JP2001229732A - Semi-conductive resin composite - Google Patents

Semi-conductive resin composite

Info

Publication number
JP2001229732A
JP2001229732A JP2000036065A JP2000036065A JP2001229732A JP 2001229732 A JP2001229732 A JP 2001229732A JP 2000036065 A JP2000036065 A JP 2000036065A JP 2000036065 A JP2000036065 A JP 2000036065A JP 2001229732 A JP2001229732 A JP 2001229732A
Authority
JP
Japan
Prior art keywords
weight
parts
semi
polyolefin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000036065A
Other languages
Japanese (ja)
Inventor
Shoichiro Nakamura
詳一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000036065A priority Critical patent/JP2001229732A/en
Publication of JP2001229732A publication Critical patent/JP2001229732A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semi-conductive resin composite available when used as a semi-conductive layer of plastic insulated power cable. SOLUTION: The semi-conductive resin composite of 100 parts in weight consisting of 50 to 90 parts in weight of ethylene-ethyl acrylate copolymer with vicat softening temperature above 55 deg.C and 50 to 10 parts in weight of polyolefin with m.p. above 100 deg.C is blended with 40 to 80 parts in weight of conductive carbon black. This gives a good smoothness and adhesion at the interface with an insulating body and, because its hardness at 90 deg.C is above 50, a hardly deformed power cable with excellent distortion resistance is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック絶縁
電力ケーブルの半導電層に使用して有用な半導電性樹脂
組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductive resin composition useful for a semiconductive layer of a plastic insulated power cable.

【0002】[0002]

【従来の技術】プラスチック絶縁電力ケーブル、特に架
橋ポリエチレン絶縁電力ケーブルの場合、半導電層(通
常内部及び外部の半導電層がある)と絶縁体との界面に
おいて良好な平滑性を有し、また良好な密着性も有する
ことは、ケーブルの信頼性向上のために重要な要素であ
る。つまり、界面不整が存在すると、局部的に高電界が
形成され、コロナ放電が生じたり、湿潤な環境下ではケ
ーブルの実使用時に水トリーが発生し、電気絶縁特性が
低下するという現象が起こる。
BACKGROUND OF THE INVENTION Plastic insulated power cables, especially crosslinked polyethylene insulated power cables, have good smoothness at the interface between the semiconductive layer (usually having inner and outer semiconductive layers) and the insulator, and Having good adhesion is also an important factor for improving the reliability of the cable. In other words, if the interface irregularity exists, a high electric field is locally formed, corona discharge occurs, or, in a humid environment, water trees are generated when the cable is actually used, and the electrical insulation characteristics deteriorate.

【0003】このように半導電層には、絶縁体との界面
において良好な平滑性や密着性が必要とされる一方、他
の性能として、加工時における良好な剪断性やケーブル
使用時のヒートサイクルなどの熱に対しての安定した導
電性、耐熱老化性、押出加工性、さらには容易に変形す
ることのない耐変形性などが挙げられる。
[0003] As described above, the semiconductive layer is required to have good smoothness and adhesion at the interface with the insulator. On the other hand, the other properties are good shearing property during processing and heat resistance during use of the cable. Examples thereof include stable conductivity to heat such as a cycle, heat aging resistance, extrusion processability, and deformation resistance without being easily deformed.

【0004】このような半導電層は、一般にベース樹脂
にカンボンブラックを添加することによって得られ、こ
のカンボンブラックとしては、通常アセチレンブラック
やファーネスブラックが主に用いられている。また、ベ
ース樹脂としては、主にエチレン−酢酸ビニル共重合体
(EVA)やエチレン−エチルアクリレート共重合体
(EEA)が用いられている。
[0004] Such a semiconductive layer is generally obtained by adding cambon black to a base resin. As this cambon black, acetylene black or furnace black is usually mainly used. As the base resin, an ethylene-vinyl acetate copolymer (EVA) or an ethylene-ethyl acrylate copolymer (EEA) is mainly used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記半
導電層のベース樹脂であるEVAやEEAは、単体では
樹脂そのものの軟化温度が低いため、特に外部半導電層
においては、近年のケーブル使用温度の上昇化傾向や大
型導体の使用によるケーブル自体の重量増加傾向によっ
て、外部半導電層自体が変形(潰れる)するなどの危険
性が高まり、これによって、ケーブルの信頼性が低下す
る懸念があった。
However, EVA or EEA, which is the base resin of the above-mentioned semiconductive layer, has a low softening temperature of the resin itself when used alone. The danger of the outer semiconductive layer itself being deformed (crushed) is increased due to the tendency to increase and the weight of the cable itself due to the use of large conductors, and there is a concern that the reliability of the cable is reduced.

【0006】本発明は、このような従来の問題点に鑑み
てなされたもので、電力ケーブルの半導電層、特に外部
半導電層に用いたとき、容易に変形することのない耐変
形性に優れた半導電性樹脂組成物を提供せんとするもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and has been made to have a resistance to deformation which is not easily deformed when used for a semiconductive layer of a power cable, particularly, an external semiconductive layer. It is intended to provide an excellent semiconductive resin composition.

【0007】[0007]

【課題を解決するための手段】請求項1記載の本発明
は、ビカット軟化温度が55℃以上であるエチレン−エ
チルアクリレート共重合体(EEA)50〜90重量部
と融点が100℃以上のポリオレフィン50〜10重量
部からなる混合物100重量部に導電性カーボンブラッ
ク40〜80重量部を配合してなる半導電性樹脂組成物
にある。
According to the present invention, there is provided a polyolefin having a Vicat softening temperature of not less than 55 ° C. and 50 to 90 parts by weight of an ethylene-ethyl acrylate copolymer (EEA) and a melting point of not less than 100 ° C. The semiconductive resin composition is obtained by mixing 40 to 80 parts by weight of conductive carbon black with 100 parts by weight of a mixture of 50 to 10 parts by weight.

【0008】請求項2記載の本発明は、請求項1記載の
半導電性樹脂組成物に老化防止剤0.05〜5重量部と
架橋剤0.01〜3重量部を配合してなる半導電性樹脂
組成物にある。
According to a second aspect of the present invention, there is provided a semiconductive resin composition according to the first aspect, comprising 0.05 to 5 parts by weight of an antioxidant and 0.01 to 3 parts by weight of a crosslinking agent. In the conductive resin composition.

【0009】[0009]

【発明の実施の形態】本発明では、先ず、EVAより軟
化温度の高いEEAを選び、これに比較的融点の高いポ
リオレフィンを混合した混合物をベース樹脂とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, first, EEA having a higher softening temperature than EVA is selected, and a mixture obtained by mixing a polyolefin having a relatively high melting point is used as a base resin.

【0010】より具体的には、ビカット軟化温度(JI
SK6731)が55℃以上のEEAを用い、これに融
点が100℃以上のポリオレフィンを混合するもので、
これによって、電力ケーブルの実使用温度(常温〜90
℃程度)の範囲において、半導電層の耐変形性(耐潰れ
性)、特に外部半導電層の耐変形性を大幅に向上させる
ことができる。
More specifically, the Vicat softening temperature (JI
SK6731) using EEA having a temperature of 55 ° C. or higher, and a polyolefin having a melting point of 100 ° C. or higher mixed therein.
As a result, the actual operating temperature of the power cable (normal temperature to 90
In the range of about (° C.), the deformation resistance (crush resistance) of the semiconductive layer, in particular, the deformation resistance of the external semiconductive layer can be significantly improved.

【0011】ここで、用いるEEAのビカット軟化温度
を55℃以上としたのは、半導電層の耐変形性の向上を
図る意味から、55℃未満のものでは、十分な耐変形性
の向上が得られないからである。また、混合するポリオ
レフィンの融点を100℃以上としたのは、電力ケーブ
ルの常時使用温度(常温〜90℃程度)でEEAベース
の半導電層の耐変形性を補強するためである。この融点
が100℃以上のポリオレフィンとしては、例えば低密
度ポリエチレン(LDPE)、直鎖状低密度ポリエチレ
ン(L−LDPE)などが挙げられる。
Here, the reason why the Vicat softening temperature of the EEA used is 55 ° C. or higher is to improve the deformation resistance of the semiconductive layer. Because it cannot be obtained. Further, the reason why the melting point of the polyolefin to be mixed is set to 100 ° C. or higher is to reinforce the deformation resistance of the EEA-based semiconductive layer at the normal use temperature (normal temperature to about 90 ° C.) of the power cable. Examples of the polyolefin having a melting point of 100 ° C. or higher include low density polyethylene (LDPE) and linear low density polyethylene (L-LDPE).

【0012】そして、さらに、EEAとポリオレフィン
との配合割合を、EEA50〜90重量部に対して、ポ
リオレフィンを50〜10重量部としたのは、EEAが
90重量部を越えてポリオレフィンが10重量部未満の
場合には、ポリオレフィンによる高温での補強効果が弱
まり、十分な半導電層の耐変形性が得られず、逆に、E
EAが50重量部未満でポリオレフィンが50重量部を
越えると、EEAの配合による特性が薄れ、ケーブル絶
縁体との界面における良好な平滑性や良好な密着性が期
待できなくなり、また、高い融点のポリオレフィンの特
性によって、押出加工性などが劣るようになるからであ
る。
Further, the mixing ratio of EEA and polyolefin is 50 to 90 parts by weight of EEA and 50 to 10 parts by weight of polyolefin is that EEA exceeds 90 parts by weight and 10 parts by weight of polyolefin is used. If it is less than 3, the reinforcing effect of the polyolefin at high temperatures is weakened, and sufficient deformation resistance of the semiconductive layer cannot be obtained.
If the EA is less than 50 parts by weight and the polyolefin exceeds 50 parts by weight, the characteristics due to the blending of the EEA are weakened, and good smoothness and good adhesion at the interface with the cable insulator cannot be expected. This is because the extrudability and the like are inferior depending on the characteristics of the polyolefin.

【0013】このようなEEAとポリオレフィンとの配
合からなるベース樹脂100重量部には、導電性カーボ
ンブラックとして、アセチレンブラックやファーネスブ
ラックを40〜80重量部添加することによって、本発
明の目的とする半導電性樹脂組成物が得られる。
The object of the present invention is to add 40 to 80 parts by weight of acetylene black or furnace black as a conductive carbon black to 100 parts by weight of a base resin composed of such a mixture of EEA and polyolefin. A semiconductive resin composition is obtained.

【0014】なお、この半導電性樹脂組成物には、必要
により他の添加剤、例えば老化防止剤、有機過酸化物な
どの架橋剤、トリイソシアヌレートなどの架橋助剤、加
工助剤などを添加することができる。老化防止剤を添加
する場合には、その添加量をベース樹脂100重量部に
対して0.05〜5重量部とし、架橋剤を添加する場合
にでは、その添加量を同じくベース樹脂100重量部に
対して0.01〜3重量部とする必要がある。これによ
って、老化防止に優れ、また、架橋によりさらに特性の
優れた半導電性樹脂組成物が得られる。
If necessary, other additives such as an antioxidant, a crosslinking agent such as an organic peroxide, a crosslinking aid such as triisocyanurate, and a processing aid may be added to the semiconductive resin composition. Can be added. When an antioxidant is added, the amount is 0.05 to 5 parts by weight with respect to 100 parts by weight of the base resin. When a crosslinking agent is added, the amount of addition is 100 parts by weight of the base resin. 0.01 to 3 parts by weight with respect to Thereby, a semiconductive resin composition which is excellent in aging prevention and further excellent in properties due to crosslinking can be obtained.

【0015】〈実施例〉表1〜2は、本発明に係る半導
電性樹脂組成物の実施例(1〜4)と、本発明の要件を
欠く半導電性樹脂組成物の比較例(1〜4)のそれぞれ
の配合割合を示したものである。また、同表には、これ
らの実施例(1〜4)と比較例(1〜4)の各特性(耐
変形性の基準となる硬度、半導電性の体積抵抗率、押出
加工性、総合判定)を併記してある。
Examples Tables 1 and 2 show examples (1 to 4) of the semiconductive resin composition according to the present invention and comparative examples (1) of the semiconductive resin composition lacking the requirements of the present invention. 4) shows the respective compounding ratios. Further, in the same table, each characteristic (hardness as a reference of deformation resistance, semiconducting volume resistivity, extrudability, overall properties) of these Examples (1 to 4) and Comparative Examples (1 to 4) is shown. Judgment) is also shown.

【0016】なお、ここで、硬度は90℃におけるJI
S−K6253(加硫ゴムの硬さ試験)記載のJISA
により求めた。また、体積抵抗率(Ω・cm)は90℃
におけるAEIC−CS5−82の方法を用いて求め
た。
Here, the hardness is determined by JI at 90 ° C.
JISA described in S-K6253 (hardness test of vulcanized rubber)
Determined by The volume resistivity (Ω · cm) is 90 ° C
Was determined using the method of AEIC-CS5-82.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】上記表1から、本発明の実施例(1〜4)
では、いずれも硬度が50以上であって、耐変形性の向
上が図られると同時に、体積抵抗率及び押出加工性の点
においても問題なく、総合的には優れた結果が得られる
ことが判る。これに対して、本発明の要件を欠く比較例
(1〜4)では、硬度や押出加工性などの特性が悪く、
総合的には良好な結果は得られなかったことが判る。
From Table 1 above, it can be seen that Examples (1 to 4) of the present invention are shown.
In each case, the hardness is 50 or more, and the deformation resistance is improved, and at the same time, there is no problem in terms of volume resistivity and extrudability, and it can be seen that excellent results are obtained overall. . On the other hand, in Comparative Examples (1 to 4) lacking the requirements of the present invention, properties such as hardness and extrudability are poor,
It turns out that good results were not obtained overall.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
の半導電性樹脂組成物によると、ビカット軟化温度が5
5℃以上であるEEAと融点が100℃以上のポリオレ
フィンからなる混合物に導電性カーボンブラックを配合
してなるため、これを用いて、プラスチック絶縁電力ケ
ーブルの半導電層を形成したとき、絶縁体との界面にお
いて良好な平滑性と良好な密着性が得られ、また、90
℃における硬度が50以上であるため、近年のケーブル
使用温度の上昇化傾向や大型導体の使用によるケーブル
自体の重量増加傾向によっても、実使用温度(常温〜9
0℃程度)の範囲で、特に外部半導電層において、容易
に変形することのない、耐変形性に優れた信頼性の高い
電力ケーブルを得ることができる。
As is apparent from the above description, according to the semiconductive resin composition of the present invention, the Vicat softening temperature is 5%.
Since conductive carbon black is blended with a mixture of EEA having a temperature of 5 ° C. or higher and a polyolefin having a melting point of 100 ° C. or higher, when a semiconductive layer of a plastic insulated power cable is formed using the mixture, an insulator and Good smoothness and good adhesion were obtained at the interface of
Since the hardness at 50 ° C. is 50 or more, the actual service temperature (normal temperature to 9
Within the range of about 0 ° C.), it is possible to obtain a highly reliable power cable that is not easily deformed, particularly in the outer semiconductive layer, and has excellent deformation resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ビカット軟化温度が55℃以上であるエ
チレン−エチルアクリレート共重合体50〜90重量部
と融点が100℃以上のポリオレフィン50〜10重量
部からなる混合物100重量部に導電性カーボンブラッ
ク40〜80重量部を配合してなる半導電性樹脂組成
物。
A conductive carbon black is added to 100 parts by weight of a mixture of 50 to 90 parts by weight of an ethylene-ethyl acrylate copolymer having a Vicat softening temperature of 55 ° C. or higher and 50 to 10 parts by weight of a polyolefin having a melting point of 100 ° C. or higher. A semiconductive resin composition comprising 40 to 80 parts by weight.
【請求項2】 請求項1記載の半導電性樹脂組成物に老
化防止剤0.05〜5重量部と架橋剤0.01〜3重量
部を配合してなる半導電性樹脂組成物。
2. A semiconductive resin composition comprising the semiconductive resin composition according to claim 1 and 0.05 to 5 parts by weight of an antioxidant and 0.01 to 3 parts by weight of a crosslinking agent.
JP2000036065A 2000-02-15 2000-02-15 Semi-conductive resin composite Pending JP2001229732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036065A JP2001229732A (en) 2000-02-15 2000-02-15 Semi-conductive resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036065A JP2001229732A (en) 2000-02-15 2000-02-15 Semi-conductive resin composite

Publications (1)

Publication Number Publication Date
JP2001229732A true JP2001229732A (en) 2001-08-24

Family

ID=18560159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036065A Pending JP2001229732A (en) 2000-02-15 2000-02-15 Semi-conductive resin composite

Country Status (1)

Country Link
JP (1) JP2001229732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526352A (en) * 2006-02-06 2009-07-16 ダウ グローバル テクノロジーズ インコーポレイティド Semiconductor composition
KR20190025628A (en) * 2016-06-30 2019-03-11 다우 글로벌 테크놀로지스 엘엘씨 Semiconductor shielding with no seams and protrusions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526352A (en) * 2006-02-06 2009-07-16 ダウ グローバル テクノロジーズ インコーポレイティド Semiconductor composition
JP2013224429A (en) * 2006-02-06 2013-10-31 Dow Global Technologies Llc Semiconductive compositions
KR20190025628A (en) * 2016-06-30 2019-03-11 다우 글로벌 테크놀로지스 엘엘씨 Semiconductor shielding with no seams and protrusions
KR102580573B1 (en) 2016-06-30 2023-09-21 다우 글로벌 테크놀로지스 엘엘씨 Semiconductor shield without weld lines and protrusions

Similar Documents

Publication Publication Date Title
JP5473926B2 (en) Reduction of dielectric loss through the use of organoclays in semiconductor or insulator compositions.
JP2001229732A (en) Semi-conductive resin composite
WO2002009123A1 (en) Insulated power cable
JP3428388B2 (en) DC cable
JP4227244B2 (en) Insulated cable for direct current using a semiconductive composition
JP4175588B2 (en) Resin composition for semiconductive layer of power cable
JP5639010B2 (en) Semiconductive resin composition and power cable
JPS63205340A (en) Semiconductive mixture
JP6564258B2 (en) Semiconductive resin composition and power cable using the same
JP3442492B2 (en) Semiconductive rubber composition
JPH11329077A (en) Composition for semi-conductive layer and power cable
JP6298441B2 (en) Semiconductive resin composition and power cable using the same
JP3244255B2 (en) Semiconductive resin composition
JP3414581B2 (en) Composition for semiconductive layer of power cable
CN105733083A (en) Semiconductor eraser for intelligent medium-voltage ethylene propylene rubber insulating cable conductor and preparation method
JPS60206855A (en) Electrically semiconductive composition
JPH0680127B2 (en) Semi-conductive resin composition
JPH06203651A (en) Power cable
KR20030005709A (en) Semiconductive water blocking pellet compound for power cable
JPH09245520A (en) Composition for semiconductive layer of power cable
JPH11260158A (en) Dc power cable
JP2001357721A (en) Semiconductive composition
EP1360702A1 (en) An insulation system, in particular for electric power cables
JPH0892435A (en) Semiconductive resin composition
JPH11353943A (en) Semi-conductive resin composition and its manufacture