US20160227772A1 - Agricultural mixtures comprising carboxamide compound - Google Patents
Agricultural mixtures comprising carboxamide compound Download PDFInfo
- Publication number
- US20160227772A1 US20160227772A1 US15/029,908 US201415029908A US2016227772A1 US 20160227772 A1 US20160227772 A1 US 20160227772A1 US 201415029908 A US201415029908 A US 201415029908A US 2016227772 A1 US2016227772 A1 US 2016227772A1
- Authority
- US
- United States
- Prior art keywords
- methyl
- phenyl
- chloro
- trifluoromethyl
- spp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- QSLZKWPYTWEWHC-UHFFFAOYSA-N CN(C(=O)C1=CC=CC=C1)C1=CC=CC(C(=O)NC2=C(C(F)(F)F)C=C(C(F)(C(F)(F)F)C(F)(F)F)C=C2Br)=C1F Chemical compound CN(C(=O)C1=CC=CC=C1)C1=CC=CC(C(=O)NC2=C(C(F)(F)F)C=C(C(F)(C(F)(F)F)C(F)(F)F)C=C2Br)=C1F QSLZKWPYTWEWHC-UHFFFAOYSA-N 0.000 description 2
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/18—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
- A01N37/22—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof the nitrogen atom being directly attached to an aromatic ring system, e.g. anilides
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C1/00—Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
- A01C1/06—Coating or dressing seed
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/02—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/08—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/18—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
- A01N37/30—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof containing the groups —CO—N< and, both being directly attached by their carbon atoms to the same carbon skeleton, e.g. H2N—NH—CO—C6H4—COOCH3; Thio-analogues thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/34—Nitriles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
- A01N37/46—N-acyl derivatives
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/48—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
- A01N43/50—1,3-Diazoles; Hydrogenated 1,3-diazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/48—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
- A01N43/56—1,2-Diazoles; Hydrogenated 1,2-diazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/64—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
- A01N43/647—Triazoles; Hydrogenated triazoles
- A01N43/653—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/88—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with three ring hetero atoms
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/08—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
- A01N47/10—Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
- A01N47/24—Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing the groups, or; Thio analogues thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N55/00—Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/02—Sulfur; Selenium; Tellurium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/26—Phosphorus; Compounds thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S424/00—Drug, bio-affecting and body treating compositions
- Y10S424/10—Insect repellent
Definitions
- the present invention relates to mixtures of active ingredients having synergistically enhanced action and to methods comprising applying said mixtures.
- Another problem encountered concerns the need to have available pesticidal active agents which are effective against a broad spectrum of pests.
- compositions that improve plants a process which is commonly and hereinafter referred to as “plant health”.
- plant health a process which is commonly and hereinafter referred to as “plant health”.
- advantageous properties are improved crop characteristics including: emergence, crop yields, protein content, more developed root system, tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less fertilizers needed, less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early germination; or any other advantages familiar to a person skilled in the art.
- Methods for improving the health of plants by applying active compounds to the plants or the locus are a general need.
- the present invention relates to agricultural mixtures comprising as active compounds
- the present invention further includes mixtures comprising more than one fungicidal active compound II selected from group F.
- the present invention further includes mixtures comprising two, three or four fungicidal active compound II selected from group F.
- the present invention further includes mixtures comprising as an additional active compound III an insecticidal compound selected from the group M of pesticides.
- the present invention further includes mixtures comprising more than one additional insecticidal active compound III selected from group M.
- the present invention further includes mixtures comprising more two, three or four fungicidal active compound II selected from group F and one or more additional insecticidal active compound III selected from group M.
- the present invention relates to:
- Carboxamide derivatives showing generally pesticidal activity have been described previously.
- WO200573165 and WO2010018714 describe carboxamide compounds, their preparation and their use as pest control agents.
- WO2007013150, JP2011-157294, JP2011-157295 and JP2011-157296 describe mixtures of carboxamides with other active ingredients.
- Preparation of the compound of formula I can further be accomplished according to standard methods of organic chemistry, e.g. by the methods or working examples described in WO 2010/018857 without being limited to the routes given therein.
- the compound I of formula (I) includes its tautomers, racemic mixtures, individual pure enantiomers and diasteroemers and the optically active mixtures.
- the active compounds II mentioned above of groups F.I to F.XI are funicidal active pesticides of chemical nature described by common names. Their preparation and their activity against pests is known (cf.: http://www.alanwood.net/pesticides/); these pesticides are often commercially available.
- Biopesticides (as Compound II or Compound III)
- biopesticides from group M.Y or F.XII their preparation and their pesticidal activity e.g. against harmful fungi or insects are known (e-Pesticide Manual V 5.2 (ISBN 978 1 901396 85 0) (2008-2011); http://www.epa.gov/opp00001/biopesticides/, see product lists therein; http://www.omri.org/omri-lists, see lists therein; Bio-Pesticides Database BPDB http://sitem.herts.ac.uk/aeru/bpdb/, see A to Z link therein).
- the biopesticides from group II.M.Y or F.XII. may also have insecticidal, fungicidal, acaricidal, molluscidal, viricidal, bactericidal, pheromone, nematicidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting, plant growth regulator and/or yield enhancing activity.
- biopesticides are registered and/or are commercially available: aluminium silicate (ScreenTM Duo from Certis LLC, USA), Agrobacterium radio-bacter K1026 (e.g. NoGall® from Becker Underwood Pty Ltd., Australia), A. radiobacter K84 (Nature 280, 697-699, 1979; e.g. GallTroll® from AG Biochem, Inc., C, USA), Ampelomyces quisqualis M-10 (e.g. AQ 10® from Intrachem Bio GmbH & Co. KG, Germany), Ascophyllum nodosum (Norwegian kelp, Brown kelp) extract or filtrate (e.g.
- RhizoVital® 42 from AbiTEP GmbH, Berlin, Germany
- B. amyloliquefaciens IN937a J. Microbiol. Biotechnol. 17(2), 280-286, 2007; e.g. in BioYield® from Gustafson LLC, TX, USA
- B. amyloliquefaciens IT-45 CNCM 1-3800
- Rhizocell C from ITHEC, France
- B. amyloliquefaciens subsp. plantarum M BI600 NRRL B-50595, deposited at United States Department of Agriculture
- Integral®, Subtilex® NG from Becker Underwood, USA
- B. cereus CNCM 1-1562 U.S.
- B. firmus CNCM 1-1582 (WO 2009/126473, WO 2009/124707, U.S. Pat. No. 6,406,690; Votivo® from Bayer Crop Science LP, USA)
- B. pumilus GB34 (ATCC 700814; e.g. in YieldShield® from Gustafson LLC, TX, USA)
- Bacillus pumilus KFP9F (NRRL B-50754) (e.g. in BAC-UP or FUSION-P from Becker Underwood South Africa)
- B. pumilus QST 2808 (NRRL B-30087) (e.g. Sonata® and Ballad® Plus from AgraQuest Inc., USA), B.
- subtilis GB03 e.g. Kodiak® or BioYield® from Gustafson, Inc., USA; or Companion® from Growth Products, Ltd., White Plains, N.Y. 10603, USA
- B. subtilis GB07 Epic® from Gustafson, Inc., USA
- B. subtilis QST-713 NRRL B-21661 in Rhapsody®, Serenade® MAX and Serenade® ASO from AgraQuest Inc., USA
- B. subtilis var. amylolique-faciens FZB24 e.g. Taegro® from Novozyme Biologicals, Inc., USA
- amyloliquefaciens D747 (e.g. Double Nickel 55 from Certis LLC, USA), B. thuringiensis ssp. aizawai ABTS-1857 (e.g. in Xen-Tani® from BioFa AG, Munsingen, Germany), B. t. ssp. aizawai SAN 401 I, ABG-6305 and ABG-6346, Bacillus t. ssp. israelensis AM65-52 (e.g. in VectoBac® from Valent BioSciences, IL, USA), Bacillus thuringiensis ssp. kurstaki SB4 (NRRL B-50753; e.g.
- Beta Pro® from Becker Underwood, South Africa B. t. ssp. kurstaki ABTS-351 identical to HD-1 (ATCC SD-1275; e.g. in Dipel® DF from Valent BioSciences, IL, USA), B. t. ssp. kurstaki EG 2348 (e.g. in Lepinox® or Rapax® from CBC (Europe) S.r.I., Italy), B. t. ssp. tenebrionis DSM 2803 (EP 0 585 215 B1; identical to NRRL B-15939; Mycogen Corp.), B. t. ssp.
- tenebrionis NB-125 DSM 5526; EP 0 585 215 B1; also referred to as SAN 4181 or ABG-6479; former production strain of Novo-Nordisk
- B. t. ssp. tenebrionis NB-176 or NB-176-1 a gamma-irridated, induced high-yielding mutant of strain NB-125
- DSM 5480 EP 585 215 B1; Novodor® from Valent BioSciences, Switzerland
- Beauveria bassiana ATCC 74040 e.g. in Naturalis® from CBC (Europe) S.r.I., Italy
- B. bassiana DSM 12256 US 200020031495; e.g.
- BioExpert® SC from Live Sytems Technology S.A., Colombia
- B. bassiana GHA BotaniGard® 22WGP from Laverlam Int. Corp., USA
- B. bassiana PPRI 5339 ARSEF number 5339 in the USDA ARS collection of entomopathogenic fungal cultures; NRRL 50757) (e.g. BroadBand® from Becker Underwood, South Africa)
- B. brongniartii e.g. in Melocont® from Agrifutur, Agrianello, Italy, for control of cockchafer; J. Appl. Microbiol. 100(5),1063-72, 2006
- Bradyrhizobium sp. e.g. Vault® from Becker Underwood, USA
- japonicum e.g. VAULT® from Becker Underwood, USA
- Candida oleophila 1-182 NRRL Y-18846; e.g. Aspire® from Ecogen Inc., USA, Phytoparasitica 23(3), 231-234, 1995
- C. oleophila strain O NRRL Y-2317; Biological Control 51, 403-408, 2009
- Candida saitoana e.g. Biocure® (in mixture with lysozyme) and BioCoat® from Micro Flo Company, USA (BASF SE) and Arysta
- Chitosan e.g. Armour-Zen® from BotriZen Ltd., NZ
- catenulata also named Gliocladium catenulatum (e.g. isolate J 1446: Prestop® from Verdera Oy, Finland), Chromobacterium subtsugae PRAA4-1 isolated from soil under an eastern hem-lock ( Tsuga canadensis ) in the Catoctin Mountain region of central Maryland (e.g. in GRANDE-VO from Marrone Bio Innovations, USA), Coniothyrium minitans CON/M/91-08 (e.g. Contans® WG from Prophyta, Germany), Cryphonectria parasitica (e.g. Endothia parasitica from CNICM, France), Cryptococcus albidus (e.g.
- CrIeGV Cryptophlebia leucotreta granulovirus
- CpGV Cydia pomonella granulovirus
- CpGV V22 DSM GV-0014; e.g. in MADEX Twin from Adermatt Biocontrol, Switzerland
- Delftia acidovorans RAY209 ATCC PTA-4249; WO 2003/57861; e.g.
- MYKOS from Xtreme Gardening, USA or RTI Reforestation Technologies International; USA
- grapefruit seeds and pulp extract e.g. BC-1000 from Chemie S.A., Chile
- harpin (alpha-beta) protein e.g. MESSENGER or HARP-N-Tek from Plant Health Care plc, U.K.; Science 257, 1-132, 1992
- Heterorhabditis bacteriophaga e.g. Nemasys® G from Becker Underwood Ltd., UK
- Isaria fumosorosea Apopka-97 ATCC 20874)
- PFR-97TM from Certis LLC, USA
- cis-jasmone U.S. Pat. No.
- laminarin e.g. in VAC-CIPLANT from Laboratoires Goemar, St. Malo, France or Stahler SA, Switzerland
- Lecanicillium longisporum KV42 and KV71 e.g. VERTALEC® from Koppert BV, Netherlands
- L. muscarium KV01 formerly Verticillium lecanii
- Lysobacter antibioticus 13-1 Biological Control 45, 288-296, 2008
- L. antibioticus HS124 Curr. Microbiol. 59(6), 608-615, 2009
- L. enzymogenes 3.1T8 Microbiol. Res.
- Metarhizium anisopliae var. acridum IMI 330189 isolated from Ornithacris cavroisi in Niger; also NRRL 50758 (e.g. GREEN MUSCLE® from Becker Underwood, South Africa), M. a. var. acridum FI-985 (e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia), M. anisopliae FI-1045 (e.g. BIOCANE® from Becker Underwood Pty Ltd, Australia), M.
- Metarhizium anisopliae var. acridum IMI 330189 isolated from Ornithacris cavroisi in Niger; also NRRL 50758
- MUSCLE® from Becker Underwood, South Africa
- M. a. var. acridum FI-985 e.g. GREEN GUARD® SC from Becker Underwood Pty Ltd, Australia
- anisopliae F52 (DSM 3884, ATCC 90448; e.g. MET52® Novozymes Biologicals BioAg Group, Canada), M. anisopliae ICIPE 69 (e.g. METATHRIPOL from ICIPE, Nairobe, Kenya), Metschnikowia fructicola (NRRL Y-30752; e.g. SHEMER® from Agrogreen, Israel, now distributed by Bayer CropSciences, Germany; U.S. Pat. No. 6,994,849), Microdochium dimerum (e.g.
- ANTIBOT® from Agrauxine, France
- Microsphaeropsis ochracea P130A ATCC 74412 isolated from apple leaves from an abandoned orchard, St-Joseph-du-Lac, Quebec, Canada in 1993; Mycologia 94(2), 297-301, 2002
- Muscodor albus QST 20799 originally isolated from the bark of a cinnamon tree in Honduras (e.g. in development products MuscudorTM or QRD300 from AgraQuest, USA), Neem oil (e.g.
- NEMATA® SC from Live Systems Technology S.A., Colombia
- lilacinus BCP2 (NRRL 50756; e.g. PL GOLD from Becker Underwood BioAg SA Ltd, South Africa), mixture of Paenibacillus alvei NAS6G6 (NRRL B-50755), Pantoea vagans (formerly agglomerans ) C9-1 (originally isolated in 1994 from apple stem tissue; BlightBan C9-1® from NuFrams America Inc., USA, for control of fire blight in apple; J. Bacteriol. 192(24) 6486-6487, 2010), Pasteuria spp. ATCC PTA-9643 (WO 2010/085795), Pasteuria spp. ATCC SD-5832 (WO 2012/064527), P.
- potassium bicarbonate e.g. Ami-carb® fromm Stahler SA, Switzerland
- potassium silicate e.g. Sil-MATRIXTM from Certis LLC, USA
- Pseudozyma flocculosa PF-A22 UL e.g. Sporodex® from Plant Products Co. Ltd., Canada
- Pseudomonas sp. DSM 13134 WO 2001/40441, e.g. in PRORADIX from Sourcon Pade-na GmbH & Co. KG, Hechinger Str. 262, 72072 Tubingen, Germany
- P. chloraphis MA 342 e.g.
- Rhi-zobium leguminosarum bv. phaseolii e.g. RHIZO-STICK from Becker Underwood, USA
- R. I. trifolii RP113-7 e.g. DORMAL from Becker Underwood, USA; Appl. Environ. Microbiol. 44(5), 1096-1101
- R. I. bv. viciae P1NP3Cst also referred to as 1435; New Phytol 179(1), 224-235, 2008; e.g.
- feltiae from BioWorks, Inc., USA; NEMASYS® from Becker Underwood Ltd., UK
- S. kraussei L137 NEMASYS® L from Becker Underwood Ltd., UK
- Streptomyces griseoviridis K61 e.g. MY-COSTOP® from Verdera Oy, Espoo, Finland; Crop Protection 25, 468-475, 2006
- S. lydicus WYEC 108 e.g. Actinovate® from Natural Industries, Inc., USA, U.S. Pat. No. 5,403,584)
- S. violaceusniger YCED-9 e.g. DT-9® from Natural Industries, Inc., USA, U.S. Pat. No.
- Talaromyces flavus V117b e.g. PROTUS® from Prophyta, Germany
- Trichoderma asperellum SKT-1 e.g. ECO-HOPE® from Kumiai Chemical Industry Co., Ltd., Japan
- T. asperellum ICC 012 e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro N.C., USA, BIO-TAM from AgraQuest, USA
- T. atroviride LC52 e.g. SENTINEL® from Agrimm Technologies Ltd, NZ
- T. atroviride CNCM 1-1237 e.g.
- T. fertile JM41R NRRL 50759; e.g. RICHPLUSTM from Becker Underwood Bio Ag SA Ltd, South Africa
- T. gamsii ICC 080 e.g. in TENET WP, REMDIER WP, BIOTEN WP from Isagro N.C., USA, BIO-TAM from AgraQuest, USA
- T. harzianum T-22 e.g. PLANTSHIELD® der Firma BioWorks Inc., USA
- T. harzianum TH 35 e.g. ROOT PRO® from Mycontrol Ltd., Israel
- T. harzianum T-39 e.g. TRICHODEX® and TRICHODERMA 2000® from Mycontrol Ltd., Israel and Makhteshim Ltd., Israel
- T. harzianum and T. viride e.g. TRICHOPEL from Agrimm Technologies Ltd, NZ
- T. harzianum ICC012 and T. viride ICC080 e.g. REMEDIER® WP from Isagro Ricerca, Italy
- T. polysporum and T. harzianum e.g. BINAB® from BINAB Bio-Innovation AB, Sweden
- T. stromaticum e.g. TRICOVAB® from C.E.P.L.A.C., Brazil
- T. stromaticum e.g. TRICOVAB® from C.E.P.L.A.C., Brazil
- T. stromaticum e.g. TRICOVAB® from C.E.P.L.A.
- virens GL-21 also named Gliocladium virens ) (e.g. SOILGARD® from Certis LLC, USA), T. viride (e.g. TRIECO® from Ecosense Labs. (India) Pvt. Ltd., Indien, BIO-CURE® F from T. Stanes & Co. Ltd., Indien), T. viride TV1 (e.g. T. viride TV1 from Agribiotec srl, Italy) and Ulocladium oudemansii HRU3 (e.g. in BOTRY-ZEN® from Botry-Zen Ltd, NZ).
- Gliocladium virens also named Gliocladium virens
- T. viride e.g. TRIECO® from Ecosense Labs. (India) Pvt. Ltd., Indien, BIO-CURE® F from T. Stanes & Co. Ltd., Indien
- T. viride TV1
- Strains can be sourced from genetic resource and deposition centers: American Type Culture Collection, 10801 University Boulevard., Manassas, Va. 20110-2209, USA (strains with ATCC prefic); CABI Europe—International Mycological Institute, Bakeham Lane, Egham, Surrey, TW20 9TYNRRL, UK (strains with prefices CABI and IMI); Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalaan 8, PO Box 85167, 3508 AD Utrecht, Netherlands (strains with prefic CBS); Division of Plant Industry, CSIRO, Canberra, Australia (strains with prefix CC); Collection Nationale de Cultures de Microorganismes, Institut Pasteur, 25 rue du Do Sheffield Roux, F-75724 PARIS Cedex 15 (strains with prefix CNCM); Leibniz-lnstitut DSMZ-Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, InhoffenstraRe 7 B, 38124 Braun-schw
- Bacillus subtilis MBI600 (NRRL B-50595) is deposited under accession number NRRL B-50595 with the strain designation Bacillus subtilis 1430 (and identical to NCIMB 1237).
- MBI 600 has been re-classified as Bacillus amyloliquefaciens subsp. plantarum based on polyphasic testing which combines classical microbiological methods rely-ing on a mixture of traditional tools (such as culture-based methods) and molecular tools (such as genotyping and fatty acids analysis).
- Bacillus subtilis MBI600 (or MBI 600 or MBI-600) is identical to Bacillus amyloliquefaciens subsp. plantarum MBI600, formerly Bacillus subtilis MBI600.
- Bacillus amyloliquefaciens MBI600 is known as plant growth-promoting rice seed treatment from Int. J. Microbiol. Res. 3(2) (2011), 120-130 and further described e.g. in US 2012/0149571 A1.
- This strain M B1600 is e.g. commercially available as liquid formulation product INTEGRAL® (Becker-Underwood Inc., USA).
- Bacillus subtilis strain FB17 was originally isolated from red beet roots in North America (System Appl. Microbiol 27 (2004) 372-379). This B. subtilis strain promotes plant health (US 2010/0260735 A1; WO 2011/109395 A2). B. subtilis FB17 has also been deposited at ATCC under number PTA-11857 on Apr. 26, 2011. Bacillus subtilis strain FB17 may be referred else-where to as UD1022 or UD10-22.
- Bacillus amyloliquefaciens AP-136 (NRRL B-50614), B. amyloliquefaciens AP-188 (NRRL B-50615), B. amyloliquefaciens AP-218 (NRRL B-50618), B. amyloliquefaciens AP-219 (NRRL B-50619), B. amyloliquefaciens AP-295 (NRRL B-50620), B. japonicum SEMIA 5079 (e.g. Gelfix 5 or Adhere 60 from Nitral Urbana Laboratories, Brazil, a BASF Company), B. japonicum SEMIA 5080 (e.g.
- B. mojavensis AP-209 (NRRL B-50616), B. solisalsi AP-217 (NRRL B-50617), B. pumilus strain INR-7 (otherwise referred to as BU-F22 (NRRL B-50153) and BU-F33 (NRRL B-50185)), B. simplex ABU 288 (NRRL B-50340) and B. amyloliquefaciens subsp. plantarum M BI600 (NRRL B-50595) have been mentioned i.a. in US patent appl. 20120149571, U.S. Pat. No.
- Jasmonic acid or salts (jasmonates) or derivatives include without limitation potassium jasmonate, sodium jasmonate, lithium jasmonate, ammonium jasmonate, dimethyl-ammonium jasmonate, isopropylammonium jasmonate, diolammonium jasmonate, diethtriethanolammonium jasmonate, jasmonic acid methyl ester, jasmonic acid amide, jasmonic acid methylamide, jasmonic acid-L-amino acid (amide-linked) conjugates (e.g., conjugates with L-isoleucine, L-valine, L-leucine, or L-phenylalanine), 12-oxo-phytodienoic acid, coronatine, coronafacoyl-L-serine, coronafacoy
- Bilobalide and the ginkgolides are known components of the ginkgo tree.
- Bilobalide is the common name for (3aS,5aR,8aS,9R,10aR)-9-tert-butyl-8,9-dihydroxydihydro-9H-furo[2,3-b]furo[3′,2′;2,3]cyclopenta[1,2-c]furan-2,4,7(3H,8H)-trione (CAS 33570-04-6) and the following ginkgolides Ginkgolide (CAS 15291-75-5), Ginkgolide B (CAS 15291-77-7), Ginkgolide C (15291-76-6), Ginkgolide J (15291-79-9), Ginkgolide M (15291-78-8) have also been previously described and recorded.
- the compounds are commercially available, or can be obtained, preferably from ginkgo leaves by methods known in the art and described e.g. in U.S. Pat. No. 5,700,468, EP-A 360 556, EP-A 0 431 535 and JP-A 09-110713.
- the compounds Bilobalide (in enantiopure form), Ginkgolide A (in its racemic form) and Ginkgolide B (in its racemic form) can be obtained by chemical synthesis, as disclosed e.g. in Tetrahedron Letters (1988), 29(28), 3423-6, Tetrahedron Letters (1988), 29(26), 3205-6 and Journal of the American Chemical Society (2000), 122(35), 8453-8463, respectively.
- the neonicotinoid cycloxaprid is known from WO20120/069266 and WO2011/06946, and the neonicotinoid compound M.4A.2, sometimes also to be named as Guadipyr, is known from WO2013/003977, and the neonicotinoid compound M.4A.3. (approved as paichongding in China) is known from WO2010/069266.
- the Metaflumizone analogue M.22B.1 is described in CN 10171577 and the analogue M.22B.2 in CN102126994.
- the phthalamides M.28.1 and M.28.2 are both known from WO 2007/101540.
- the anthranilamide M.28.3 has been described in WO2005/077934.
- the hydrazide compound M.28.4 has been described in WO 2007/043677.
- the anthranilamides M.28.5a) to M.28.5h) can be prepared as described in WO 2007/006670, WO2013/024009 and WO2013/024010, the anthranilamide compound M.28.5i) is described in WO2011/085575, the compound M.28.5j) in WO2008/134969, the compound M.28.5k) in US2011/046186 and the compound M.28.5l) in WO2012/034403.
- the diamide compounds M.28.6 and M.28.7 can be found in CN102613183.
- the anthranilamide compounds M.28.8a) and M.28.8b) are known from WO2010/069502.
- the quinoline derivative flometoquin is shown in WO2006/013896.
- the aminofuranone compounds flupyradifurone is known from WO 2007/115644.
- the sulfoximine compound sulfoxaflor is known from WO2007/149134.
- momfluorothrin is known from U.S. Pat. No. 6,908,945 and heptafluthrin from WO10133098.
- the oxadiazolone compound metoxadiazone can be found in JP13/166707.
- the pyrazole acaricide pyflubumide is known from WO2007/020986.
- the isoxazoline compounds have been described in following publications: fluralaner in WO2005/085216, afoxolaner in WO2009/002809 and in WO2011/149749 and the isoxazoline compound M.UN.9 in WO2013/050317.
- the pyripyropene derivative afidopyropen has been described in WO 2006/129714.
- the nematicide tioxazafen has been disclosed in WO09023721 and nematicide fluopyram in WO2008126922, nematicidal mixtures comprising flupyram in WO2010108616.
- the triflumezopyrim compound was described in WO2012/092115.
- the spiroketal-substituted cyclic ketoenol derivative M.UN.3 is known from WO2006/089633 and the biphenyl-substituted spirocyclic ketoenol derivative M.UN.4 from WO2008/067911.
- the triazoylphenylsulfide M.UN.5 has been described in WO2006/043635, and biological control agents on basis of bacillus firmus in WO2009/124707.
- the compounds M.UN.6a) to M.UN.6i) listed under M.UN.6 have been described in WO2012/029672 and compounds M.UN.6j) and M.UN.6k) in WO2013129688.
- the carboxamide compounds M.UN.11.b) to M.UN.11.h) can be prepared as described in WO 2010/018714 and the carboxamide M.UN.11i) to M.UN.11.p) are described WO2010/127926.
- the pyridylthiazoles M.UN.12.a) to M.UN.12.c) are known from WO2010/006713, M.UN.12.c) and M.UN.12.d) WO2012000896 and M.UN.12.f) to M.UN.12.m) in WO2010129497.
- the malononitrile compound M.UN.13 was described in WO2009/005110.
- the compounds M.UN.14a) and M.UN.14b) are known from WO2007/101369.
- the compound M.UN.15 can be found in WO13192035.
- biopesticides of group M.Y. are disclosed further above in the paragraphs about biopesticides (from groups M.Y and F.XII).
- At least one biopesticide is selected from the groups F.XII or M.Y.
- At least one biopesticide is selected from the groups F.XII.
- the at least one biopesticide is selected from group M.Y-1.
- the at least one biopesticide is selected from M.Y-2.
- Preferred fungicidal active compounds II selected from group F
- the compound II is azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin or trifloxystrobin.
- the compound II is pyraclostrobin.
- the compound II is cyazofamid.
- the compound II is bixafen, boscalid, fluopyram, fluxapyroxad, isopyrazam, penflufen, penthiopyrad or sedaxane.
- the compound II is fluxapyroxad.
- the compound II is ametoctradin or silthiofam.
- the compound II is difenoconazole, epoxiconazole, fluquinconazole, flusilazole, flutriafol, ipconazole, metconazole, prothioconazole, tebuconazole, triticonazole or prochloraz.
- the compound II is selected from the group consisting of 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1 (1,2,4-triazol-1-yl)pentan-2-ol, 1-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 cyclopropyl-2-(1,2,4-triazol-1-yl)ethanol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol, 2-[4-(4-ch
- the compound II is 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1 (1,2,4-triazol-1-yl)pentan-2-ol.
- the compound II is 1-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 cyclopropyl-2-(1,2,4-triazol-1-yl)ethanol
- the compound II is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol
- the compound II is 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol
- the compound II is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol.
- the compound II is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol.
- the compound II is 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol.
- the compound II is 2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol.
- the compound II is 2-[4-(4-fluorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol.
- the compound II is metalaxyl and mefenoxam (metalaxyl-M).
- the compound II is benomyl, carbendazim, and thiophanate-methyl.
- the compound II is ethaboxam, fluopicolide or pyriofenone.
- the compound II is dimethomorph.
- the compound II is sulfur.
- the compound II is a copper salt selected from copper acetate, copper hydroxide, copper oxychloride or basic copper sulfate.
- the compound II is mancozeb, metiram or propineb.
- the compound II is chlorothalonil.
- the compound II is phosphorous acid or its salts.
- pesticidal mixtures containing azoxystrobin as compound II are especially preferred.
- pesticidal mixtures containing fluoxastrobin as compound II are especially preferred.
- pesticidal mixtures containing picoxystrobin as compound II are especially preferred.
- pesticidal mixtures containing pyraclostrobin as compound II are especially preferred.
- pesticidal mixtures containing trifloxystrobin as compound II are especially preferred.
- pesticidal mixtures containing cyazofamid as compound II are especially preferred.
- pesticidal mixtures containing bixafen as compound II are especially preferred.
- pesticidal mixtures containing boscalid as compound II are especially preferred.
- pesticidal mixtures containing fluopyram as compound II are especially preferred.
- pesticidal mixtures containing fluxapyroxad as compound II are especially preferred.
- pesticidal mixtures containing isopyrazam as compound II are especially preferred.
- pesticidal mixtures containing penflufen as compound II are especially preferred.
- pesticidal mixtures containing penthiopyrad as compound II are especially preferred.
- pesticidal mixtures containing sedaxane as compound II are especially preferred.
- pesticidal mixtures containing ametoctradin as compound II are especially preferred.
- pesticidal mixtures containing oxathiapiprolin as compound II are especially preferred.
- pesticidal mixtures containing difenoconazole as compound II are especially preferred.
- pesticidal mixtures containing fluquinconazole as compound II are especially preferred.
- pesticidal mixtures containing flutriafol as compound II are especially preferred.
- pesticidal mixtures containing flusilazole as compound II are especially preferred.
- pesticidal mixtures containing ipconazole as compound II are especially preferred.
- pesticidal mixtures containing metconazole as compound II are especially preferred.
- pesticidal mixtures containing prothioconazole as compound II are especially preferred.
- pesticidal mixtures containing tebuconazole as compound II are especially preferred.
- pesticidal mixtures containing triticonazole as compound II are especially preferred.
- pesticidal mixtures containing cyproconazole as compound II are especially preferred.
- pesticidal mixtures containing triadimenol as compound II are especially preferred.
- pesticidal mixtures containing fludioxonil as compound II are especially preferred.
- pesticidal mixtures containing the compound metalaxyl as compound II.
- pesticidal mixtures containing the compound mefenoxam (metalaxyl-M) as compound II.
- pesticidal mixtures containing thiabendazole as compound II are especially preferred.
- pesticidal mixtures containing benomyl as compound II are especially preferred.
- pesticidal mixtures containing the compound carbendazim as compound II.
- pesticidal mixtures containing the compound thiophanate-methyl as compound II.
- pesticidal mixtures containing ethaboxam as compound II are especially preferred.
- pesticidal mixtures containing fluopicolide as compound II are especially preferred.
- pesticidal mixtures containing pyriofenone as compound II are especially preferred.
- pesticidal mixtures containing valifenalate as compound II are especially preferred.
- pesticidal mixtures containing thiram as compound II are especially preferred.
- pesticidal mixtures containing ziram as compound II are especially preferred.
- pesticidal mixtures containing the compound copper salt as compound II.
- pesticidal mixtures containing sulfur as compound II are especially preferred.
- pesticidal mixtures containing the compound mancozeb as compound II.
- pesticidal mixtures containing the compound metiram as compound II.
- pesticidal mixtures containing the compound propineb as compound II.
- pesticidal mixtures containing the compound chlorothalonil as compound II.
- pesticidal mixtures containing the compound phosphorous acid as compound II.
- Preferred insecticidal active compounds III selected from group M
- mixtures comprising additionally as active compound III an insecticicidal active compound selected from the group consisting of is fipronil, chlorfenapyr, thiodicarb, lamba-cyhalothrin, alpha-cypermethrin, acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, thiamethoxam, abamectin, emamectin, flubendiamide, spinetoram, spirotetramat, sulfoxaflor, cyflumetofen, flupyradifurone, chlorantraniliprole, N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide, N-[4-[4
- fipronil as active compound III.
- chlorantraniliprole as active compound III.
- chlorfenapyr as active compound III.
- sufoxaflor as active compound III.
- Binary mixtures of compound of formula I and a compound II selected from the groups F.I to F.XI are one preferred embodiment of the invention.
- Ternary mixtures of compound of formula I and two compounds II selected from the groups F.I to F.XI are another embodiment of the invention.
- Ternary mixtures of compound of formula I with one compound II selected from the groups F.I to F.XI and one compound III selected from the groups M.1 to M.UN.X are another embodiment of the invention.
- the mixtures of compound of the formula I are especially suitable for efficiently combating phytopathogenic fungi.
- the mixtures of the present invention have excellent activity against a broad spectrum of phytopathogenic fungi Ascomycetes, Basidiomycetes, Deuteromycetes and Peronosporomycetes (syn. Oomycetes ). Some of them are systemically effective and can be employed in crop protection as foliar fungicides, as fungicides for seed dressing and as soil fungicides. They can also be used for treating seed.
- Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. candida ) and sunflowers (e. g. A. tragopogonis ); Alternaria spp. ( Alternaria leaf spot) on vegetables, rape ( A. brassicola or brassicae), sugar beets ( A. tenuis ), fruits, rice, soybeans, potatoes (e. g. A. solani or A. alternata ), tomatoes (e. g. A. solani or A. alternata ) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A.
- tritici anthracnose
- Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight ( D. maydis ) or Northern leaf blight ( B. zeicola ) on corn, e. g. spot blotch ( B. sorokiniana ) on cereals and e. g. B. oryzae on rice and turfs
- Blumeria (formerly Erysiphe ) graminis (powdery mildew) on cereals (e. g.
- Botrytis cinerea (teleomorph: Botryotinia fuckeliana : grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma ) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. ( Cercospora leaf spots) on corn (e. g.
- Gray leaf spot C. zeae - maydis ), rice, sugar beets (e. g. C. beticola ), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii ) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum : leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris ) spp. (leaf spots) on corn ( C. carbonum ), cereals (e. g.
- C. sativus anamorph: B. sorokiniana
- rice e. g. C. miyabeanus , anamorph: H. oryzae
- Colletotrichum teleomorph: Glomerella
- spp. anthracnose on cotton (e. g. C. gossypii ), corn (e. g. C. graminicola : Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes : black dot), beans (e. g. C. lindemuthianum ) and soybeans (e. g. C. truncatum or C.
- Corticium spp. e. g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C.
- liriodendri teleomorph: Neonectria liriodendri : Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia ) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium , teleomorph: Pyrenophora ) spp. on corn, cereals, such as barley (e. g. D. teres , net blotch) and wheat (e. g. D. D.
- tritici - repentis tritici - repentis : tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus ) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum ), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits ( E. pyri ), soft fruits ( E. veneta : anthracnose) and vines ( E.
- ampelina anthracnose
- Entyloma oryzae leaf smut
- Epicoccum spp. black mold
- Erysiphe spp. potowdery mildew
- sugar beets E. betae
- vegetables e. g. E. pisi
- cucurbits e. g. E. cichoracearum
- cabbages e. g. E. cruciferarum
- Eutypa lata Eutypa canker or dieback, anamorph: Cytosporina lata , syn.
- Microsphaera diffusa (powdery mildew) on soybeans
- Monilinia spp. e. g. M. taxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants
- Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas
- Peronospora spp. downy mildew) on cabbage (e. g. P.
- brassicae ), rape (e. g. P. parasitica ), onions (e. g. P. destructor ), tobacco ( P. tabacina ) and soybeans (e. g. P. manshurica ); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora ) and soybeans (e. g. P. gregata : stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P.
- rape e. g. P. parasitica
- onions e. g. P. destructor
- tobacco P. tabacina
- soybeans e. g. P. manshurica
- betae root rot, leaf spot and damping-off on sugar beets
- Phomopsis spp. on sunflowers, vines (e. g. P. viticola : can and leaf spot)
- soybeans e. g. stem rot: P. phaseoli , teleomorph: Diaporthe phaseolorum
- Physoderma maydis brown spots
- Phytophthora spp. wilt, root, leaf, fruit and stem root
- various plants such as paprika and cucurbits (e. g. P. capsici ), soybeans (e. g. P. megasperma , syn. P. sojae ), potatoes and tomatoes (e. g. P.
- Plasmodiophora brassicae club root
- Plasmopara spp. e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers
- Plasmopara spp. e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers
- Podosphaera spp. powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples
- Polymyxa spp. e. g. on cereals, such as barley and wheat ( P.
- Pseudocercosporella herpotrichoides eyespot, teleomorph: Tapesia yallundae ) on cereals, e. g. wheat or barley
- Pseudoperonospora downy mildew
- Pseudopezicula tracheiphila red fire disease or, rotbrenner′, anamorph: Phialophora ) on vines
- Puccinia spp. rusts
- P. oryzae (teleomorph: Magnaporthe grisea , rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum ); Ramularia spp., e. g. R. collo - cygni ( Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp.
- R. solani root and stem rot
- S. solani silk and stem rot
- S. solani silk and stem rot
- S. solani silk blight
- rice or R. cerealis Rhizoctonia spring blight
- Rhizopus stolonifer black mold, soft rot
- strawberries carrots, cabbage, vines and tomatoes
- Rhynchosporium secalis scald
- Sarocladium oryzae and S. attenuatum sheath rot) on rice
- Sclerotinia spp Sclerotinia spp.
- seed rot or white mold on vegetables and field crops, such as rape, sunflowers (e. g. S. sclerotiorum ) and soybeans (e. g. S. rolfsii or S. sclerotiorum ); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici ( Septoria blotch) on wheat and S . (syn. Stagonospora ) nodorum ( Stagonospora blotch) on cereals; Uncinula (syn.
- Etysiphe necator (powdery mildew, anamorph: Oidium tuckeri ) on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum , syn. Helminthosporium turcicum ) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana : head smut), sorghum and sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp.
- mixtures of compound of the formula I are also suitable for efficiently combating the following animal pest orders:
- insects from the order of Lepidoptera for example Achroia grisella, Acleris spp. such as A. fimbriana, A. gloverana, A. variana; Acrolepiopsis assectella, Acronicta major, Adoxophyes spp. such as A. cyrtosema, A. orana; Aedia leucomelas, Agrotis spp. such as A. exclamationis, A. fucosa, A. ipsilon, A. orthogoma, A. segetum, A.
- Argyresthia conjugella Argyroploce spp., Argyrotaenia spp.
- A. velutinana Athetis mindara, Austroasca viridigrisea, Autographa gamma, Autographa nigrisigna, Barathra brassicae, Bedellia spp., Bonagota salubricola, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Cacoecia spp. such as C. murinana, C.
- Cactoblastis cactorum Cadra cautella, Calingo braziliensis, Caloptilis theivora, Capua reticulana, Carposina spp. such as C. niponensis, C. sasakii; Cephus spp, Chaetocnema aridula, Cheimatobia brumata, Chilo spp. such as C. Indicus, C. suppressalis, C. partellus; Choreutis pariana, Choristoneura spp. such as C. conflictana, C. fumiferana, C. longicellana, C. murinana, C. occidentalis, C.
- kuehniella kuehniella; Epinotia aporema, Epiphyas postvittana, Erannis tiliaria, Erionota thrax, Etiella spp., Eulia spp., Eupoecilia ambiguella, Euproctis chrysorrhoea, Euxoa spp., Evetria bouliana, Faronta albilinea, Feltia spp. such as F. subterranean; Galleria mellonella, Gracillaria spp., Grapholita spp. such as G. funebrana, G. molesta, G.
- H. armigera Heliothis armigera
- H. zea Heliothis zea
- Heliothis spp. such as H. assulta, H. subflexa, H. virescens
- Hellula spp. such as H. undalis, H.
- Mamestra spp. such as M. brassicae, M. configurata; Mamstra brassicae, Manduca spp. such as M. quinquemaculata, M. sexta; Marasmia spp, Marmara spp., Maruca testulalis, Megalopyge lanata, Melanchra picta, Melanitis leda, Mocis spp. such as M. lapites, M.
- operculella Phyllocnistis citrella, Phyllonotycter spp. such as P. blancardella, P. crataegella, P. issikii, P. ringoniella; Pieris spp. such as P. brassicae, P. rapae, P. napi; Pilocrocis tripunctata, Plathypena scabra, Platynota spp. such as P. flavedana, P. idaeusalis, P.
- insects from the order of Coleoptera for example Acalymma vittatum, Acanthoscehdes obtectus, Adoretus spp., Agelastica alni, Agrilus spp. such as A. anxius, A. planipennis, A. sinuatus; Agriotes spp. such as A. fuscicollis, A. lineatus, A.
- Attagenus spp. Aulacophora femoralis, Blastophagus piniperda, Blitophaga undata, Bruchidius obtectus, Bruchus spp. such as B. lentis, B. pisorum, B. rufimanus; Byctiscus betulae, Callidiellum rufipenne, Callopistria floridensis, Callosobruchus chinensis, Cameraria ohridella, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthorhynchus spp. such as C. assimilis, C.
- Diaprepes abbreviates, Dichocrocis spp., Dicladispa armigera, Diloboderus abderus, Diocalandra frumenti ( Diocalandra stigmaticollis ), Enaphalodes rufulus, Epilachna spp. such as E. varivestis, E. vigintioctomacu lata; Epitrix spp. such as E. hirtipennis, E.
- Eutheola humilis Eutinobothrus brasiliensis, Faustinus cubae, Gibbium psylloides, Gnathocerus cornutus, Hellula undalis, Heteronychus arator, Hyamorpha elegans, Hylobius abietis, Hylotrupes bajulus, Hypera spp. such as H. brunneipennis, H. postica; Hypomeces squamosus, Hypothenemus spp., lps typographus, Lachnosterna consanguinea, Lasioderma serricome, Latheticus oryzae, Lathridius spp., Lema spp.
- L. bilineata L. melanopus
- Leptinotarsa spp. such as L. decemlineata
- Leptispa pygmaea Limonius califomicus, Lissorhoptrus otyzophilus, Lixus spp., Luperodes spp., Lyctus spp. such as L. bruneus
- Liogenys fuscus, Macrodactylus spp. such as M. subspinosus
- Maladera matrida Megaplatypus mutates, Megascelis spp., Melanotus communis, Meligethes spp. such as M.
- Melolontha spp. such as M. hippocastani, M. melolontha; Metamasius hemipterus, Microtheca spp, Migdolus spp. such as M. fryanus, Monochamus spp. such as M.
- vulneratus Saperda candida, Scolytus schevyrewi, Scyphophorus acupunctatus, Sitona lineatus, Sitophilus spp. such as S. granaria, S. oryzae, S. zeamais; Sphenophorus spp. such as S. levis; Stegobium paniceum, Sternechus spp. such as S. subsignatus; Strophomorphus ctenotus, Symphyletes spp., Tanymecus spp., Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp. such as T.
- Aedes spp. such as A. aegypti, A. albopictus, A. vexans; Anastrepha ludens, Anopheles spp. such as A. albimanus, A. crucians, A. freebomi, A. gambiae, A. leucosphyrus, A. maculipennis, A. minimus, A. quadrimaculatus, A.
- G. fuscipes such as G. fuscipes, G. morsitans, G. palpalis, G. tachinoides
- Haematobia irritans Haplodiplosis equestris, Hippelates spp., Hylemyia spp. such as H. platura
- Hypoderma spp. such as H. lineata
- Hyppobosca spp. Hydrellia philippina, Leptoconops torrens, Liriomyza spp. such as L. sativae, L. trifolli
- Lucilia spp. such as L. caprina, L. cuprina, L.
- Heliothrips spp. Hercinothrips femoralis, Kakothrips spp., Microcephalothrips abdominalis, Neohydatothrips samayunkur, Pezothrips kellyanus, Rhipiphorothrips cruentatus, Scirtothrips spp. such as S. citri, S. dorsalis, S. perseae; Stenchaetothrips spp, Taeniothrips cardamoni, Taeniothrips inconsequens, Thrips spp. such as T. imagines, T. hawaiiensis, T. oryzae, T.
- Diaspis spp. such as D. bromeliae; Dichelops furcatus, Diconocoris hewetti, Doralis spp., Dreyfusia nordmannianae, Dreyfusia piceae, Drosicha spp., Dysaphis spp. such as D. plantaginea, D. pyri, D. radicola; Dysaulacorthum pseudosolani, Dysdercus spp. such as D. cingulatus, D. intermedius; Dysmicoccus spp., Edessa spp, Geocoris spp, Empoasca spp. such as E. fabae, E.
- Idiocerus spp. Idioscopus spp., Laodelphax striatellus, Lecanium spp., Lecanoideus floccissimus, Lepidosaphes spp. such as L. ulmi; Leptocorisa spp., Leptoglossus phyllopus, Lipaphis erysimi, Lygus spp. such as L. hesperus, L. lineolaris, L.
- Nezara spp. such as N. viridula; Nilaparvatalugens, Nysius huttoni, Oebalus spp. such as O.
- Pteromalus spp. Pulvinaria amygdali, Pyrilla spp., Quadraspidiotus spp., such as Q. perniciosus; Quesada gigas, Rastrococcus spp., Reduvius senilis, Rhizoecus americanus, Rhodnius spp., Rhopalomyzus ascalonicus, Rhopalosiphum spp. such as R. pseudobrassicas, R. insertum, R. maidis, R.
- T. accerra, T. perditor Tibraca spp., Tomaspis spp., Toxoptera spp. such as T. aurantii; Trialeurodes spp. such as T. abutilonea, T. ricini, T. vaporariorum; Triatoma spp., Trioza spp., Typhlocyba spp., Unaspis spp. such as U. citri, U. yanonensis ; and Viteus vitifolii, Insects from the order Hymenoptera for example Acanthomyops interjectus, Athalia rosae, Atta spp such as A. capiguara, A.
- cephalotes such as C. floridanus, C. pennsylvanicus, C. modoc; Cardiocondyla nuda, Chalibion sp, Crematogaster spp., Dasymutilla occidentalis, Diprion spp., Dolichovespula maculata, Dorymyrmex spp, Dryocosmus kuriphilus, Formica spp, Hoplocampa spp. such as H. minuta, H.
- testudinea Iridomyrmex humilis, Lasius spp. such as L. niger, Linepithema humile, Liometopum spp, Leptocybe invasa, Monomorium spp such as M. pharaonis, Monomorium, Nylandria fulva, Pachycondyla chinensis, Paratrechina longicornis, Paravespula spp such as P. germanica, P. pennsylvanica, P. vulgaris; Pheidole spp such as P. megacephala; Pogonomyrmex spp such as P. barbatus, P.
- califomicus Polistes rubiginosa, Prenolepis impairs, Pseudomyrmex gracilis, Schelipron spp, Sirex cyaneus, Solenopsis spp such as S. geminata, S. invicta, S. molesta, S. richteri, S. xyloni, Sphecius speciosus, Sphex spp, Tapinoma spp such as T. melanocephalum, T. sessile; Tetramorium spp such as T. caespitum, T. bicarinatum, Vespa spp. such as V. crabro; Vespula spp such as V.
- Argas spp. such as A. persicu
- Boophilus spp. such as B. annulatus, B. decoloratus, B. microplus, Dermacentor spp such as D. silvarum, D. andersoni, D. variabilis, Hyalomma spp. such as H. truncatum
- Ixodes spp. such as I. ricinus, I. rubicundus, I. scapularis, I. holocyclus, I. pacificus, Rhipicephalus sanguineus, Ornithodorus spp. such as O. moubata, O. hermsi, O.
- Tetranychidae including Eotetranychus spp., Eutetranychus spp., Oligonychus spp., Petrobia latens, Tetranychus spp such as T. cinnabarinus, T. evansi, T. kanzawai, T, pacificus, T. phaseulus, T. telarius and T. urticae; Bryobia praetiosa; Panonychus spp. such as P. ulmi, P. citri, Metatetranychus spp. and Oligonychus spp. such as O. pratensis, O.
- Pests from the Phylum Nematoda for example, plant parasitic nematodes such as rootknot nematodes, Meloidogyne spp. such as M. hapla, M. incognita, M. javanica ; cyst-forming nematodes, Globodera spp. such as G. rostochiensis; Heterodera spp. such as H. avenae, H. glycines, H. schachtii, H. trifolii ; Seed gall nematodes, Anguina spp.; Stem and foliar nematodes, Aphelenchoides spp. such as A.
- plant parasitic nematodes such as rootknot nematodes, Meloidogyne spp. such as M. hapla, M. incognita, M. javanica ; cyst-forming nematodes, Globodera spp. such as G.
- Criconemoides spp. such as Criconemoides informis; Mesocriconema spp.; Stem and bulb nematodes, Ditylenchus spp. such as D. destructor, D.
- Awl nematodes Dolichodorus spp.
- Spiral nematodes Heliocotylenchus multicinctus
- Sheath and sheathoid nematodes Hemicycliophora spp. and Hemicriconemoides spp.
- Hirshmanniella spp. Lance nematodes, Hoploaimus spp.
- False rootknot nematodes Nacobbus spp.
- Needle nematodes Longidorus spp. such as L. elongatus
- Lesion nematodes Pratylenchus spp. such as P.
- brachyurus P. neglectus, P. penetrans, P. curvitatus, P. goodeyi ; Burrowing nematodes, Radopholus spp. such as R. similis; Rhadopholus spp.; Rhodopholus spp.; Reniform nematodes, Rotylenchus spp. such as R. robustus, R. reniformis; Scutellonema spp.; Stubby-root nematode, Trichodorus spp. such as T. obtusus, T. primitivus; Paratrichodorus spp. such as P.
- speratus R. flavipes, R. grassei, R. lucifugus, R. santonensis, R. virginicus; Termes natalensis, Insects from the order Blattaria for example Blatta spp such as B. orientalis, B. lateralis; Blattella spp such as B. asahinae, B. germanica; Leucophaea maderae, Panchlora nivea, Periplaneta spp such as P. americana, P. australasiae, P. brunnea, P. fuligginosa, P.
- Pests from the class Chilopoda for example Geophilus spp., Scutigera spp. such as Scutigera coleoptrata
- Pests from the class Diplopoda for example Blaniulus guttulatus, Julus spp, Narceus spp.
- Pests from the class Symphyla for example Scutigerella immaculata.
- Insects from the order Dermaptera for example Forficula auricularia
- Insects from the order Collembola for example Onychiurus spp. such as Onychiurus armatus.
- Pests from the order Isopoda for example, Armadillidium vulgare, Oniscus asellus, Porcellio scaber.
- Insects from the order Phthiraptera for example Damalinia spp., Pediculus spp. such as Pediculus humanus capitis, Pediculus humanus corporis, Pediculus humanus humanus humanus; Pthirus pubis, Haematopinus spp.
- Examples of further pest species which may be controlled by compounds of formula (I) include: from the Phylum Mollusca, class Bivalvia, for example, Dreissena spp.; class Gastropoda, for example, Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea canaliclata, Succinea spp.; from the class of the helminths, for example, Ancylostoma duodenale, Ancylostoma ceylan
- the mixtures according to the present invention can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules.
- the use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compounds according to the invention.
- the invention also relates to agrochemical compositions comprising an auxiliary and a mixture of at least one compound I of formula I and of at least one compound II (and optionally one compound III) according to the present invention.
- An agrochemical composition comprises a pesticidally effective amount of a compound I.
- the term “effective amount” denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi and/or harmful pests on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species and/or the pest species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used.
- compositions e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
- composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g.
- compositions types are defined in the “Catalogue of pesticide formulation types and international coding system”, Technical Monograph No. 2, 6th Ed. May 2008, CropLife International.
- compositions are prepared in a known manner, such as described by Mollet and Grube-mann, Formulation technology, Wiley V C H, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
- Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
- Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g.
- mineral oil fractions of medium to high boiling point e.g. kerosene, diesel oil
- oils of vegetable or animal origin oils of vegetable or animal origin
- aliphatic, cyclic and aromatic hydrocarbons e. g. toluene, paraffin, tetrahydronaphthalene, alkylated
- lactates carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
- Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, lime-stone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
- mineral earths e.g. silicates, silica gels, talc, kaolins, lime-stone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide
- polysaccharides e.g. cellulose, starch
- Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol. 1: Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
- Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof.
- sulfonates are alkylaryl-sulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyl naphthalenes, sulfosuccinates or sulfosuccinamates.
- Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters.
- Examples of phosphates are phosphate esters.
- Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
- Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof.
- alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents.
- Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.
- N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
- esters are fatty acid esters, glycerol esters or monoglycerides.
- sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides.
- polymeric surfactants are home- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate.
- Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines.
- Suitable amphoteric surfactants are alkylbetains and imidazolines.
- Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide.
- Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines.
- Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target.
- examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
- Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
- Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.
- Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
- Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
- Suitable colorants are pigments of low water solubility and water-soluble dyes.
- examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).
- Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
- the agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance.
- the active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
- Solutions for seed treamtent (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds.
- the compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations. Application can be carried out before or during sowing.
- Methods for applying compound I and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material.
- compound I or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
- the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha.
- amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required.
- the amount for seed treatment may be up to 100 kilogram per 100 kilogram of seeds, or may even excess the seed weight.
- the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
- oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix).
- pesticides e.g. herbicides, insecticides, fungicides, growth regulators, safeners
- These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.
- the user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
- the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
- 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
- composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
- either individual components of the composition according to the invention or partially premixed components e. g. components comprising active compound I and active compounds II (and optionally active compounds III) may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate.
- composition according to the invention can be applied jointly (e.g. after tank mix) or consecutively.
- the compound I and the one or more compound(s) II (and optionally compounds III) can be applied simultaneously, that is jointly or separately, or in succession, that is immediately one after another and thereby creating the mixture “in-situ” on the desired location, as e.g. the plant, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
- the mixtures of the present invention are employed as such or in form of compositions by treating the insects, the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from insecticidal attack with a pesticidally effective amount of the active compounds.
- the application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the insects.
- the present invention also includes a method of combating animal pests and harmful fungi which comprises contacting the fungi and/or animal pests, their habit, breeding ground, food supply, cultivated plants, seed, soil, area, material or environment in which the animal pests are growing or may grow, or the materials, plants, seeds, soils, surfaces or spaces to be protected from animal attack or infestation with a pesticidally effective amount of a mixture according to the present invention.
- Plants which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.
- Some of the inventive mixtures have systemic action and can therefore be used for the protection of the plant shoot against foliar pests as well as for the treatment of the seed and roots against soil pests.
- the mixtures of compound I and II, or their corresponding formulations are applied by treating the harmful fungi and the animal pests, their habitat or the plants, seeds, soils, areas, materials or spaces to be kept free from them with a pesticidally effective amount of the mixture or, in the case of separate application, of the compound I and II.
- Application can be before or after the infection by harmful fungi and/or animal pests.
- the compound I and the one or more compound(s) II are usually applied in a weight ratio of from 500:1 to 1:100, preferably from 20:1 to 1:50, in particular from 5:1 to 1:20.
- the application rates of the mixtures according to the invention are from 5 g/ha to 2000 g/ha, preferably from 50 to 1500 g/ha, in particular from 50 to 750 g/ha.
- “synergistically effective amount” means that the one active compound I and the one or more active compound(s) II are usually applied in a weight ratio of from 500:1 to 1:100, preferably from 20:1 to 1:50, in particular from 5:1 to 1:20. Depending on the nature of the compounds the employed weight ratio of compound I and compound(s) II ranges can start from 100:1 to 1:100, preferably from 20:1 to 1:20, in particular from 10:1 to 1:10.
- the mixtures according to the invention are effective through both contact and ingestion.
- the mixtures according to the present invention are employed via soil application.
- Soil application is especially favorable for use against ants, termites, crickets, or cockroaches.
- the mixtures according to the present invention are prepared into a bait preparation.
- the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
- Another aspect of the present invention is when preparing the mixtures, it is preferred to employ the pure active compound I and II, to which further active compounds, e.g. against harmful fungi or having herbicidal activity, or growth-regulating agents or fertilizers can be added.
- compositions of this invention may further contain other active ingredients than those listed above.
- active ingredients for example fungicides, herbicides, fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners.
- additional ingredients may be used sequentially or in combination with the above-described compositions, if appropriate also added only immediately prior to use (tank mix).
- the plant(s) may be sprayed with a composition of this invention either before or after being treated with other active ingredients.
- the mixtures according to the invention can be applied to any and all developmental stages, such as egg, larva, pupa, and adult.
- the pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.
- Locus means a plant, seed, soil, area, material or environment in which a pest is growing or may grow.
- pesticidally effective amount means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism.
- the pesticidally effective amount can vary for the various mixtures and/or compositions used in the invention.
- a pesticidally effective amount of the mixtures and/or compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
- inventive mixtures or compositions of these mixtures can also be employed for protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting a plant, or soil or water in which the plant is growing.
- the inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through trophallaxis and transfer.
- Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.
- inventive mixtures and the compositions comprising them can be used for protecting wood-en materials such as trees, board fences, sleepers, etc. and buildings such as houses, out-houses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc.
- the quantity of active ingredient(s) ranges from 0.0001 to 500 g per 100 m 2 , preferably from 0.001 to 20 g per 100 m 2 .
- Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound(s) per m 2 treated material, desirably from 0.1 g to 50 g per m 2 .
- the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
- the rate of application of the mixture of the active ingredients of this invention may be in the range of 0.1 g to 4000 g per hectare, desirably from 25 g to 600 g per hectare, more desirably from 50 g to 500 g per hectare.
- the method of treatment according to the invention can also be used in the field of protecting stored products or harvest against attack of animal pests, fungi and microorganisms.
- stored products is understood to denote natural substances of plant or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired.
- Stored products of crop plant origin such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment.
- stored products are timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood.
- Stored products of animal origin are hides, leather, furs, hairs and the like.
- the combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold.
- stored products is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.
- the term plant refers to an entire plant, a part of the plant or the plant propagation material.
- mixtures of the present invention and the compositions comprising them are particularly important in the control of a multitude of insects on various cultivated plants.
- Plants which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.
- plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants. Seedlings and young plants, which are to be transplanted after germination or after emergence from soil, may also be mentioned. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
- cultivadas plants is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering.
- Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot be obtained by cross breeding, mutations or natural recombination.
- one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.
- cultiva plants is to be understood also including plants that have been rendered tolerant to applications of specific classes of herbicides, such as hydroxy-phenylpyruvate dioxygenase (HPPD) inhibitors; acetolactate synthase (ALS) inhibitors, such as sulfonyl ureas (see e. g. U.S. Pat. No.
- HPPD hydroxy-phenylpyruvate dioxygenase
- ALS acetolactate synthase
- sulfonyl ureas see e. g. U.S. Pat. No.
- EPSPS enolpyruvylshikimate-3-phosphate synthase
- GS glutamine synthetase
- EP-A-0242236, EP-A-242246) or oxynil herbicides see e. g. U.S. Pat. No. 5,559,024) as a result of conventional methods of breeding or genetic engineering.
- mutagenesis for example Clearfield® summer rape (Canola) being tolerant to imidazolinones, e. g. imazamox.
- cultiva plants is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus , particularly from Bacillus thuringiensis , such as ä-endotoxins, e. g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, for example Photorhabdus spp.
- VIP vegetative insecticidal proteins
- toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins
- toxins produced by fungi such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins
- proteinase inhibitors such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors
- ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
- steroid metabolism enzymes such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase
- ion channel blockers such as blockers of sodium or calcium channels
- these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins.
- Hybrid proteins are characterized by a new combination of protein domains, (see, for example WO 02/015701).
- Further examples of such toxins or genetically-modified plants capable of synthesizing such toxins are dis-closed, for example, in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/018810 and WO 03/052073.
- the methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
- insects especially to beetles (Coeloptera), two-winged insects (Diptera), and butter-flies ( Lepidoptera ).
- cultivars are to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to in-crease the resistance or tolerance of those plants to bacterial, viral or fungal pathogens.
- proteins are the so-called “pathogenesis-related proteins” (PR proteins, see, for example EP-A 0 392 225), plant disease resistance genes (for example potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum) or T4-lyso-zym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora).
- PR proteins pathogenesis-related proteins
- plant disease resistance genes for example potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum
- T4-lyso-zym e. g. potato
- cultiva plants is to be understood also including plants that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environ-mental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
- cultivación plants is to be understood also including plants that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, for ex-ample oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nex-era® rape).
- cultiva plants is to be understood also including plants that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, for example potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato).
- Some of the inventive mixtures have systemic action and can therefore be used for the protection of the plant shoot against foliar pests as well as for the treatment of the seed and roots against soil pests.
- mixtures according to the present invention are therefore suitable for the treatment of seeds in order to protect the seed from insect pest, in particular from soil-living insect pests and the resulting plant's roots and shoots against soil pests and foliar insects.
- More preferred is the protection of resulting plant's shoots from piercing and sucking insects.
- the present invention therefore comprises a method for the protection of seeds from insects, in particular from soil insects and of the seedlings' roots and shoots from insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with mixtures according to the present invention.
- a method wherein the plant's roots and shoots are protected, more preferably a method, wherein the plants shoots are protected form piercing and sucking insects, most preferably a method, wherein the plants shoots are protected from aphids.
- seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
- seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
- the present invention also comprises seeds coated with or containing the active compound(s).
- coated with and/or containing generally signifies that the active ingredient(s) are for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product are (re)planted, it may absorb the active ingredient.
- Suitable seeds are seeds of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize/sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
- the mixtures according to the invention may also be used for the treatment seeds from plants, which tolerate the action of herbicides or fungicides or insecticides owing to breeding
- the active mixtures can be employed in treatment of seeds from plants, which are resistant to herbicides from the group consisting of the sulfonylureas, imidazolinones, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active substances (see for example, EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat. No. 5,013,659) or in transgenic crop plants, for example cotton, with the capability of producing Bacillus thuringiensis toxins (Bt toxins) which make the plants resistant to certain pests (EP-A-0142924, EP-A-0193259),
- the mixtures according to the present invention can be used also for the treatment of seeds from plants, which have modified characteristics in comparison with existing plants consist, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures).
- a number of cases have been described of recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/11376, WO 92/14827, WO 91/19806) or of transgenic crop plants having a modified fatty acid composition (WO 91/13972).
- the seed treatment application of the mixtures is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
- the corresponding formulations are applied by treating the seeds with an effective amount of the mixture according to the present invention.
- the application rates of the active compound(s) are generally from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 2.5 kg per 100 kg of seed. For specific crops such as lettuce the rate can be higher. Also in some other cases the amount for seed treatment may be up to 100 kilogram of the active compound(s) per 100 kilogram of seeds, or may even excess the seed weight.
- compositions which are especially useful for seed treatment are e.g.:
- a Soluble concentrates (SL, LS)
- Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pregerminated the latter
- a FS formulation is used for seed treatment.
- a FS formulation may comprise 1-800 g/l of active ingredient(s), 1-200 g/I Surfactant, 0 to 200 g/I antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
- Preferred FS formulations of compounds of formula I for seed treatment usually comprise from 0.1 to 80% by weight (1 to 800 g/1) of the active ingredient(s), from 0.1 to 20% by weight (1 to 200 g/1) of at least one surfactant, e.g. 0.05 to 5% by weight of a wetter and from 0.5 to 15% by weight of a dispersing agent, up to 20% by weight, e.g. from 5 to 20% of an anti-freeze agent, from 0 to 15% by weight, e.g. 1 to 15% by weight of a pigment and/or a dye, from 0 to 40% by weight, e.g.
- a binder optionally up to 5% by weight, e.g. from 0.1 to 5% by weight of a thickener, optionally from 0.1 to 2% of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1% by weight and a filler/vehicle up to 100% by weight.
- Seed Treatment formulations may additionally also comprise binders and optionally colorants.
- Binders can be added to improve the adhesion of the active materials on the seeds after treatment.
- Suitable binders are block copolymers EO/PO surfactants but also polyvinylalcoholsl, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polybutenes, polyisobutylenes, polystyrene, polyethyleneamines, polyethyleneamides, polyethyleneimines (Lupasol®, Polymin®), polyethers, polyurethans, polyvinylacetate, tylose and copolymers derived from these polymers.
- colorants can be included in the formulation.
- Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 112, C.I. Solvent Red 1, pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1, pigment red 57:1, pigment red 53:1, pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
- the invention also relates to seed comprising mixtures according to the present invention.
- the amount of the compound I or the agriculturally useful salt thereof will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
- Synergism can be described as an interaction where the combined effect of two or more compounds is greater than the sum of the individual effects of each of the compounds.
- the presence of a synergistic effect in terms of percent control, between two mixing partners (X and Y) can be calculated using the Colby equation (Colby, S. R., 1967, Calculating Synergistic and Antagonistic Responses in Herbicide Combinations, Weeds, 15, 20-22):
- the active compounds were formulated separately as a stock solution having a concentration of 10,000 ppm in dimethyl sulfoxide.
- the stock solutions were mixed according to the indicated ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Pyricularia oryzae in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation. The results are given in table B.1.1 hereinbelow.
- the stock solutions were mixed according to the indicated ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Septoria tritici in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18° C.
- the MTPs were measured at 405 nm 7 days after the inoculation. The results are given in table B.1.2 hereinbelow.
- the stock solutions were mixed according to the indicated ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Alternaria solani in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18° C.
- the MTPs were measured at 405 nm 7 days after the inoculation. The results are given in table B.1.3 hereinbelow.
- the stock solutions were mixed according to the indicated ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Leptosphaeria nodorum in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation. The results are given in table B.1.4 hereinbelow.
- the stock solutions were mixed according to the indicated ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Microdochium nivale in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18° C.
- the MTPs were measured at 405 nm 7 days after the inoculation. The results are given in table B.1.5 hereinbelow.
- the stock solutions were mixed according to the indicated ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Rhizoctonia solani in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18° C.
- the MTPs were measured at 405 nm 7 days after the inoculation. The results are given in table B.1.6 hereinbelow.
- the stock solutions were mixed according to the indicated ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Pyrenophora teres in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
- the plates were placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation. The results are given in table B.1.7 hereinbelow.
- the measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.
- the following further test systems may also be used to demonstrate and evaluate the fungicidal action of compounds, mixtures or compositions of this invention on specific fungi.
- the fungicidal control protection afforded by the compounds, mixtures or compositions is not limited to these fungi.
- combinations of a compound of this invention with other fungicidal compounds or agents are found to exhibit synergistic effects against certain important fungi.
- the active substances are formulated separately as a stock solution in dimethyl sulfoxide (DMSO) at a concentration of 10 000 ppm.
- DMSO dimethyl sulfoxide
- the measured parameters are to be compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds. These percentages are then converted into efficacies.
- the stock solutions are mixed according to the desired ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Botrci cinerea in an aqueous biomalt solution is added.
- the plates are placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs are measured at 405 nm 7 days after the inoculation.
- the stock solutions are mixed according to the desired ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Septoria glycines in an aqueous biomalt solution is added.
- the plates are placed in a water vapor-saturated chamber at a temperature of 18° C.
- the MTPs are measured at 405 nm 7 days after the inoculation.
- the stock solutions are mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
- MTP micro titer plate
- a spore suspension of Colleotrichum truncatum in an aqueous biomalt solution is added.
- the plates are placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs are measured at 405 nm 7 days after the inoculation.
- Leaves of pot-grown rice seedlings are sprayed to run-off with an aqueous suspension containing a certain concentration of active ingredients prepared from a stock solution.
- the plants are allowed to air-dry.
- the plants are inoculated with an aqueous spore suspension of Cochliobolus miyabeanus .
- the trial plants are immediately to be transferred to a humid chamber. After 6 days at 22-24° C. and a relative humidity close to 100% the extent of fungal attack on the leaves is visually assessed as % diseased leaf area.
- the measured parameters of the fungicidal tests are to be compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds. These percentages are to be converted into efficacies.
- An efficacy of 0 means that the growth level of the pathogens corresponds to that of the untreated control; an efficacy of 100 means that the pathogens are not growing.
- test unit For evaluating e.g. the control of vetch aphid ( Megoura viciae ) through contact or systemic means the test unit consists of 24-well-microtiter plates containing broad bean leaf disks.
- the compounds or mixtures are formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures are sprayed onto the leaf disks at 2.5 ⁇ l, using a custom built micro atomizer, at two replications.
- the leaf disks are air-dried and 5-8 adult aphids placed on the leaf disks inside the microtiter plate wells. The aphids are then allowed to suck on the treated leaf disks and incubated at about 23 ⁇ 1° C. and about 50 ⁇ 5% RH (relative humidity) for 5 days. Aphid mortality and fecundity is visually assessed.
- test unit For evaluating e.g. the control of bird cherry aphid ( Rhopalosiphum path) through contact or systemic means the test unit consists of 96-well-microtiter plates containing barley leaf disks.
- the compounds or mixtures are formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures are sprayed onto the leaf disks at 2.5 ⁇ l, using a custom built micro atomizer, at two replications.
- the leaf disks are air-dried and 5-8 adult aphids placed on the leaf disks inside the microtiter plate wells. The aphids are then allowed to suck on the treated leaf disks and incubated at about 25 ⁇ 1° C. and about 80 ⁇ 5% RH for 3 to 5 days. Aphid mortality and fecundity is visually assessed.
- test unit For evaluating e.g. the control of green peach aphid ( Myzus persicae ) through systemic means the test unit consists of 96-well-microtiter plates containing liquid artificial diet under an artificial membrane.
- the compounds or mixtures are formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures are pipetted into the aphid diet, using a custom built pipetter, at two replications.
- aphids After application, 5-8 adult aphids are placed on the artificial membrane inside the microtiter plate wells. The aphids are then allowed to suck on the treated aphid diet and incubated at about 23 ⁇ 1° C. and about 50 ⁇ 5% RH for 3 days. Aphid mortality and fecundity is visually assessed.
- test unit For evaluating e.g. control of boll weevil ( Anthonomus grandis ) the test unit consists of 24-well-microtiter plates containing an insect diet and 20-30 A. grandis eggs.
- the compounds or mixtures are formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures are sprayed onto the insect diet at 20 ⁇ l, using a custom built micro atomizer, at two replications.
- microtiter plates are incubated at about 23 ⁇ 1° C. and about 50 ⁇ 5% RH for 5 days. Egg and larval mortality is visually assessed.
- test unit For evaluating e.g. control of Mediterranean fruitfly ( Ceratitis capitata ) the test unit consists of 96-well-microtiter plates containing an insect diet and 50-80 C. capitata eggs.
- the compounds or mixtures are formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures are sprayed onto the insect diet at 5 ⁇ l, using a custom built micro atomizer, at two replications.
- microtiter plates are incubated at about 28 ⁇ 1° C. and about 80 ⁇ 5% RH for 5 days. Egg and larval mortality is then visually assessed.
- test unit For evaluating e.g. control of tobacco budworm ( Heliothis virescens ) the test unit consists of 96-well-microtiter plates containing an insect diet and 15-25 H. virescens eggs.
- the compounds or mixtures are formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures are sprayed onto the insect diet at 10 ⁇ l, using a custom built micro atomizer, at two replications.
- microtiter plates are incubated at about 28 ⁇ 1° C. and about 80 ⁇ 5% RH for 5 days. Egg and larval mortality is visually assessed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Wood Science & Technology (AREA)
- Dentistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Soil Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pretreatment Of Seeds And Plants (AREA)
- Catching Or Destruction (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/029,908 US20160227772A1 (en) | 2013-10-18 | 2014-10-16 | Agricultural mixtures comprising carboxamide compound |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361892511P | 2013-10-18 | 2013-10-18 | |
US201361906440P | 2013-11-20 | 2013-11-20 | |
PCT/EP2014/072189 WO2015055755A1 (en) | 2013-10-18 | 2014-10-16 | Agricultural mixtures comprising carboxamide compound |
US15/029,908 US20160227772A1 (en) | 2013-10-18 | 2014-10-16 | Agricultural mixtures comprising carboxamide compound |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/072189 A-371-Of-International WO2015055755A1 (en) | 2013-10-18 | 2014-10-16 | Agricultural mixtures comprising carboxamide compound |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/839,528 Continuation US10897897B2 (en) | 2013-10-18 | 2017-12-12 | Agricultural mixtures comprising carboxamide compound |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160227772A1 true US20160227772A1 (en) | 2016-08-11 |
Family
ID=51786937
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/029,908 Abandoned US20160227772A1 (en) | 2013-10-18 | 2014-10-16 | Agricultural mixtures comprising carboxamide compound |
US15/839,528 Active US10897897B2 (en) | 2013-10-18 | 2017-12-12 | Agricultural mixtures comprising carboxamide compound |
US17/127,208 Active 2035-11-12 US11882827B2 (en) | 2013-10-18 | 2020-12-18 | Agricultural mixtures comprising carboxamide compound |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/839,528 Active US10897897B2 (en) | 2013-10-18 | 2017-12-12 | Agricultural mixtures comprising carboxamide compound |
US17/127,208 Active 2035-11-12 US11882827B2 (en) | 2013-10-18 | 2020-12-18 | Agricultural mixtures comprising carboxamide compound |
Country Status (14)
Country | Link |
---|---|
US (3) | US20160227772A1 (zh) |
EP (2) | EP3942933A1 (zh) |
JP (1) | JP6644679B2 (zh) |
KR (2) | KR102310373B1 (zh) |
CN (2) | CN113367135A (zh) |
AU (3) | AU2014336138B2 (zh) |
BR (1) | BR112016008525B1 (zh) |
CA (2) | CA2927454C (zh) |
EA (1) | EA201600328A1 (zh) |
IL (3) | IL245129A0 (zh) |
MX (2) | MX2016005027A (zh) |
RS (1) | RS62537B1 (zh) |
WO (1) | WO2015055755A1 (zh) |
ZA (1) | ZA201603213B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018152411A1 (en) * | 2017-02-17 | 2018-08-23 | Bayer Cropscience Lp | Compositions comprising recombinant bacillus cells and an insecticide |
US10743535B2 (en) | 2017-08-18 | 2020-08-18 | H&K Solutions Llc | Insecticide for flight-capable pests |
US20220295790A1 (en) * | 2019-06-15 | 2022-09-22 | Jdm Scientific Research Organisation Private Limited | Synergistic fungicidal composition |
US11882827B2 (en) | 2013-10-18 | 2024-01-30 | Basf Agrochemical Products B.V. | Agricultural mixtures comprising carboxamide compound |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3766347A3 (en) | 2013-10-18 | 2021-03-31 | BASF Agrochemical Products B.V. | Insecticidal active mixtures comprising carboxamide compound |
ES2715660T3 (es) | 2013-10-18 | 2019-06-05 | Basf Agrochemical Products Bv | Uso de un derivado de carboxamida activo como pesticida en el suelo y métodos de aplicación y tratamiento de semillas |
CN105685034A (zh) * | 2014-11-26 | 2016-06-22 | 三井化学Agro株式会社 | 有害生物防除混合组合物 |
US10701937B2 (en) | 2015-02-11 | 2020-07-07 | Basf Se | Pesticidal mixture comprising a pyrazole compound, an insecticide and a fungicide |
US11219211B2 (en) | 2015-03-11 | 2022-01-11 | Basf Agrochemical Products B.V. | Pesticidal mixture comprising a carboxamide compound and a biopesticide |
CA2980505A1 (en) | 2015-04-07 | 2016-10-13 | Basf Agrochemical Products B.V. | Use of an insecticidal carboxamide compound against pests on cultivated plants |
MX2017013395A (es) | 2015-04-17 | 2018-06-13 | Basf Agrochemical Products Bv | Metodo para controlar plagas que no son de cultivos. |
JP6752210B2 (ja) * | 2015-10-09 | 2020-09-09 | 日本曹達株式会社 | 農園芸用殺菌剤組成物 |
CN113303339A (zh) * | 2015-11-30 | 2021-08-27 | 巴斯夫欧洲公司 | 顺式-茉莉酮和解淀粉芽孢杆菌的混合物 |
WO2018194144A1 (ja) * | 2017-04-19 | 2018-10-25 | 三井化学アグロ株式会社 | 木材保存用組成物及び木材保存処理方法 |
KR101889425B1 (ko) * | 2017-06-01 | 2018-08-20 | 대한민국 | 초음파 약제 처리를 이용한 화훼류의 잿빛곰팡이병 억제 방법 |
WO2019158408A1 (en) | 2018-02-13 | 2019-08-22 | Basf Agrochemical Products B.V. | Crystalline forms of broflanilide |
EP3772960A1 (de) * | 2018-04-13 | 2021-02-17 | Bayer Aktiengesellschaft | Wirkstoffkombinationen mit insektiziden, nematiziden und akariziden eigenschaften |
CN110226386A (zh) * | 2018-11-08 | 2019-09-13 | 河西学院 | 一种沙米种子营养丸粒及丸粒化制备工艺 |
CN109699236A (zh) * | 2018-12-20 | 2019-05-03 | 河西学院 | 一种锁阳种子颗粒及其制备方法 |
CN111374132A (zh) * | 2018-12-27 | 2020-07-07 | 江苏龙灯化学有限公司 | 一种杀虫组合物 |
CN110226387A (zh) * | 2019-03-01 | 2019-09-13 | 河西学院 | 一种速萌肉苁蓉种子颗粒及其制备工艺 |
CN110226384B (zh) * | 2019-03-01 | 2024-05-17 | 河西学院 | 一种速萌肉苁蓉种子毯及其制备工艺 |
ES2978668T3 (es) * | 2019-04-19 | 2024-09-17 | Kureha Corp | Agente fungicida para uso agrícola u hortícola, método de control de enfermedades de las plantas, y producto para el uso en el control de enfermedades de las plantas |
CN110373399B (zh) * | 2019-07-09 | 2021-05-28 | 湖南省植物保护研究所 | 一种沼泽红假单胞菌Atps2蛋白及其制备方法和应用 |
TW202112237A (zh) * | 2019-09-17 | 2021-04-01 | 美商陶氏農業科學公司 | 殺線蟲組成物 |
CN110558333A (zh) * | 2019-09-24 | 2019-12-13 | 重庆谷百奥生物研究院有限公司 | 金龟子绿僵菌和氰氟虫腙杀斜纹夜蛾的组合物 |
CN112568224B (zh) * | 2019-09-27 | 2024-04-16 | 青岛奥迪斯生物科技有限公司 | 一种含溴虫氟苯双酰胺与丁醚脲的杀虫组合物 |
CN112400908B (zh) * | 2020-11-27 | 2021-08-20 | 中国热带农业科学院椰子研究所 | 一种防治二疣犀甲的药剂组合物 |
CN116669555A (zh) | 2020-12-17 | 2023-08-29 | 巴斯夫欧洲公司 | 孢子组合物、其生产和用途 |
CN112841209A (zh) * | 2021-01-26 | 2021-05-28 | 安徽辉隆集团银山药业有限责任公司 | 一种包含三氟苯嘧啶和溴虫氟苯双酰胺的组合物及其应用 |
CN113956986B (zh) * | 2021-09-18 | 2023-10-20 | 西南大学 | 提高昆虫生防真菌生长、产孢能力和提高毒力的方法 |
MX2024007123A (es) | 2021-12-16 | 2024-06-24 | United Ind Corporation | Pesticidas de barrera y de derribo listos para usarse. |
CN115606595A (zh) * | 2022-10-14 | 2023-01-17 | 深圳诺普信农化股份有限公司 | 一种农药组合物及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030224936A1 (en) * | 1999-03-13 | 2003-12-04 | Gerhard Kretzschmar | Seed treatment composition |
US20110137068A1 (en) * | 2008-08-13 | 2011-06-09 | Mitsui Chemicals Agro, Inc. | Method for producing amide derivative |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10136065A1 (de) * | 2001-07-25 | 2003-02-13 | Bayer Cropscience Ag | Pyrazolylcarboxanilide |
JP4511191B2 (ja) * | 2002-03-05 | 2010-07-28 | シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト | O−シクロプロピル−カルボキサニリド及びそれらの殺真菌剤としての使用 |
KR100853967B1 (ko) * | 2002-08-12 | 2008-08-25 | 바이엘 크롭사이언스 소시에떼아노님 | 신규한 2-피리딜에틸벤즈아미드 유도체 |
DE10349501A1 (de) * | 2003-10-23 | 2005-05-25 | Bayer Cropscience Ag | Synergistische fungizide Wirkstoffkombinationen |
CN101367748B (zh) | 2004-01-28 | 2014-03-12 | 三井化学株式会社 | 酰胺衍生物及其制备方法和作为杀虫剂的使用方法 |
DE102004045242A1 (de) * | 2004-09-17 | 2006-03-23 | Bayer Cropscience Ag | Synergistische fungizide Wirkstoffkombinationen |
DE102005007160A1 (de) | 2005-02-16 | 2006-08-24 | Basf Ag | Pyrazolcarbonsäureanilide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen |
JP4676984B2 (ja) | 2005-07-27 | 2011-04-27 | 三井化学アグロ株式会社 | 有害生物防除組成物 |
PL1912503T3 (pl) | 2005-08-05 | 2014-12-31 | Basf Se | Mieszaniny grzybobójcze zawierające podstawione anilidy kwasu 1-metylopirazol-4-ilokarboksylowego |
CL2007001253A1 (es) | 2006-05-03 | 2008-01-25 | Basf Ag | Metodo para proteger plantas despues de la germinacion contra el ataque de hongos fitopatogenos foliares que comprende tratar semillas con una cantidad efectiva de al menos una bifenilamida de acido arilcarboxilico; y formulacion que comprende por lo menos una bifenilamida de acido carboxilico y por lo menos un agente auxiliar. |
EP2000029A1 (de) * | 2007-06-06 | 2008-12-10 | Bayer CropScience AG | Insektizide und fungizide Wirkstoffkombinationen |
US8686044B2 (en) * | 2008-08-13 | 2014-04-01 | Mitsui Chemicals Agro, Inc. | Amide derivative, pest control agent containing the amide derivative, and use of the amide derivative |
AU2009280679B2 (en) | 2008-08-13 | 2012-07-26 | Mitsui Chemicals Crop & Life Solutions, Inc. | Amide derivative, pest control agent containing the amide derivative and use of the pest control agent |
NZ594165A (en) * | 2008-12-25 | 2013-10-25 | Sds Biotech Corp | Wood preservative and wood processing method |
JP2011157296A (ja) * | 2010-01-29 | 2011-08-18 | Mitsui Chemicals Agro Inc | 有害生物防除組成物 |
JP2011157295A (ja) * | 2010-01-29 | 2011-08-18 | Mitsui Chemicals Agro Inc | 植物種子用虫害防除組成物および虫害の予防方法 |
JP2011157294A (ja) * | 2010-01-29 | 2011-08-18 | Mitsui Chemicals Agro Inc | 有害生物防除組成物 |
WO2011093415A1 (ja) | 2010-01-29 | 2011-08-04 | 三井化学アグロ株式会社 | 動物寄生虫駆除用組成物および動物寄生虫の駆除方法 |
PE20130631A1 (es) | 2010-05-28 | 2013-05-29 | Basf Se | Mezclas de plaguicidas |
ES2567266T3 (es) * | 2010-05-28 | 2016-04-21 | Basf Se | Mezclas de pesticidas |
JP6069193B2 (ja) | 2010-06-18 | 2017-02-01 | バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH | 殺虫特性及び殺ダニ特性を有する活性物質組合せ |
PE20140826A1 (es) * | 2011-07-13 | 2014-07-09 | Basf Se | Compuestos sustituidos fungicidas de 2-[2-halogenalquil-4-(fenoxi)-fenil]-1-[1,2,4]triazol-1-il-etanol |
WO2013030319A2 (en) * | 2011-09-02 | 2013-03-07 | Basf Se | Use of pesticidal active 3-arylquinazolin-4-one derivatives in soil application methods |
US9661850B2 (en) | 2012-08-24 | 2017-05-30 | Syngenta Participations Ag | Methods of soil pest control |
JP6133907B2 (ja) | 2013-01-31 | 2017-05-24 | 三井化学アグロ株式会社 | 縮合環ピリミジン化合物及びそれを含む有害生物防除剤 |
JP6134398B2 (ja) * | 2013-06-19 | 2017-05-24 | ボーグワーナー インコーポレーテッド | 油圧により係合されるロックピンを備えた可変カムシャフトタイミング機構 |
ES2715660T3 (es) * | 2013-10-18 | 2019-06-05 | Basf Agrochemical Products Bv | Uso de un derivado de carboxamida activo como pesticida en el suelo y métodos de aplicación y tratamiento de semillas |
EP3766347A3 (en) * | 2013-10-18 | 2021-03-31 | BASF Agrochemical Products B.V. | Insecticidal active mixtures comprising carboxamide compound |
MX2016005027A (es) | 2013-10-18 | 2016-10-28 | Basf Agrochemical Products Bv | Mezclas agricolas que comprenden compuestos de carboxamida. |
CA2980505A1 (en) * | 2015-04-07 | 2016-10-13 | Basf Agrochemical Products B.V. | Use of an insecticidal carboxamide compound against pests on cultivated plants |
-
2014
- 2014-10-16 MX MX2016005027A patent/MX2016005027A/es unknown
- 2014-10-16 CN CN202110539504.0A patent/CN113367135A/zh active Pending
- 2014-10-16 EA EA201600328A patent/EA201600328A1/ru unknown
- 2014-10-16 CN CN201480068998.7A patent/CN105939603B/zh active Active
- 2014-10-16 KR KR1020167013010A patent/KR102310373B1/ko active IP Right Grant
- 2014-10-16 CA CA2927454A patent/CA2927454C/en active Active
- 2014-10-16 WO PCT/EP2014/072189 patent/WO2015055755A1/en active Application Filing
- 2014-10-16 KR KR1020217031001A patent/KR102429607B1/ko active IP Right Grant
- 2014-10-16 EP EP21183842.0A patent/EP3942933A1/en active Pending
- 2014-10-16 AU AU2014336138A patent/AU2014336138B2/en active Active
- 2014-10-16 BR BR112016008525-6A patent/BR112016008525B1/pt active IP Right Grant
- 2014-10-16 JP JP2016524051A patent/JP6644679B2/ja active Active
- 2014-10-16 RS RS20211302A patent/RS62537B1/sr unknown
- 2014-10-16 US US15/029,908 patent/US20160227772A1/en not_active Abandoned
- 2014-10-16 CA CA3134748A patent/CA3134748C/en active Active
- 2014-10-16 EP EP14786847.5A patent/EP3057419B1/en active Active
-
2016
- 2016-04-14 IL IL245129A patent/IL245129A0/en unknown
- 2016-04-18 MX MX2021007964A patent/MX2021007964A/es unknown
- 2016-05-12 ZA ZA2016/03213A patent/ZA201603213B/en unknown
-
2017
- 2017-12-12 US US15/839,528 patent/US10897897B2/en active Active
-
2018
- 2018-05-29 AU AU2018203759A patent/AU2018203759B2/en active Active
-
2019
- 2019-04-11 IL IL265977A patent/IL265977B/en active IP Right Grant
- 2019-04-11 IL IL265983A patent/IL265983B/en unknown
-
2020
- 2020-06-16 AU AU2020204011A patent/AU2020204011B2/en active Active
- 2020-12-18 US US17/127,208 patent/US11882827B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030224936A1 (en) * | 1999-03-13 | 2003-12-04 | Gerhard Kretzschmar | Seed treatment composition |
US20110137068A1 (en) * | 2008-08-13 | 2011-06-09 | Mitsui Chemicals Agro, Inc. | Method for producing amide derivative |
Non-Patent Citations (1)
Title |
---|
Machine translation of JP 2011-157294 (8/18/2011). * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11882827B2 (en) | 2013-10-18 | 2024-01-30 | Basf Agrochemical Products B.V. | Agricultural mixtures comprising carboxamide compound |
WO2018152411A1 (en) * | 2017-02-17 | 2018-08-23 | Bayer Cropscience Lp | Compositions comprising recombinant bacillus cells and an insecticide |
US10743535B2 (en) | 2017-08-18 | 2020-08-18 | H&K Solutions Llc | Insecticide for flight-capable pests |
US20220295790A1 (en) * | 2019-06-15 | 2022-09-22 | Jdm Scientific Research Organisation Private Limited | Synergistic fungicidal composition |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11882827B2 (en) | Agricultural mixtures comprising carboxamide compound | |
US12102085B2 (en) | Insecticidal active mixtures comprising carboxamide compound | |
BR122021013250B1 (pt) | Misturas agrícolas, métodos para a proteção dos vegetais de ataque ou infestação, método para o controle de insetos, método para a proteção de material de propagação de vegetais, método para o controle de fungos fitopatogênicos nocivos, método para a proteção de vegetais de fungos fitopatogênicos nocivos, usos de uma mistura e composição agrícola |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF AGROCHEMICAL PRODUCTS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GEWEHR, MARKUS;SIKULJAK, TATJANA;SIGNING DATES FROM 20160422 TO 20160425;REEL/FRAME:043297/0360 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |