JPH0475601B2 - - Google Patents

Info

Publication number
JPH0475601B2
JPH0475601B2 JP11577585A JP11577585A JPH0475601B2 JP H0475601 B2 JPH0475601 B2 JP H0475601B2 JP 11577585 A JP11577585 A JP 11577585A JP 11577585 A JP11577585 A JP 11577585A JP H0475601 B2 JPH0475601 B2 JP H0475601B2
Authority
JP
Japan
Prior art keywords
insulating layer
cable
layer
electric field
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11577585A
Other languages
Japanese (ja)
Other versions
JPS61273810A (en
Inventor
Susumu Takahashi
Toshio Niwa
Shotaro Yoshida
Hiroshi Yamanochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP11577585A priority Critical patent/JPS61273810A/en
Publication of JPS61273810A publication Critical patent/JPS61273810A/en
Publication of JPH0475601B2 publication Critical patent/JPH0475601B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、空間電荷による電界の変歪を取り
除くことにより、絶縁耐圧の向上を計るととも
に、絶縁層と半導電層との色を異ならせることに
よつて、これらの識別を容易にした直流電力ケー
ブルに関する。 [従来の技術] CVケーブル(架橋ポリエチレン電力ケーブル)
などの電力ケーブルは、導体の回りに、内部半導
電層、絶縁層、外部半導電層を同心円状に順次設
けてなるもので、これらの絶縁層や半導電層は押
出しによつて形成される。 ところで、架橋ポリエチレンなどからなる絶縁
層を有するケーブルを、高圧直流送電に適用する
場合は、いくつかの問題点が生じることが知られ
ている。その最大の問題点は、直流高電圧を印加
することによつて、絶縁層中に寿命の長い空間電
荷が形成され易いことである。この空間電荷は一
般に電子性、イオン性のものといわれており、ポ
リエチレンの結晶構造に関係した領域に電荷がト
ラツプされるためとされている。また、ポリエチ
レンは絶縁性の良好な無極性の物質であるため、
トラツプされた電荷の漏れが起こり難く、従つ
て、寿命の長い空間電荷となる。そして、直流印
加によつて絶縁層に空間電荷が蓄積されると、導
体近傍の電界強度が上昇し、ケーブルの破壊電圧
が低下する不都合が生じる。 そこで、本出願人は先に、架橋ポリエチレンに
適量のカーボンブラツクを添加して作つた絶縁体
を上記絶縁層として使用する技術を開示した(特
願昭59−091520)。 [発明が解決しようとする問題点] ところで、絶縁層にカーボンブラツクを添加し
た直流電力ケーブルでは、当然のことながら、絶
縁層は黒色を呈することとなる。また、内部半導
電層、絶縁層、外部半導電層を押出し形成した3
層構造のケーブルでは、各半導電層がカーボンブ
ラツクの配合物であることから、やはり黒色であ
るため、絶縁層と半導電層との識別が困難で、ケ
ーブルの端末処理や接続処理の際に、作業がしに
くいという問題があつた。 この発明は、このような背景の下になされたも
ので、絶縁層と半導電層との識別を容易にした直
流電力ケーブルを提供することを目的とする。 [問題点を解決するための手段] 上記問題点を解決するためにこの発明は、架橋
ポリエチレンに0.3〜20重量%の導電性亜鉛華を
混入した絶縁体を、絶縁層にしたことを特徴とす
る。 [作用] 上記構成によれば、導電性亜鉛華が灰白色のた
め、これを架橋ポリエチレンに混入して形成した
絶縁体も灰白色となり、絶縁層と半導電層との識
別を容易に行うことができる。 また、カーボンブラツクの場合と同様に直流破
壊電圧を高めることができる。これは、次の理由
によると考えられる。 一般に、絶縁体組成物の抵抗率(比抵抗)をρ
(Ω−m)、絶縁抵抗の温度係数をα(1/℃)、電
界係数(絶縁抵抗のストレス係数)をβ(mm/
kV)、絶縁体組成物にかかる電界強度をE(kV/
mm)とすれば、 ρ=ρ0exp−(αT+βE) ……(1) なる関係式が成り立つことが知られている。 そして、導電性亜鉛華のような導電性微粒子を
添加すると、電界係数βが増加する一方で温度係
数αが減少し、前記βの増加が空間電荷による電
界のストレスを緩和する。すなわち、電界係数β
が増加すると、抵抗率ρが低下するため、高スト
レス部(強い電界のかかる部分)の電界が緩和さ
れる。 [実施例] 以下、本発明の実施例を説明する。 まず、絶縁層を形成する絶縁体、すなわち、導
電性亜鉛華を混入した架橋ポリエチレンについて
説明する。 導電性亜鉛華とは酸化亜鉛に0.01〜5.0%の酸
化アルミニウムをドープし、粉末状態のままで混
合して、還元性雰囲気の下で高温焼成したもので
ある。そして、この導電性亜鉛華を、架橋ポリエ
チレンに0.3〜20重量%配合する。0.3%以下で
は、電界係数βが余り上昇しないため、直流特性
に対する充分な効果が得られず、20重量%以上で
は、押出し加工上の支障となるばかりでなく、抵
抗率ρの低下と電界係数βの増加が著しく、熱破
壊のおそれが生じる。 次に、内部半導電層と外部半導電層としては、
従来と同様、ゴム、プラスチツクにカーボンブラ
ツクを混入したものを使用する。 [実験例] 架橋ポリエチレンに、導電性亜鉛華(白水化学
社製、導電性亜鉛華23K)を種々の割合で添加し
て絶縁体を形成し、この絶縁体を絶縁層とする導
体断面積200mm2、絶縁層厚3mmの直流電力ケーブ
ルを幾種類か製造した。なお、内部半導電層およ
び外部半導電層は、絶縁層と同時に押出し形成し
た。 また、比較用として、カーボンブラツク
(SAFカーボン)を0.8%添加した架橋ポリエチレ
ン、および無添加の架橋ポリエチレンを絶縁層と
するケーブルを、上記と同じ構造で製造した。 そして、各ケーブルについて、直流破壊電圧お
よびケーブル端末処理作業性を試験した結果が第
1表である。
[Industrial Field of Application] This invention aims to improve the dielectric strength by eliminating distortion of the electric field caused by space charges, and also improves the dielectric strength of the insulating layer and the semiconducting layer by making them different in color. This invention relates to a DC power cable that is easy to identify. [Conventional technology] CV cable (cross-linked polyethylene power cable)
Power cables, such as the . By the way, it is known that several problems occur when a cable having an insulating layer made of cross-linked polyethylene or the like is applied to high-voltage DC power transmission. The biggest problem is that long-lived space charges are likely to be formed in the insulating layer by applying a high DC voltage. This space charge is generally said to be electronic or ionic, and is said to be caused by charges being trapped in regions related to the crystal structure of polyethylene. In addition, polyethylene is a non-polar material with good insulation properties, so
Trapped charges are less likely to leak, and therefore have a long lifetime. When space charges are accumulated in the insulating layer due to the application of direct current, the electric field strength near the conductor increases, causing a disadvantage that the breakdown voltage of the cable decreases. Therefore, the present applicant previously disclosed a technique in which an insulator made by adding an appropriate amount of carbon black to cross-linked polyethylene is used as the above-mentioned insulating layer (Japanese Patent Application No. 59-091520). [Problems to be Solved by the Invention] Incidentally, in a DC power cable in which carbon black is added to the insulating layer, the insulating layer naturally exhibits a black color. In addition, the inner semiconductive layer, the insulating layer, and the outer semiconductive layer were extruded.
In layered cables, each semiconducting layer is a compound of carbon black, which is also black, making it difficult to distinguish between the insulating layer and the semiconducting layer, making it difficult to distinguish between the insulating layer and the semiconducting layer during cable termination and connection processing. The problem was that it was difficult to work with. The present invention was made against this background, and an object of the present invention is to provide a DC power cable in which an insulating layer and a semiconducting layer can be easily distinguished. [Means for Solving the Problems] In order to solve the above problems, the present invention is characterized in that the insulating layer is an insulator made of cross-linked polyethylene mixed with 0.3 to 20% by weight of conductive zinc white. do. [Function] According to the above configuration, since the conductive zinc white is grayish-white, the insulator formed by mixing it into cross-linked polyethylene also becomes grayish-white, making it easy to distinguish between the insulating layer and the semiconductive layer. . Further, as in the case of carbon black, the DC breakdown voltage can be increased. This is considered to be due to the following reasons. Generally, the resistivity (specific resistance) of an insulator composition is expressed as ρ
(Ω-m), temperature coefficient of insulation resistance is α (1/℃), electric field coefficient (stress coefficient of insulation resistance) is β (mm/
kV), the electric field strength applied to the insulator composition is E(kV/
mm), it is known that the following relational expression holds true: ρ=ρ 0 exp−(αT+βE)...(1) When conductive fine particles such as conductive zinc white are added, the electric field coefficient β increases while the temperature coefficient α decreases, and the increase in β alleviates the stress of the electric field due to space charges. That is, the electric field coefficient β
As resistivity ρ increases, the resistivity ρ decreases, so the electric field in the high stress portion (portion to which a strong electric field is applied) is relaxed. [Examples] Examples of the present invention will be described below. First, the insulator forming the insulating layer, that is, the crosslinked polyethylene mixed with conductive zinc white will be explained. Conductive zinc white is made by doping zinc oxide with 0.01 to 5.0% aluminum oxide, mixing it in powder form, and firing it at high temperature in a reducing atmosphere. Then, 0.3 to 20% by weight of this conductive zinc white is blended into crosslinked polyethylene. If it is less than 0.3%, the electric field coefficient β will not increase much, and a sufficient effect on the DC characteristics will not be obtained.If it is more than 20% by weight, it will not only cause problems in extrusion processing, but also cause a decrease in the resistivity ρ and a decrease in the electric field coefficient. The increase in β is significant and there is a risk of thermal destruction. Next, the inner semiconducting layer and the outer semiconducting layer are as follows:
As before, rubber and plastic mixed with carbon black are used. [Experiment example] Conductive zinc white (conductive zinc white 23K, manufactured by Hakusui Chemical Co., Ltd.) is added to cross-linked polyethylene in various proportions to form an insulator, and the cross-sectional area of the conductor is 200 mm using this insulator as an insulating layer. 2. Several types of DC power cables with an insulation layer thickness of 3 mm were manufactured. Note that the inner semiconducting layer and the outer semiconducting layer were formed by extrusion at the same time as the insulating layer. In addition, for comparison, cables having the same structure as above were manufactured with insulating layers made of cross-linked polyethylene to which 0.8% carbon black (SAF carbon) was added and cross-linked polyethylene without additives. Table 1 shows the results of testing the DC breakdown voltage and cable end processing workability for each cable.

【表】 この表から分かるように、本発明品では、架橋
ポリエチレンにカーボンブラツクを入れた直流電
力圧ケーブル(比較例No6)の電気特性(直流ケ
ーブル特性)を損なうことなく、端末処理作業性
に大きな改善を与えている。 [発明の効果] 以上説明したように、この発明は、導電性亜鉛
華を混入した架橋ポリエチレンで絶縁層を構成し
たので、直流電力ケーブルの絶縁耐圧を大幅に向
上させることができる。また、絶縁層が非黒色と
なるので、カーボンブラツク入りで黒色の半導電
層と容易に識別することができる。この結果、直
流電圧ケーブルの端末処理や接続処理の作業性の
向上を計ることができる。
[Table] As can be seen from this table, the product of the present invention improves terminal processing workability without impairing the electrical properties (DC cable properties) of the DC power voltage cable (Comparative Example No. 6), which is made of cross-linked polyethylene with carbon black added. It gives a big improvement. [Effects of the Invention] As explained above, in the present invention, since the insulating layer is made of crosslinked polyethylene mixed with conductive zinc white, the dielectric strength of the DC power cable can be significantly improved. Furthermore, since the insulating layer is non-black, it can be easily distinguished from the black semiconductive layer containing carbon black. As a result, it is possible to improve the workability of terminal processing and connection processing of the DC voltage cable.

Claims (1)

【特許請求の範囲】[Claims] 1 中心導体の回りに、黒色の半導電層と、絶縁
層とを有してなる直流電力ケーブルにおいて、前
記絶縁層は導電性亜鉛華を0.3〜20重量%混入し
た架橋ポリエチレンであることを特徴とする直流
電力ケーブル。
1. A DC power cable comprising a black semiconductive layer and an insulating layer around a central conductor, wherein the insulating layer is made of crosslinked polyethylene mixed with 0.3 to 20% by weight of conductive zinc white. DC power cable.
JP11577585A 1985-05-29 1985-05-29 Dc power cable Granted JPS61273810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11577585A JPS61273810A (en) 1985-05-29 1985-05-29 Dc power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11577585A JPS61273810A (en) 1985-05-29 1985-05-29 Dc power cable

Publications (2)

Publication Number Publication Date
JPS61273810A JPS61273810A (en) 1986-12-04
JPH0475601B2 true JPH0475601B2 (en) 1992-12-01

Family

ID=14670745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11577585A Granted JPS61273810A (en) 1985-05-29 1985-05-29 Dc power cable

Country Status (1)

Country Link
JP (1) JPS61273810A (en)

Also Published As

Publication number Publication date
JPS61273810A (en) 1986-12-04

Similar Documents

Publication Publication Date Title
US4361723A (en) Insulated high voltage cables
US3793476A (en) Insulated conductor with a strippable layer
JPH047522B2 (en)
JP3602297B2 (en) DC power cable
JPH04106B2 (en)
JP3275358B2 (en) DC power cable
JPH0475601B2 (en)
JPH0677412B2 (en) Power cable for high voltage DC transmission
JPH103823A (en) Direct current power cable insulated by cross-linked polyethylene
JP3575030B2 (en) DC power cable
JP3901790B2 (en) DC cross-linked polyethylene insulated power cable
JP2563504B2 (en) DC power cable
JPH0411299Y2 (en)
JPS629613Y2 (en)
JPH0680127B2 (en) Semi-conductive resin composition
JPH063687B2 (en) DC power cable
JP3874862B2 (en) DC cross-linked polyethylene insulated power cable
JP2604771B2 (en) DC power cable
JPS5998403A (en) Semiconductive composition
JPH10321043A (en) Dc cable
JPH0465031A (en) Direct current cable
JPS62177805A (en) Dc power cable
JPS6059603A (en) Semiconductive layer forming composition for power cable
JPS61273809A (en) Power cable
JPH0625482A (en) Semiconductor resin composition and power cable produced using the same