US20170034898A1 - Dc plasma torch electrical power design method and apparatus - Google Patents

Dc plasma torch electrical power design method and apparatus Download PDF

Info

Publication number
US20170034898A1
US20170034898A1 US15/221,088 US201615221088A US2017034898A1 US 20170034898 A1 US20170034898 A1 US 20170034898A1 US 201615221088 A US201615221088 A US 201615221088A US 2017034898 A1 US2017034898 A1 US 2017034898A1
Authority
US
United States
Prior art keywords
power supply
torch
voltage
current
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/221,088
Inventor
John Jared MOSS
Brian T. NOEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monolith Materials Inc
Original Assignee
Monolith Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monolith Materials Inc filed Critical Monolith Materials Inc
Priority to US15/221,088 priority Critical patent/US20170034898A1/en
Publication of US20170034898A1 publication Critical patent/US20170034898A1/en
Assigned to Monolith Materials, Inc. reassignment Monolith Materials, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOEL, BRIAN T., MOSS, John Jared
Priority to US16/892,199 priority patent/US11665808B2/en
Priority to US18/137,918 priority patent/US20230354501A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3431Coaxial cylindrical electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/473Cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H2001/3431

Definitions

  • a method of operating a DC plasma arc torch is described using plasma forming gas and an operating voltage power supply, where the power supply is at least two times the average operating voltage used, resulting in more stable operation of the torch including reduced voltage fluctuations and substantially no extinguishing of the arc.
  • Additional embodiments include: the method described above where the torch is operated in a power regulating mode where the power supply is operated at a given power setpoint, and the power supply adjusts both the output voltage and the current in order to keep the output power at the setpoint; the method described above where the torch is operated with a current setpoint at which the power supply switches into current regulated mode to keep the arc from extinguishing, and then raises the current setpoint and switches back to power regulated mode once the current is high enough to keep the arc from extinguishing, resulting in substantial elimination of voltage fluctuations and substantial elimination of the arc extinguishing; the method described above where the torch includes concentric cylinder electrodes; the method described above where the power supply has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts; the method described above where the electrodes comprise graphite; the method described above where the plasma forming gas is hydrogen.
  • An apparatus comprising, a DC plasma torch and an operating voltage power supply, wherein the power supply is at least two times the average operating voltage used, resulting in a more stable operation of the torch.
  • Additional embodiments include: the apparatus described above where the torch includes concentric cylinder electrodes; the apparatus described above where the power supply has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts; the apparatus described above where the power supply contains inductive filters distributed among positive and negative legs of a regulator to prevent conducted emissions caused by the plasma torch and/or igniter from feeding back into sensitive electronic components; the apparatus described above including filtering elements that causes sensitive electronic components to be exposed to 50% less energy in the form of voltage or current in an instantaneous or cumulative measurement; the apparatus described above where the power supply contains filtering elements at the output of a chopper regulator to shunt high frequency energy; the apparatus described above where the power supply contains chopper regulators in a parallel configuration to achieve redundancy; the apparatus described above where the power supply contains chopper regulators in a series-parallel configuration to allow the use of lower blocking voltages; and the apparatus described above where the electrodes comprise graphite.
  • FIG. 1 shows a schematic representation of typical torch as described herein.
  • FIG. 2 shows a schematic representation of typical system as described
  • a typical DC (direct current) power supply for a DC plasma arc torch will typically be sized such that its maximum voltage is on the order of 35% above the anticipated operating voltage of the torch.
  • the arc behavior can be erratic, for example, exhibited by large fluctuations in voltage to the arc, or even in the extinguishing of the arc.
  • a maximum power supply voltage that is on the order of two times greater than average operating voltage should be used. This will result in the reducing and minimizing the fluctuations in voltage to the arc and substantial elimination of the arc extinguishing.
  • a higher voltage pulse e.g., 20 kilovolts (kV)
  • kV kilovolts
  • an appropriate capacitive filter is also required to prevent damage to the sensitive electronic components that control the power electronic switching devices.
  • concentric cylinder graphite rods are used, without a power supply appropriately sized as described herein (e.g., larger than typically used with conventional DC plasma torches) the process would simply not be able to be run stably.
  • Operating the torch in a power regulating mode also helps to reduce voltage fluctuations.
  • most torches run in current regulated mode, where the power supply is given a current setpoint, and the power supply then adjusts its output voltage in order to keep the current at the setpoint, regardless of the load voltage.
  • Power regulated mode is where the power supply is given a power setpoint, and the power supply then adjust both the output voltage and the current in order to keep the output power at the setpoint.
  • Running in power regulated mode would substantially reduce the voltage fluctuations, but could lead to the arc extinguishing more often if the current and voltage drifted too far apart and the current gets too low. This can be overcome by operating with a threshold at which the power supply would switch back into current regulated mode in order to keep the arc alive, and then raising the current setpoint and switching back to power regulated mode once the current was high enough.
  • a threshold at which the power supply would switch back into current regulated mode in order to keep the arc alive and then raising the current setpoint and switching back to power regulated mode once the current was high enough.
  • FIG. 1 A typical torch useful with the present invention is shown schematically in FIG. 1 .
  • the concentric cathodes ( 10 ) and anodes ( 11 ) form the annulus through which conventional plasma forming gas can be supplied ( 12 ) between the electrodes ( 10 and 11 ).
  • FIG. 2 shows schematically the power supply ( 21 ) connected to a separate torch starter ( 22 ) and used to provide power to the DC plasma torch ( 23 ).
  • the power ranges used will vary depending on such things as the size of the reactor, the distance between the electrodes, etc. And while typical operating voltages can be in the 600-1000 volt range, this can also vary depending on such things as electrode gap, gas composition, pressures and/or flow rates used, etc.
  • Sensitive electronic components are protected through the use of filters as defined herein. Energy is typically shunted through the filter so that the sensitive electronic components are subjected a lower total voltage or current, or rate of change of voltage or current.
  • Appropriate filters include capacitors, LCL (inductive filter), or common mode filter or any other filter of the like.
  • Plasma Voltage the instantaneous voltage of the plasma-arc, which varies as a function of the plasma-arc instantaneous impedance and the instantaneous current output of the power supply
  • Filter an arrangement of inductors and/or capacitors that may include resistive components, used to shunt electrical energy away from or block electrical energy from affecting sensitive electronic components.
  • Sensitive Electronic Components any device that is integral to the electrical design of the power supply and its various subsystems that is susceptible to excessive voltage, current, and/or heat. This may include power electronic switching devices such as Insulated Gate Bipolar Transistors, Power Metal-Oxide-Semiconductor Field Effect Transistors, Integrated Gate Commutating Thyristors, Gate Turn-Off Thyristors, Silicon Controlled Rectifiers, etc.; the control circuits used to switch or “gate” the power electronic switching devices; transient voltage surge suppression devices; capacitors, inductors, and transformers.
  • power electronic switching devices such as Insulated Gate Bipolar Transistors, Power Metal-Oxide-Semiconductor Field Effect Transistors, Integrated Gate Commutating Thyristors, Gate Turn-Off Thyristors, Silicon Controlled Rectifiers, etc.
  • the control circuits used to switch or “gate” the power electronic switching devices transient voltage surge suppression devices; capacitors, inductors, and transformers.
  • Chopper Regulator alternate term for a buck regulator, including the traditional topology and all variations, wherein the input DC voltage to the converter is “chopped” using a PWM (pulse width modulation) controlled electronic switch to some lower output voltage.
  • PWM pulse width modulation
  • Snubber Circuit a protection circuit placed in parallel with a power electronic switching device, the purpose of which is to limit high rates of change of voltage across and/or current through the device.
  • Smoothing Reactor refers to either an inductor used as the storage element in a traditional buck/chopper regulator, or an inductor used to limit current ripple at the output of a DC-DC converter.
  • a DC concentric cylinder, graphite electrode, plasma torch is operated using an average operating voltage of 300-500 volts.
  • the power supply to operate the plasma torch has a voltage generating capability of at least two times the average operating voltage needed, i.e. 1000 volts. This results in a much more stable operation of the torch as described herein.
  • a separate starter power supply also has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts.
  • the starter power supply contains an appropriate amount of capacitive filtering to shunt unwanted energy away from sensitive electronic components.
  • a topology for implementing the system described in Example 1 is as follows.
  • a 6, 12, 18, or 24-pulse rectifier is used as the front end AC-DC converter.
  • This rectifier can be phase-controlled or naturally commutated, with a capacitive output filter, and with or without a commutating output choke.
  • Several chopper regulators composed of power electronic switching devices, snubber circuits, and gating control circuits are used to control the current applied to the load. These chopper regulators can be placed in a parallel configuration to add redundancy, or in a series-parallel configuration to also allow for the use of devices with lower blocking voltages.
  • Smoothing reactors are used as the main energy storage device in the current regulator, and are distributed among the positive and negative legs of the regulator to add additional protection for the sensitive power electronics.
  • Capacitors are used as filters on the output of the current regulator to absorb high frequency energy that may arise from the chaotic nature of the plasma torch load.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fluid Mechanics (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A method and apparatus for operating a DC plasma torch. The power supply used is at least two times the average operating voltage used, resulting in a more stable operation of the torch. The torch can include two concentric cylinder electrodes, the electrodes can be graphite, and the plasma forming gas can be hydrogen. The power supply provided also has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application No. 62/198,431, filed Jul. 29, 2015, which application is incorporated by reference herein in its entirety.
  • TECHNICAL FIELD
  • The field of art to which this invention generally pertains is methods and apparatus for making use of electrical energy to effect chemical changes.
  • BACKGROUND
  • No matter how unique the product or process is, over time, all manufacturing processes look for ways to become more efficient and more effective. This can take the form of raw material costs, energy costs, or simple improvements in process stability and efficiencies, among other things. In general, raw material costs and energy resources, which are a substantial part of the cost of most if not all manufacturing processes, tend to actually increase over time, because of scale up and increased volumes if for no other reasons. For these, and other reasons, there is a constant search in this area for ways to not only improve the processes and products being produced, but to produce them in more efficient and effective ways as well.
  • The systems described herein meet the challenges described above while accomplishing additional advances as well.
  • BRIEF SUMMARY
  • A method of operating a DC plasma arc torch is described using plasma forming gas and an operating voltage power supply, where the power supply is at least two times the average operating voltage used, resulting in more stable operation of the torch including reduced voltage fluctuations and substantially no extinguishing of the arc.
  • Additional embodiments include: the method described above where the torch is operated in a power regulating mode where the power supply is operated at a given power setpoint, and the power supply adjusts both the output voltage and the current in order to keep the output power at the setpoint; the method described above where the torch is operated with a current setpoint at which the power supply switches into current regulated mode to keep the arc from extinguishing, and then raises the current setpoint and switches back to power regulated mode once the current is high enough to keep the arc from extinguishing, resulting in substantial elimination of voltage fluctuations and substantial elimination of the arc extinguishing; the method described above where the torch includes concentric cylinder electrodes; the method described above where the power supply has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts; the method described above where the electrodes comprise graphite; the method described above where the plasma forming gas is hydrogen.
  • An apparatus is also described comprising, a DC plasma torch and an operating voltage power supply, wherein the power supply is at least two times the average operating voltage used, resulting in a more stable operation of the torch.
  • Additional embodiments include: the apparatus described above where the torch includes concentric cylinder electrodes; the apparatus described above where the power supply has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts; the apparatus described above where the power supply contains inductive filters distributed among positive and negative legs of a regulator to prevent conducted emissions caused by the plasma torch and/or igniter from feeding back into sensitive electronic components; the apparatus described above including filtering elements that causes sensitive electronic components to be exposed to 50% less energy in the form of voltage or current in an instantaneous or cumulative measurement; the apparatus described above where the power supply contains filtering elements at the output of a chopper regulator to shunt high frequency energy; the apparatus described above where the power supply contains chopper regulators in a parallel configuration to achieve redundancy; the apparatus described above where the power supply contains chopper regulators in a series-parallel configuration to allow the use of lower blocking voltages; and the apparatus described above where the electrodes comprise graphite.
  • These, and additional embodiments, will be apparent from the following descriptions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic representation of typical torch as described herein.
  • FIG. 2 shows a schematic representation of typical system as described
  • DETAILED DESCRIPTION
  • The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
  • The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.
  • Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
  • Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
  • A typical DC (direct current) power supply for a DC plasma arc torch will typically be sized such that its maximum voltage is on the order of 35% above the anticipated operating voltage of the torch. With a torch design that employs concentric cylinders as the electrodes (see, for example, U.S. Pat. Nos. 4,289,949 and 5,481,080, the disclosures of which are herein incorporated by reference), the arc behavior can be erratic, for example, exhibited by large fluctuations in voltage to the arc, or even in the extinguishing of the arc. In order to obtain stable operation of such torches, a maximum power supply voltage that is on the order of two times greater than average operating voltage should be used. This will result in the reducing and minimizing the fluctuations in voltage to the arc and substantial elimination of the arc extinguishing.
  • Additionally, for the same reasons, a higher voltage pulse (e.g., 20 kilovolts (kV)) is required to ignite the torch as opposed to more frequently used lesser voltages (e.g., 6 kV to 12 kV). Due to the higher voltage required, an appropriate capacitive filter is also required to prevent damage to the sensitive electronic components that control the power electronic switching devices. Furthermore, if concentric cylinder graphite rods are used, without a power supply appropriately sized as described herein (e.g., larger than typically used with conventional DC plasma torches) the process would simply not be able to be run stably.
  • Operating the torch in a power regulating mode also helps to reduce voltage fluctuations. Typically most torches run in current regulated mode, where the power supply is given a current setpoint, and the power supply then adjusts its output voltage in order to keep the current at the setpoint, regardless of the load voltage. Power regulated mode is where the power supply is given a power setpoint, and the power supply then adjust both the output voltage and the current in order to keep the output power at the setpoint.
  • Running in power regulated mode would substantially reduce the voltage fluctuations, but could lead to the arc extinguishing more often if the current and voltage drifted too far apart and the current gets too low. This can be overcome by operating with a threshold at which the power supply would switch back into current regulated mode in order to keep the arc alive, and then raising the current setpoint and switching back to power regulated mode once the current was high enough. By having a system where the power supply runs in power mode in default, but switches to current mode if the current drops too low, substantial elimination of voltage fluctuations and substantial elimination of the arc extinguishing is accomplished. In other words, not only can set voltage fluctuation standards be met, but the arc can be kept alive at the same time.
  • A typical torch useful with the present invention is shown schematically in FIG. 1. The concentric cathodes (10) and anodes (11) form the annulus through which conventional plasma forming gas can be supplied (12) between the electrodes (10 and 11). FIG. 2, shows schematically the power supply (21) connected to a separate torch starter (22) and used to provide power to the DC plasma torch (23).
  • The power ranges used will vary depending on such things as the size of the reactor, the distance between the electrodes, etc. And while typical operating voltages can be in the 600-1000 volt range, this can also vary depending on such things as electrode gap, gas composition, pressures and/or flow rates used, etc.
  • Sensitive electronic components are protected through the use of filters as defined herein. Energy is typically shunted through the filter so that the sensitive electronic components are subjected a lower total voltage or current, or rate of change of voltage or current. Appropriate filters include capacitors, LCL (inductive filter), or common mode filter or any other filter of the like.
  • Definitions
  • Plasma Voltage: the instantaneous voltage of the plasma-arc, which varies as a function of the plasma-arc instantaneous impedance and the instantaneous current output of the power supply
  • Operating Voltage: the ultimate output voltage capability of the power supply.
  • Filter: an arrangement of inductors and/or capacitors that may include resistive components, used to shunt electrical energy away from or block electrical energy from affecting sensitive electronic components.
  • Sensitive Electronic Components: any device that is integral to the electrical design of the power supply and its various subsystems that is susceptible to excessive voltage, current, and/or heat. This may include power electronic switching devices such as Insulated Gate Bipolar Transistors, Power Metal-Oxide-Semiconductor Field Effect Transistors, Integrated Gate Commutating Thyristors, Gate Turn-Off Thyristors, Silicon Controlled Rectifiers, etc.; the control circuits used to switch or “gate” the power electronic switching devices; transient voltage surge suppression devices; capacitors, inductors, and transformers.
  • Chopper Regulator: alternate term for a buck regulator, including the traditional topology and all variations, wherein the input DC voltage to the converter is “chopped” using a PWM (pulse width modulation) controlled electronic switch to some lower output voltage.
  • Snubber Circuit: a protection circuit placed in parallel with a power electronic switching device, the purpose of which is to limit high rates of change of voltage across and/or current through the device.
  • Smoothing Reactor: refers to either an inductor used as the storage element in a traditional buck/chopper regulator, or an inductor used to limit current ripple at the output of a DC-DC converter.
  • EXAMPLE 1
  • A DC concentric cylinder, graphite electrode, plasma torch is operated using an average operating voltage of 300-500 volts. The power supply to operate the plasma torch has a voltage generating capability of at least two times the average operating voltage needed, i.e. 1000 volts. This results in a much more stable operation of the torch as described herein. A separate starter power supply also has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts. The starter power supply contains an appropriate amount of capacitive filtering to shunt unwanted energy away from sensitive electronic components.
  • EXAMPLE 2
  • A topology for implementing the system described in Example 1 is as follows. A 6, 12, 18, or 24-pulse rectifier is used as the front end AC-DC converter. This rectifier can be phase-controlled or naturally commutated, with a capacitive output filter, and with or without a commutating output choke. Several chopper regulators composed of power electronic switching devices, snubber circuits, and gating control circuits are used to control the current applied to the load. These chopper regulators can be placed in a parallel configuration to add redundancy, or in a series-parallel configuration to also allow for the use of devices with lower blocking voltages. Smoothing reactors are used as the main energy storage device in the current regulator, and are distributed among the positive and negative legs of the regulator to add additional protection for the sensitive power electronics. Capacitors are used as filters on the output of the current regulator to absorb high frequency energy that may arise from the chaotic nature of the plasma torch load.
  • Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims (16)

What is claimed is:
1. A method of operating a DC plasma arc torch using plasma forming gas and an operating voltage power supply, wherein the power supply is at least two times the average operating voltage used, resulting in more stable operation of the torch including reduced voltage fluctuations and substantially no extinguishing of the arc.
2. The method of claim 1, wherein the torch is operated in a power regulating mode where the power supply is operated at a given power setpoint, and the power supply adjusts both the output voltage and the current in order to keep the output power at the setpoint.
3. The method of claim 2, wherein the torch is operated with a current setpoint at which the power supply switches into current regulated mode to keep the arc from extinguishing, and then raises the current setpoint and switches back to power regulated mode once the current is high enough to keep the arc from extinguishing, resulting in substantial elimination of voltage fluctuations and substantial elimination of the arc extinguishing.
4. The method of claim 1, wherein the torch includes concentric cylinder electrodes.
5. The method of claim 1, wherein the power supply has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts.
6. The method of claim 4, wherein the electrodes comprise graphite.
7. The method of claim 1, wherein the plasma forming gas is hydrogen.
8. An apparatus comprising, a DC plasma torch and an operating voltage power supply, wherein the power supply is at least two times the average operating voltage used, resulting in a more stable operation of the torch.
9. The apparatus of claim 8, wherein the torch includes concentric cylinder electrodes.
10. The apparatus of claim 8, wherein the power supply has the capability of igniting the torch at a pulse voltage of at least 20 kilovolts.
11. The apparatus of claim 8, wherein the power supply contains inductive filters distributed among positive and negative legs of a regulator to prevent conducted emissions caused by the plasma torch and/or ignitor from feeding back into sensitive electronic components.
12. The apparatus of claim 11, including filtering elements that causes sensitive electronic components to be exposed to 50% less energy in the form of voltage or current in an instantaneous or cumulative measurement.
13. The apparatus of claim 8, wherein the power supply contains filtering elements at the output of a chopper regulator to shunt high frequency energy.
14. The apparatus of claim 8, wherein the power supply contains chopper regulators in a parallel configuration to achieve redundancy.
15. The apparatus of claim 8, wherein the power supply contains chopper regulators in a series-parallel configuration to allow the use of lower blocking voltages.
16. The apparatus of claim 9, wherein the electrodes comprise graphite.
US15/221,088 2015-07-29 2016-07-27 Dc plasma torch electrical power design method and apparatus Abandoned US20170034898A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/221,088 US20170034898A1 (en) 2015-07-29 2016-07-27 Dc plasma torch electrical power design method and apparatus
US16/892,199 US11665808B2 (en) 2015-07-29 2020-06-03 DC plasma torch electrical power design method and apparatus
US18/137,918 US20230354501A1 (en) 2015-07-29 2023-04-21 Dc plasma torch electrical power design method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562198431P 2015-07-29 2015-07-29
US15/221,088 US20170034898A1 (en) 2015-07-29 2016-07-27 Dc plasma torch electrical power design method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/892,199 Continuation US11665808B2 (en) 2015-07-29 2020-06-03 DC plasma torch electrical power design method and apparatus

Publications (1)

Publication Number Publication Date
US20170034898A1 true US20170034898A1 (en) 2017-02-02

Family

ID=57885346

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/221,088 Abandoned US20170034898A1 (en) 2015-07-29 2016-07-27 Dc plasma torch electrical power design method and apparatus
US16/892,199 Active 2036-08-16 US11665808B2 (en) 2015-07-29 2020-06-03 DC plasma torch electrical power design method and apparatus
US18/137,918 Pending US20230354501A1 (en) 2015-07-29 2023-04-21 Dc plasma torch electrical power design method and apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/892,199 Active 2036-08-16 US11665808B2 (en) 2015-07-29 2020-06-03 DC plasma torch electrical power design method and apparatus
US18/137,918 Pending US20230354501A1 (en) 2015-07-29 2023-04-21 Dc plasma torch electrical power design method and apparatus

Country Status (5)

Country Link
US (3) US20170034898A1 (en)
CN (2) CN111601447A (en)
CA (1) CA3032246C (en)
MX (1) MX2018001259A (en)
WO (1) WO2017019683A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10618026B2 (en) 2015-02-03 2020-04-14 Monolith Materials, Inc. Regenerative cooling method and apparatus
US10808097B2 (en) 2015-09-14 2020-10-20 Monolith Materials, Inc. Carbon black from natural gas
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
US11304288B2 (en) 2014-01-31 2022-04-12 Monolith Materials, Inc. Plasma torch design
US11453784B2 (en) 2017-10-24 2022-09-27 Monolith Materials, Inc. Carbon particles having specific contents of polycylic aromatic hydrocarbon and benzo[a]pyrene
US11492496B2 (en) 2016-04-29 2022-11-08 Monolith Materials, Inc. Torch stinger method and apparatus
US11665808B2 (en) 2015-07-29 2023-05-30 Monolith Materials, Inc. DC plasma torch electrical power design method and apparatus
US11760884B2 (en) 2017-04-20 2023-09-19 Monolith Materials, Inc. Carbon particles having high purities and methods for making same
US11926743B2 (en) 2017-03-08 2024-03-12 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US11979974B1 (en) * 2020-06-04 2024-05-07 Inno-Hale Ltd System and method for plasma generation of nitric oxide
US11987712B2 (en) 2015-02-03 2024-05-21 Monolith Materials, Inc. Carbon black generating system
US12030776B2 (en) 2017-08-28 2024-07-09 Monolith Materials, Inc. Systems and methods for particle generation
US12119133B2 (en) 2015-09-09 2024-10-15 Monolith Materials, Inc. Circular few layer graphene

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637974A (en) * 1969-06-06 1972-01-25 Linde Ag Switching arrangement for the stabilization and ignition of welding arcs and the like
US3673375A (en) * 1971-07-26 1972-06-27 Technology Applic Services Cor Long arc column plasma generator and method
US4289949A (en) * 1977-12-06 1981-09-15 Sintef (Selskapet For Industriell Og Teknisk Forskning Ved Nth) Plasma burners
US4678888A (en) * 1983-01-21 1987-07-07 Plasma Energy Corporation Power circuit apparatus for starting and operating plasma arc
US4977305A (en) * 1989-04-03 1990-12-11 L-Tec Company System for low voltage plasma arc cutting
US5399957A (en) * 1990-05-15 1995-03-21 The University Of Sydney The Electricity Commission Of New South Wales DC switched arc torch power supply
US5717293A (en) * 1995-10-20 1998-02-10 Eni Technologies, Inc. Strike enhancement circuit for a plasma generator
US6380507B1 (en) * 2000-04-25 2002-04-30 Wayne F. Childs Apparatus for feeding waste matter into a plasma arc furnace to produce reusable materials
US6703580B2 (en) * 2000-04-11 2004-03-09 Giat Industries Plasma torch incorporating a reactive ignition tube and igniter squib integrating such a torch
US20090230098A1 (en) * 2008-03-14 2009-09-17 Illinois Tool Works Inc. Method for detecting current transfer in a plasma arc
US20110155703A1 (en) * 2009-12-30 2011-06-30 Itt Kaliburn Universal input power supply utilizing parallel power modules
US20120201266A1 (en) * 2009-03-24 2012-08-09 Tekna Plasma Systems Inc. Plasma reactor for the synthesis of nanopowders and materials processing
US8581147B2 (en) * 2005-03-24 2013-11-12 Lincoln Global, Inc. Three stage power source for electric ARC welding

Family Cites Families (365)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA830378A (en) 1969-12-23 E. Jordan Merrill Plasma process for upgrading carbon
US1339225A (en) 1918-04-25 1920-05-04 James R Rose Process of manufacturing gaseous fuel
US1597277A (en) 1922-11-10 1926-08-24 Jay J Jakowsky Process and apparatus for manufacture of carbon-black unsaturated gases and hydrogen
US1536612A (en) 1923-02-15 1925-05-05 Goodyear Tire & Rubber Method of producing carbon black
US2002003A (en) 1930-09-20 1935-05-21 Ig Farbenindustrie Ag Production of acetylene and carbon black
GB395893A (en) 1931-09-19 1933-07-27 Carlo Padovani Improved process for the simultaneous production, from methane, of hydrogen, lamp black and light, liquid hydrocarbons
US2062358A (en) 1932-09-21 1936-12-01 Standard Oil Dev Co Carbon black manufacture
US2039312A (en) 1935-03-15 1936-05-05 Joshua H Goldman Reenforced carded web
US2393106A (en) 1942-12-08 1946-01-15 Columbian Carbon Furnace
US2557143A (en) 1945-03-19 1951-06-19 Percy H Royster Process for producing carbon black
US2572851A (en) 1947-01-06 1951-10-30 James E Hughes Production of carbon by electrical discharge
US2603669A (en) 1948-10-26 1952-07-15 Union Carbide & Carbon Corp Large electrode with thermal stress relief
US2616842A (en) 1951-01-13 1952-11-04 Sheer Charles Arc process for the production of fume
US2897071A (en) 1953-06-30 1959-07-28 Ethyl Corp Gasoline fuels
US2785964A (en) 1953-08-17 1957-03-19 Phillips Petroleum Co Process, apparatus, and system for producing, agglomerating, and collecting carbon black
US2850403A (en) 1954-04-05 1958-09-02 Cabot Godfrey L Inc Carbon black pellets and a process for their manufacture
US2851403A (en) 1955-01-03 1958-09-09 Phillips Petroleum Co Multiple-level tcc catalyst stripping
US2951143A (en) 1958-09-25 1960-08-30 Union Carbide Corp Arc torch
FR1249094A (en) 1959-02-24 1960-12-23 Hawker Siddeley Nuclear Power Improvements relating to electric arc devices
US3009783A (en) 1959-12-04 1961-11-21 Sheer Korman Associates Production of carbon black
US3073769A (en) 1960-07-07 1963-01-15 Du Pont Process for making acetylene
US3127536A (en) 1960-12-23 1964-03-31 Union Carbide Corp Magnetically-stabilized low pressure arc apparatus and method of operation
GB987498A (en) 1961-02-14 1965-03-31 Ashland Oil Inc Preparation of carbon black
US3309780A (en) 1962-04-09 1967-03-21 Phillips Petroleum Co Process and apparatus for drying wet particulate solids
US3253890A (en) 1962-07-05 1966-05-31 Columbian Carbon Manufacture of carbon black
US3288696A (en) 1963-03-12 1966-11-29 Ashland Oil Inc Production of carbon black
US3342554A (en) 1963-06-20 1967-09-19 Cabot Corp Carbon black product and method of preparation thereof
US3331664A (en) 1964-03-02 1967-07-18 Cabot Corp Method for producing carbon black
US3409403A (en) 1964-10-05 1968-11-05 Phillips Petroleum Co Plasma preparation of carbon black
US3344051A (en) 1964-12-07 1967-09-26 Continental Carbon Co Method for the production of carbon black in a high intensity arc
US3307923A (en) 1964-12-09 1967-03-07 Continental Carbon Co Process and apparatus for making carbon black
US3453488A (en) 1965-05-20 1969-07-01 Xerox Corp Plasma arc electrodes
US3308164A (en) 1966-02-23 1967-03-07 Hooker Chemical Corp 1, 3, 5-tricyclohexylbenzene monohydroperoxide
US3408164A (en) 1966-07-08 1968-10-29 Phillips Petroleum Co Plasma treatment of carbon blacks
US3431074A (en) 1966-11-15 1969-03-04 Cabot Corp Process for the production of highly amorphous carbon black
US3420632A (en) 1966-11-18 1969-01-07 Phillips Petroleum Co Production of carbon black using plasma-heated nitrogen
US3464793A (en) 1966-12-27 1969-09-02 Cabot Corp Process for making carbon black from co
US3619140A (en) 1967-01-03 1971-11-09 Cabot Corp Process for making carbon black
JPS5021983B1 (en) 1967-03-24 1975-07-26
US3619138A (en) 1969-01-23 1971-11-09 Phillips Petroleum Co Carbon-black process
US3981659A (en) 1970-06-17 1976-09-21 Cities Service Company Apparatus for drying carbon black pellets
DE2122800A1 (en) 1970-08-03 1971-12-02 Cabot Corp., Boston, Mass. (V.St.A.) Process for the production of carbon black
US3725103A (en) 1971-03-10 1973-04-03 Cabot Corp Carbon black pigments
IL38825A (en) 1971-03-10 1975-02-10 Cabot Corp Carbon black pigments and rubber compositions
NL179488C (en) 1971-09-23 Degussa METHOD FOR PREPARING WET GRAINED SOOT.
US3933434A (en) 1972-07-13 1976-01-20 Edwin Matovich High temperature chemical reactor
GB1400266A (en) 1972-10-19 1975-07-16 G N I Energet I Im G M Krzhizh Method of producing carbon black by pyrolysis of hydrocarbon stock materials in plasma
US3981654A (en) 1973-03-06 1976-09-21 Owens-Corning Fiberglas Corporation Apparatus for producing fiber reinforced organic foam
JPS5441685B2 (en) * 1973-07-02 1979-12-10
US3922335A (en) 1974-02-25 1975-11-25 Cabot Corp Process for producing carbon black
US3998934A (en) 1974-07-03 1976-12-21 Phillips Petroleum Company Production of carbon black
US4035336A (en) 1974-08-08 1977-07-12 Cabot Corporation Carbon black pigments and rubber compositions containing the same
DE2451157C3 (en) 1974-10-28 1983-05-19 Aluminium Norf Gmbh, 4040 Neuss Process for cleaning exhaust air produced in large quantities during the operation of rolling stands
IN143377B (en) 1975-06-30 1977-11-12 Vnii Tekhn
US4199545A (en) 1975-08-20 1980-04-22 Thagard Technology Company Fluid-wall reactor for high temperature chemical reaction processes
US4088741A (en) 1976-03-03 1978-05-09 J. M. Huber Corporation Carbon black process
US4075160A (en) 1976-04-30 1978-02-21 Phillips Petroleum Company Non-carcinogenic carbon black
US4138471A (en) 1976-06-01 1979-02-06 J. M. Huber Corporation Process for reducing the polycyclic aromatic hydrocarbon content of carbon black
DE2827872C2 (en) 1978-06-24 1986-02-13 Degussa Ag, 6000 Frankfurt Process for the production of furnace black
US4404178A (en) 1978-08-03 1983-09-13 Phillips Petroleum Company Apparatus and method for producing carbon black
DE2846352A1 (en) 1978-10-25 1980-05-08 Hoechst Ag METHOD AND DEVICE FOR INCREASING THE GRADE GRADE OF RUSSIANS AND THE USE OF THESE RUSSIANS
US4317001A (en) 1979-02-23 1982-02-23 Pirelli Cable Corp. Irradiation cross-linked polymeric insulated electric cable
US4472172A (en) 1979-12-03 1984-09-18 Charles Sheer Arc gasification of coal
US4282199A (en) 1980-02-25 1981-08-04 J. M. Huber Corporation Carbon black process
US4372937A (en) 1980-04-18 1983-02-08 Phillips Petroleum Company Waste heat recovery
US4431624A (en) 1981-04-24 1984-02-14 Phillips Petroleum Company Feedstock nozzle and use in carbon black process
US4460558A (en) 1981-10-02 1984-07-17 Phillips Petroleum Company Recovery of carbon black
US4452771A (en) 1982-09-29 1984-06-05 The United States Of America As Represented By The United States Department Of Energy Carbon particles
US4597776A (en) 1982-10-01 1986-07-01 Rockwell International Corporation Hydropyrolysis process
JPS5987800A (en) 1982-11-12 1984-05-21 工業技術院長 Method and device for generating jit plasma
DD211457A3 (en) 1982-11-17 1984-07-11 Adw Ddr PREPARATION OF GRASS BY PYROLYSIS
NO162440C (en) 1983-03-15 1989-12-27 Skf Steel Eng Ab DEVICE FOR ELECTRIC HEATING OF GASES.
US4577461A (en) 1983-06-22 1986-03-25 Cann Gordon L Spacecraft optimized arc rocket
US4755371A (en) 1983-08-08 1988-07-05 Columbian Chemicals Company Method for producing carbon black
US4765964A (en) 1983-09-20 1988-08-23 Phillips Petroleum Company Carbon black reactor having a reactor throat
US4553981A (en) 1984-02-07 1985-11-19 Union Carbide Corporation Enhanced hydrogen recovery from effluent gas streams
US4689199A (en) * 1984-09-27 1987-08-25 Aluminum Company Of America Process for adding material to molten media
EP0209800A3 (en) 1985-07-16 1989-08-30 Bera Anstalt Process for preparing electrically conducting carbon black with a poor ash content
NO157876C (en) 1985-09-23 1988-06-01 Sintef METHOD AND APPARATUS FOR IMPLEMENTING HEAT TREATMENT.
US4766287A (en) 1987-03-06 1988-08-23 The Perkin-Elmer Corporation Inductively coupled plasma torch with adjustable sample injector
US5427762A (en) 1987-05-27 1995-06-27 Hydrocarb Corporation Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol
JPS6411074A (en) 1987-07-06 1989-01-13 Komatsu Mfg Co Ltd Plasma nozzle torch device
US4988493A (en) 1987-11-04 1991-01-29 Witco Corporation Process for producing improved carbon blacks
US4864096A (en) 1987-12-18 1989-09-05 Westinghouse Electric Corp. Transfer arc torch and reactor vessel
US4845334A (en) 1988-01-26 1989-07-04 Oregon Metallurgical Corporation Plasma furnace inert gas recycling system and process
US5138959A (en) 1988-09-15 1992-08-18 Prabhakar Kulkarni Method for treatment of hazardous waste in absence of oxygen
US5105123A (en) 1988-10-27 1992-04-14 Battelle Memorial Institute Hollow electrode plasma excitation source
US5602298A (en) 1989-04-04 1997-02-11 Advanced Waste Treatment Technology, Inc. Method and apparatus for converting organic material into hydrogen and carbon by photodecomposition
ZA908290B (en) 1989-10-20 1991-09-25 Hydrocarb Corp Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol
US5039312A (en) 1990-02-09 1991-08-13 The United States Of America As Represented By The Secretary Of The Interior Gas separation with rotating plasma arc reactor
US5046145A (en) 1990-04-20 1991-09-03 Hydro-Quebec Improved arc reactor with advanceable electrode
SE469754B (en) 1990-05-14 1993-09-06 Kanthal Ab OVEN BEFORE CRACKING THE PULP
US5045667A (en) 1990-06-06 1991-09-03 Rockwell International Corporation Manual keyhole plasma arc welding system
BR9106793A (en) 1990-08-29 1993-08-10 Cabot Corp BLACK SMOKE AND RUBBER COMPOSITION
US5147998A (en) 1991-05-29 1992-09-15 Noranda Inc. High enthalpy plasma torch
NO174180C (en) 1991-12-12 1994-03-23 Kvaerner Eng Burner insertion tubes for chemical processes
NO175718C (en) 1991-12-12 1994-11-23 Kvaerner Eng Process for cleavage of hydrocarbons and apparatus for use in the process
NO174450C (en) 1991-12-12 1994-05-04 Kvaerner Eng Plasma burner device for chemical processes
NO176300C (en) 1991-12-12 1995-03-08 Kvaerner Eng Plasma burner device for chemical processes
NO174471C (en) 1991-12-12 1994-05-11 Kvaerner Eng Method of preventing and removing fouling by pyrolytic cleavage of hydrocarbons
US5725616A (en) 1991-12-12 1998-03-10 Kvaerner Engineering A.S. Method for combustion of hydrocarbons
JPH05226096A (en) 1992-02-17 1993-09-03 Fujitsu Ltd Generation method of plasma torch and plasma jet
EP0629222B1 (en) 1992-03-05 1999-09-15 Cabot Corporation Process for producing carbon blacks and new carbon blacks
NO176522C (en) 1992-04-07 1995-04-19 Kvaerner Eng Process for the production of carbon with defined physical properties and apparatus for carrying out the process
NO176968C (en) 1992-04-07 1995-06-28 Kvaerner Eng Carbon production plant
NO175904C (en) 1992-04-07 1994-12-28 Kvaerner Eng Method of Reducing Electrode Consumption in Plasma Burners
NO176885C (en) 1992-04-07 1995-06-14 Kvaerner Eng Use of pure carbon in the form of carbon particles as anode material for aluminum production
US5222448A (en) 1992-04-13 1993-06-29 Columbia Ventures Corporation Plasma torch furnace processing of spent potliner from aluminum smelters
WO1993023331A1 (en) 1992-05-15 1993-11-25 Lane David R Iii Plasma method for the production of fullerenes
WO1994008747A1 (en) * 1992-10-13 1994-04-28 Advanced Welding Technologies, Inc. Drill pipe hardband removal and build up
US5352289A (en) 1992-12-18 1994-10-04 Cabot Corporation Low ash carbon blacks
NO176969C (en) 1992-12-23 1995-06-28 Kvaerner Eng Process for controlling the production of carbon and hydrogen by pyrolysis of hydrocarbons, and apparatus for use in the process
FR2701267B1 (en) 1993-02-05 1995-04-07 Schwob Yvan Process for the production of carbonaceous soot with defined microstructures.
JP2858198B2 (en) 1993-04-19 1999-02-17 三菱電線工業株式会社 Semiconductor manufacturing equipment seal
JP2526782B2 (en) 1993-05-14 1996-08-21 日本電気株式会社 Carbon fiber and its manufacturing method
US5476826A (en) 1993-08-02 1995-12-19 Gas Research Institute Process for producing carbon black having affixed nitrogen
GB9319470D0 (en) 1993-09-21 1993-11-03 Nat Grid Comp Plc Electrical changeover switching
JPH07307165A (en) 1994-05-11 1995-11-21 Sumitomo Chem Co Ltd Lithium secondary battery
US5673285A (en) * 1994-06-27 1997-09-30 Electro-Pyrolysis, Inc. Concentric electrode DC arc systems and their use in processing waste materials
US5611947A (en) 1994-09-07 1997-03-18 Alliant Techsystems, Inc. Induction steam plasma torch for generating a steam plasma for treating a feed slurry
US5951960A (en) 1994-11-07 1999-09-14 Kvaerner Engineering, As Electrode consumption in plasma torches
IL154538A (en) 1994-12-15 2009-12-24 Cabot Corp Reaction of carbon black with diazonium salts, resultant carbon black products and their uses
US5578647A (en) 1994-12-20 1996-11-26 Board Of Regents, The University Of Texas System Method of producing off-gas having a selected ratio of carbon monoxide to hydrogen
JP3419123B2 (en) 1994-12-27 2003-06-23 三菱化学株式会社 Carbon black for printing ink
US5749937A (en) 1995-03-14 1998-05-12 Lockheed Idaho Technologies Company Fast quench reactor and method
JPH08319552A (en) 1995-05-22 1996-12-03 Nagata Tekko Kk Plasma torch and plasma thermal spraying device
NO302242B1 (en) 1995-07-07 1998-02-09 Kvaerner Eng Process for achieving an increased arrangement of the nanostructure in a carbon material
US6495115B1 (en) 1995-09-12 2002-12-17 Omg Americas, Inc. Method to produce a transition metal carbide from a partially reduced transition metal compound
US6585949B1 (en) 1996-04-03 2003-07-01 Cabot Corporation Heat exchanger
JPH09316645A (en) 1996-05-27 1997-12-09 Komatsu Ltd Surface treating device and surface treating method using the device
AU4737997A (en) 1996-09-25 1998-04-17 Cabot Corporation Silica coated carbon blacks
WO1998033362A1 (en) 1997-01-29 1998-07-30 Tadahiro Ohmi Plasma device
US7462343B2 (en) 1997-03-25 2008-12-09 Kvafrner Technology And Research Ltd. Micro-domain graphitic materials and method for producing the same
NO313839B1 (en) 1997-03-25 2002-12-09 Kvaerner Technology & Res Ltd Carbon material comprising a mixture of graphitic microdomains, as well as microconical graphitic material
FR2764280B1 (en) 1997-06-06 1999-07-16 Yvan Alfred Schwob PROCESS FOR THE MANUFACTURE OF CARBON 60
CN1122085C (en) 1997-08-28 2003-09-24 三菱化学株式会社 Carbon black and process for producing the same
JPH11123562A (en) 1997-10-15 1999-05-11 Komatsu Ltd Outside cap for arc spot welding and welding torch using the same
DE19807224A1 (en) 1998-02-20 1999-08-26 Linde Ag Removal of impurities from carburation gas from hydrocarbon reformer, used for carbon monoxide conversion
US6188187B1 (en) * 1998-08-07 2001-02-13 Nidec America Corporation Apparatus and method of regulating the speed of a DC brushless motor
US6058133A (en) 1998-08-19 2000-05-02 Ucar Carbon Company Inc. Graphite electrodes incorporating stress-relieving slots
US6471937B1 (en) 1998-09-04 2002-10-29 Praxair Technology, Inc. Hot gas reactor and process for using same
NO311622B1 (en) 1998-09-25 2001-12-17 Kvaerner Technology & Res Ltd Use of carbon medium for hydrogen storage
US6277350B1 (en) 1998-11-04 2001-08-21 Sid Richardson Carbon, Ltd. Carbon black and rubber products and methods of forming such products
US6602920B2 (en) 1998-11-25 2003-08-05 The Texas A&M University System Method for converting natural gas to liquid hydrocarbons
WO2000032701A1 (en) 1998-12-04 2000-06-08 Cabot Corporation Process for production of carbon black
US6193811B1 (en) 1999-03-03 2001-02-27 Applied Materials, Inc. Method for improved chamber bake-out and cool-down
DE60015004T2 (en) 1999-03-29 2005-03-03 Denki Kagaku Kogyo K.K. Russ, its manufacture and uses
EP1088854A3 (en) 1999-10-01 2002-01-02 Bridgestone Corporation Modified carbon black, process for producing the modified carbon black, rubber composition and pneumatic tire
JP2001164053A (en) 1999-10-01 2001-06-19 Bridgestone Corp Modified carbon black, method for producing the carbon black, rubber composition and tire
JP2003514112A (en) 1999-11-04 2003-04-15 ヘガネス・コーポレーシヨン Improved metallurgical powder composition and method of making and using the same
WO2001046067A1 (en) 1999-12-21 2001-06-28 Bechtel Bwxt Idaho, Llc Hydrogen and elemental carbon production from natural gas and other hydrocarbons
US7022155B2 (en) * 2000-02-10 2006-04-04 Tetronics Limited Plasma arc reactor for the production of fine powders
JP2001253974A (en) 2000-03-09 2001-09-18 Bridgestone Corp Pneumatic tire for high-speed running and heavy-duty use
US6644011B2 (en) 2000-03-24 2003-11-11 Cheng Power Systems, Inc. Advanced Cheng Combined Cycle
US6441084B1 (en) 2000-04-11 2002-08-27 Equistar Chemicals, Lp Semi-conductive compositions for wire and cable
US6780388B2 (en) 2000-05-31 2004-08-24 Showa Denko K.K. Electrically conducting fine carbon composite powder, catalyst for polymer electrolyte fuel battery and fuel battery
TW518913B (en) 2000-07-03 2003-01-21 Asml Netherlands Bv Radiation source, lithographic apparatus, and semiconductor device manufacturing method
JP2004527727A (en) 2000-07-05 2004-09-09 シーアールティ ホールディングス、インク Electromagnetic radiation activated plasma reactor
ATE310054T1 (en) 2000-09-19 2005-12-15 DEVICE AND METHOD FOR CONVERTING A CARBON-CONTAINING RAW MATERIAL INTO CARBON HAVING A DEFINED STRUCTURE
JP4129970B2 (en) 2000-10-17 2008-08-06 東海カーボン株式会社 Manufacturing method of high structure carbon black
FR2815888B1 (en) 2000-10-27 2003-05-30 Air Liquide PLASMA GAS TREATMENT DEVICE
WO2002048041A1 (en) 2000-12-15 2002-06-20 Federal Recycling Technologies, Inc. Apparatus and method for recovering carbon black from pyrolysis byproducts
ITRM20010001A1 (en) * 2001-01-03 2002-07-03 Micron Technology Inc LOW VOLTAGE FLASH MEMORY DETECTION CIRCUIT.
US20020141476A1 (en) 2001-03-28 2002-10-03 William Varela Electrode joint
US6442950B1 (en) 2001-05-23 2002-09-03 Macronix International Co., Ltd. Cooling system of chamber with removable liner
CA2353752A1 (en) 2001-07-25 2003-01-25 Precisionh2 Inc. Production of hydrogen and carbon from natural gas or methane using barrier discharge non-thermal plasma
WO2003014018A1 (en) 2001-08-06 2003-02-20 Osaka Gas Company Limited Carbon material, gas occluding material comprising said carbon material and method for storing gas using said gas occluding material
US7033551B2 (en) 2002-01-23 2006-04-25 Battelle Energy Alliance, Llc Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids
US6955707B2 (en) 2002-06-10 2005-10-18 The Boc Group, Inc. Method of recycling fluorine using an adsorption purification process
US7167240B2 (en) 2002-07-19 2007-01-23 Columbian Chemicals Company Carbon black sampling for particle surface area measurement using laser-induced incandescence and reactor process control based thereon
CN1398780A (en) 2002-08-06 2003-02-26 中国科学院山西煤炭化学研究所 Hydrocarbon cracking process and apparatus for producing carbon black and hydrogen
US20040071626A1 (en) 2002-10-09 2004-04-15 Smith Thomas Dale Reactor and method to produce a wide range of carbon blacks
CN100450603C (en) 2002-10-25 2009-01-14 柏克德Bwxt爱达荷有限责任公司 Device and method for heat synthesis
US20040081862A1 (en) * 2002-10-28 2004-04-29 Herman Gregory S. Fuel cells using plasma
CN100473601C (en) 2003-01-23 2009-04-01 佳能株式会社 Method for producing nano-carbon materials
US7360309B2 (en) 2003-01-28 2008-04-22 Advanced Ceramics Research, Inc. Method of manufacturing microchannel heat exchangers
JP3997930B2 (en) 2003-02-27 2007-10-24 富士ゼロックス株式会社 Carbon nanotube manufacturing apparatus and manufacturing method
FR2852541B1 (en) 2003-03-18 2005-12-16 Air Liquide PROCESS FOR PLASMA CUTTING WITH DOUBLE GAS FLOW
DE10312494A1 (en) 2003-03-20 2004-10-07 Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) Carbon nanostructures and methods of making nanotubes, nanofibers, and carbon-based nanostructures
JP2004300334A (en) 2003-03-31 2004-10-28 Osaka Gas Co Ltd Method for producing carbon black
DE10318527A1 (en) 2003-04-24 2004-11-18 Degussa Ag Process for the production of furnace carbon black
KR100545897B1 (en) 2003-04-29 2006-01-24 한국기계연구원 Ultrafine TiC- Transition Metal Composite Powder Manufacturing Method
US7056487B2 (en) 2003-06-06 2006-06-06 Siemens Power Generation, Inc. Gas cleaning system and method
US7279655B2 (en) 2003-06-11 2007-10-09 Plasmet Corporation Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production
JP4746986B2 (en) 2003-06-20 2011-08-10 日本碍子株式会社 Plasma generating electrode, plasma generating apparatus, and exhaust gas purification apparatus
US7294314B2 (en) 2003-09-08 2007-11-13 Graham Robert G Heat exchangers with novel ball joints and assemblies and processes using such heat exchangers
US20050063892A1 (en) 2003-09-18 2005-03-24 Deepak Tandon Thermally modified carbon blacks for various type applications and a process for producing same
US7534276B2 (en) 2003-11-18 2009-05-19 National Institute For Strategic Technology Acquisition And Commercialization In-situ gasification of soot contained in exothermically generated syngas stream
US20050123468A1 (en) 2003-12-04 2005-06-09 Mishra Ghanashyam S. Reactor for producing low surface area high/low structure carbon black and simultaneously minimizing the formation of Grit
JP2005235709A (en) 2004-02-23 2005-09-02 Nippon Steel Corp Structure of plasma torch
JP4518241B2 (en) 2004-02-26 2010-08-04 東海カーボン株式会社 Negative electrode material for lithium secondary battery and method for producing the same
US20050230240A1 (en) 2004-03-09 2005-10-20 Roman Dubrovsky Method and apparatus for carbon allotropes synthesis
KR100545992B1 (en) 2004-03-10 2006-01-25 (주)퓨얼셀 파워 Separator and manufacturing method for fuel cell, and fuel cell stack comprising such separator
JP5377850B2 (en) 2004-03-15 2013-12-25 キャボット コーポレイション Modified carbon products and uses thereof
US7847009B2 (en) 2004-05-13 2010-12-07 Columbian Chemicals Company Carbonaceous material with dissociated aggregate size and particle size distribution and improved dispersibility
US7434547B2 (en) 2004-06-11 2008-10-14 Nuvera Fuel Cells, Inc. Fuel fired hydrogen generator
US20070293405A1 (en) 2004-07-31 2007-12-20 Zhiqiang Zhang Use of nanomaterials as effective viscosity modifiers in lubricating fluids
US20060034748A1 (en) 2004-08-11 2006-02-16 Lewis David R Device for providing improved combustion in a carbon black reactor
EP1632467A1 (en) 2004-09-06 2006-03-08 Research Institute of Petroleum Industry Improved catalyst for direct conversion of methane to ethane and ethylene
US20060068987A1 (en) 2004-09-24 2006-03-30 Srinivas Bollepalli Carbon supported catalyst having reduced water retention
KR100730119B1 (en) 2004-11-02 2007-06-19 삼성에스디아이 주식회사 Carbon nanosphere having one or more open portion, method for preparing the same, carbon nanosphere impregnated catalyst using the carbon nanosphere and fuel cell adopting the catalyst
GB2419883A (en) 2004-11-03 2006-05-10 Carbon Cones As Matrix containing carbon cones or disks
CN1262624C (en) 2004-12-16 2006-07-05 太原理工大学 Combined process for dry distillation of coal and production of carbon black by plasma cracking
DE102004062687A1 (en) 2004-12-21 2006-06-29 Uhde Gmbh Process for generating hydrogen and energy from synthesis gas
JP2006236867A (en) 2005-02-25 2006-09-07 Ngk Insulators Ltd Plasma treatment member
US7666383B2 (en) 2005-04-06 2010-02-23 Cabot Corporation Method to produce hydrogen or synthesis gas and carbon black
JP4620515B2 (en) 2005-04-11 2011-01-26 ルネサスエレクトロニクス株式会社 Interposer, semiconductor device using the same, and method for manufacturing semiconductor device
DE102005019301A1 (en) 2005-04-26 2006-11-02 Timcal Sa Processing of carbon-containing hydrogenated residue obtained during production of fullerene and carbon nanostructures, comprises functionalizing the residue by introducing chemical substituents during or following the production
NO326571B1 (en) 2005-06-16 2009-01-12 Sinvent As Process and reactor for producing carbon nanotubes
GB2423079B (en) 2005-06-29 2008-11-12 Tetronics Ltd Waste treatment process and apparatus
EP1919665A1 (en) 2005-07-22 2008-05-14 TDY Industries, Inc. Composite materials
WO2007016418A2 (en) 2005-07-29 2007-02-08 The Regents Of The University Of California A method for online measurement of ultrafine aggregate surface area and volume distributions
CA2516499A1 (en) 2005-08-19 2007-02-19 Atlantic Hydrogen Inc. Decomposition of natural gas or methane using cold arc discharge
FR2891434A1 (en) 2005-09-23 2007-03-30 Renault Sas Slipping plasma arc generator comprises a reactor internally delimits a closed enclosure having reactive gas and two removable electrodes that are connected to a source of voltage to start and maintain the reactive gas discharge
JP5057261B2 (en) 2005-10-25 2012-10-24 東海カーボン株式会社 Carbon black aqueous dispersion and method for producing the same
US7563525B2 (en) 2006-02-15 2009-07-21 Egt Enterprises, Inc. Electric reaction technology for fuels processing
KR20080108605A (en) 2006-04-05 2008-12-15 우드랜드 바이오퓨엘스 인크. System and method for converting biomass to ethanol via syngas
US7588746B1 (en) 2006-05-10 2009-09-15 University Of Central Florida Research Foundation, Inc. Process and apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons
KR100914354B1 (en) 2006-06-05 2009-08-28 어플라이드 머티어리얼스, 인코포레이티드 Elimination of first wafer effect for pecvd films
US20080233402A1 (en) 2006-06-08 2008-09-25 Sid Richardson Carbon & Gasoline Co. Carbon black with attached carbon nanotubes and method of manufacture
US7623340B1 (en) 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
CA2668893C (en) 2006-11-07 2016-02-02 Cabot Corporation Carbon blacks having low pah amounts and methods of making same
US7671294B2 (en) 2006-11-28 2010-03-02 Vladimir Belashchenko Plasma apparatus and system
US20090014423A1 (en) 2007-07-10 2009-01-15 Xuegeng Li Concentric flow-through plasma reactor and methods therefor
EP2097195A2 (en) * 2006-12-21 2009-09-09 Innovalight, Inc. Group iv nanoparticles and films thereof
US20080182298A1 (en) 2007-01-26 2008-07-31 Andrew Eric Day Method And System For The Transformation Of Molecules,To Transform Waste Into Useful Substances And Energy
US20080169183A1 (en) 2007-01-16 2008-07-17 Varian Semiconductor Equipment Associates, Inc. Plasma Source with Liner for Reducing Metal Contamination
WO2008104058A1 (en) 2007-02-27 2008-09-04 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
BRPI0810844B1 (en) 2007-04-24 2017-12-12 Cabot Corporation BLACK MATRIX AND CURED COATING COMPOSITION
WO2008147711A1 (en) 2007-05-17 2008-12-04 Riverside Technologies, Inc. Pelletization of pyrolyzed rubber products
US8911596B2 (en) 2007-05-18 2014-12-16 Hope Cell Technologies Pty Ltd Method and apparatus for plasma decomposition of methane and other hydrocarbons
KR20080105344A (en) 2007-05-30 2008-12-04 주식회사 에이피시스 Apparatus for manufacturing hydrogen and carbon black using plasma
US8471170B2 (en) 2007-07-10 2013-06-25 Innovalight, Inc. Methods and apparatus for the production of group IV nanoparticles in a flow-through plasma reactor
WO2009017859A2 (en) 2007-08-02 2009-02-05 The Texas A & M University System Dispersion, alignment and deposition of nanotubes
CN201087175Y (en) 2007-08-27 2008-07-16 江苏九鼎新材料股份有限公司 Molybdenum-saving combined electrode
US8323363B2 (en) 2007-08-30 2012-12-04 Innovative Energy Solution Reformation of hydrogen-containing fluids in a cyclic flow reactor
US20090090282A1 (en) 2007-10-09 2009-04-09 Harris Gold Waste energy conversion system
US9445488B2 (en) 2007-10-16 2016-09-13 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
DE102007060307A1 (en) 2007-12-12 2009-06-18 Evonik Degussa Gmbh Process for the aftertreatment of carbon black
US7777151B2 (en) 2008-02-14 2010-08-17 Adventix Technologies Inc. Portable plasma sterilizer
CA2621749A1 (en) 2008-02-19 2009-08-19 Atlantic Hydrogen Inc. Decomposition of natural gas or methane using cold arc discharge
KR20180000343A (en) 2008-02-19 2018-01-02 캐보트 코포레이션 Mesoporous carbon black and processes for making same
WO2009106507A2 (en) 2008-02-28 2009-09-03 Basf Se Graphite nanoplatelets and compositions
WO2009143576A1 (en) 2008-05-27 2009-12-03 Adelaide Research & Innovation Pty Ltd Polymorphisms associated with pregnancy complications
CA2767030A1 (en) 2008-07-01 2010-01-07 James Charles Juranitch Recycling and reburning carbon dioxide in an energy efficient way
US20100055017A1 (en) 2008-09-03 2010-03-04 Ppg Industries Ohio, Inc. Methods for the production of ultrafine metal carbide particles and hydrogen
CN101368010B (en) 2008-09-25 2011-01-26 曲靖众一精细化工股份有限公司 Method for producing semi-reinforcing hydrocarbon black, methanol, liquid ammonia with coke oven gas
CA2739381A1 (en) 2008-10-03 2010-04-08 Atlantic Hydrogen Inc. Apparatus and method for effecting plasma-based reactions
FR2937029A1 (en) 2008-10-09 2010-04-16 Renault Sas Device for generating hydrogen by fuel reforming using electric discharge generating plasma, comprises first cylindrical element within which reactive mixture flows, second element forming electrode tip, and continuous current generator
PL2350209T3 (en) 2008-10-10 2017-05-31 Imerys Graphite & Carbon Switzerland S.A. Carbon particles coated with polymer films, methods for their production and uses thereof
ES2745629T5 (en) 2008-10-16 2024-02-20 Orion Eng Carbons Gmbh Carbon black, procedure for its manufacture and use
DE102008043606A1 (en) 2008-11-10 2010-05-12 Evonik Degussa Gmbh Energy-efficient plant for the production of carbon black, preferably as an energetic composite with plants for the production of silicon dioxide and / or silicon
US20110293501A1 (en) 2008-11-19 2011-12-01 James Charles Juranitch Large scale green manufacturing of ammonia using plasma
CN101784154B (en) 2009-01-19 2012-10-03 烟台龙源电力技术股份有限公司 Arc plasma generator and anode thereof
US20100215960A1 (en) 2009-02-24 2010-08-26 Toyota Motor Engineering & Manufacturing North America, Inc. Hollow carbon spheres
US7959890B2 (en) 2009-03-24 2011-06-14 Ripp Resource Recovery Corporation Method of reclaiming carbonaceous materials from scrap tires and products derived therefrom
CA2766990A1 (en) 2009-07-01 2011-01-06 James Charles Juranitch High energy power plant fuel, and co or co2 sequestering process
RU2425795C2 (en) 2009-08-31 2011-08-10 Общество с ограниченной ответственностью "Наноматериалы" Apparatus for producing hydrogen and carbon nanomaterials and structures produced from hydrocarbon gas, including associated pertroleum gas
US20110071962A1 (en) 2009-09-18 2011-03-24 Nicholas Lim Method and system of using network graph properties to predict vertex behavior
US8195339B2 (en) 2009-09-24 2012-06-05 General Electric Company System and method for scheduling startup of a combined cycle power generation system
DE102009045060A1 (en) 2009-09-28 2011-03-31 Evonik Degussa Gmbh Carbon black, a process for its preparation and its use
IT1396193B1 (en) 2009-10-07 2012-11-16 Polimeri Europa Spa EXPANDABLE THERMOPLASTIC NANOCOMPOSITE POLYMER COMPOSITIONS WITH IMPROVED THERMAL INSULATION CAPACITY.
CN105070518B (en) 2009-11-02 2018-05-29 卡博特公司 For the high surface area low structure carbon black of stored energy application
US8850826B2 (en) 2009-11-20 2014-10-07 Egt Enterprises, Inc. Carbon capture with power generation
CN101734620B (en) 2009-12-15 2011-10-05 太原理工大学 Method for producing hydrogen gas by methane-rich plasma
US20110138766A1 (en) 2009-12-15 2011-06-16 General Electric Company System and method of improving emission performance of a gas turbine
US8790618B2 (en) 2009-12-17 2014-07-29 Dcns Sa Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same
RU2530110C2 (en) 2010-01-29 2014-10-10 Эвоэнерджи, Ллс Plasma reactor for conversion of gas to liquid fuel
EP2531564B1 (en) 2010-02-03 2015-12-16 Aditya Birla Science And Technology Company Limited A process for the preparation of carbon black pellets
PL222582B1 (en) 2010-02-19 2016-08-31 Cabot Corp Method for producing carbon black by using the preheated feed and installation used thereof
US20130062195A1 (en) 2010-04-25 2013-03-14 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Process for preparation of carbon nanotubes from vein graphite
KR101020925B1 (en) 2010-05-17 2011-03-09 주식회사 이온팜스 Production-apparatus of ion water
FR2962608B1 (en) * 2010-07-07 2012-08-10 Toulouse Inst Nat Polytech NEW REDUNDANCY STRUCTURES FOR STATIC CONVERTERS
CA2804389C (en) 2010-07-09 2017-01-17 Eco Technol Pty Ltd Syngas production through the use of membrane technologies
TWI502617B (en) 2010-07-21 2015-10-01 應用材料股份有限公司 Method,plasma processing apparatus ,and liner assembly for tuning electrical skews
WO2012015313A1 (en) 2010-07-26 2012-02-02 Agroplas As Soil conditioner, system and method for the manufacturing of a soil conditioner
WO2012067546A2 (en) 2010-11-19 2012-05-24 Zakrytoe Aktsionernoe Obshchestvo "Npo "Nanotekh-Severo-Zapad" Device for producing of fullerene-containing soot
CN102108216A (en) 2010-12-03 2011-06-29 苏州纳康纳米材料有限公司 Method for preparing conductive carbon black and hydrogen by plasma technology
GB201105962D0 (en) 2011-04-07 2011-05-18 Advanced Plasma Power Ltd Gas stream production
US20120177531A1 (en) 2011-01-12 2012-07-12 Taiwan Powder Technologies Co., Ltd. Steel powder composition and sintered body thereof
WO2012094743A1 (en) 2011-01-14 2012-07-19 Atlantic Hydrogen Inc. Plasma reactor and method of operation thereof
FI20115147L (en) 2011-02-16 2012-08-17 Upm Kymmene Corp Process and apparatus for producing black color pigment
RU2488984C2 (en) 2011-02-22 2013-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Бурятский государственный университет" Method for obtaining carbon nanomaterials by means of energy of low-temperature plasma, and plant for its implementation
JP5226096B2 (en) 2011-03-10 2013-07-03 東芝テック株式会社 Cart and cart system
JP5672451B2 (en) 2011-03-10 2015-02-18 東海カーボン株式会社 Method for producing surface-treated carbon black particle aqueous dispersion and surface-treated carbon black particle aqueous dispersion
GB201106314D0 (en) * 2011-04-14 2011-06-01 Edwards Ltd Plasma torch
WO2012149170A1 (en) 2011-04-26 2012-11-01 Atlantic Hydrogen Inc. Method for producing carbon black and generating energy
CN103596878A (en) 2011-05-23 2014-02-19 纳诺赛尔股份有限公司 Installation and method for the functionalization of particulate and powdered products
US9761903B2 (en) 2011-09-30 2017-09-12 Ppg Industries Ohio, Inc. Lithium ion battery electrodes including graphenic carbon particles
US8486363B2 (en) 2011-09-30 2013-07-16 Ppg Industries Ohio, Inc. Production of graphenic carbon particles utilizing hydrocarbon precursor materials
MX358123B (en) 2011-10-24 2018-08-06 Aditya Birla Nuvo Ltd An improved process for the production of carbon black.
CN102350506A (en) 2011-10-31 2012-02-15 西南石油大学 Preparation method of nano-structure WC-Co composite powder
WO2013084506A1 (en) 2011-12-09 2013-06-13 昭和電工株式会社 Composite graphite particles and use of same
ES2946495T3 (en) 2011-12-12 2023-07-19 Circtec Knowledge Ltd Use of carbon black to produce compounds of defined volume resistivity
RU2495066C2 (en) 2011-12-13 2013-10-10 Закрытое Акционерное Общество "Научно-Производственное Объединение Инноватех" Method of producing soot from rubber wastes
SE537215C2 (en) 2012-02-13 2015-03-03 Aktiebolaget Ka Ekstroems & Son Heat exchanger adapted for the production of carbon black
WO2013134093A1 (en) 2012-03-09 2013-09-12 EVOenergy, LLC Plasma chemical device for conversion of hydrocarbon gases to liquid fuel
US9150739B2 (en) 2012-03-28 2015-10-06 Cabot Corporation Oxidized carbon blacks treated with polyetheramines and coating compositions comprising same
US9410042B2 (en) 2012-03-30 2016-08-09 Aditya Birla Science And Technology Company Ltd. Process for obtaining carbon black powder with reduced sulfur content
KR101249457B1 (en) 2012-05-07 2013-04-03 지에스플라텍 주식회사 Plasma torch of non-transferred and hollow type
CN202610344U (en) 2012-05-28 2012-12-19 毕和清 Low-voltage electrode for electrometallurgy and electrochemistry
SG195420A1 (en) 2012-06-07 2013-12-30 Ael Enviro Asia Pte Ltd High energy gas flow tyre pyrolysis using rf inductive plasma in combination with lf induction heating.
WO2013185219A1 (en) 2012-06-14 2013-12-19 Atlantic Hydrogen Inc. Processes for producing carbon black
US9005359B2 (en) 2012-06-21 2015-04-14 Sid Richardson Carbon, Ltd. Polysulfide treatment of carbon black filler and elastomeric compositions with polysulfide treated carbon black
EP2867164A4 (en) 2012-06-28 2016-03-30 Univ Mcgill Fabrication and functionalization of a pure non-noble metal catalyst structure showing time stability for large scale applications
FR2993261B1 (en) 2012-07-13 2019-06-21 Cabot Corporation HIGHLY STRUCTURED CARBON BLACK
WO2014012169A1 (en) 2012-07-18 2014-01-23 Atlantic Hydrogen Inc. Electromagnetic energy-initiated plasma reactor systems and methods
US9160240B2 (en) * 2012-09-05 2015-10-13 Kyosan Electric Mfg. Co., Ltd. DC power supply device, and control method for DC power supply device
US9522438B2 (en) * 2012-11-09 2016-12-20 Hypertherm, Inc. Battery-controlled plasma arc torch system
EP2924784B1 (en) 2012-11-20 2019-01-09 Showa Denko K.K. Method for producing negative electrode material for lithium ion batteries
US9434612B2 (en) 2012-11-30 2016-09-06 Elwha, Llc Systems and methods for producing hydrogen gas
CN102993788A (en) 2012-12-10 2013-03-27 张邦稳 Device and method for producing high-purity carbon black by adopting plasmas
KR101444831B1 (en) 2012-12-11 2014-10-14 국방과학연구소 Disk-type Mesoporous Carbon as Host for Nano High Energetic Materials, and Manufacturing method thereof
US20140166496A1 (en) 2012-12-14 2014-06-19 Chung-Shan Institute Of Science And Technology Method for producing shaped graphene sheets
US9206360B2 (en) 2013-02-12 2015-12-08 Solena Fuels Corporation Producing liquid fuel from organic material such as biomass and waste residues
US9315735B2 (en) 2013-03-15 2016-04-19 Renewable Opportunities Inc. System and method for producing a consistent quality syngas from diverse waste materials with heat recovery based power generation, and renewable hydrogen co-production
EP2969180A4 (en) 2013-03-15 2016-10-05 Transtar Group Ltd Distillation reactor module
PL244981B1 (en) 2013-03-15 2024-04-15 Cabot Corp Method for producing carbon black using the filler liquid
CN203269847U (en) 2013-03-28 2013-11-06 无锡双诚炭黑有限公司 Carbon black reaction furnace
CN103160149A (en) 2013-03-28 2013-06-19 无锡双诚炭黑有限公司 Carbon black reaction furnace and carbon black production method
KR102156795B1 (en) 2013-05-15 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Deposition apparatus
US20140357092A1 (en) 2013-06-04 2014-12-04 Lam Research Corporation Chamber wall of a plasma processing apparatus including a flowing protective liquid layer
CN105308775B (en) 2013-06-21 2018-11-06 卡博特公司 Conductive carbon for lithium-ions battery
CN203415580U (en) 2013-08-06 2014-01-29 安徽省祁门县黄山电器有限责任公司 Electrode structure of power semiconductor chip
WO2015026945A1 (en) 2013-08-20 2015-02-26 H Quest Partners, LP Method for processing hydrocarbon fuels using microwave energy
EP3052851B9 (en) 2013-10-04 2017-11-22 Orion Engineered Carbons GmbH Micro-domain carbon material for thermal insulation
DE102013016660A1 (en) 2013-10-09 2015-04-09 Ralf Spitzl Process and apparatus for the plasma-catalytic conversion of substances
CN105764842B (en) 2013-12-02 2018-06-05 普莱克斯技术有限公司 Use the method and system of the production hydrogen of the reforming system based on oxygen transport film with two process transform
DE102013020375A1 (en) 2013-12-06 2015-06-11 CCP Technology GmbH PLASMA REACTOR FOR COLLIDING A HYDROCARBON FLUID
NL2011973C2 (en) 2013-12-17 2015-06-18 Black Bear Carbon B V Paint comprising carbon black.
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US20150211378A1 (en) 2014-01-30 2015-07-30 Boxer Industries, Inc. Integration of plasma and hydrogen process with combined cycle power plant, simple cycle power plant and steam reformers
CN105940774A (en) 2014-01-31 2016-09-14 巨石材料公司 Plasma torch design
CA2878816C (en) 2014-01-31 2020-11-03 Veyance Technologies, Inc. Conveyor belt
US9574086B2 (en) 2014-01-31 2017-02-21 Monolith Materials, Inc. Plasma reactor
WO2015134647A1 (en) 2014-03-05 2015-09-11 Penn Color, Inc. Thermally-conductive salt-containing particles of carbon black and metal
US20150307351A1 (en) 2014-04-22 2015-10-29 Rachid Mabrouk Tail gas processing for liquid hydrocarbons synthesis
WO2016012367A1 (en) 2014-07-22 2016-01-28 Basf Se Modification of carbon particles
ES2811121T3 (en) 2014-07-22 2021-03-10 Ppg Ind Ohio Inc Co-dispersions of graphene carbon particles and methods of their preparation
CN204301483U (en) 2014-12-01 2015-04-29 咸阳华光窑炉设备有限公司 Continous way superhigh temperature graphite thermal process vacuum atmosphere kiln
US9229396B1 (en) 2014-12-02 2016-01-05 Xerox Corporation Fuser member
EP3253904B1 (en) 2015-02-03 2020-07-01 Monolith Materials, Inc. Regenerative cooling method and apparatus
MX2017009981A (en) 2015-02-03 2018-01-25 Monolith Mat Inc Carbon black generating system.
MX2017009983A (en) 2015-02-03 2018-03-07 Monolith Mat Inc Carbon black combustable gas separation.
CN111601447A (en) 2015-07-29 2020-08-28 巨石材料公司 DC plasma torch power design method and apparatus
WO2017027385A1 (en) 2015-08-07 2017-02-16 Monolith Materials, Inc. Method of making carbon black
CA3210178A1 (en) 2015-08-24 2017-03-02 Monolith Materials, Inc. High temperature heat integration method of making carbon black
CN108290738A (en) 2015-09-09 2018-07-17 巨石材料公司 Circular multilayer graphene
KR102385213B1 (en) 2015-09-14 2022-04-08 모놀리스 머티어리얼스 인코포레이티드 Carbon Black Made from Natural Gas
DE102016201801A1 (en) 2015-11-21 2017-05-24 Suncoal Industries Gmbh Particulate carbon material producible from renewable raw materials and process for its preparation
CN205472672U (en) 2015-12-30 2016-08-17 株洲弗拉德科技有限公司 Continuous high temperature heat treatment production line of powdered graphite
US11492496B2 (en) 2016-04-29 2022-11-08 Monolith Materials, Inc. Torch stinger method and apparatus
WO2017190045A1 (en) 2016-04-29 2017-11-02 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
EP3592810A4 (en) 2017-03-08 2021-01-27 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
JP2020517562A (en) 2017-04-20 2020-06-18 モノリス マテリアルズ インコーポレイテッド Particle system and method
CN110785880B (en) 2017-06-15 2023-05-02 卡博特公司 Electrode containing carbon black particles and related methods
CN111278767A (en) 2017-08-28 2020-06-12 巨石材料公司 System and method for particle generation
CA3074216A1 (en) 2017-08-28 2019-03-07 Monolith Materials, Inc. Particle systems and methods
CA3074223A1 (en) 2017-08-28 2019-03-07 Monolith Materials, Inc. Conductive additives and uses thereof
CA3116989C (en) 2017-10-24 2024-04-02 Monolith Materials, Inc. Particle systems and methods
EP3774020A4 (en) 2018-04-03 2022-01-19 Monolith Materials, Inc. Systems and methods for processing
MX2023003960A (en) 2020-10-05 2023-06-19 Monolith Mat Inc Systems and methods for processing.

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637974A (en) * 1969-06-06 1972-01-25 Linde Ag Switching arrangement for the stabilization and ignition of welding arcs and the like
US3673375A (en) * 1971-07-26 1972-06-27 Technology Applic Services Cor Long arc column plasma generator and method
US4289949A (en) * 1977-12-06 1981-09-15 Sintef (Selskapet For Industriell Og Teknisk Forskning Ved Nth) Plasma burners
US4678888A (en) * 1983-01-21 1987-07-07 Plasma Energy Corporation Power circuit apparatus for starting and operating plasma arc
US4977305A (en) * 1989-04-03 1990-12-11 L-Tec Company System for low voltage plasma arc cutting
US5399957A (en) * 1990-05-15 1995-03-21 The University Of Sydney The Electricity Commission Of New South Wales DC switched arc torch power supply
US5717293A (en) * 1995-10-20 1998-02-10 Eni Technologies, Inc. Strike enhancement circuit for a plasma generator
US6703580B2 (en) * 2000-04-11 2004-03-09 Giat Industries Plasma torch incorporating a reactive ignition tube and igniter squib integrating such a torch
US6380507B1 (en) * 2000-04-25 2002-04-30 Wayne F. Childs Apparatus for feeding waste matter into a plasma arc furnace to produce reusable materials
US8581147B2 (en) * 2005-03-24 2013-11-12 Lincoln Global, Inc. Three stage power source for electric ARC welding
US20090230098A1 (en) * 2008-03-14 2009-09-17 Illinois Tool Works Inc. Method for detecting current transfer in a plasma arc
US20120201266A1 (en) * 2009-03-24 2012-08-09 Tekna Plasma Systems Inc. Plasma reactor for the synthesis of nanopowders and materials processing
US20110155703A1 (en) * 2009-12-30 2011-06-30 Itt Kaliburn Universal input power supply utilizing parallel power modules

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US11591477B2 (en) 2014-01-30 2023-02-28 Monolith Materials, Inc. System for high temperature chemical processing
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US11866589B2 (en) 2014-01-30 2024-01-09 Monolith Materials, Inc. System for high temperature chemical processing
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US11203692B2 (en) 2014-01-30 2021-12-21 Monolith Materials, Inc. Plasma gas throat assembly and method
US11304288B2 (en) 2014-01-31 2022-04-12 Monolith Materials, Inc. Plasma torch design
US11998886B2 (en) 2015-02-03 2024-06-04 Monolith Materials, Inc. Regenerative cooling method and apparatus
US11987712B2 (en) 2015-02-03 2024-05-21 Monolith Materials, Inc. Carbon black generating system
US10618026B2 (en) 2015-02-03 2020-04-14 Monolith Materials, Inc. Regenerative cooling method and apparatus
US11665808B2 (en) 2015-07-29 2023-05-30 Monolith Materials, Inc. DC plasma torch electrical power design method and apparatus
US12119133B2 (en) 2015-09-09 2024-10-15 Monolith Materials, Inc. Circular few layer graphene
US10808097B2 (en) 2015-09-14 2020-10-20 Monolith Materials, Inc. Carbon black from natural gas
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
US11492496B2 (en) 2016-04-29 2022-11-08 Monolith Materials, Inc. Torch stinger method and apparatus
US12012515B2 (en) 2016-04-29 2024-06-18 Monolith Materials, Inc. Torch stinger method and apparatus
US11926743B2 (en) 2017-03-08 2024-03-12 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
US11760884B2 (en) 2017-04-20 2023-09-19 Monolith Materials, Inc. Carbon particles having high purities and methods for making same
US12030776B2 (en) 2017-08-28 2024-07-09 Monolith Materials, Inc. Systems and methods for particle generation
US11453784B2 (en) 2017-10-24 2022-09-27 Monolith Materials, Inc. Carbon particles having specific contents of polycylic aromatic hydrocarbon and benzo[a]pyrene
US11979974B1 (en) * 2020-06-04 2024-05-07 Inno-Hale Ltd System and method for plasma generation of nitric oxide

Also Published As

Publication number Publication date
CA3032246A1 (en) 2017-02-02
CN108292826B (en) 2020-06-16
WO2017019683A1 (en) 2017-02-02
US11665808B2 (en) 2023-05-30
MX2018001259A (en) 2018-04-20
US20230354501A1 (en) 2023-11-02
CN108292826A (en) 2018-07-17
CN111601447A (en) 2020-08-28
CA3032246C (en) 2023-12-12
US20210120658A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US11665808B2 (en) DC plasma torch electrical power design method and apparatus
JP5679241B1 (en) Voltage source DC power supply and control method for voltage source DC power supply
EP2289143B1 (en) Impedance correction
CN105322777A (en) Power factor correction circuit for power electronic system
DE2453583A1 (en) CONTROL AND CONTROL OF POWER CONVERTERS WITH A PARALLEL RESONANCE COMMUTATION CIRCUIT
US20210051775A1 (en) Power supply for electric arc gas heater
CN105195840A (en) Control method of electrical discharge machining power supply capable of realizing automatic boosting
CN203632555U (en) High frequency high voltage low temperature plasmatron
CN212785193U (en) Combinable switch type power supply structure for arc plasma
RU64451U1 (en) PULSE CONVERTER
CN117240085B (en) Constant-current power supply, direct-current power supply system and power supply control method
CN115529709B (en) Power supply suitable for plasma gun
Mnich Power supply with extended output voltage intended for the electric welding and cutting
RU2022101686A (en) ARC FURNACE POWER SUPPLY WITH RESONANCE CIRCUIT
RU32954U1 (en) Magnetron Power Supply
TWM590820U (en) Control circuit having extend hold-up time and conversion system having extend hold-up time
JP2021093886A (en) Switching power source device
CN115133805A (en) High-power high-voltage accelerator power supply
CN117674589A (en) BOOST circuit and method supporting wide voltage input
JP2016015831A (en) Power supply device for electronic tube
RU2078658C1 (en) Electric welder
RU106163U1 (en) ARC RECTIFIER
SU739695A1 (en) Dc voltage stabilizer
CN111082648A (en) Surge suppression circuit and adapter
Renxi et al. Design and implementation of a kind of linear stabilized power supplies with high efficiency and wide-range adjustable output voltage

Legal Events

Date Code Title Description
AS Assignment

Owner name: MONOLITH MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOSS, JOHN JARED;NOEL, BRIAN T.;SIGNING DATES FROM 20170901 TO 20170905;REEL/FRAME:043577/0710

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION