid atmosphere. Accordingly, it is possible to obtain a water-resistant tree-insulating composition and a water-tree-resistant electric wire and a cape nore that can improve the water-resistant tree properties without deteriorating the electrical characteristics such as dielectric breakdown characteristics and insulation resistance.
  • FIG. 1 is a cross-sectional view showing a configuration of a water-resistant tree cable according to an embodiment of the present invention.
  • FIG. 1 shows a configuration of a water-resistant tree-resistant cable according to an embodiment of the present invention.
  • the water-resistant cable 1 has a conductor 2 having a substantially circular cross section at the center, and an outer periphery of the conductor 2 has an inner semiconductive layer 3, an insulator 4, an outer semiconductive layer 5, a shielding layer 6, and a sheath. 7 is covered sequentially.
  • the insulator 4 is made of a water-resistant insulating composition in which a nano-sized inorganic filler having a non-conductive average particle diameter of 500 nm or less is dispersed in a polyolefin resin.
  • a polyolefin resin low density polyethylene (LDPE) can be used.
  • LDPE low density polyethylene
  • This polyolefin resin may be a high-density polyethylene, medium-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, or the like, or a cross-linked product of these, based on LDPE. ! /
  • the inorganic filler is dispersed in an amount of 1 part by weight or more based on 100 parts by weight of polyolefin resin.
  • the inorganic filler is magnesium oxide (MgO) having an average particle size of 500 nm or less, and is uniformly dispersed in LDPE so as to obtain high water-resistant tree properties.
  • MgO magnesium oxide
  • the inorganic filler may be titanium oxide, calcium carbonate, magnesium hydroxide, silica or the like.
  • a method of dispersing the inorganic filler in the polyolefin resin there is a method using a twin screw extruder, in which the polyolefin resin and the inorganic filler are kneaded.
  • This kneading method is not limited to the above method as long as the average particle diameter of the inorganic filler can be controlled to be 500 nm or less.
  • a method of using a twin screw extruder and a roll machine in combination and diluting a polyolefin resin material having a high concentration of an inorganic filler added to a low concentration with a roll machine.
  • the inorganic filler is subjected to a surface treatment with vinylsilane and then a powder frame treatment by jet pulverization.
  • Insulator 4 has a structure in which an inorganic filler having an average particle size of 500 nm or less is dispersed in the polyolefin resin, so that the water content in the polyolefin resin can move due to the water absorption effect of the inorganic filler.
  • the water tree suppression effect of the water-resistant tree-resistant cable 1 can be enhanced without affecting the electrical characteristics such as dielectric breakdown characteristics and insulation resistance.
  • the insulator 4 in which the nano-sized inorganic filler is uniformly dispersed in the polyolefin resin can obtain a higher water tree resistance.
  • the inorganic filler can prevent re-aggregation in the polyolefin resin by performing surface treatment with bursilane and pulverization treatment with jet pulverization, and a more uniform dispersion state can be obtained.
  • a water-resistant tree cable 1 having the configuration shown in FIG. 1 was produced as follows.
  • the conductor 2 the cross-sectional area on the outer periphery of the conductor containing copper as a main component of 100 mm 2, and extruded to a thickness of 0. 7 mm internal semiconductive layer 3.
  • the insulating composition shown in Table 1 is extruded on the outer periphery of the inner semiconductive layer 3 as an insulator 4 to a thickness of 3 mm, and the outer semiconductive layer 5 is formed on the outer periphery of the insulator 4.
  • the water-resistant tree-resistant cable 1 was produced by sequentially extruding the thickness 1 mm, the shielding layer 6 and the sheath 7 so that each thickness would be 3 mm.
  • Table 1 shows the case where the average particle diameter of MgO is constant and the amount of applied force is varied.
  • the average particle diameter is compared to the base polyethylene made of low density polyethylene (LDPE).
  • LDPE low density polyethylene
  • Water-resistant tree-resistant cable 1 with a water-resistant insulating composition comprising lphr-added nano-sized MgO with a diameter of 50 nm (hereinafter referred to as nano-sized MgO) as in Example 1, and water-resistant tree-resistant cable 1 with 5 phr.
  • the water tree generation was evaluated in the same manner as in Example 2, and the water-resistant tree cable 1 to which lOphr was added in the same manner as Example 3. [0025] (Details of comparative example)
  • cable 1 in which insulator 4 was used as LDPE without adding MgO was used as comparative example 1.
  • a cable 1 in which an insulating composition containing 1 Ophr of micro-sized MgO having an average particle diameter of 1 / z m (hereinafter referred to as micro-sized MgO) was used as the insulator 4 was used as Comparative Example 2.
  • Water tree generation was evaluated as follows. Strip a part of the sheath 7 of the water-resistant tree-resistant cable 1 and place the water-resistant tree-resistant cable 1 in room temperature water so that the outer semiconductive layer 5 is in direct contact with the water and conduct an AC high voltage of 500 Hz, 4.5 kV. Applied between 2 and shielding layer 6. When 90 days had elapsed since the start of the application of electricity, the application of electricity was stopped, and the insulator 4 was sliced into a lmm-thick shape and used as a water tree observation sample.
  • This sliced sample is made into a spiral piece of a predetermined size, 20 of which are stained with a methylene blue aqueous solution, and the size and number of the boutontrie (BTT) generated in the insulator 4 are examined with an optical microscope. did.
  • the number of BTT occurrences is evaluated by the cumulative number of occurrences per volume, and the number of BTT occurrences of 150 ⁇ m or less and the number of BTT occurrences of 300 ⁇ m or less are counted and evaluated. The results shown in Table 1 were obtained.
  • volume resistivity was evaluated as follows. Measure the volume leakage current flowing between the shielding layer 6 and the ground by applying a DC voltage of 240 kV (80 kVZmm as an electric field) between the conductor 2 and the shielding layer 6 while grounding the shielding layer 6 of the water-resistant cable 1. The volume resistivity was obtained and evaluated. The volume leakage current was measured with the water-resistant tree cable 1 heated to 90 ° C.
  • the dielectric breakdown strength was evaluated as follows.
  • the shielding layer 6 of the water-resistant cable 1 was grounded, 60 kV AC high voltage was applied to the conductor 2, the voltage was increased by 3 kV every 10 minutes from 60 kV, and the voltage at which the water-resistant tree cable 1 breaks down was measured and evaluated. .
  • the water-resistant triaxial cable temperature was set to room temperature.
  • Table 1 shows the following. First of all, nano-sized MgO in insulator 4 that also has LDPE power In Examples 1 to 3 where the additive was added, the number of BTT generated in the insulator 4 was significantly smaller than in Comparative Example 1 where MgO was not added. Furthermore, as in Examples 2 and 3, by increasing the amount of nano-sized MgO added, the number of BTT generated is further reduced. On the other hand, Comparative Example 2 to which microsize MgO was added had a smaller BTT suppression effect than Examples 1 to 3.
  • the volume resistivity is improved by adding nano-sized MgO, and the strength is further improved by increasing the added amount.
  • the dielectric breakdown strength was the same value or about the same value in each example and each comparative example.
  • Comparative Example 2 the volume resistivity is improved compared to Comparative Example 1, and the dielectric breakdown strength is lower and worse than Comparative Example 1.
  • the water-resistant tree cable 1 is formed by using a water-resistant tree-resistant insulating composition in which nano-sized MgO with an average particle diameter of 200 nm is added to the LDPE as the insulator 4 with 1 Ophr. This was prepared as Example 4.
  • Example 5 was a water-resistant tree-resistant cable 1 to which a water-resistant tree-resistant insulating composition added with lOphr of nano-sized MgO having an average particle diameter of 500 nm was applied.
  • Table 2 shows the results of evaluating the cumulative number of BTT generated for these samples.
  • a comparative example is Comparative Example 2 implemented in Example 1 and shown in Table 1. The evaluation method was the same as in Example 1.
  • Table 2 shows the case where the average particle size is changed while the addition amount of MgO is constant.
  • Examples 4 and 5 have the power to make the average particle diameter of MgO 4 times and 10 times or more that of Examples 1 to 3, and in this case also, insulation is higher than that of Comparative Example 2.
  • BT in body 4
  • a water-resistant tree cable 1 without a sheath 7 V may be an electric wire whose conductor is covered with an insulator.
  • the inorganic filler having an average particle diameter of 500 nm or less is dispersed in the polyolefin resin. Since the agent suppresses the movement of moisture in the insulating composition due to its water absorption effect, the generation of water trees can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A water-treeing resistant insulating composition comprising a polyolefin resin and, dispersed therein, an inorganic filler, wherein the inorganic filler has an average particle diameter of 500 nm or less. Further, there is provided a water-treeing resistant electric wire/cable making use of the same.

Description

明 細 書  Specification
耐水トリー性絶縁組成物および耐水トリー性電線 'ケーブル  Water-resistant tree insulation composition and water-resistant tree wire 'cable
技術分野  Technical field
[0001] 本発明は、ポリオレフイン榭脂中に無機充填剤が分散された絶縁組成物、及びこの 絶縁組成物を被覆材に用いた電線 'ケーブルに関し、特に、電気特性を低下させる ことなぐ耐水トリー性を向上させた耐水トリー性絶縁組成物および耐水トリー性電線 •ケーブルに関するものである。  TECHNICAL FIELD [0001] The present invention relates to an insulating composition in which an inorganic filler is dispersed in a polyolefin resin, and an electric wire cable using the insulating composition as a coating material, and in particular, a water-resistant tree that does not deteriorate electrical characteristics. The present invention relates to a water-resistant insulating composition and a water-resistant electrical wire / cable with improved performance.
背景技術  Background art
[0002] 例えば、電線 ·ケーブルを湿潤雰囲気下で用いた場合、絶縁体中に水トリーを発生 することが知られて!/、る。絶縁体中に水分が浸入した状態で絶縁体の外部力 電界 が加えられると、絶縁体中の水分が高電界部に向力つて移動する(これを誘電泳動と いう)。水トリーは、絶縁体中に進入した水分がこの誘電泳動によって、絶縁体中の異 物、ボイド、突起などの高電界部に移動集中することにより発生する。水トリーが発生 すると、数 10年間と長期間に亘つて使用される電線'ケーブルの絶縁性能が次第に 低下することになり、水トリーを抑止する対策は重要であり、従来より種々の方法が検 討されてきた。  [0002] For example, it is known that when an electric wire or cable is used in a humid atmosphere, a water tree is generated in the insulator! When the external force electric field of the insulator is applied while moisture has entered the insulator, the moisture in the insulator moves toward the high electric field (this is called dielectrophoresis). The water tree is generated when moisture that has entered the insulator moves and concentrates on a high electric field portion such as a foreign object, void, or protrusion in the insulator by this dielectrophoresis. When water trees are generated, the insulation performance of electric wires and cables used for a long period of several decades will gradually deteriorate, and measures to suppress water trees are important. Has been debated.
[0003] その 1つに絶縁体に添加剤をカ卩えて水トリーの発生を抑止する方法があり、 EVA( エチレン酢酸ビュル共重合体)をポリエチレン等のポリオレフイン樹脂に添加する方 法が知られている(例えば、特許文献 1, 2参照。;)。  [0003] One of the methods is to suppress the generation of water trees by adding an additive to the insulator, and a method of adding EVA (ethylene acetate butyl copolymer) to a polyolefin resin such as polyethylene is known. (For example, see Patent Documents 1 and 2;).
[0004] また、絶縁体中にカーボンブラックを添加する方法 (例えば、特許文献 3参照。 )や[0004] Further, a method of adding carbon black to an insulator (see, for example, Patent Document 3) or
、ポリエチレン等のポリオレフイン榭脂中に、酸ィ匕マグネシウム (MgO)を含有させる 方法が知られている(例えば、特許文献 4参照。 )0 During polyolefin榭脂such as polyethylene, a method of incorporating the magnesium Sani匕(MgO) is known (for example, see Patent Document 4.) 0
特許文献 1 :特開平 5— 89725号公報  Patent Document 1: JP-A-5-89725
特許文献 2:特開平 2002— 289043号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-289043
特許文献 3 :特開平 10— 312717号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-312717
特許文献 4:特開平 5— 250919号公報  Patent Document 4: Japanese Patent Laid-Open No. 5-250919
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] しかし、特許文献 1, 2に記載された方法は、ポリエチレン (PE)中に点在した EVA が海島構造のように分散し、その EVAに水分が捕獲されることで水トリー発生を抑止 できるという反面、 EVAの添カ卩は体積抵抗率等の電気特性の低下を招くことから、 E VA添加量の上限に制約が生じて満足できる耐水トリー性が得られな力 た。  [0005] However, in the methods described in Patent Documents 1 and 2, EVA scattered in polyethylene (PE) is dispersed like a sea-island structure, and water is trapped in the EVA to generate water trees. On the other hand, the addition of EVA leads to a decrease in electrical properties such as volume resistivity. However, the upper limit of the amount of EVA added is limited and satisfactory water-resistant tree resistance cannot be obtained.
[0006] また、特許文献 3に記載された方法は、 PE中に添加剤としてカーボンブラックを配 合するわけである力 カーボンブラックの添加量を増すにつれて絶縁体中にカーボ ン粒子の凝集物が生成され、この凝集成分が絶縁性能に影響を及ぼすという問題か ら、カーボンブラックの添加量が制限され十分な耐水トリー性が得られな力つた。  [0006] In addition, the method described in Patent Document 3 is a force for combining carbon black as an additive in PE. As the amount of carbon black added increases, aggregates of carbon particles in the insulator. Due to the problem that this agglomerated component affects the insulation performance, the amount of carbon black added was limited, and sufficient water-resistant tree resistance was not obtained.
[0007] さらに、特許文献 4は絶縁体の体積抵抗率の改善を目的として MgOの添加量につ V、て種々検討を重ねて 、るが、 MgOによって絶縁体の体積抵抗率が上がり絶縁抵 抗等の電気特性は向上しているものの、耐水トリー性の特性については何ら検討が なされていない。これは、添カ卩した MgOの平均粒径が大きいこと力も耐水トリー性を 向上させるほどの効果を見出すことができな力つた力もであると思われる。  [0007] Further, Patent Document 4 has made various studies on the amount of MgO added for the purpose of improving the volume resistivity of the insulator. However, MgO increases the volume resistivity of the insulator and increases the insulation resistance. Although the electrical properties such as resistance have been improved, no investigation has been made on the water-resistant tree properties. This is thought to be due to the fact that the average particle diameter of the added MgO is large, and that it is impossible to find an effect that can improve the water-resistant tree resistance.
[0008] 従って、本発明の目的は、電気特性を低下させることなぐ耐水トリー性を向上させ ることのできる耐水トリー性絶縁組成物および耐水トリー性電線'ケーブルを提供する ことにある。  [0008] Accordingly, an object of the present invention is to provide a water-resistant tree insulating composition and a water-resistant electric wire cable that can improve water-resistant tree properties without deteriorating electrical characteristics.
課題を解決するための手段  Means for solving the problem
[0009] 第 1の発明は、上記目的を達成するため、ポリオレフイン榭脂中に無機充填剤が分 散された絶縁組成物であって、前記無機充填剤の平均粒径が直径 500nm以下であ ることを特徴とする耐水トリー性絶縁組成物を提供する。 [0009] In order to achieve the above object, the first invention is an insulating composition in which an inorganic filler is dispersed in a polyolefin resin, wherein the average particle diameter of the inorganic filler is 500 nm or less in diameter. A water-resistant insulating composition is provided.
[0010] 第 2の発明は、上記目的を達成するため、上記耐水トリー性絶縁組成物を、導体を 絶縁する絶縁体として形成したことを特徴とする耐水トリー性電線'ケーブルを提供 する。 In order to achieve the above object, a second invention provides a water-resistant electric wire 'cable characterized in that the water-resistant tree-resistant insulating composition is formed as an insulator for insulating a conductor.
発明の効果  The invention's effect
[0011] 第 1の発明に係る耐水トリー性絶縁組成物によれば、平均粒径が直径 500nm以下 のナノサイズの無機充填剤がポリオレフイン榭脂中に分散されていることにより、無機 充填剤は、その吸水効果によって絶縁組成物内の水分の移動を抑止するので、水ト リーの発生を抑止することができる。 [0011] According to the water-resistant tree insulating composition according to the first invention, the inorganic filler is dispersed in the polyolefin resin by dispersing the nano-sized inorganic filler having an average particle diameter of 500 nm or less in the polyolefin resin. The water absorption effect suppresses the movement of moisture in the insulating composition. Lee can be prevented.
[0012] 第 2の発明に係る耐水トリー性電線 'ケーブルによれば、絶縁組成物内の水分の移 動を抑止し、水トリーの発生を抑止する耐水トリー性絶縁組成物を絶縁体として形成 したことにより、湿潤雰囲気下でケーブルを使用しても水トリーの発生数を抑止するこ とができる。従って、絶縁破壊特性、絶縁抵抗等の電気特性を低下させることなぐ耐 水トリー性を向上させることのできる耐水トリー性絶縁組成物および耐水トリー性電線 .ケープノレを得ることができる。  [0012] According to the water-resistant tree-resistant electric wire 'cable according to the second invention, the water-resistant tree-resistant insulating composition that suppresses the movement of moisture in the insulating composition and suppresses the generation of the water tree is formed as an insulator. As a result, the number of water trees generated can be suppressed even when cables are used in a humid atmosphere. Accordingly, it is possible to obtain a water-resistant tree-insulating composition and a water-tree-resistant electric wire and a cape nore that can improve the water-resistant tree properties without deteriorating the electrical characteristics such as dielectric breakdown characteristics and insulation resistance.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は、本発明の実施の形態に係る耐水トリー性ケーブルの構成を示す断面図 である。  FIG. 1 is a cross-sectional view showing a configuration of a water-resistant tree cable according to an embodiment of the present invention.
符号の説明  Explanation of symbols
[0014] 1 耐水トリー性ケーブル [0014] 1 Water-resistant tree cable
2 導体  2 conductor
3 内部半導電層  3 Internal semiconductive layer
4 絶縁体  4 Insulator
5 外部半導電層  5 External semiconductive layer
6 遮蔽層  6 Shielding layer
7 シース  7 sheath
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] (耐水トリー性ケーブルの構成) [0015] (Configuration of water-resistant tree-resistant cable)
図 1は、本発明の実施の形態に係る耐水トリー性ケーブルの構成を示す。この耐水 トリー性ケーブル 1は、中心に略真円断面形状の導体 2を有し、この導体 2の外周に、 内部半導電層 3、絶縁体 4、外部半導電層 5、遮蔽層 6及びシース 7を順次被覆して 構成されている。  FIG. 1 shows a configuration of a water-resistant tree-resistant cable according to an embodiment of the present invention. The water-resistant cable 1 has a conductor 2 having a substantially circular cross section at the center, and an outer periphery of the conductor 2 has an inner semiconductive layer 3, an insulator 4, an outer semiconductive layer 5, a shielding layer 6, and a sheath. 7 is covered sequentially.
[0016] (絶縁体の構成) [0016] (Configuration of insulator)
絶縁体 4は、非導電性で平均粒径が直径 500nm以下であるナノサイズの無機充 填剤をポリオレフイン樹脂に分散させた耐水トリー性絶縁組成物を用いて構成されて いる。 [0017] ポリオレフイン榭脂として、低密度ポリエチレン(LDPE)を用いることができる。この ポリオレフイン榭脂は、 LDPEのほ力 に、高密度ポリエチレン、中密度ポリエチレン、 超低密度ポリエチレン、直鎖状低密度ポリエチレン等であってもよぐまた、これらを 架橋したものであってもよ!/、。 The insulator 4 is made of a water-resistant insulating composition in which a nano-sized inorganic filler having a non-conductive average particle diameter of 500 nm or less is dispersed in a polyolefin resin. [0017] As the polyolefin resin, low density polyethylene (LDPE) can be used. This polyolefin resin may be a high-density polyethylene, medium-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, or the like, or a cross-linked product of these, based on LDPE. ! /
[0018] また、無機充填剤は、ポリオレフイン榭脂 100重量部に対して 1重量部以上を分散 させている。そして、無機充填剤は、平均粒径が 500nm以下の酸ィ匕マグネシウム( MgO)であり、高い耐水トリー性が得られるように、 LDPE中に均一に分散させている 。なお、無機充填剤は、 MgOのほかに、酸化チタン、炭酸カルシウム、水酸化マグネ シゥム、シリカ等であってもよい。  [0018] The inorganic filler is dispersed in an amount of 1 part by weight or more based on 100 parts by weight of polyolefin resin. The inorganic filler is magnesium oxide (MgO) having an average particle size of 500 nm or less, and is uniformly dispersed in LDPE so as to obtain high water-resistant tree properties. In addition to MgO, the inorganic filler may be titanium oxide, calcium carbonate, magnesium hydroxide, silica or the like.
[0019] 無機充填剤をポリオレフイン樹脂に分散させる方法としては、二軸押出機を用いた 方法があり、ポリオレフイン樹脂と無機充填剤を混練するものである。この混練方法は 、無機充填剤の平均粒径が直径 500nm以下になるように制御可能であれば、上記 方法に限定されるものではない。他の方法として、例えば、二軸押出機とロール機を 併用し、高濃度に無機充填剤を添加したポリオレフイン樹脂の材料をロール機によつ て低濃度に希釈する方法がある。  [0019] As a method of dispersing the inorganic filler in the polyolefin resin, there is a method using a twin screw extruder, in which the polyolefin resin and the inorganic filler are kneaded. This kneading method is not limited to the above method as long as the average particle diameter of the inorganic filler can be controlled to be 500 nm or less. As another method, for example, there is a method of using a twin screw extruder and a roll machine in combination, and diluting a polyolefin resin material having a high concentration of an inorganic filler added to a low concentration with a roll machine.
[0020] また、無機充填剤は、ビニルシランによる表面処理を施した後、ジェット粉砕による 粉枠処理を施している。  [0020] In addition, the inorganic filler is subjected to a surface treatment with vinylsilane and then a powder frame treatment by jet pulverization.
[0021] (実施の形態の効果)  [Effect of the embodiment]
本実施の形態によれば、下記の効果を奏する。  According to the present embodiment, the following effects are obtained.
(ィ)絶縁体 4は、ポリオレフイン榭脂中に平均粒径が 500nm以下の無機充填剤を分 散させた構成にしたため、無機充填剤の吸水効果により、ポリオレフイン榭脂内の水 分の移動を抑止でき、絶縁破壊特性や絶縁抵抗等の電気特性に影響を与えること なぐ耐水トリー性ケーブル 1の水トリー抑止効果を高めることができる。  (Ii) Insulator 4 has a structure in which an inorganic filler having an average particle size of 500 nm or less is dispersed in the polyolefin resin, so that the water content in the polyolefin resin can move due to the water absorption effect of the inorganic filler. The water tree suppression effect of the water-resistant tree-resistant cable 1 can be enhanced without affecting the electrical characteristics such as dielectric breakdown characteristics and insulation resistance.
(口)ポリオレフイン榭脂中にナノサイズの無機充填剤を均一に分散させた絶縁体 4は 、より高い耐水トリー性を得ることができる。無機充填剤は粒径が小さくなるほどポリオ レフイン榭脂中に分散した無機充填剤の粒子間距離が短くなり、水分の捕獲確率が 高くなる。すなわち、粒径が小さぐかつ粒子間距離が短いほど、耐水トリー性ケープ ル 1の水トリー抑止効果を高めることができる。 (ハ)また、同一粒径の無機充填剤であれば、ポリオレフイン榭脂 100重量部に対して 、 1重量部以上を分散させることにより、ポリオレフイン榭脂中における無機充填剤の 粒子間距離が短くなり、水分の捕獲確率が高くなるため、水トリー抑止効果を高める ことができる。 (Mouth) The insulator 4 in which the nano-sized inorganic filler is uniformly dispersed in the polyolefin resin can obtain a higher water tree resistance. The smaller the particle size of the inorganic filler, the shorter the interparticle distance of the inorganic filler dispersed in the polyolefin resin, and the higher the moisture trapping probability. That is, the smaller the particle size and the shorter the interparticle distance, the higher the water tree deterrent effect of the water resistant cartridge 1 can be. (C) In the case of an inorganic filler having the same particle size, by dispersing 1 part by weight or more with respect to 100 parts by weight of the polyolefin resin, the distance between the particles of the inorganic filler in the polyolefin resin is short. Therefore, the water tree deterrence effect can be enhanced because the moisture trapping probability increases.
(二)無機充填剤は、ビュルシランによる表面処理及びジェット粉砕による粉砕処理を 施すことによって、ポリオレフイン榭脂中における再凝集を防止することができ、より均 一な分散状態を得ることができる。  (2) The inorganic filler can prevent re-aggregation in the polyolefin resin by performing surface treatment with bursilane and pulverization treatment with jet pulverization, and a more uniform dispersion state can be obtained.
実施例 1  Example 1
[0022] 次に、本発明の実施例 1、 2、 3について説明する。  Next, Examples 1, 2, and 3 of the present invention will be described.
試料として、図 1に示した構成の耐水トリー性ケーブル 1を以下の要領で作製した。 導体 2として、断面積が 100mm2の銅を主成分とする導体の外周上に、内部半導電 層 3を厚さ 0. 7mmとなるように押出し成形した。次に、内部半導電層 3の外周上に表 1に示す絶縁組成物を絶縁体 4として厚さ 3mmとなるように押出し成形し、更に、絶 縁体 4外周上に外部半導電層 5を厚さ 1 mm、遮蔽層 6及びシース 7を各々厚さ 3mm となるように順次押出し成形して、耐水トリー性ケーブル 1を作製した。 As a sample, a water-resistant tree cable 1 having the configuration shown in FIG. 1 was produced as follows. As the conductor 2, the cross-sectional area on the outer periphery of the conductor containing copper as a main component of 100 mm 2, and extruded to a thickness of 0. 7 mm internal semiconductive layer 3. Next, the insulating composition shown in Table 1 is extruded on the outer periphery of the inner semiconductive layer 3 as an insulator 4 to a thickness of 3 mm, and the outer semiconductive layer 5 is formed on the outer periphery of the insulator 4. The water-resistant tree-resistant cable 1 was produced by sequentially extruding the thickness 1 mm, the shielding layer 6 and the sheath 7 so that each thickness would be 3 mm.
[0023] [表 1] [0023] [Table 1]
表 1 試料の糸«且成物と B T丁 結果 Table 1 Thread and sample of sample and B T-cho results
Figure imgf000008_0001
Figure imgf000008_0001
* 1 :平均粒径 5 0墮  * 1: Average particle size 50 0 墮
* 2:平均粒径 1鋒  * 2: Average particle size 1mm
* 3: 中で交流 5 0 0 H z、 4. 5 kVを 9 0日課電後の B TTを  * 3: AC in 500 Hz, 4.5 kV 90 days after B TT
* 4: 9 0。C、 8 0 k VZmmでの値  * 4: 9 0. C, value at 80 k VZmm
* 5:交流 ®£課電による 显での値 (実施例の詳細)  * 5: AC ® £ Value displayed by electricity (details of examples)
表 1は、 MgOの平均粒径を一定にし、その添力卩量を変化させた場合を示し、図 1の 絶縁体 4として、低密度ポリエチレン (LDPE)によるベースポリエチレンに対して、平 均粒径 50nmのナノサイズの MgO (以下、ナノサイズ MgOという。)を lphr添カ卩した 耐水トリー性絶縁組成物による耐水トリー性ケーブル 1を実施例 1、同様に 5phr添カロ した耐水トリー性ケーブル 1を実施例 2、同様に lOphr添加した耐水トリー性ケーブル 1を実施例 3として、水トリー発生を評価した。 [0025] (比較例の詳細) Table 1 shows the case where the average particle diameter of MgO is constant and the amount of applied force is varied. As the insulator 4 in Fig. 1, the average particle diameter is compared to the base polyethylene made of low density polyethylene (LDPE). Water-resistant tree-resistant cable 1 with a water-resistant insulating composition comprising lphr-added nano-sized MgO with a diameter of 50 nm (hereinafter referred to as nano-sized MgO) as in Example 1, and water-resistant tree-resistant cable 1 with 5 phr. The water tree generation was evaluated in the same manner as in Example 2, and the water-resistant tree cable 1 to which lOphr was added in the same manner as Example 3. [0025] (Details of comparative example)
また、 MgOを添カ卩しない LDPEを絶縁体 4としたケーブル 1を比較例 1とした。更に 、平均粒径が l /z mのマイクロサイズの MgO (以下、マイクロサイズ MgOという。)を 1 Ophr添カ卩した絶縁組成物を絶縁体 4に用 、たケーブル 1を比較例 2とした。  In addition, cable 1 in which insulator 4 was used as LDPE without adding MgO was used as comparative example 1. Further, a cable 1 in which an insulating composition containing 1 Ophr of micro-sized MgO having an average particle diameter of 1 / z m (hereinafter referred to as micro-sized MgO) was used as the insulator 4 was used as Comparative Example 2.
[0026] (水トリー発生の評価)  [0026] (Evaluation of water tree generation)
水トリー発生については、次のようにして評価した。耐水トリー性ケーブル 1のシース 7の一部を剥ぎ取り、耐水トリー性ケーブル 1を常温水中に入れ、外部半導電層 5が 水に直接触れる状態とし、 500Hz, 4. 5kVの交流高電圧を導体 2と遮蔽層 6の間に 印加した。課電開始から 90日経過した時点で課電を停止し、絶縁体 4を lmmの厚さ でスノィラル状にスライスし、これを水トリー観察サンプルとした。このスライスしたサン プルを所定のサイズのスパイラル片にし、その 20枚をメチレンブルー水溶液で染色 し、絶縁体 4中に発生して 、るボウタイトリー (BTT)の大きさと発生個数を光学顕微 鏡で調査した。 BTTの発生個数は、体積当たりの累積発生個数で評価し、大きさ 15 0 μ m以下の BTT累積発生個数、大きさ 300 μ m以下の BTT累積発生個数をそれ ぞれカウントして評価し、表 1に示す結果を得た。  Water tree generation was evaluated as follows. Strip a part of the sheath 7 of the water-resistant tree-resistant cable 1 and place the water-resistant tree-resistant cable 1 in room temperature water so that the outer semiconductive layer 5 is in direct contact with the water and conduct an AC high voltage of 500 Hz, 4.5 kV. Applied between 2 and shielding layer 6. When 90 days had elapsed since the start of the application of electricity, the application of electricity was stopped, and the insulator 4 was sliced into a lmm-thick shape and used as a water tree observation sample. This sliced sample is made into a spiral piece of a predetermined size, 20 of which are stained with a methylene blue aqueous solution, and the size and number of the boutontrie (BTT) generated in the insulator 4 are examined with an optical microscope. did. The number of BTT occurrences is evaluated by the cumulative number of occurrences per volume, and the number of BTT occurrences of 150 μm or less and the number of BTT occurrences of 300 μm or less are counted and evaluated. The results shown in Table 1 were obtained.
[0027] (体積抵抗率の評価)  [0027] (Evaluation of volume resistivity)
また、体積抵抗率は、次のようにして評価した。耐水トリー性ケーブル 1の遮蔽層 6 を接地し、導体 2と遮蔽層 6との間に直流電圧 240kV (電界にして 80kVZmm)を印 加し、遮蔽層 6と接地間に流れる体積漏れ電流を測定し、体積抵抗率を求めて評価 した。体積漏れ電流の測定は、耐水トリー性ケーブル 1を 90°Cに加熱した状態で実 施した。  Further, the volume resistivity was evaluated as follows. Measure the volume leakage current flowing between the shielding layer 6 and the ground by applying a DC voltage of 240 kV (80 kVZmm as an electric field) between the conductor 2 and the shielding layer 6 while grounding the shielding layer 6 of the water-resistant cable 1. The volume resistivity was obtained and evaluated. The volume leakage current was measured with the water-resistant tree cable 1 heated to 90 ° C.
[0028] (絶縁破壊強度の評価)  [0028] (Evaluation of dielectric breakdown strength)
更に、絶縁破壊強度は、次のようにして評価した。耐水トリー性ケーブル 1の遮蔽層 6を接地し、導体 2に 60kVの交流高電圧を印加し、 60kVから 10分毎に 3kV昇圧し 、耐水トリー性ケーブル 1が絶縁破壊する電圧を測定し評価した。このときの耐水トリ 一性ケーブル温度は常温とした。  Furthermore, the dielectric breakdown strength was evaluated as follows. The shielding layer 6 of the water-resistant cable 1 was grounded, 60 kV AC high voltage was applied to the conductor 2, the voltage was increased by 3 kV every 10 minutes from 60 kV, and the voltage at which the water-resistant tree cable 1 breaks down was measured and evaluated. . At this time, the water-resistant triaxial cable temperature was set to room temperature.
[0029] (実施例 1〜3の評価) [0029] (Evaluation of Examples 1 to 3)
表 1から以下のことが分かる。まず、 LDPE力もなる絶縁体 4中にナノサイズ MgOを 添カ卩した実施例 1〜3は、 MgOを添カ卩しない比較例 1に比べ絶縁体 4中の BTTの発 生個数が大幅に少ない。更に、実施例 2及び 3のように、ナノサイズ MgOの添加量を 増やすことにより、 BTTの発生個数が更に少なくなつている。一方、マイクロサイズ M gOを添加した比較例 2は、実施例 1〜3と比較して BTTの抑止効果が小さい。 Table 1 shows the following. First of all, nano-sized MgO in insulator 4 that also has LDPE power In Examples 1 to 3 where the additive was added, the number of BTT generated in the insulator 4 was significantly smaller than in Comparative Example 1 where MgO was not added. Furthermore, as in Examples 2 and 3, by increasing the amount of nano-sized MgO added, the number of BTT generated is further reduced. On the other hand, Comparative Example 2 to which microsize MgO was added had a smaller BTT suppression effect than Examples 1 to 3.
[0030] 体積抵抗率は、実施例 1〜3では、ナノサイズ MgOの添カ卩により向上し、し力ゝも添 加量を増やすことにより更に改善できている。絶縁破壊強度は、各実施例と各比較 例は同等の値若しくは同程度の値であった。なお、比較例 2は、比較例 1よりも体積 抵抗率は向上した力 絶縁破壊強度は比較例 1に比べて低下し悪くなつている。 [0030] In Examples 1 to 3, the volume resistivity is improved by adding nano-sized MgO, and the strength is further improved by increasing the added amount. The dielectric breakdown strength was the same value or about the same value in each example and each comparative example. In Comparative Example 2, the volume resistivity is improved compared to Comparative Example 1, and the dielectric breakdown strength is lower and worse than Comparative Example 1.
[0031] 以上の結果から、実施例 1〜3は、ナノサイズ MgOの添カ卩によって BTT抑止効果 が得られ、しかも他の電気特性には影響を及ぼさないことが分かる。一方、マイクロサ ィズ MgOを添加した比較例 2は、充分な BTT抑止効果が得られず、しかも絶縁破壊 強度が低下することが分力る。 [0031] From the above results, it can be seen that in Examples 1 to 3, BTT suppression effect is obtained by adding nano-sized MgO, and other electrical characteristics are not affected. On the other hand, Comparative Example 2 to which microsize MgO is added cannot provide a sufficient BTT suppression effect, and the dielectric breakdown strength decreases.
[0032] (実施例 4、 5) [0032] (Examples 4 and 5)
次に、本発明の実施例 4、 5について説明する。  Next, Examples 4 and 5 of the present invention will be described.
図 1に示した耐水トリー性ケーブル 1において、絶縁体 4として、 LDPEに平均粒径 200nmのナノサイズ MgOを 1 Ophr添カ卩した耐水トリー性絶縁組成物を用いて耐水ト リー性ケーブル 1を作製し、これを実施例 4とした。同様に、平均粒径 500nmのナノ サイズ MgOを lOphr添加した耐水トリー性絶縁組成物を適用した耐水トリー性ケー ブル 1を実施例 5とした。これらのサンプルの BTT累積発生個数の評価結果が表 2で ある。なお、比較例としては、上記実施例 1で実施し表 1に示した比較例 2である。ま た、評価方法は、実施例 1と同じ方法により行った。  In the water-resistant tree cable 1 shown in Fig. 1, the water-resistant tree cable 1 is formed by using a water-resistant tree-resistant insulating composition in which nano-sized MgO with an average particle diameter of 200 nm is added to the LDPE as the insulator 4 with 1 Ophr. This was prepared as Example 4. Similarly, Example 5 was a water-resistant tree-resistant cable 1 to which a water-resistant tree-resistant insulating composition added with lOphr of nano-sized MgO having an average particle diameter of 500 nm was applied. Table 2 shows the results of evaluating the cumulative number of BTT generated for these samples. A comparative example is Comparative Example 2 implemented in Example 1 and shown in Table 1. The evaluation method was the same as in Example 1.
[0033] [表 2] 試料の 物と Β Τ Τ観察結果 [0033] [Table 2] Sample objects and observation results
Figure imgf000011_0001
Figure imgf000011_0001
* 1 : 显水中で交流 5 0 0 H z、 4. 5 k Vを 9 0日課 麦の B TTを観察 * 1: VIEW Exchange in water 500 Hz, 4.5 kV 90 days Observing wheat BTT
* 2 : 9 0 t:、 8 0 kVZmmでの値 * 2: Value at 90 t: 80 kVZmm
* 3 :交流 Sffi課電による 显での値  * 3: Value on the display by AC Sffi electricity
[0034] 表 2は、 MgOの添加量を一定にし、その平均粒径を変化させた場合を示す。 [0034] Table 2 shows the case where the average particle size is changed while the addition amount of MgO is constant.
[0035] (実施例 4, 5の評価) [0035] (Evaluation of Examples 4 and 5)
表 2から明らかなように、実施例 4, 5は、 MgOの平均粒径を実施例 1〜3の 4倍及 び 10倍以上にしている力 この場合においても、比較例 2に比べて絶縁体 4中の BT As is clear from Table 2, Examples 4 and 5 have the power to make the average particle diameter of MgO 4 times and 10 times or more that of Examples 1 to 3, and in this case also, insulation is higher than that of Comparative Example 2. BT in body 4
Tの発生個数が大幅に少ない良好な結果が得られて 、る。 Good results are obtained with significantly fewer T occurrences.
[0036] (総合評価) [0036] (Comprehensive evaluation)
表 1及び表 2の結果から、 MgO添カ卩量が同じであれば、 MgOの添カ卩による BTT発 生抑止効果は、 MgOの平均粒径が小さいほど、より大きな効果が得られることが分 力る。また、 MgOの平均粒径が 500nm以下であれば、比較例 1の MgO無添力卩の場 合に比べて体積抵抗率は向上しており、絶縁破壊強度は低下しないことが分かる。 即ち、無機充填剤の粒径がナノサイズと小さくなるほど LDPE中に分散した無機充填 剤の水分の捕獲確率が向上し、更に、粒子間距離が近いほど、耐水トリー性ケープ ルに対する水トリー抑止効果を高めることができる。  From the results in Tables 1 and 2, it can be seen that if the MgO-added amount is the same, the BTT generation suppression effect of the MgO-added additive can be increased as the average particle size of MgO decreases. Divide. It can also be seen that when the average particle diameter of MgO is 500 nm or less, the volume resistivity is improved and the dielectric breakdown strength is not lowered as compared with the case of Comparative Example 1 where no MgO is added. That is, as the particle size of the inorganic filler becomes smaller, the water trapping probability of the inorganic filler dispersed in LDPE improves, and the closer the distance between the particles, the more effective the water tree suppression effect on the water-resistant carpet. Can be increased.
[0037] [他の実施の形態] なお、本発明は、上記実施の形態に限定されず、その要旨を変更しない範囲内で 種々な変形が可能である。例えば、耐水トリー性ケーブル 1にシース 7を設けていな V、導体が絶縁体で被覆された電線であってもよ 、。 [0037] [Other Embodiments] The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. For example, a water-resistant tree cable 1 without a sheath 7 V may be an electric wire whose conductor is covered with an insulator.
産業上の利用可能性 Industrial applicability
本発明の耐水トリー性絶縁組成物および耐水トリー性電線'ケーブルによると、平 均粒径が直径 500nm以下のナノサイズの無機充填剤がポリオレフイン榭脂中に分 散されていることにより、無機充填剤は、その吸水効果によって絶縁組成物内の水分 の移動を抑止するので、水トリーの発生を抑止することができる。  According to the water-resistant tree insulating composition and the water-resistant electric wire cable of the present invention, the inorganic filler having an average particle diameter of 500 nm or less is dispersed in the polyolefin resin. Since the agent suppresses the movement of moisture in the insulating composition due to its water absorption effect, the generation of water trees can be suppressed.

Claims

請求の範囲 The scope of the claims
[1] ポリオレフイン榭脂中に無機充填剤が分散された絶縁組成物であって、  [1] An insulating composition in which an inorganic filler is dispersed in a polyolefin resin,
前記無機充填剤の平均粒径が直径 500nm以下である耐水トリー性絶縁組成物。  A water-resistant insulating composition having an average particle diameter of the inorganic filler of 500 nm or less.
[2] 前記ポリオレフイン榭脂は、架橋されたものである請求項 1に記載の耐水トリー性絶 縁組成物。 [2] The water-resistant insulating composition according to claim 1, wherein the polyolefin resin is crosslinked.
[3] 前記ポリオレフイン榭脂は、低密度ポリエチレンである請求項 1または 2に記載の耐 水トリー性絶縁組成物。  3. The water-resistant insulating composition according to claim 1 or 2, wherein the polyolefin resin is low density polyethylene.
[4] 前記無機充填剤は、表面処理及び粉砕処理が施されたものである請求項 1から 3 のいずれか 1項に記載の耐水トリー性絶縁組成物。 [4] The water-resistant insulating composition according to any one of claims 1 to 3, wherein the inorganic filler has been subjected to a surface treatment and a pulverization treatment.
[5] 前記表面処理は、ビニルシランを表面処理剤として用いる請求項 4に記載の耐水ト リー性絶縁組成物。 5. The water-resistant insulating composition according to claim 4, wherein the surface treatment uses vinylsilane as a surface treatment agent.
[6] 前記粉砕処理は、ジェット粉砕により行われる請求項 4または請求項 5に記載の耐 水トリー性絶縁組成物。  6. The water-resistant insulating composition according to claim 4 or 5, wherein the pulverization treatment is performed by jet pulverization.
[7] 前記無機充填剤は、酸ィ匕マグネシウムである請求項 1から 6のいずれか 1項に記載 の耐水トリー性絶縁組成物。  [7] The water-resistant insulating composition according to any one of claims 1 to 6, wherein the inorganic filler is magnesium oxide.
[8] 前記無機充填剤は、ポリオレフイン榭脂 100重量部に対して、 1重量部以上を分散 させた請求項 1から 7のいずれか 1項に記載の耐水トリー性絶縁組成物。 8. The water-resistant insulating composition according to any one of claims 1 to 7, wherein the inorganic filler is dispersed in an amount of 1 part by weight or more with respect to 100 parts by weight of polyolefin resin.
[9] 請求項 1〜8のいずれか 1項に記載の絶縁組成物を、導体を絶縁する絶縁体として 形成した耐水トリー性電線'ケーブル。 [9] A water-resistant tree wire cable formed by forming the insulating composition according to any one of claims 1 to 8 as an insulator for insulating a conductor.
PCT/JP2006/320090 2005-10-06 2006-10-06 Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable WO2007040275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-293932 2005-10-06
JP2005293932A JP2007103247A (en) 2005-10-06 2005-10-06 Insulation composite and electric wire/cable

Publications (1)

Publication Number Publication Date
WO2007040275A1 true WO2007040275A1 (en) 2007-04-12

Family

ID=37906317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320090 WO2007040275A1 (en) 2005-10-06 2006-10-06 Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable

Country Status (2)

Country Link
JP (1) JP2007103247A (en)
WO (1) WO2007040275A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408922B1 (en) * 2010-04-02 2014-06-17 엘에스전선 주식회사 Insulation Material Composition For DC Power Cable And The DC Power Cable Using The Same
KR101388136B1 (en) 2010-04-07 2014-04-23 엘에스전선 주식회사 DC Power Cable Using Semiconductive Composition And Insulation Composition
KR101161360B1 (en) 2010-07-13 2012-06-29 엘에스전선 주식회사 DC Power Cable Having Reduced Space Charge Effect
KR101408924B1 (en) * 2011-01-25 2014-06-17 엘에스전선 주식회사 Insulation Material Composition For DC Power Cable And The DC Power Cable Using The Same
KR101408925B1 (en) * 2011-01-25 2014-06-18 엘에스전선 주식회사 Light Weight Power Cable Using Semiconductive Composition And Insulation Composition
RU2468459C1 (en) * 2011-06-16 2012-11-27 Государственное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова Nanocomposite electric insulating material
KR101362560B1 (en) * 2011-08-08 2014-02-14 주식회사 엘지화학 Cross-linked polyethylene compositions
KR101318457B1 (en) 2012-09-25 2013-10-16 엘에스전선 주식회사 Insulating composition for dc power cable and dc power cable prepared by using the same
JP6286886B2 (en) * 2013-06-13 2018-03-07 住友電気工業株式会社 DC cable
EP3424055A1 (en) * 2016-03-04 2019-01-09 Borealis AG Polymer composition and electrical devices
CN110322995A (en) * 2019-06-27 2019-10-11 上海永进电缆(集团)有限公司 Crosslinked polyethylene nano-composite insulating cable
WO2022087959A1 (en) * 2020-10-29 2022-05-05 Dow Global Technologies Llc Polyaminosiloxane water tree repellant for electrical insulation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253711A (en) * 1985-05-03 1986-11-11 株式会社フジクラ Dc power cable
JPH10269870A (en) * 1997-03-25 1998-10-09 Fujikura Ltd Manufacture of dc cross-linking polyethylene insulating electric power cable
JPH1186634A (en) * 1997-09-05 1999-03-30 Hitachi Cable Ltd Dc cable and its manufacture
JPH1186635A (en) * 1997-09-05 1999-03-30 Hitachi Cable Ltd Dc cable
JP2003147131A (en) * 2001-11-15 2003-05-21 Fujikura Ltd Nonhalogen flame-retardant resin composition and flame-retardant power source cord
JP2003238746A (en) * 2002-02-19 2003-08-27 Kanegafuchi Chem Ind Co Ltd Flame retardant resin composition
JP2005248068A (en) * 2004-03-05 2005-09-15 Fujikura Ltd Flame-retardant polyethylene resin composition and flame-retardant insulated wire using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846152B2 (en) * 1991-06-14 1999-01-13 電源開発株式会社 DC power cable
JPH05140388A (en) * 1991-11-18 1993-06-08 Hitachi Cable Ltd Flame retardant resin composition
JPH05242733A (en) * 1992-02-25 1993-09-21 Hitachi Cable Ltd Electrically insulating material
JP2000030535A (en) * 1998-07-10 2000-01-28 Hitachi Cable Ltd Wire and cable covered with fluorine containing elastomer and manufacture thereof
JP2000030543A (en) * 1998-07-10 2000-01-28 Hitachi Cable Ltd Wire and cable covered with fluorine containing elastomer
JP2000260228A (en) * 1999-03-05 2000-09-22 Sumitomo Wiring Syst Ltd Covered wire
JP2001302851A (en) * 2000-04-18 2001-10-31 Sumitomo Electric Ind Ltd Nonhalogen flame-retardant resin composition and wire and cable by using the same
JP2001348466A (en) * 2000-06-06 2001-12-18 Fujikura Ltd Fire-retarding resin composition
JP2002097324A (en) * 2000-09-25 2002-04-02 Nippon Unicar Co Ltd Water-crosslinkable olefin-based resin composition, method for producing water-crosslinked olefin-based resin molding and the resultant molding
JP2004149634A (en) * 2002-10-29 2004-05-27 Yazaki Corp Insulating part using abrasion-resistant resin composition
JP4474134B2 (en) * 2003-08-26 2010-06-02 日本ユニカー株式会社 Resin composition for polymer insulator and polymer insulator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253711A (en) * 1985-05-03 1986-11-11 株式会社フジクラ Dc power cable
JPS61253712A (en) * 1985-05-03 1986-11-11 株式会社フジクラ Dc power cable
JPS61253713A (en) * 1985-05-03 1986-11-11 株式会社フジクラ Dc power cable
JPH10269870A (en) * 1997-03-25 1998-10-09 Fujikura Ltd Manufacture of dc cross-linking polyethylene insulating electric power cable
JPH1186634A (en) * 1997-09-05 1999-03-30 Hitachi Cable Ltd Dc cable and its manufacture
JPH1186635A (en) * 1997-09-05 1999-03-30 Hitachi Cable Ltd Dc cable
JP2003147131A (en) * 2001-11-15 2003-05-21 Fujikura Ltd Nonhalogen flame-retardant resin composition and flame-retardant power source cord
JP2003238746A (en) * 2002-02-19 2003-08-27 Kanegafuchi Chem Ind Co Ltd Flame retardant resin composition
JP2005248068A (en) * 2004-03-05 2005-09-15 Fujikura Ltd Flame-retardant polyethylene resin composition and flame-retardant insulated wire using the same

Also Published As

Publication number Publication date
JP2007103247A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
WO2007040275A1 (en) Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable
Du et al. Space charge behaviors of PP/POE/ZnO nanocomposites for HVDC cables
EP1940932B1 (en) Low-smoke self-extinguishing cable and flame-retardant composition comprising natural magnesium hydroxide
JP5438332B2 (en) High voltage electronics cable
David et al. Polymer nanocomposites-major conclusions and achievements reached so far
Murata et al. Investigation of electrical phenomena of inorganic-filler/LDPE nanocomposite material
Rytöluoto et al. Large-area dielectric breakdown performance of polymer films–Part II: Interdependence of filler content, processing and breakdown performance in polypropylene-silica nanocomposites
KR20110110928A (en) Insulation material composition for dc power cable and the dc power cable using the same
EP3432317A1 (en) Insulation composition having low dielectric constant, and cable including insulation layer formed therefrom
JP2015183039A (en) Method for producing insulation material, master batch, insulation material, and power cable
Murata et al. Development history of HVDC extruded cable with nanocomposite material
JP2006291022A (en) Insulating composition, wire/cable, and method for producing insulating composition
Wang et al. Characteristics on breakdown performance of polyethylene/silica dioxide nanocomposites
Fairus et al. Investigation on dielectric strength of alumina nanofiller with SiR/EPDM composites for HV insulator
JP6320692B2 (en) DC cable and electrical insulation composition
Nagao et al. Water tree retardation of MgO/LDPE and MgO/XLPE nanocomposites
GB2586362A (en) Resin composition, inorganic filler, DC power cable, and method for producing DC power cable
Castellon et al. Dielectric properties of POSS/LDPE and MgO/LDPE nanocomposites compounded by different techniques
CN111349287B (en) Polymer composition comprising at least two in-phase polymers
EP3664102A1 (en) Insulation composition and direct-current power cable having insulating layer formed from the same
Li et al. Surface flashover in vacuum and bulk breakdown in polystyrene nanocomposites
CN107924739B (en) Power transmission cable
RU2606380C1 (en) Electrically conductive cross-linked composition by the peroxide method for high-voltage power cables screens
KR101388136B1 (en) DC Power Cable Using Semiconductive Composition And Insulation Composition
Wang et al. Characteristics on surface flashover of polyethylene nanocomposites film in vacuum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811417

Country of ref document: EP

Kind code of ref document: A1