JPH1186635A - Dc cable - Google Patents

Dc cable

Info

Publication number
JPH1186635A
JPH1186635A JP24063297A JP24063297A JPH1186635A JP H1186635 A JPH1186635 A JP H1186635A JP 24063297 A JP24063297 A JP 24063297A JP 24063297 A JP24063297 A JP 24063297A JP H1186635 A JPH1186635 A JP H1186635A
Authority
JP
Japan
Prior art keywords
cross
polyethylene
insulating layer
cable
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24063297A
Other languages
Japanese (ja)
Inventor
Terushi Katagai
昭史 片貝
Yoshinao Murata
義直 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24063297A priority Critical patent/JPH1186635A/en
Publication of JPH1186635A publication Critical patent/JPH1186635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a lengthy cable by providing an insulating layer consisting of a cross-linked polyethylene, including a specified quantity or less of a polarized inorganic filler in the insulating layer, including no benzene ring in the cross-linked polyethylene, and performing the crosslinking by use of an organic peroxide which generates a volatile decomposition residue having a boiling point, not exceeding a specified temperature. SOLUTION: To polyethylene, 5phr or less of a polarized inorganic filler is added, and an organic peroxide having no benzene ring and generating a decomposition residue having a boilding point will not exceed 100 deg.C such as 2,5-dimethyl-2,5-dihexane or dibutyl peroxide is added thereto as a cross-linking agent to prepare a compound. The compound is extrusion-molded around a conductor, together with inner and outer semiconductor layers, and the polyethylene is crosslinked by heating to form a cross-linked polyethylene insulating layer. Thus, a lengthy DC cross-linked polyethylene cable can be provided without causing rise in resin pressure, even by lengthy continuous extrusion molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は直流用ケ−ブルに関
し、特に、直流絶縁特性及び耐雷インパルス特性にすぐ
れ、成形時の変形がなく、長尺ケ−ブルの製造が可能
な、直流用架橋ポリエチレンケ−ブルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC cable, and more particularly to a DC bridge which has excellent DC insulation characteristics and lightning impulse resistance, has no deformation at the time of molding, and can produce a long cable. It relates to a polyethylene cable.

【0002】[0002]

【従来の技術】架橋ポリエチレンを絶縁層とするケ−ブ
ル(以下、架橋PEケ−ブルと記す)は交流用として広
く用いられている。ポリエチレンの架橋には一般にジク
ミルパ−オキサイド(以下、DCPと記す)のような有
機過酸化物が用いられている。
2. Description of the Related Art A cable having a cross-linked polyethylene as an insulating layer (hereinafter referred to as a cross-linked PE cable) is widely used for alternating current. Generally, an organic peroxide such as dicumyl peroxide (hereinafter, referred to as DCP) is used for crosslinking polyethylene.

【0003】架橋PEケ−ブルを直流用に用いる場合の
絶縁性能の不安定を改善するため、絶縁層に酸化マグネ
シウムのような有極性無機充填剤を加えることが特公昭
57−21805号公報に開示されている。
Japanese Patent Publication No. 57-21805 discloses that a polar inorganic filler such as magnesium oxide is added to an insulating layer in order to improve the insulation performance instability when a crosslinked PE cable is used for direct current. It has been disclosed.

【0004】DCPのような架橋剤を用いた架橋PEケ
−ブルでは、架橋剤の分解残渣が架橋ポリエチレン絶縁
体の体積抵抗率を低下させ、電荷蓄積を増大させるため
に、安定した絶縁性能が得られなかった。体積抵抗率の
低下は絶縁体のもれ電流を増し、ジュ−ル熱により絶縁
体を熱破壊させることがある。架橋剤の分解残渣は内部
及び外部の半導電層を通じて揮散するので、それが多く
分布するのは絶縁層の中層部分であり、その部分の体積
抵抗率が特に低下する。このため、直流課電の下で外層
と内層にかかる電圧の負担が大となり、絶縁体の有効厚
さが減少する。また電荷蓄積の増大は絶縁体中に局部的
に高電界を発生させ、低電圧破壊等の原因となり、ある
いは極性反転の際又は逆極性のインパルスの侵入の際に
絶縁破壊が生ずる。
[0004] In a crosslinked PE cable using a crosslinker such as DCP, a stable insulation performance is obtained because the decomposition residue of the crosslinker lowers the volume resistivity of the crosslinked polyethylene insulator and increases the charge accumulation. Could not be obtained. A decrease in the volume resistivity increases the leakage current of the insulator, and may cause the insulator to thermally break down due to Joule heat. Since the decomposition residue of the cross-linking agent volatilizes through the inner and outer semiconductive layers, it is distributed largely in the middle layer portion of the insulating layer, and the volume resistivity of the portion is particularly reduced. For this reason, the load of the voltage applied to the outer layer and the inner layer under DC application becomes large, and the effective thickness of the insulator decreases. In addition, the increase in charge accumulation locally generates a high electric field in the insulator, causing a low voltage breakdown or the like, or causes a dielectric breakdown when the polarity is reversed or when an impulse of the opposite polarity is introduced.

【0005】このような架橋PEケ−ブルの直流特性に
おける欠点は、前述のように架橋ポリエチレン絶縁層に
酸化マグネシウムのような有極性無機充填剤を加えるこ
とによって改良された。充填剤の添加量が5phr未満
では体積抵抗率の充分な改善効果が得られないため、一
般には10ないし40phrの充填剤が用いられてい
た。
[0005] Such disadvantages in the DC properties of crosslinked PE cables have been ameliorated by the addition of a polar inorganic filler such as magnesium oxide to the crosslinked polyethylene insulation layer as described above. If the added amount of the filler is less than 5 phr, a sufficient effect of improving the volume resistivity cannot be obtained, so that 10 to 40 phr of the filler is generally used.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の直流用
ケ−ブルによると、絶縁層に5phrを超える有極性無
機充填剤を加えると、絶縁体コンパウンド中に、充填剤
の粗粒や凝集が生ずることがある。充填剤の粗粒や凝集
は、絶縁体の連続押し出し成形の工程で、押し出し機の
前面に樹脂中の異物の除去のため設けられているスクリ
−ンメッシュに目詰まりを起こす。メッシュが目詰まり
すると、樹脂圧が過度に上昇(例えば3MPa)し、押
し出し成形の続行が困難になり、長尺のケ−ブルの製造
ができない。
However, according to the conventional direct-current cable, when a polar inorganic filler exceeding 5 phr is added to the insulating layer, coarse particles or agglomeration of the filler are caused in the insulating compound. May occur. The coarse particles and agglomeration of the filler cause clogging in a screen mesh provided on the front surface of the extruder for removing foreign matter in the resin in a process of continuously extruding the insulator. When the mesh is clogged, the resin pressure is excessively increased (for example, 3 MPa), making it difficult to continue extrusion molding, and making it impossible to manufacture a long cable.

【0007】また、絶縁層に5phrを超える有極性無
機充填剤を加えると、押し出し成形の工程で押し出され
る溶融樹脂の粘度等の流動特性の変化により、ケ−ブル
の絶縁体が変形することがある。
Further, if a polar inorganic filler exceeding 5 phr is added to the insulating layer, the cable insulator may be deformed due to a change in flow characteristics such as viscosity of the molten resin extruded in the extrusion process. is there.

【0008】さらに、絶縁層に5phrを超える有極性
無機充填剤を加えると、直流課電に対する絶縁破壊強度
は向上するものの、雷等のインパルスに対する絶縁破壊
強度はむしろ低下する。
Further, when a polar inorganic filler exceeding 5 phr is added to the insulating layer, the dielectric strength against DC application is improved, but the dielectric strength against lightning impulse is rather reduced.

【0009】従って、本発明の目的は、直流絶縁特性の
みならず耐雷インパルス特性もすぐれ、絶縁体の変形を
生ずることなく、長尺ケ−ブルの製造が可能な、架橋ポ
リエチレン絶縁体を有する直流用ケ−ブルを提供するこ
とにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a direct current having a crosslinked polyethylene insulator, which is excellent not only in direct current insulation characteristics but also in lightning impulse resistance characteristics and can produce a long cable without deformation of the insulator. Cable for use in a vehicle.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するため、架橋ポリエチレンから成る絶縁層を有する
直流用ケ−ブルにおいて、絶縁層が5phr以下の有極
性無機充填剤を含み、かつ架橋ポリエチレンが、ベンゼ
ン環を有せず、沸点が100℃を超えない揮発性の分解
残渣を生成する有機過酸化物により、架橋されたもので
ある直流用ケ−ブルを提供する。
In order to achieve the above object, the present invention provides a DC cable having an insulating layer made of crosslinked polyethylene, wherein the insulating layer contains a polar inorganic filler of 5 phr or less, and The present invention provides a DC cable in which a crosslinked polyethylene is crosslinked with an organic peroxide which has no benzene ring and produces a volatile decomposition residue having a boiling point not exceeding 100 ° C.

【0011】有機過酸化物は、例えば、2,5-dimethyl-
2,5-di(tert-butylperoxi)-hexane(2,5─ジメチル
─2,5ジ(ターシャリーブチルペルオキシ)ヘキサ
ン)や dibutylperoxide(ジブチルパ−オキサイド)で
ある。実際上、この2種が好ましい。
The organic peroxide is, for example, 2,5-dimethyl-
2,5-di (tert-butylperoxi) -hexane (2,5-dimethyl @ 2,5 di (tert-butylperoxy) hexane) and dibutylperoxide (dibutyl peroxide). In practice, these two are preferred.

【0012】すぐれた直流絶縁特性を得るために絶縁層
に加える有極性無機充填剤としては酸化マグネシウム
(MgO)が適しており、特に純度99%以上のMgO
が好ましい。MgOはDCP等の有機過酸化物架橋剤の
分解残渣による体積抵抗率の低下や空間電荷の蓄積を抑
制して、直流絶縁特性を向上する効果が大きい。純度9
9%以上のMgOは特にこの効果がすぐれる。
Magnesium oxide (MgO) is suitable as a polar inorganic filler to be added to the insulating layer in order to obtain excellent DC insulation characteristics.
Is preferred. MgO has a great effect of suppressing the reduction of volume resistivity and the accumulation of space charge due to the residue of decomposition of an organic peroxide crosslinking agent such as DCP, thereby improving the DC insulation characteristics. Purity 9
This effect is particularly excellent with MgO of 9% or more.

【0013】MgO等の有極性無機充填剤は表面処理、
例えばビニルシラン処理されてもよい。また、有極性無
機充填剤はジェット粉砕等の粉砕処理をされてもよい。
A polar inorganic filler such as MgO is subjected to a surface treatment,
For example, it may be treated with vinylsilane. Further, the polar inorganic filler may be subjected to a pulverization treatment such as jet pulverization.

【0014】製造過程において連続押し出し工程での樹
脂圧の上昇を避けるためには、充填剤量を5phr以下
とすることが必要である。すぐれた直流絶縁特性を得る
ためには、充填剤は0.5phr以上加えることが好ま
しい。
In order to avoid an increase in the resin pressure in the continuous extrusion step in the production process, the amount of the filler must be 5 phr or less. In order to obtain excellent DC insulation characteristics, it is preferable to add the filler in an amount of 0.5 phr or more.

【0015】絶縁体を構成する主材のポリエチレンとし
ては、高密度、中密度、低密度、または超低密度ポリエ
チレン、直鎖状低密度ポリエチレン等のいずれを用いて
もよい。ポリエチレンはホモポリマ−に限らず、共重合
体、グラフト体でもよく、それらの混合物でもよい。共
重合体は、例えばエチレンとオレフィン類(プロピレン
等)、アルキルアクリレ−ト類(エチルアクリレ−ト、
メチルメタクリレ−ト等)、ビニルエステル類(酢酸ビ
ニル等)、スチレン等との共重合体で、エチレンの分子
比が50%以上のもの、グラフト体は例えばポリエチレ
ンまたはエチレン重合体と無水マレイン酸、ビニルシラ
ン等とのグラフト体である。
As the main material polyethylene constituting the insulator, any of high-density, medium-density, low-density, ultra-low-density polyethylene, linear low-density polyethylene and the like may be used. The polyethylene is not limited to a homopolymer, but may be a copolymer, a graft, or a mixture thereof. Copolymers include, for example, ethylene and olefins (propylene and the like), alkyl acrylates (ethyl acrylate,
Copolymers with methyl methacrylate), vinyl esters (vinyl acetate, etc.), styrene, etc., having a molecular ratio of ethylene of 50% or more, and grafts made of, for example, polyethylene or ethylene polymer and maleic anhydride , Vinyl silane and the like.

【0016】高密度、中密度、低密度又は超低密度ポリ
エチレン、直鎖状低密度ポリエチレン等のポリエチレン
に、無水マレイン酸変性ポリエチレン、例えば無水マレ
イン酸グラフトポリエチレンを、1phr以上10ph
r以下加えてもよく、それにより耐雷インパルス強度を
さらに向上できる。無水マレイン酸による変性量は、
0.1%以上が好ましい。
Maleic anhydride-modified polyethylene, for example, maleic anhydride-grafted polyethylene, is added to polyethylene such as high-, medium-, low- or ultra-low-density polyethylene, linear low-density polyethylene, etc. for 1 phr to 10 phr.
r or less may be added, thereby further improving the lightning impulse strength. The amount of denaturation with maleic anhydride is
0.1% or more is preferable.

【0017】[0017]

【発明の実施の形態】以下に、本発明の直流用ケ−ブル
の実施の形態を詳細に説明する。本発明の直流用ケ−ブ
ルの実施の形態では、導体と、その外周に形成された内
部半導電層と、その外周に形成された架橋ポリエチレン
絶縁層と、その外周に形成された外部半導電層と、さら
にその外周に形成されたシ−スを具え、架橋ポリエチレ
ン絶縁層は、ポリエチレンに有極性無機充填剤を5ph
r以下加え、架橋剤として2,5─ジメチル─2,5ジ
(ターシャリーブチルペルオキシ)ヘキサンやジブチル
パ−オキサイドのような、ベンゼン環を有せず、分解残
渣の沸点が100℃を超えない有機過酸化物を加えて、
コンパウンドを調製し、このコンパウンドを、内外の半
導電層とともに導体の周りに押し出し成形し、加熱によ
りポリエチレンを架橋させたものである。ポリエチレン
は、高密度、中密度、低密度、又は超低密度ポリエチレ
ン、直鎖状低密度ポリエチレン等のいずれでもよく、ホ
モポリマ−、共重合体、グラフト体を包含する。充填剤
は絶縁層に0.5phr以上含むことが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the DC cable according to the present invention will be described in detail. In the embodiment of the DC cable according to the present invention, a conductor, an inner semiconductive layer formed on the outer periphery thereof, a cross-linked polyethylene insulating layer formed on the outer periphery thereof, and an outer semiconductive layer formed on the outer periphery thereof are provided. A cross-linked polyethylene insulation layer comprising polyethylene and a polar inorganic filler of 5 ph.
organic compounds such as 2,5-dimethyl 2,5-di (tert-butylperoxy) hexane and dibutyl peroxide which do not have a benzene ring and the boiling point of the decomposition residue does not exceed 100 ° C. Add peroxide,
A compound is prepared, the compound is extruded around the conductor together with the inner and outer semiconductive layers, and the polyethylene is crosslinked by heating. The polyethylene may be any of high density, medium density, low density or ultra low density polyethylene, linear low density polyethylene and the like, and includes homopolymers, copolymers and grafts. It is preferable that the filler contains 0.5 phr or more in the insulating layer.

【0018】[0018]

【実施例】以下に、本発明の直流用ケ−ブルの実施例を
詳細に説明する。 [実施例1]表1に示す組成(重量部で表示)の絶縁組
成物イないしヘを調製した。組成イは酸化マグネシウム
を含まない組成、組成ロからヘは酸化マグネシウムを含
むものである。組成ホとヘは架橋剤として、2,5─ジ
メチル─2,5ジ(ターシャリーブチルペルオキシ)ヘ
キサン(DBPHと略記する)を用いた本発明による組
成であり、組成イからニは架橋剤としてジクミルペルオ
キシド(DCP)を用いた比較用の組成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a DC cable according to the present invention will be described below in detail. Example 1 Insulating compositions A to F having the compositions (expressed in parts by weight) shown in Table 1 were prepared. The composition A is a composition containing no magnesium oxide, and the compositions B to F contain magnesium oxide. Compositions E and F are compositions according to the present invention using 2,5-dimethyl @ 2,5-di (tert-butylperoxy) hexane (abbreviated as DBPH) as a cross-linking agent. This is a comparative composition using dicumyl peroxide (DCP).

【0019】[0019]

【表1】 [Table 1]

【0020】組成イからヘまでをそれぞれ厚さ0.1mm
のシ−ト状に加熱プレス成形し、試料イないしヘとし
た。試料イからヘまでの体積抵抗率と熱刺激電流(TS
C)を測定した。結果を表2に示す。
Each of the compositions A to F has a thickness of 0.1 mm.
The sample was subjected to heat press molding into a sheet shape as described above to obtain samples I to F. Volume resistivity and thermal stimulation current (TS
C) was measured. Table 2 shows the results.

【0021】[0021]

【表2】 [Table 2]

【0022】体積抵抗率は、温度90℃、印加電界80
kV/mmの下で電圧印加から10分後のもれ電流から算
出した。TSCは、温度30℃の下で初期バイアスとし
て5kV の直流電圧を10分間印加した後、−10℃ま
で急冷し、電極を接地して、上述のバイアスと同じ極性
のコレクテイ ングバイアス180 kV を印加しながら毎
分2℃ずつ昇温し、90℃に達するまで、電流を測定し
た。通常、このTSC測定では、初期バイアスにより空
間電荷が蓄積した場合に初期バイアスと同極性の電流ピ
−クが観測されるから、この同極性電流のピ−クの有無
により空間電荷蓄積、あるいはその抑止効果を判定でき
る。
The volume resistivity is as follows: temperature 90 ° C., applied electric field 80
It was calculated from the leakage current 10 minutes after voltage application under kV / mm. In TSC, a DC voltage of 5 kV was applied as an initial bias at a temperature of 30 ° C. for 10 minutes, then rapidly cooled to −10 ° C., the electrodes were grounded, and a collecting bias of 180 kV having the same polarity as the above-mentioned bias was applied. The temperature was raised at a rate of 2 ° C. per minute while measuring the current until the temperature reached 90 ° C. Usually, in this TSC measurement, when space charge is accumulated by the initial bias, a current peak having the same polarity as that of the initial bias is observed. The deterrent effect can be determined.

【0023】表2から明らかなように、MgOを加えな
い試料イではTSCピ−クが観測されたが、MgOを加
えた試料ロからヘまではTSCピ−クが観測されなかっ
た。すなわち、MgOの添加により電荷蓄積が防止され
たことを示している。
As is clear from Table 2, TSC peak was observed in the sample A without MgO added, but no TSC peak was observed from Samples B to F with MgO added. That is, this indicates that the charge accumulation was prevented by the addition of MgO.

【0024】架橋剤としてDCPを用いた試料イ、ロ、
ハ、ニの間では、MgOの添加量が多くなるにつれ体積
抵抗率が上昇している。しかし試料ニ、すなわちMgO
の添加量が1phrでは体積抵抗率が低く、1014Ωc
mのレベルである。2×10 15Ωcm以上の体積抵抗率
を得るには、5phr以上のMgOの添加が必要なこと
を示している。架橋剤としてDBPHを用いた試料ホ、
ヘでは、それぞれMgOの添加量が同じでDCPで架橋
した試料ハ、ニに比し体積抵抗率が上昇し、約2×10
15Ωcm及びそれ以上の体積抵抗率を示した。
Samples A and B using DCP as a crosslinking agent
Between C and D, the volume increases as the amount of MgO added increases.
The resistivity is rising. However, the sample d, namely MgO
Is 1 phr, the volume resistivity is low.14Ωc
m level. 2 × 10 FifteenVolume resistivity of Ωcm or more
Must be added at least 5 phr of MgO to obtain
Is shown. Sample E using DBPH as a crosslinking agent,
In (F), the amount of MgO added is the same and cross-linked with DCP
The volume resistivity increased compared to the samples C and D, and was approximately 2 × 10
FifteenIt exhibited a volume resistivity of Ωcm and higher.

【0025】[実施例2]表1ロ、ニ、ホの組成を用
い、押し出し成形により導体断面積200mm2 、絶縁
層の厚さ9mmのケ−ブル1,2,3を製造した。成形
には325メッシュのスクリ−ンメッシュを備えた押し
出し機を用いた。24時間にわたり連続で総量約1トン
の樹脂を押し出したときの樹脂圧の上昇は表3に示す通
りであった。
Example 2 Tables 1 and 2 were used to produce cables 1, 2, and 3 having a conductor cross-sectional area of 200 mm 2 and an insulating layer thickness of 9 mm by extrusion molding. An extruder equipped with a 325 mesh screen mesh was used for molding. Table 3 shows the rise in resin pressure when about 1 ton of resin was extruded continuously over 24 hours.

【0026】[0026]

【表3】 [Table 3]

【0027】表3から明らかなように、架橋剤としてD
CPを用い20phrのMgOを用いた組成ロでは、2
4時間後に樹脂圧が3MPaまで上昇した。MgOの少
ない(1phr)組成ニでは樹脂圧の上昇は小さくなっ
た。架橋剤としてDBPHを用いた組成ホは、MgOの
添加量がニより多い5phrであるが、24時間後の樹
脂圧はさらに低くなった。この結果は、架橋剤をDCP
からDBPHに換えたことにより連続押し出し後の樹脂
圧上昇が軽減されることを示す。これは、DCPに比べ
てDBPHはスコ−チ時間が長いため、「やけ樹脂」の
発生が少ないからであろう。
As is apparent from Table 3, D is used as a crosslinking agent.
In the composition using CP and 20 phr of MgO, 2
Four hours later, the resin pressure rose to 3 MPa. In the case of the composition (1 phr) containing less MgO, the rise in the resin pressure was smaller. Composition E using DBPH as a cross-linking agent had a 5 phr addition of MgO, which was larger than that of D, but the resin pressure after 24 hours was even lower. This result indicates that the crosslinking agent is DCP
It shows that the increase in resin pressure after continuous extrusion is reduced by changing from DBPH to DBPH. This is probably because the scorch time of DBPH is longer than that of DCP, so that "burn resin" is less generated.

【0028】ケ−ブル1,2,3とも絶縁体の変形は見
られなかった。ケ−ブル1,2,3につき導体の温度9
0℃で直流及びインパルスによる絶縁破壊試験を行なっ
た。結果を表4に示す。
No deformation of the insulator was observed in any of the cables 1, 2, and 3. Conductor temperature 9 for cables 1, 2 and 3
A dielectric breakdown test was performed at 0 ° C. using a direct current and an impulse. Table 4 shows the results.

【0029】[0029]

【表4】 [Table 4]

【0030】表4に見られるように、架橋剤としてDC
Pを用いたケ−ブル1と2のうち、20phrのMgO
を用いたケ−ブル1は直流破壊強度は充分高いが、耐イ
ンパルス強度が劣る。MgO添加量の少ないケ−ブル2
は逆に、耐インパルス強度は高いが、直流破壊強度が低
い。これに対し、架橋剤としてDBPHを用いたケ−ブ
ル3では、直流破壊強度、耐インパルス強度とも優れて
いる。
As can be seen in Table 4, the crosslinking agent DC
Of cables 1 and 2 using P, 20 phr of MgO
Although the cable 1 using has sufficiently high DC breakdown strength, it has poor impulse resistance. Cable 2 with small amount of added MgO
Conversely, the impulse withstand strength is high, but the DC breakdown strength is low. On the other hand, the cable 3 using DBPH as a cross-linking agent has excellent DC breaking strength and impulse resistance.

【0031】以上の結果から、架橋剤としてDBPHを
用い、架橋ポリエチレン絶縁層に加えるMgO充填剤を
5phr以下に減らしたことにより、優れた直流破壊強
度と耐インパルス強度が得られ、また長尺押し出しの際
の樹脂圧上昇が防止され、絶縁特性のすぐれた長尺ケ−
ブルを製造できることが確かめられた。樹脂圧の上昇が
防止されたのは、MgO充填剤を5phr以下に減らし
たため、充填剤の粗大粒子や凝集によるスクリ−ンメッ
シュの目詰りが起きないからである。架橋剤としてDC
Pを用いた場合に比べ、MgO充填剤の添加量を減らし
ても体積抵抗率が高いのは、架橋剤の分解残渣の沸点が
低いため、絶縁層中に残留する分解残渣が少ないこと、
また架橋剤分子がベンゼン環を有しないことによるので
あろう。
From the above results, by using DBPH as a cross-linking agent and reducing the MgO filler added to the cross-linked polyethylene insulation layer to 5 phr or less, excellent DC breakdown strength and impulse resistance were obtained, and long extrusion was achieved. A long case with excellent insulation properties
It was confirmed that bulls could be manufactured. The increase in resin pressure was prevented because the MgO filler was reduced to 5 phr or less, so that clogging of the screen mesh due to coarse particles and aggregation of the filler did not occur. DC as crosslinker
Compared with the case of using P, the volume resistivity is high even when the added amount of the MgO filler is reduced, because the boiling point of the decomposition residue of the crosslinking agent is low, so that the decomposition residue remaining in the insulating layer is small,
It may also be due to the fact that the crosslinker molecule has no benzene ring.

【0032】[0032]

【発明の効果】本発明の直流用ケ−ブルによると、架橋
剤としてDBPHのような、ベンゼン環を有せず、分解
残渣の沸点が100℃を超えない有機過酸化物を用いた
ことにより、すぐれた絶縁特性(直流絶縁特性と耐雷イ
ンパルス強度)を得るのに必要な有極性無機充填剤の添
加量を5phr以下に減らすことができるため、ケ−ブ
ル成形の際に絶縁体の変形を生ずることがなく、また充
填剤の粗大粒子や凝集によるスクリ−ンメッシュの目詰
りが生じないので、長尺の連続押し出し成形でも樹脂圧
の上昇を起こすことなく、長尺の直流用架橋PEケ−ブ
ルを得ることができる。
According to the DC cable of the present invention, an organic peroxide having no benzene ring and having a boiling point of a decomposition residue not exceeding 100 ° C., such as DBPH, is used as a crosslinking agent. Since the amount of the polar inorganic filler required to obtain excellent insulation characteristics (DC insulation characteristics and lightning impulse strength) can be reduced to 5 phr or less, deformation of the insulator during cable molding can be reduced. Since there is no clogging of the screen mesh due to coarse particles or agglomeration of the filler, there is no increase in resin pressure even in long continuous extrusion molding. -You can get a bull.

【0033】本発明の直流用ケ−ブルによると、直流用
架橋PEケ−ブルにおいて、架橋剤としてDBPHのよ
うな、ベンゼン環を有せず、分解残渣の沸点が100℃
を超えない有機過酸化物を用いたことにより、酸化マグ
ネシウム等の有極性無機充填剤の添加量を従来より少な
い5phr以下に減らしても、すぐれた直流絶縁特性と
耐雷インパルス強度が同時に得られる。すなわち、信頼
性の高い直流用ケ−ブルを実現できる。充填剤の同じ添
加量に対して直流絶縁特性(体積抵抗率)が向上するた
め、絶縁層を薄くすることもでき、ケ−ブルの小型、軽
量化が可能になる。上述のように、このような信頼性の
高い、また小型、軽量化された直流用ケ−ブルが長尺品
としても得られる。
According to the direct current cable of the present invention, the crosslinked PE cable for direct current has no benzene ring such as DBPH as a cross-linking agent, and the decomposition residue has a boiling point of 100 ° C.
By using an organic peroxide that does not exceed 5 phr, excellent direct current insulation characteristics and lightning impulse strength can be obtained simultaneously even if the amount of a polar inorganic filler such as magnesium oxide is reduced to 5 phr or less, which is smaller than the conventional amount. That is, a highly reliable DC cable can be realized. Since the DC insulating property (volume resistivity) is improved for the same amount of the filler, the insulating layer can be thinned, and the cable can be reduced in size and weight. As described above, such a highly reliable, compact and lightweight DC cable can be obtained as a long product.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H01B 7/02 H01B 7/02 F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // H01B 7/02 H01B 7/02 F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 架橋ポリエチレンから成る絶縁層を有す
る直流用ケ−ブルにおいて、前記絶縁層が5phr以下
の有極性無機充填剤を含み、かつ前記架橋ポリエチレン
が、ベンゼン環を有せず、沸点が100℃を超えない揮
発性の分解残渣を生成する有機過酸化物により、架橋さ
れたものであることを特徴とする直流用ケ−ブル。
1. A direct current cable having an insulating layer made of cross-linked polyethylene, wherein the insulating layer contains a polar inorganic filler of 5 phr or less, and the cross-linked polyethylene has no benzene ring and a boiling point. A direct current cable characterized by being crosslinked with an organic peroxide that generates volatile decomposition residues not exceeding 100 ° C.
【請求項2】 前記有極性無機充填剤が酸化マグネシウ
ムである、請求項1の直流用ケ−ブル。
2. The direct current cable according to claim 1, wherein said polar inorganic filler is magnesium oxide.
【請求項3】 前記有極性無機充填剤が、前記絶縁層に
0.5phr以上含まれる、請求項1又は2の直流用ケ
−ブル。
3. The DC cable according to claim 1, wherein the polar inorganic filler is contained in the insulating layer in an amount of 0.5 phr or more.
【請求項4】 前記有機過酸化物が、2,5─ジメチル
─2,5ジ(ターシャリーブチルペルオキシ)ヘキサン
又はジブチルパ−オキサイドである、請求項1、2又は
3の直流用ケ−ブル。
4. The direct current cable according to claim 1, wherein the organic peroxide is 2,5-dimethyl @ 2,5 di (tert-butylperoxy) hexane or dibutyl peroxide.
【請求項5】 前記有機過酸化物が、2,5─ジメチル
─2,5ジ(ターシャリーブチルペルオキシ)ヘキサン
である、請求項4の直流用ケ−ブル。
5. The direct current cable according to claim 4, wherein said organic peroxide is 2,5-dimethyl @ 2,5 di (tert-butylperoxy) hexane.
JP24063297A 1997-09-05 1997-09-05 Dc cable Pending JPH1186635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24063297A JPH1186635A (en) 1997-09-05 1997-09-05 Dc cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24063297A JPH1186635A (en) 1997-09-05 1997-09-05 Dc cable

Publications (1)

Publication Number Publication Date
JPH1186635A true JPH1186635A (en) 1999-03-30

Family

ID=17062393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24063297A Pending JPH1186635A (en) 1997-09-05 1997-09-05 Dc cable

Country Status (1)

Country Link
JP (1) JPH1186635A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291022A (en) * 2005-04-11 2006-10-26 J-Power Systems Corp Insulating composition, wire/cable, and method for producing insulating composition
WO2007040275A1 (en) * 2005-10-06 2007-04-12 J-Power Systems Corporation Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable
JP2010250964A (en) * 2009-04-10 2010-11-04 Japan Atomic Energy Agency Electric wire for submersible motor
FR2963352A1 (en) * 2010-07-27 2012-02-03 Arkema France METHOD FOR PREPARING A CABLE AND USE OF ORGANIC PEROXIDES FOR REDUCING THE DEGASSING STEP IN A PROCESS FOR PREPARING A CABLE
JP2015000883A (en) * 2013-06-13 2015-01-05 株式会社ジェイ・パワーシステムズ Polyethylene composition and cable for direct current prepared using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291022A (en) * 2005-04-11 2006-10-26 J-Power Systems Corp Insulating composition, wire/cable, and method for producing insulating composition
WO2007040275A1 (en) * 2005-10-06 2007-04-12 J-Power Systems Corporation Water-treeing resistant insulating composition and water-treeing resistant electric wire/cable
JP2007103247A (en) * 2005-10-06 2007-04-19 J-Power Systems Corp Insulation composite and electric wire/cable
JP2010250964A (en) * 2009-04-10 2010-11-04 Japan Atomic Energy Agency Electric wire for submersible motor
FR2963352A1 (en) * 2010-07-27 2012-02-03 Arkema France METHOD FOR PREPARING A CABLE AND USE OF ORGANIC PEROXIDES FOR REDUCING THE DEGASSING STEP IN A PROCESS FOR PREPARING A CABLE
WO2012022887A1 (en) * 2010-07-27 2012-02-23 Arkema France Process for preparing a cable and use of organic peroxides for reducing the degassing step in a process for preparing a cable
JP2015000883A (en) * 2013-06-13 2015-01-05 株式会社ジェイ・パワーシステムズ Polyethylene composition and cable for direct current prepared using the same

Similar Documents

Publication Publication Date Title
KR101204591B1 (en) Strippable semiconductive composition comprising low melt temperature polyolefin
US6284374B1 (en) Strippable semiconductive resin composition and wire and cable
EP2215162B1 (en) Silane-functionalised polyolefin compositions, products thereof and preparation processes thereof for wire and cable applications
KR102003567B1 (en) Power cable
JP2000357419A (en) Semiconductive shield for cable
JP4341203B2 (en) Wire or cable
KR20200091930A (en) Polymer blend compositions for wire and cable applications with advantageous electrical properties
JPH1186634A (en) Dc cable and its manufacture
JPH1186635A (en) Dc cable
JPH10283851A (en) Direct current power cable and its connection part
WO2002009123A1 (en) Insulated power cable
JP3428388B2 (en) DC cable
JP2001325834A (en) Dc power cable
EP3033390B1 (en) Thermoplastic blend formulations for cable insulations
JP2001302856A (en) Semiconductive resin composition and electric cable using the same
KR20190087345A (en) Power cable
JPH09231839A (en) Direct current cable
JP3777958B2 (en) Cross-linked polyethylene insulated power cable suitable for recycling
JP3902025B2 (en) Method for reclaiming crosslinked polyolefin
JP3773569B2 (en) DC power cable
JP2001266650A (en) Electric insulating composition and electric cable
JP2000268631A (en) Resin composition for semi-conductive layer for power cable
JP4623941B2 (en) DC power cable manufacturing method
JPH09245520A (en) Composition for semiconductive layer of power cable
JPH0668714A (en) Crosslinked polyolefin insulated electric cable