JP2006291022A - Insulating composition, wire/cable, and method for producing insulating composition - Google Patents

Insulating composition, wire/cable, and method for producing insulating composition Download PDF

Info

Publication number
JP2006291022A
JP2006291022A JP2005113077A JP2005113077A JP2006291022A JP 2006291022 A JP2006291022 A JP 2006291022A JP 2005113077 A JP2005113077 A JP 2005113077A JP 2005113077 A JP2005113077 A JP 2005113077A JP 2006291022 A JP2006291022 A JP 2006291022A
Authority
JP
Japan
Prior art keywords
insulating composition
inorganic filler
cable
mgo
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005113077A
Other languages
Japanese (ja)
Inventor
Yoshinao Murata
義直 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Power Systems Corp
Original Assignee
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Power Systems Corp filed Critical J Power Systems Corp
Priority to JP2005113077A priority Critical patent/JP2006291022A/en
Publication of JP2006291022A publication Critical patent/JP2006291022A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating composition having a higher effect that can be obtained by adding an inorganic filler than conventional compositions, and to provide a wire/cable using the same and a method for producing the same. <P>SOLUTION: The insulating composition of the present invention uses a low-density polyethylene as a material for a polyolefin resin and magnesium oxide which is surface-treated with a vinylsilane and then milled by jet milling. These components are kneaded through a twin-screw extruder so that the filler in the insulating composition has an average particle size of 200 nm or less to prepare an insulating composition. The resulting insulating composition has a higher volume resistivity and direct current breakdown strength than conventional insulating compositions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絶縁組成物および電線・ケーブル並びに絶縁組成物の製造方法に関し、特に、従来のものよりも絶縁性能の向上した絶縁組成物であり、これを絶縁層に用いた電線・ケーブル、および絶縁組成物の製造方法に関する。   TECHNICAL FIELD The present invention relates to an insulating composition, an electric wire / cable, and a method for producing the insulating composition, in particular, an insulating composition having improved insulating performance as compared with the conventional one, The present invention relates to a method for producing an insulating composition.

これまでに、低密度ポリエチレン(以下、LDPEとする)を架橋した架橋ポリエチレン(以下、XLPEとする)に無機充填剤として酸化マグネシウム(MgO)を添加した絶縁組成物をケーブルの絶縁層に用いることにより、MgO未添加のXLPEを絶縁層に用いた場合と比較して、直流特性が向上することが見出され、このMgO添加XLPEの絶縁組成物を絶縁体として採用したケーブルは、直流ケーブルであり実用化が可能であることが確認されている(例えば、特許文献1参照)。   Conventionally, an insulating composition in which magnesium oxide (MgO) is added as an inorganic filler to a crosslinked polyethylene (hereinafter referred to as XLPE) obtained by crosslinking low density polyethylene (hereinafter referred to as LDPE) is used for the insulating layer of the cable. Therefore, it is found that the direct current characteristics are improved as compared with the case where XLPE not added with MgO is used for the insulating layer. The cable using the insulating composition of this MgO added XLPE as an insulator is a direct current cable. It has been confirmed that it can be put into practical use (for example, see Patent Document 1).

ところで、上記MgOなどの無機充填剤は、絶縁体に添加された際に再凝集を起こし、絶縁体中に直径の大きな粗粒(以下、再凝集成分とする)を生じさせることがある。再凝集成分は、ケーブル絶縁体の押出し工程において、スクリーンメッシュの目詰まりの原因となることがある。また、再凝集成分がケーブル絶縁体中に存在すると、これが欠陥となりケーブルのインパルス破壊性能を低下させる。この再凝集を抑止する対策として、ビニルシランを用いて表面処理を施し、その後に、ジェット粉砕により粉砕処理を施したMgOをLDPEとコンパウンド調整することが有効である(例えば、特許文献2参照)。   By the way, the inorganic filler such as MgO may cause re-aggregation when added to the insulator, thereby generating coarse particles having a large diameter (hereinafter referred to as a re-aggregation component) in the insulator. The re-aggregation component may cause clogging of the screen mesh in the cable insulator extrusion process. Further, if a re-aggregation component is present in the cable insulator, this becomes a defect, which deteriorates the impulse destruction performance of the cable. As a countermeasure for suppressing this re-aggregation, it is effective to perform compound treatment with MgPE that has been subjected to surface treatment using vinylsilane and then subjected to pulverization treatment by jet pulverization (see, for example, Patent Document 2).

上記手法を用いてMgOを添加したXLPE絶縁体は、MgO無添加のXLPE絶縁体と比較して、体積抵抗率の向上、空間電荷蓄積量の減少、直流破壊強度の向上などの効果が認められることから、直流ケーブル用絶縁体として有効である。
特許第3428388号公報 特許第3430875号公報
The XLPE insulator to which MgO is added using the above-mentioned method has effects such as an increase in volume resistivity, a decrease in space charge accumulation, and an improvement in DC breakdown strength as compared with an XLPE insulator without addition of MgO. Therefore, it is effective as an insulator for a DC cable.
Japanese Patent No. 3428388 Japanese Patent No. 3430875

しかしながら、上記方法で製造したXLPE絶縁体中のMgOの分散状況について、透過型電子顕微鏡撮影(以下、TEM撮影とする)により観察して確認したところ、XLPE中に分散しているMgOの平均粒径は200nmを超えていることが判明した。   However, when the dispersion state of MgO in the XLPE insulator manufactured by the above method was confirmed by observation through transmission electron microscope photography (hereinafter referred to as TEM photography), the average particle diameter of MgO dispersed in XLPE was confirmed. The diameter was found to exceed 200 nm.

即ち、これまではImp性能に影響を及ぼす再凝集成分は数μmオーダーの大きさであると考え、光学顕微鏡での評価を実施していたが、ナノメートル(nm)オーダーでの充填剤分散状況を確認するために、従来の観察手法である光学顕微鏡よりも、高解像度を有しているTEM撮影により評価したところ、従来手法によるビニルシランの表面処理と粉砕処理を施したMgOをLDPEとコンパウンド調整する方法であっても、なお再凝集成分が生成されXLPE絶縁体中に存在していることが解明された。原材料のMgOの平均粒径は約100nm程度であるにも係わらず、上記コンパウンド調整方法では、絶縁体中に分散したMgO平均粒径は依然として原材料のMgOの粒径よりも大きくなってしまうということが明らかとなった。   In other words, the reaggregation component that affects the Imp performance has been considered to be on the order of several μm, and has been evaluated with an optical microscope. In order to confirm the above, it was evaluated by TEM photography that has a higher resolution than the optical microscope that is the conventional observation technique. Even with this method, it was clarified that a re-aggregation component was still generated and present in the XLPE insulator. Despite the fact that the average particle diameter of the raw material MgO is about 100 nm, in the above compound adjustment method, the average particle diameter of MgO dispersed in the insulator is still larger than the particle diameter of the raw material MgO. Became clear.

この無機充填剤の添加によって得られる特に直流ケーブルとしての効果(体積抵抗率の向上、空間電荷蓄積量の減少、直流破壊強度の向上)は、絶縁体中に分散させた充填剤の平均粒径をより小さくすることによって、無機充填剤の添加によって得られる効果を更に高めることができると考えられる。   The effect of adding this inorganic filler, especially as a DC cable (improvement of volume resistivity, reduction of space charge accumulation, improvement of DC breakdown strength) is due to the average particle size of the filler dispersed in the insulator. It is considered that the effect obtained by the addition of the inorganic filler can be further enhanced by making the size smaller.

本発明は、上記の課題に鑑みてなされたものであり、その目的は従来の絶縁組成物よりも無機充填剤の添加によって更に効果の向上した絶縁組成物、それを用いた電線・ケーブル並びに絶縁組成物の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its object is to provide an insulating composition that is further improved by the addition of an inorganic filler as compared with conventional insulating compositions, electric wires and cables using the same, and insulation. It is in providing the manufacturing method of a composition.

本発明は、上記目的を達成するため、ポリオレフィン樹脂中に無機充填剤の分散された絶縁組成物であって、分散された前記無機充填剤の直径が200nm以下であることを特徴とする絶縁組成物を提供するものである。   In order to achieve the above object, the present invention provides an insulating composition in which an inorganic filler is dispersed in a polyolefin resin, wherein the dispersed inorganic filler has a diameter of 200 nm or less. It provides things.

ポリオレフィン樹脂としては、主にポリエチレン樹脂が挙げられ、低密度ポリエチレンを用いることが望ましい。   Examples of the polyolefin resin mainly include polyethylene resins, and it is desirable to use low density polyethylene.

無機充填剤は、表面処理並びに粉砕処理を施した酸化マグネシウムであることが望ましく、前記表面処理は、ビニルシランを表面処理剤として用いることが、前記粉砕処理は、ジェット粉砕により行われることが望ましい。   The inorganic filler is preferably magnesium oxide that has been subjected to surface treatment and pulverization treatment. The surface treatment is preferably performed using vinylsilane as the surface treatment agent, and the pulverization treatment is preferably performed by jet pulverization.

また、本発明は、上記目的を達成するため、上記本発明の絶縁組成物を、絶縁層としたことを特徴とする電線・ケーブルを提供するものである。   In order to achieve the above object, the present invention provides an electric wire / cable characterized in that the insulating composition of the present invention is an insulating layer.

更に、本発明は、上記目的を達成するため、ポリオレフィン樹脂と無機充填剤とを混合して絶縁組成物を調製するに際し、ポリオレフィン樹脂中に分散させる前記無機充填剤の平均粒径が直径200nm以下となるように制御して調製することを特徴とする絶縁組成物の製造方法を提供するものである。   Furthermore, in order to achieve the above object, the present invention provides an inorganic filler having an average particle diameter of 200 nm or less when dispersed in a polyolefin resin when an insulating composition is prepared by mixing a polyolefin resin and an inorganic filler. The present invention provides a method for producing an insulating composition, which is characterized by being controlled so as to become.

本発明によれば、体積抵抗率や直流破壊強度が従来の絶縁組成物よりも更に向上した絶縁体組成物およびこれを絶縁層に用いた電線・ケーブルを得ることができる。   According to the present invention, it is possible to obtain an insulator composition whose volume resistivity and DC breakdown strength are further improved as compared with the conventional insulating composition, and an electric wire / cable using the insulator composition as an insulating layer.

以下、本発明に係る絶縁組成物および電線・ケーブルの好適な実施の形態について説明する。   Hereinafter, preferred embodiments of the insulating composition and electric wires / cables according to the present invention will be described.

[絶縁組成物の構成]
本発明の実施の形態に係る絶縁組成物は、ポリオレフィン樹脂の材料に無機充填剤を均一に分散するよう添加したものであり、この無機充填剤の平均粒径は、直径200nm以下であることを特徴とする。
[Configuration of insulating composition]
The insulating composition according to the embodiment of the present invention is such that an inorganic filler is added to a polyolefin resin material so that the inorganic filler is uniformly dispersed, and the average particle diameter of the inorganic filler is 200 nm or less. Features.

ポリオレフィン樹脂の材料としては、低密度ポリエチレン(LDPE)が用いられる。このとき、LDPEは架橋したもの(XLPE)であってもよい。尚、本発明においては、ポリオレフィン樹脂の材料として、LDPEの他に、高密度ポリエチレン、中密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレンなどであってもよく、また、これらを架橋したものであってもよい。   As a material for the polyolefin resin, low density polyethylene (LDPE) is used. At this time, the LDPE may be crosslinked (XLPE). In the present invention, the polyolefin resin material may be high-density polyethylene, medium-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, or the like in addition to LDPE, and these may be cross-linked. It may be a thing.

また、無機充填剤としては、酸化マグネシウム(MgO)が用いられる。無機充填剤を絶縁体中に添加する際に再凝集を生じることがあるので、無機充填剤にビニルシランによる表面処理を施した後、ジェット粉砕による粉砕処理を行うことが望ましい。尚、本発明においては、無機充填剤としては、MgOの他に、酸化チタン、炭酸カルシウム、水酸化マグネシウム、シリカなどであってもよい。   Further, magnesium oxide (MgO) is used as the inorganic filler. Since re-agglomeration may occur when the inorganic filler is added to the insulator, it is desirable to subject the inorganic filler to a surface treatment with vinylsilane and then to a pulverization process by jet pulverization. In the present invention, the inorganic filler may be titanium oxide, calcium carbonate, magnesium hydroxide, silica or the like in addition to MgO.

絶縁体中に充填剤を添加することによって得られる効果(体積抵抗率の向上、空間電荷蓄積量の減少、直流破壊強度の向上)は、絶縁体中に分散している充填剤の比表面積に比例する、すなわち、充填剤の粒径が小さい程、効果が大きくなるので、LDPE中に添加するMgOの平均粒径が200nm以下となるように調整する。   The effects obtained by adding a filler to the insulator (improved volume resistivity, reduced space charge accumulation, and improved DC breakdown strength) are due to the specific surface area of the filler dispersed in the insulator. Since the effect increases as the particle size of the filler is smaller, the average particle size of MgO added to the LDPE is adjusted to 200 nm or less.

添加されたMgOの平均粒径が200nm以下となることにより、後述するように、絶縁組成物の体積抵抗率や直流破壊強度が更に向上する。   When the average particle diameter of the added MgO is 200 nm or less, as will be described later, the volume resistivity and DC breakdown strength of the insulating composition are further improved.

[絶縁組成物の製造方法]
本発明の実施の形態に係る絶縁組成物の製造方法は、無機充填剤の平均粒径が直径200nm以下となるように、絶縁体と無機充填剤の混練に二軸押出機を用いるものである。
[Insulating composition manufacturing method]
The method for producing an insulating composition according to an embodiment of the present invention uses a twin screw extruder for kneading an insulator and an inorganic filler so that the average particle diameter of the inorganic filler is 200 nm or less. .

二軸押出機は、2本のスクリューを平行に配置し、スクリュー間で押出し樹脂に高いせん断応力を加えることができる。そのため、無機充填剤をポリオレフィン樹脂の材料に練り込む場合、高せん断応力下で混練した方が、より無機充填剤の分散性が向上する。   The twin screw extruder can arrange two screws in parallel and apply high shear stress to the extruded resin between the screws. Therefore, when the inorganic filler is kneaded into the polyolefin resin material, the dispersibility of the inorganic filler is further improved by kneading under a high shear stress.

更に、無機充填剤の分散性の向上と、高いせん断応力により、無機充填剤の粒子が再凝集を起こしにくくなるので、絶縁体中に添加された無機充填剤の平均粒径が小さくなるよう制御することが可能となる。   Furthermore, since the inorganic filler particles are less likely to re-agglomerate due to improved dispersibility of the inorganic filler and high shear stress, the average particle size of the inorganic filler added to the insulator is controlled to be small. It becomes possible to do.

以上の方法により絶縁組成物を製造することにより、体積抵抗率や直流破壊強度が更に向上した絶縁組成物を得ることができる。   By producing an insulating composition by the above method, an insulating composition with further improved volume resistivity and direct current breakdown strength can be obtained.

尚、無機充填剤のポリオレフィン樹脂中への混練方法としては、無機充填剤の平均粒径が直径200nm以下となるように制御可能な方法であれば、特に限定されることなく適用することができ、上記方法のほかに、例えば、二軸押出機とロール機を併用した場合でも同様の分散効果が得られる。すなわち、二軸押出機を用いて、高濃度に無機充填剤を添加したポリオレフィン樹脂の材料を、ロール機にて低濃度に希釈させることにより同様の効果を得ることができる。   The method for kneading the inorganic filler into the polyolefin resin is not particularly limited as long as it can be controlled so that the average particle diameter of the inorganic filler is 200 nm or less. In addition to the above method, for example, the same dispersion effect can be obtained even when a twin-screw extruder and a roll machine are used in combination. That is, the same effect can be acquired by diluting the polyolefin resin material which added the inorganic filler in high concentration to low concentration with a roll machine using a twin screw extruder.

[ケーブルの構成および製造方法]
本発明の実施の形態に係るケーブルは、上記絶縁組成物によって導体外周を被覆することによって得られる。
[Cable configuration and manufacturing method]
The cable which concerns on embodiment of this invention is obtained by coat | covering a conductor outer periphery with the said insulating composition.

図1は、本発明の実施の形態に係るケーブルの断面概略図である。ケーブル1は、断面略真円状の導体2外周を直接被覆するように内部半導電層3が形成されている。その内部半導電層3の外周には絶縁体4が被覆され、更にその外周に外部半導電層5、遮蔽層6、シース7が順次形成されている。   FIG. 1 is a schematic cross-sectional view of a cable according to an embodiment of the present invention. The cable 1 has an internal semiconductive layer 3 formed so as to directly cover the outer periphery of the conductor 2 having a substantially circular cross section. An insulator 4 is coated on the outer periphery of the inner semiconductive layer 3, and an outer semiconductive layer 5, a shielding layer 6, and a sheath 7 are sequentially formed on the outer periphery.

次に、このケーブル1は、導体2外周に内部半導電層3を押出し成形する。続いて、上述した絶縁組成物よりなる絶縁体4を、更に外部半導電層5及び遮蔽層6、シース7を、順次成形することにより、図1に示すような断面形状を構成するケーブル1が得られる。   Next, the cable 1 is formed by extruding the inner semiconductive layer 3 on the outer periphery of the conductor 2. Subsequently, by forming the insulator 4 made of the above-described insulating composition, the outer semiconductive layer 5, the shielding layer 6, and the sheath 7 in order, the cable 1 having a cross-sectional shape as shown in FIG. can get.

このようにして得られたケーブル1は、体積抵抗率や直流破壊強度が更に向上した絶縁組成物により被覆されているので、従来の直流ケーブルよりも体積抵抗率や直流破壊強度が更に向上する。   Since the cable 1 thus obtained is coated with an insulating composition having further improved volume resistivity and DC breakdown strength, the volume resistivity and DC breakdown strength are further improved as compared with conventional DC cables.

以下に本発明の実施例を示す。   Examples of the present invention are shown below.

[絶縁組成物の実施例]
スクリュー直径15mm、L/D=60(L;スクリュー長さ、D;スクリュー直径)の二軸押出機を用いて、LDPEとMgOを、MgOの平均粒径が直径200nm以下となるように制御しながら混練を行いMgO分散LDPEの絶縁組成物を調製した。LDPEには、密度0.920g/mm、MI(メルト・インデックス)=1のものを使用した。MgOには、原料の平均粒径が50nmのものに、ビニルシランにより表面処理を施した後にジェット粉砕にて粉砕処理を施したものを用いた。
[Example of insulating composition]
Using a twin screw extruder with a screw diameter of 15 mm and L / D = 60 (L: screw length, D: screw diameter), LDPE and MgO were controlled so that the average particle diameter of MgO was 200 nm or less. The insulating composition of MgO-dispersed LDPE was prepared by kneading. The LDPE having a density of 0.920 g / mm 3 and MI (melt index) = 1 was used. MgO having an average particle diameter of 50 nm was subjected to surface treatment with vinylsilane and then pulverized by jet pulverization.

そして、このような調製方法により実施例として、LDPE100重量部に対して、MgOを1重量部添加したものを試料1、5重量部添加したものを試料2、10重量部添加したものを試料3として作製し、表1に示す。   As an example using such a preparation method, Sample 1 with 1 part by weight of MgO added to 100 parts by weight of LDPE, Sample 2 with sample added with 5 parts by weight, and Sample 3 with 10 parts by weight added. As shown in Table 1.

また、比較例として、試料1〜3と同一のLDPEとMgOを用いて単にロール機のみで混練したものを、表1に併せて示した。ここで、LDPE100重量部に対して、MgOを1重量部添加したものを試料4、5重量部添加したものを試料5、10重量部添加したものを試料6とする。また、MgO無添加のLDPEについても、比較例として表1に示した。これを試料7とする。   In addition, as a comparative example, those kneaded only by a roll machine using the same LDPE and MgO as those of Samples 1 to 3 are shown in Table 1. Here, Sample 4 is obtained by adding 1 part by weight of MgO to 100 parts by weight of LDPE, Sample 5 by adding 5 parts by weight, and Sample 6 by adding 10 parts by weight. Further, LDPE without addition of MgO is also shown in Table 1 as a comparative example. This is designated as Sample 7.

(混練後のMgOの平均粒径)
次に、上記各試料を用いて、プレス成形にて厚さ6mmのシートを作成し、スライス片のTEM撮影による写真の観察により、LDPE中に分散したMgOの平均粒径を求めた。その結果は表1に示したとおりである。
(Average particle diameter of MgO after kneading)
Next, a sheet having a thickness of 6 mm was prepared by press molding using each of the above samples, and the average particle diameter of MgO dispersed in LDPE was determined by observing a photograph of the slice piece by TEM photography. The results are as shown in Table 1.

Figure 2006291022
Figure 2006291022

表1の結果からも明らかなように、本発明の実施例である試料1〜3については、いずれもMgOの平均粒径は100nm程度である一方で、比較例である試料4〜6におけるMgOの平均粒径は250nm以上であり、同量のMgOを添加した場合、ロール機での混練に比べて二軸押出機で混練した場合の方が、LDPE中のMgO平均粒径が小さくなった。   As is clear from the results in Table 1, for Samples 1 to 3 which are examples of the present invention, the average particle diameter of MgO is about 100 nm, while MgO in Samples 4 to 6 which are comparative examples. When the same amount of MgO was added, the average particle diameter of MgO in LDPE was smaller when kneaded with a twin screw extruder than when kneaded with a roll machine. .

(体積抵抗率)
更に、上記各試料を用いて、プレス成形にて厚さ0.15mmのシートサンプルを成形し、温度=90℃、直流印加電界=80kV/mmにおける体積抵抗率を評価した。その結果は表1に示したとおりである。
(Volume resistivity)
Further, a sheet sample having a thickness of 0.15 mm was formed by press molding using each of the above samples, and the volume resistivity at a temperature = 90 ° C. and a DC applied electric field = 80 kV / mm was evaluated. The results are as shown in Table 1.

表1の結果からも明らかなように、本発明の実施例である試料1〜3については、いずれも同量のMgOを添加した比較例である試料4〜6よりも大幅に体積抵抗率が向上した。また、MgOの添加量を多くするに従って実施例と比較例との体積抵抗率の差が大きくなることが分かる。   As is clear from the results in Table 1, the samples 1 to 3 as examples of the present invention have a volume resistivity significantly higher than those of samples 4 to 6 as comparative examples to which the same amount of MgO is added. Improved. Moreover, it turns out that the difference of the volume resistivity of an Example and a comparative example becomes large as the addition amount of MgO is increased.

(直流破壊強度)
次に、1重量部のMgOを添加混練した材料を用い、実施例である試料1と比較例である試料4とを用いて、プレス成形にて厚さ0.15mmのシートサンプルを成形し、温度=90℃における直流破壊強度を評価した。その結果は表1に示したとおりである。
(DC breakdown strength)
Next, using a material kneaded with 1 part by weight of MgO, using a sample 1 as an example and a sample 4 as a comparative example, a sheet sample having a thickness of 0.15 mm is formed by press molding, The DC breakdown strength at a temperature = 90 ° C. was evaluated. The results are as shown in Table 1.

表1の結果からも明らかなように、同量のMgOを添加した場合、ロール混練に比べ二軸押出機で混練した場合の方が、直流破壊強度が高くなった。   As is clear from the results in Table 1, when the same amount of MgO was added, the DC breaking strength was higher when kneaded with a twin screw extruder than with roll kneading.

MgO未添加のLDPEの体積抵抗率、直流破壊強度を表1中に比較例の試料7として示した。MgO未添加のLDPEに比べ、MgOを添加したサンプルの方が、体積抵抗率、直流破壊強度ともに高くなる。   Table 1 shows the volume resistivity and DC breakdown strength of LDPE not added with MgO as Sample 7 of Comparative Example. Compared with the LDPE not added with MgO, the sample added with MgO has higher volume resistivity and DC breakdown strength.

以上の結果から、LDPEにMgOを添加することで、体積抵抗率の向上、直流破壊強度の向上といった更なる効果が得られるが、この効果は、LDPE中に分散するMgOの平均粒径を小さくした方がより顕著となることが明らかである。   From the above results, by adding MgO to LDPE, further effects such as improvement of volume resistivity and improvement of DC breakdown strength can be obtained, but this effect reduces the average particle diameter of MgO dispersed in LDPE. It is clear that it becomes more prominent.

[ケーブルの実施例]
実施例として、図1中の導体2として導体断面積100mmの導体外周上に、内部半導電層3を厚さ0.7mmとなるように押出し成形し、次いで内部半導電層3の上に表1の試料1からなる絶縁組成物を絶縁体4として厚さ3mmとなるように押出し成形し、更に外半導電層5を厚さ1mm、遮蔽層6を厚さ0.3mm、シース7を厚さ3mmとなるように順次成形してケーブル1を製造した。このとき、これを試料8として、特性を評価し、その結果を表2に示す。また、比較例として、表1の試料4からなる絶縁組成物を絶縁体4に使用したケーブルを併せて製造し、これを試料9として特性を評価し、その結果を表2に示す。
[Example of cable]
As an example, as the conductor 2 in FIG. 1 on conductor outer periphery of the conductor cross-sectional area 100 mm 2, and extruded to a thickness of 0.7mm the inner semiconducting layer 3, and then on the inner semiconducting layer 3 The insulating composition consisting of Sample 1 in Table 1 was extruded as an insulator 4 to a thickness of 3 mm, the outer semiconductive layer 5 was 1 mm thick, the shielding layer 6 was 0.3 mm thick, and the sheath 7 was The cable 1 was manufactured by sequentially forming a thickness of 3 mm. At this time, using this as the sample 8, the characteristics were evaluated, and the results are shown in Table 2. Further, as a comparative example, a cable using an insulating composition consisting of the sample 4 of Table 1 as the insulator 4 was also manufactured, and this was used as a sample 9 to evaluate the characteristics. The results are shown in Table 2.

Figure 2006291022
Figure 2006291022

表2の結果から明らかなように、本発明の絶縁組成物よる特性の効果が、当該絶縁組成物を用いたケーブルにおいても特性の効果が発現していることが判る。すなわち、LDPEにMgOを添加混練して調製した絶縁組成物を、絶縁体として用いてケーブルを製造した場合、LDPE中に分散するMgOの平均粒径を小さくした方が、体積抵抗率が向上し、直流破壊強度が向上する。   As is apparent from the results in Table 2, it can be seen that the effect of the characteristics by the insulating composition of the present invention is also exhibited in the cable using the insulating composition. That is, when an insulating composition prepared by adding and kneading MgO to LDPE is used as an insulator, the volume resistivity is improved by reducing the average particle diameter of MgO dispersed in LDPE. DC breakdown strength is improved.

以上の検討結果から、ポリオレフィン樹脂中に分散させた後の無機充填剤の平均粒径を、200nm以下とすることで、より顕著な無機充填剤の添加効果を得ることが明らかになった。そして、本発明の絶縁組成物を絶縁層としてケーブルに適用すれば、特に直流ケーブルにおいては前記した特性の更なる効果が期待できる。勿論、交流ケーブルに採用した場合でも当然特性の効果が得られる。   From the above examination results, it has been clarified that when the average particle size of the inorganic filler after being dispersed in the polyolefin resin is 200 nm or less, a more remarkable effect of adding the inorganic filler is obtained. If the insulating composition of the present invention is applied to a cable as an insulating layer, a further effect of the above characteristics can be expected particularly in a DC cable. Of course, the effect of the characteristics can be obtained even when it is used in an AC cable.

本発明の実施の形態に係るケーブルの断面概略図である。It is a section schematic diagram of a cable concerning an embodiment of the invention.

符号の説明Explanation of symbols

1 ケーブル
2 導体
3 内部半導電層
4 絶縁体
5 外部半導電層
6 遮蔽層
7 シース
1 Cable 2 Conductor 3 Internal Semiconductive Layer 4 Insulator 5 External Semiconductive Layer 6 Shielding Layer 7 Sheath

Claims (9)

ポリオレフィン樹脂中に無機充填剤の分散された絶縁組成物であって、
分散された前記無機充填剤の平均粒径が直径200nm以下であることを特徴とする絶縁組成物。
An insulating composition in which an inorganic filler is dispersed in a polyolefin resin,
An insulating composition, wherein an average particle size of the dispersed inorganic filler is 200 nm or less.
前記ポリオレフィン樹脂は、架橋されたものであることを特徴とする請求項1記載の絶縁組成物。   The insulating composition according to claim 1, wherein the polyolefin resin is crosslinked. 前記ポリオレフィン樹脂は、低密度ポリエチレンであることを特徴とする請求項1または2記載の絶縁組成物。   The insulating composition according to claim 1, wherein the polyolefin resin is low-density polyethylene. 前記無機充填剤は、表面処理並びに粉砕処理を施した酸化マグネシウムであることを特徴とする請求項1から3いずれかに記載の絶縁組成物。   The insulating composition according to any one of claims 1 to 3, wherein the inorganic filler is magnesium oxide subjected to a surface treatment and a pulverization treatment. 前記表面処理は、ビニルシランを表面処理剤として用いることを特徴とする請求項4記載の絶縁組成物。   5. The insulating composition according to claim 4, wherein the surface treatment uses vinyl silane as a surface treatment agent. 前記粉砕処理は、ジェット粉砕により行われることを特徴とする請求項4または5記載の絶縁組成物。   The insulating composition according to claim 4 or 5, wherein the pulverization is performed by jet pulverization. 請求項1乃至請求項6のいずれか1項に記載の絶縁組成物を、絶縁層としたことを特徴とする電線・ケーブル。   An electric wire / cable comprising the insulating composition according to any one of claims 1 to 6 as an insulating layer. ポリオレフィン樹脂と無機充填剤とを混合して絶縁組成物を調製するに際し、ポリオレフィン樹脂中に分散させる前記無機充填剤の平均粒径が直径200nm以下となるように制御して調製することを特徴とする絶縁組成物の製造方法。   When preparing an insulating composition by mixing a polyolefin resin and an inorganic filler, the average particle diameter of the inorganic filler dispersed in the polyolefin resin is controlled to be 200 nm or less in diameter. A method for manufacturing an insulating composition. 前記無機充填剤の平均粒径が直径200nm以下となるように制御する調製は、二軸押出機により行うことを特徴とする請求項8記載の絶縁組成物の製造方法。   The method for producing an insulating composition according to claim 8, wherein the preparation for controlling the average particle size of the inorganic filler to be 200 nm or less is performed by a twin screw extruder.
JP2005113077A 2005-04-11 2005-04-11 Insulating composition, wire/cable, and method for producing insulating composition Pending JP2006291022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005113077A JP2006291022A (en) 2005-04-11 2005-04-11 Insulating composition, wire/cable, and method for producing insulating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005113077A JP2006291022A (en) 2005-04-11 2005-04-11 Insulating composition, wire/cable, and method for producing insulating composition

Publications (1)

Publication Number Publication Date
JP2006291022A true JP2006291022A (en) 2006-10-26

Family

ID=37411941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113077A Pending JP2006291022A (en) 2005-04-11 2005-04-11 Insulating composition, wire/cable, and method for producing insulating composition

Country Status (1)

Country Link
JP (1) JP2006291022A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057925A1 (en) 2009-11-11 2011-05-19 Borealis Ag A cable and production process thereof
WO2011128147A1 (en) * 2010-04-14 2011-10-20 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
JP2015000883A (en) * 2013-06-13 2015-01-05 株式会社ジェイ・パワーシステムズ Polyethylene composition and cable for direct current prepared using the same
EP2865690A1 (en) 2009-11-11 2015-04-29 Borealis AG A polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
WO2016000735A1 (en) 2014-06-30 2016-01-07 Abb Technology Ltd Power transmission cable
US9587043B2 (en) 2009-11-11 2017-03-07 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US9595374B2 (en) 2010-11-03 2017-03-14 Borealis Ag Polymer composition and a power cable comprising the polymer composition
CN108530726A (en) * 2018-03-08 2018-09-14 全球能源互联网研究院有限公司 A kind of insulating materials and preparation method thereof of low temperature sensibility
WO2018236013A1 (en) * 2017-06-22 2018-12-27 엘에스전선 주식회사 Direct current power cable
EP3664102A1 (en) * 2018-12-07 2020-06-10 LS Cable & System Ltd. Insulation composition and direct-current power cable having insulating layer formed from the same
US11078312B2 (en) 2009-11-11 2021-08-03 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141418A (en) * 1988-11-21 1990-05-30 Kyowa Chem Ind Co Ltd Highly dispersible magnesium oxide and its production
JPH05242733A (en) * 1992-02-25 1993-09-21 Hitachi Cable Ltd Electrically insulating material
JPH07176219A (en) * 1993-12-20 1995-07-14 Hitachi Cable Ltd Flame retardant thin insulating electric wire
JPH1186635A (en) * 1997-09-05 1999-03-30 Hitachi Cable Ltd Dc cable
JP3430875B2 (en) * 1997-09-05 2003-07-28 日立電線株式会社 DC cable manufacturing method
JP2004071174A (en) * 2002-08-01 2004-03-04 Tatsuta Electric Wire & Cable Co Ltd Flame retardant electric wire and cable
JP2004075811A (en) * 2002-08-14 2004-03-11 Furukawa Electric Co Ltd:The Acidproof flame-retardant resin composition and insulated electric wire
WO2004065300A1 (en) * 2003-01-21 2004-08-05 Yazaki Corporation Magnesium hydroxide, magnesium hydroxide/silica composite particle, processes for producing these, method of surface treatment of these, and resin composition and electric wire containing or produced with these

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141418A (en) * 1988-11-21 1990-05-30 Kyowa Chem Ind Co Ltd Highly dispersible magnesium oxide and its production
JPH05242733A (en) * 1992-02-25 1993-09-21 Hitachi Cable Ltd Electrically insulating material
JPH07176219A (en) * 1993-12-20 1995-07-14 Hitachi Cable Ltd Flame retardant thin insulating electric wire
JPH1186635A (en) * 1997-09-05 1999-03-30 Hitachi Cable Ltd Dc cable
JP3430875B2 (en) * 1997-09-05 2003-07-28 日立電線株式会社 DC cable manufacturing method
JP2004071174A (en) * 2002-08-01 2004-03-04 Tatsuta Electric Wire & Cable Co Ltd Flame retardant electric wire and cable
JP2004075811A (en) * 2002-08-14 2004-03-11 Furukawa Electric Co Ltd:The Acidproof flame-retardant resin composition and insulated electric wire
WO2004065300A1 (en) * 2003-01-21 2004-08-05 Yazaki Corporation Magnesium hydroxide, magnesium hydroxide/silica composite particle, processes for producing these, method of surface treatment of these, and resin composition and electric wire containing or produced with these

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246527B2 (en) 2009-11-11 2019-04-02 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
KR101968883B1 (en) * 2009-11-11 2019-04-12 보레알리스 아게 A polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
KR101813295B1 (en) * 2009-11-11 2017-12-28 보레알리스 아게 A polymer composition and a power cable comprising the polymer composition
US11756700B2 (en) 2009-11-11 2023-09-12 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US11078312B2 (en) 2009-11-11 2021-08-03 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
EP2865690A1 (en) 2009-11-11 2015-04-29 Borealis AG A polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
US10453585B2 (en) 2009-11-11 2019-10-22 Borealis Ag Polymer composition and a power cable comprising the polymer composition
WO2011057925A1 (en) 2009-11-11 2011-05-19 Borealis Ag A cable and production process thereof
US9365708B2 (en) 2009-11-11 2016-06-14 Borealis Ag Cable and production process thereof
EP2499197B1 (en) * 2009-11-11 2017-03-01 Borealis AG A cable and production process thereof
US9587043B2 (en) 2009-11-11 2017-03-07 Borealis Ag Polymer composition and a power cable comprising the polymer composition
KR101844815B1 (en) * 2009-11-11 2018-04-03 보레알리스 아게 A polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
EP3190152A1 (en) * 2009-11-11 2017-07-12 Borealis AG A cable and production process thereof
KR101805215B1 (en) 2009-11-11 2017-12-05 보레알리스 아게 A cable and production process thereof
EP2499197A1 (en) 2009-11-11 2012-09-19 Borealis AG A cable and production process thereof
KR20180034704A (en) * 2009-11-11 2018-04-04 보레알리스 아게 A polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
WO2011128147A1 (en) * 2010-04-14 2011-10-20 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
CN102939331A (en) * 2010-04-14 2013-02-20 博里利斯股份公司 Crosslinkable polymer composition and cable with advantageous electrical properties
KR101834581B1 (en) * 2010-04-14 2018-03-05 보레알리스 아게 Crosslinkable polymer composition and cable with advantageous electrical properties
CN102939331B (en) * 2010-04-14 2016-01-27 博里利斯股份公司 Crosslinkable polymer composition and there is the cable of excellent electrical properties
US10032543B2 (en) 2010-11-03 2018-07-24 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US9595374B2 (en) 2010-11-03 2017-03-14 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10950366B2 (en) 2010-11-03 2021-03-16 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10586634B2 (en) 2010-11-03 2020-03-10 Borealis Ag Polymer composition and a power cable comprising the polymer composition
JP2015000883A (en) * 2013-06-13 2015-01-05 株式会社ジェイ・パワーシステムズ Polyethylene composition and cable for direct current prepared using the same
WO2016000735A1 (en) 2014-06-30 2016-01-07 Abb Technology Ltd Power transmission cable
WO2018236013A1 (en) * 2017-06-22 2018-12-27 엘에스전선 주식회사 Direct current power cable
CN108530726A (en) * 2018-03-08 2018-09-14 全球能源互联网研究院有限公司 A kind of insulating materials and preparation method thereof of low temperature sensibility
EP3664102A1 (en) * 2018-12-07 2020-06-10 LS Cable & System Ltd. Insulation composition and direct-current power cable having insulating layer formed from the same

Similar Documents

Publication Publication Date Title
JP2006291022A (en) Insulating composition, wire/cable, and method for producing insulating composition
KR101408922B1 (en) Insulation Material Composition For DC Power Cable And The DC Power Cable Using The Same
EP2922068B1 (en) Method of manufacturing insulating material, master batch, insulating material and power cable
KR101161360B1 (en) DC Power Cable Having Reduced Space Charge Effect
JP2007103247A (en) Insulation composite and electric wire/cable
KR101408925B1 (en) Light Weight Power Cable Using Semiconductive Composition And Insulation Composition
KR102358045B1 (en) Resin composition, inorganic filler, DC power cable, and manufacturing method of DC power cable
KR101454092B1 (en) Crosslinked polyolefin composition, direct-current power cable, and process for construction of direct-current power line
CN106009190A (en) 500 kv or below flexible direct-current cable insulation material working at 90 DEG C and preparing method thereof
KR101318457B1 (en) Insulating composition for dc power cable and dc power cable prepared by using the same
JP6320692B2 (en) DC cable and electrical insulation composition
CN111954694B (en) Resin composition, inorganic filler, direct current cable, and method for producing direct current cable
JP2014218617A (en) Resin composition and dc cable
KR101408923B1 (en) Insulation Material Composition For DC Power Cable And The DC Power Cable Using The Same
JPH1186634A (en) Dc cable and its manufacture
JP6113823B2 (en) Insulating resin composition for insulated wires, insulated wires and cables for transmitting signals of frequencies in the GHz band
JP7272276B2 (en) Insulating resin composition, insulating material, insulated wire and cable
KR20190000272A (en) Direct current power cable
JP5687024B2 (en) Insulating resin composition for insulated wires, insulated wires and cables
KR101852927B1 (en) Semiconductive composition and method for preparing the same
KR101770351B1 (en) Semiconductive composition
EP3785281B1 (en) Flame retardant electrical cable
JP7156822B2 (en) Method for manufacturing foamed polyolefin coated wire/cable and foamed polyolefin coated wire/cable
KR20180091555A (en) Compound for a semiconductor layer of a power cable and power cable including the same
KR101942790B1 (en) Semi-Conductive Layer Composition for Distributing Cable and Eco-Friendly Distributing Cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208